content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import re
def pgrg_splitter(pgrg_str: str) -> tuple:
"""
Break up a stored page range into its components.
>>> pgrg_splitter("1-5")
('1', '5')
"""
retVal = (None, None)
# pgParts = pgrg_str.split("-")
# pgParts = re.split("[-–—]") # split for dash or ndash
pgParts = [n.strip() for n in re.split("[-–—]", pgrg_str)]
try:
pgStart = pgParts[0]
except IndexError as e:
pgStart = None
try:
pgEnd = pgParts[1]
except IndexError as e:
pgEnd = None
retVal = (pgStart, pgEnd)
return retVal
|
ee09b239a3c9d62d8a9d8876ae9220ca781b4464
| 462,453 |
def get_data(input_string):
"""
>>> get_data("hi=mom")
('hi', 'mom')
>>> get_data("hi=mom # with a comment.")
('hi', 'mom')
>>> get_data("# nothing here.")
('', '')
"""
input_string= input_string.strip()
input_string, _, _ = input_string.partition("#")
input_string= input_string.rstrip()
name, _, value = input_string.partition('=')
return name, value
|
a6f631a9beda62bac4be513736febdf5a651f9f5
| 465,524 |
def _map_mobility(
dementia: int,
falls: int,
visual_impairment: int,
visual_supervisation: int,
) -> bool:
"""Maps historic patient's mobility status to True or False."""
if dementia + falls + visual_impairment + visual_supervisation > 0:
return True
else:
return False
|
11c506e12c6b4c6ffcaf44102c598e29862e59b0
| 220,704 |
def strToBool(val):
"""
Helper function to turn a string representation of "true" into
boolean True.
"""
if isinstance(val, str):
val = val.lower()
return val in ['true', 'on', 'yes', True]
|
545754dc7f599bed7a0e75f0d9122bc15b358298
| 501,120 |
import requests
from bs4 import BeautifulSoup
def get_soup(url):
"""Given a url, returns a BeautifulSoup object of that page's html"""
web_page = requests.get(url)
return BeautifulSoup(web_page.text, "html.parser")
|
eedabb426d409f63f0eaf71105f1f329ad7ee1e5
| 671,956 |
from datetime import datetime
def add_date_to_filename(filename):
"""
Add current date to a filename.
Args:
filename (str)
Returns:
new_filename (str):
filename with added date.
"""
now = datetime.now()
# dd/mm/YY H:M:S
dt_string = now.strftime("%d-%m-%Y_%H:%M")
new_filename = '_'.join([filename, dt_string])
return new_filename
|
230af86ef7d3d5b8d13d42363c7222f7998bed58
| 561,174 |
import torch
def load_model(model, filename, optimizer=None, learning_scheduler=None):
"""
Load the given torch model from the given file. Loads the model by reference, so the passed in model is modified.
An optimizer and learning_scheduler object can also be loaded if they were saved along with the model.
This can, for instance, allow training to resume with the same optimizer and learning_scheduler state.
Parameters
----------
model : torch.nn.Module
The pytorch module which should have its state loaded. WARNING: The parameters of this model will be
modified.
filename: Union[str, Path]
The file that contains the state of the model
optimizer: torch.optim.Optimizer
The pytorch optimizer object which should have its state loaded. WARNING: The state of this object will be
modified.
optimizer: Union[torch.optim._LRScheduler, object]
The pytorch learning rate scheduler object which should have its state loaded. WARNING: The state of this
object will be
modified.
Returns
----------
Optional[int]
Model is loaded by reference, so nothing is returned if loading is successful. If the file to load isn't found,
returns -1.
"""
try:
model_state_info = torch.load(filename)
except FileNotFoundError:
return -1
model.load_state_dict(model_state_info['model_state_dict'])
if optimizer is not None:
optimizer.load_state_dict(model_state_info['optimizer_state_dict'])
if learning_scheduler is not None:
learning_scheduler.load_state_dict(model_state_info['learning_scheduler_state_dict'])
|
d1fb4c908de2edd4def7a7f207846116b7a98b81
| 549,484 |
def bootstrap_context(value, max_value):
"""
Returns a Bootstrap contextual string based on the closeness to the max_value
Args:
value (int): Current value
max_value (int): The maximum possible, used to determine a percentage
Returns:
(str): One of the following Bootstrap contextual strings:
'primary', 'success', 'info', 'warning', 'danger'
"""
percentage = value / max_value * 100
if percentage >= 80:
return 'primary'
elif 80 > percentage and percentage >= 60:
return 'success'
elif 60 > percentage and percentage >= 40:
return 'info'
elif 40 > percentage and percentage >= 20:
return 'warning'
else:
return 'danger'
|
451c715143a6321f29e5330b4c4e871a47548813
| 130,809 |
import logging
def get_batch_size(num_replicas, num_samples, steps):
"""Calculate and return batch size for numpy inputs.
Args:
num_replicas: Number of devices over which the model input is distributed.
num_samples: Total number of input samples in the input numpy arrays.
steps: Number of steps that we run the model for.
Returns:
batch size used to create the Dataset object from the input numpy arrays.
"""
if num_samples % steps != 0:
logging.warning('The number of input samples %d is not evenly '
'divisible by the number of steps %d. '
'Some samples will not be processed as expected.' %
(num_samples, steps))
global_batch_size = num_samples // steps
if global_batch_size % num_replicas != 0:
logging.warning('The total number of batches per step %d is not evenly '
'divisible by the number of replicas %d used in '
'DistributionStrategy. Some samples will not be processed '
'as expected.' %
(global_batch_size, num_replicas))
return global_batch_size // num_replicas
|
81d555130feb2fa81eb019a2525dc84d60a905d2
| 261,057 |
def get_number_docs(index_name, es):
""" Return the number of indexed documents in ElasticSearch
:param index_name: ElasticSearch index file
:param es: ElasticSearch object
:return: int
"""
res = es.count(index=index_name)
return res['count']
|
6fb43003d33a1177e1b1ed8da26513db1124a3d3
| 586,668 |
def strip_string(value):
"""Remove all blank spaces from the ends of a given value."""
return value.strip()
|
0f66367ffc2c651488875ace33e6a44b453c3262
| 670,700 |
def trap_eq_factory(x_n, dt, f):
"""Factory function to return a function for evaluating the
trapezoidal integration function. This returns a function of
x_(n+1) (x at the next time step) for the given current x (x_n),
time step (dt), and function (f).
:param x_n: one-dimensional numpy array giving the values of x at
the current time step.
:param dt: Time step.
:param f: Function of x.
:returns: trap_eq, callable which takes x_(n+1) and evaluates the
trapezoidal formula.
"""
def trap_eq(x_n_1):
"""Simply write up the trapezoidal formula."""
return x_n_1 - x_n - dt / 2 * (f(x_n) + f(x_n_1))
# Return our new function.
return trap_eq
|
ea597986cb19252e625cf0aaae5065a6ff3f43d0
| 554,013 |
def jobs_to_delete(expected_jobs, actual_jobs):
"""
Decides on jobs that need to be deleted.
Compares lists of (service, instance) expected jobs to a list of (service, instance, tag) actual jobs
and decides which should be removed. The tag in the actual jobs is ignored, that is to say only the
(service, instance) in the actual job is looked for in the expected jobs. If it is only the tag that has
changed, then it shouldn't be removed.
:param expected_jobs: a list of (service, instance) tuples
:param actual_jobs: a list of (service, instance, config) tuples
:returns: a list of (service, instance, config) tuples to be removed
"""
not_expected = [job for job in actual_jobs if (job[0], job[1]) not in expected_jobs]
return not_expected
|
68c589e019045afe48952ebd23a491ee659f5e7b
| 255,562 |
def get_conn_str(db_name):
"""Returns the connection string for the passed in database."""
return f'postgresql://postgres:postgres123@localhost:5432/{db_name}'
|
0197fada49a60f22bc716e65692db4c96f91a0af
| 636,403 |
import struct
def parse_ipv4(address):
"""
Given a raw IPv4 address (i.e. as an unsigned integer), return it in
dotted quad notation.
"""
raw = struct.pack('I', address)
octets = struct.unpack('BBBB', raw)[::-1]
ipv4 = b'.'.join([('%d' % o).encode('ascii') for o in bytearray(octets)])
return ipv4
|
80fe6335b91cf4323e01ca18a370e86d65b91f45
| 442,325 |
import json
def pj(jdb):
"""Dumps pretty JSON"""
return json.dumps(jdb,sort_keys=True,indent=4)
|
7235ef14a5a55cee58a5cde72bc65b4b56c66755
| 663,958 |
def calcular_iva_propina_total_factura(costo_factura: int) -> str:
""" IVA y propina
Parámetros:
costo_factura (int): Costo de la factura del restaurante, sin impuestos ni propina
Retorno:
str: Cadena con el iva, propina y total de la factura, separados por coma
"""
iva = costo_factura * 0.19
propina = costo_factura * 0.10
total = iva + propina + costo_factura
cadena = str(round(iva)) + "," + str(round(propina)) + "," + str(round(total))
return cadena
|
d0946472e5c43551e607a3413fe3cbe5cf888368
| 471,175 |
def _compute_win_probability_from_elo(rating_1, rating_2):
"""Computes the win probability of 1 vs 2 based on the provided Elo ratings.
Args:
rating_1: The Elo rating of player 1.
rating_2: The Elo rating of player 2.
Returns:
The win probability of player 1, when playing against 2.
"""
m = max(rating_1, rating_2) # We subtract the max for numerical stability.
m1 = 10**((rating_1 - m) / 400)
m2 = 10**((rating_2 - m) / 400)
return m1 / (m1 + m2)
|
150a0593152439e1cb5ed57cd7718c79ffe7cf20
| 570,687 |
def bytes_to_index(lead, tail):
""" Map a pair of ShiftJIS bytes to the WHATWG index.
"""
lead_offset = 0x81 if lead < 0xA0 else 0xC1
tail_offset = 0x40 if tail < 0x7F else 0x41
return (lead - lead_offset) * 188 + tail - tail_offset
|
edf98e19d9283b2deaf442e29d50469ea6bc0954
| 80,623 |
import re
def redundant(search):
"""returns true if search consists of just an eventtype (e.g. 'eventtype=foo' or 'eventtype="foo bar")"""
return re.match('^eventtype=(?:"[^"]*")|(?:[^"][^ ]*)$', search) != None
|
ca5762651fd9111304c8ecc8de33fed05b3127ce
| 546,341 |
def filter_attached_for_up(items, service_names, attach_dependencies=False,
item_to_service_name=lambda x: x):
"""This function contains the logic of choosing which services to
attach when doing docker-compose up. It may be used both with containers
and services, and any other entities that map to service names -
this mapping is provided by item_to_service_name."""
if attach_dependencies or not service_names:
return items
return [
item
for item in items if item_to_service_name(item) in service_names
]
|
d25374831d0455d93e294ee366f98b44b2d89d0d
| 330,647 |
def check_for_chr(sam):
""" Check sam file to see if 'chr' needs to be prepended to chromosome """
if 'chr' in sam.references[0]:
return True
return False
|
22297aa592faab69d4f7293975738e51fdbacc24
| 599,037 |
def verify_input(user_input, correct_input):
"""Returns True if the user_input is inside correct_input (list) False in other way."""
if user_input in correct_input:
return True
else:
return False
|
4a3905dddfdebcc8b8d242c0e9033ce135668cd6
| 340,219 |
def build_slice_path( data_root, data_suffix, experiment_name, variable_name, time_index, xy_slice_index, index_precision=3 ):
"""
Returns the on-disk path to a specific slice. The path generated has the following
form:
<root>/<variable>/<experiment>-<variable>-z=<slice>-Nt=<time><suffix>
<slice> and <time> are zero-padded integers formatted according to an
optional precision parameter.
Takes 7 arguments:
data_root - String specifying the root on-disk path for the slice.
data_suffix - String specifying the path suffix for the slice.
experiment_name - String specifying the experiment that generated the slice.
variable_name - String specifying the variable associated with the slice.
time_index - Non-negative index specifying the time step associated with
the slice.
xy_slice_index - Non-negative index specifying the XY slice.
index_precision - Optional non-negative integer specifying the precision used
when formatting "<slice>" and "<time>". If omitted, defaults
to 3.
Returns 1 value:
slice_name - String specifying the constructed path.
"""
return "{:s}/{:s}/{:s}-{:s}-z={:0{index_precision}d}-Nt={:0{index_precision}d}.png".format(
data_root,
variable_name,
experiment_name,
variable_name,
xy_slice_index,
time_index,
index_precision=index_precision )
|
68a6f29693f244a6e3ba8a9cd88bd3c14fa75e4d
| 219,828 |
def _module_descriptor_file(module_dir):
"""Returns the name of the file containing descriptor for the 'module_dir'."""
return "{}.descriptor.txt".format(module_dir)
|
aa29da3e708e63376604c71bf40189b2256e46bb
| 287,739 |
def beta_pruning_actions(state):
""" Return actions available given a state, we're essentially creating
a binary tree, where each parent has two nodes to choose from
:param state: The current state
:return: The available actions given the current state
"""
match state:
case "a":
val = ["a1", "a2"]
case "b":
val = ["b1", "b2"]
case "c":
val = ["c1", "c2"]
case "d":
val = ["d1", "d2"]
case "e":
val = ["e1", "e2"]
case "f":
val = ["f1", "f2"]
case "g":
val = ["g1", "g2"]
case _:
val = [] # Cases e-m are leaves, so should have no possible actions
return val
|
e9865c0e1ade4d124bb27d491977e570e6df76ed
| 59,638 |
import math
def get_utm_zone(x, y):
"""Get EPSG code for utm zone containing x/y lng/lat coordinates."""
utm_code = (math.floor((x + 180)/6) % 60) + 1
lat_code = 6 if y > 0 else 7
epsg_code = int('32%d%02d' % (lat_code, utm_code))
return epsg_code
|
7ff1ac5c15376ee2b154be5a2612709c0f802427
| 515,689 |
import unicodedata
def normalize_nfkc(text):
"""Applies NFKC normalization e.g. ™ to TM, ..."""
return unicodedata.normalize("NFKC", text)
|
5a717be987aaf01320fde844b8f4091459987f15
| 140,157 |
from pathlib import Path
def _lines_to_set(path):
"""
Converts lines from the file in the specified path to set of strings
which are lines in the file. Returns empty set when file doesn't exist.
"""
out = set()
if Path(path).is_file():
with open(path) as f:
out = set(f.read().splitlines())
return out
|
2f2827bf3ff5c5aff044aacbc5ea1e466403ab94
| 584,100 |
def frontiers_from_bar_to_time(seq, bars):
"""
Converts the frontiers (or a sequence of integers) from bar indexes to absolute times of the bars.
The frontier is considered as the end of the bar.
Parameters
----------
seq : list of integers
The frontiers, in bar indexes.
bars : list of tuple of floats
The bars, as (start time, end time) tuples.
Returns
-------
to_return : list of float
The frontiers, converted in time (from bar indexes).
"""
to_return = []
for frontier in seq:
bar_frontier = bars[frontier][1]
if bar_frontier not in to_return:
to_return.append(bar_frontier)
return to_return
|
ea86d14725a6761ba90ba4b62b7f78d687e6a269
| 48,145 |
def pythonize(string):
"""Transforms 'SillyCamelCase' to 'silly_camel_case'"""
normed = string[0].lower()
for char in string[1:]:
if char.isupper():
normed += '_'
normed += char.lower()
return normed
|
ee9564e71aee8adedf884c0d0f49f388c7c87f18
| 357,518 |
def query(df, query):
"""
Filter a dataset under a condition
---
### Parameters
*mandatory :*
- query (*str*): your query as a string (see [pandas doc](
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.query.html#pandas.DataFrame.query))
---
### Example
**Input**
| variable | wave | year | value |
|:--------:|:-------:|:--------:|:-----:|
| toto | wave 1 | 2014 | 300 |
| toto | wave 1 | 2015 | 250 |
| toto | wave 1 | 2015 | 100 |
| toto | wave 1 | 2016 | 450 |
```cson
query: 'value > 350'
```
**Output**
| variable | wave | year | value |
|:--------:|:-------:|:--------:|:-----:|
| toto | wave 1 | 2016 | 450 |
"""
df = df.query(query)
return df
|
7fb2db6f9a8be3993f8a968892260ad0dd725b55
| 523,694 |
from typing import Counter
def most_common_elems(lst):
"""Returns the most common elements from a list.
>>> most_common_elems([2, 2, 1])
[2]
>>> sorted(most_common_elems([2, 1]))
[1, 2]
>>> sorted(most_common_elems([3, 2, 1, 3, 2, 4, 5, 7, 3, 1, 1]))
[1, 3]
"""
c = Counter()
for elem in lst:
c[elem] += 1
mc = c.most_common()
return [elems for elems, count in mc if count == mc[0][1]]
|
9b98a27344626d9db1dc13ca001464c5400c986b
| 450,276 |
import re
def strip_quotes(s: str) -> str:
"""Strip a double quote at the beginning and end of the string, if any."""
s = re.sub('^"', '', s)
s = re.sub('"$', '', s)
return s
|
d8ff112648fd071ad80bd1303ae1c6123b50468b
| 187,510 |
def popis_pozici(pozice):
"""Popíše pozici pro lidi
např:
>>> popis_pozici(0, 0)
'a1'
"""
radek, sloupec = pozice
return "abcdefgh"[sloupec] + "12345678"[radek]
|
efb2df8715b30c04bfdeb82684084f2037ad5e7e
| 671,470 |
import random
def split_train_test(all_instances, n=None):
"""
Randomly split `n` instances of the dataset into train and test sets.
:param all_instances: a list of instances (e.g. documents) that will be split.
:param n: the number of instances to consider (in case we want to use only a
subset).
:return: two lists of instances. Train set is 8/10 of the total and test set
is 2/10 of the total.
"""
random.seed(12345)
random.shuffle(all_instances)
if not n or n > len(all_instances):
n = len(all_instances)
train_set = all_instances[: int(0.8 * n)]
test_set = all_instances[int(0.8 * n) : n]
return train_set, test_set
|
68d2d94fcc4d5241e053556fcb4c2e50edfd2396
| 137,646 |
def compress(v, slen):
"""
Take as input a list of integers v and a bytelength slen, and
return a bytestring of length slen that encode/compress v.
If this is not possible, return False.
For each coefficient of v:
- the sign is encoded on 1 bit
- the 7 lower bits are encoded naively (binary)
- the high bits are encoded in unary encoding
"""
u = ""
for coef in v:
# Encode the sign
s = "1" if coef < 0 else "0"
# Encode the low bits
s += format((abs(coef) % (1 << 7)), '#09b')[2:]
# Encode the high bits
s += "0" * (abs(coef) >> 7) + "1"
u += s
# The encoding is too long
if len(u) > 8 * slen:
return False
u += "0" * (8 * slen - len(u))
w = [int(u[8 * i: 8 * i + 8], 2) for i in range(len(u) // 8)]
x = bytes(w)
return x
|
ce45538933efa74e2673d713eae14a9b47e5c020
| 67,274 |
def format_path_data(path_data):
"""
Args:
path_data (list or str): Either a list of paths, or just one path.
Returns:
list: A list of paths
"""
assert isinstance(path_data, str) or isinstance(path_data, list)
if isinstance(path_data, str):
path_data = [path_data]
return path_data
|
5e281848d7424f0957f09eda7b9e75314f4f645c
| 249,616 |
def avg_words_per_sent(sent_count, word_count):
"""return the average number of words per sentence"""
result = word_count/sent_count
return result
|
04dc6ccf4fde0c61c336f21d166cc370b7c088df
| 466,934 |
def get_key_val_of_max_key(dict_obj):
"""Returns the key-value pair with the largest key in the given dict.
Example:
--------
>>> dict_obj = {5: 'g', 3: 'z'}
>>> print(get_key_val_of_max_key(dict_obj))
(5, 'g')
"""
return max(dict_obj.items(), key=lambda item: item[0])
|
d8d6a6836f0c8c0e8e914dd4cdd97f9bf703c5e4
| 605,233 |
def _encode_bool(name, value, dummy0, dummy1):
"""Encode a python boolean (True/False)."""
return b"\x08" + name + (value and b"\x01" or b"\x00")
|
5c6612ed9919286c0cab29b023b69f7872d40ed8
| 394,762 |
def get_ip_port(socket_str):
"""
Returns ip and port
:param socket_str: ipv4/6:port
:return:
address, port
"""
splitter_index = socket_str.rindex(':')
address = socket_str[0:splitter_index]
port = socket_str[splitter_index + 1:]
return address, port
|
5a641bc83f81389d6a7ce30610a62476870d3bea
| 417,230 |
import re
def barcode_is_10xgenomics(s):
"""
Check if sample sheet barcode is 10xGenomics sample set ID
10xGenomics sample set IDs of the form e.g. 'SI-P03-C9' or
'SI-GA-B3' are also considered to be valid.
Arguments:
s (str): barcode sequence to validate
Returns:
Boolean: True if barcode is 10xGenomics sample set ID,
False if not.
"""
return bool(re.match(r'^SI\-[A-Z0-9]+\-[A-Z0-9]+$',s))
|
4e94ba4606c0a78afda876644d472aecc645aa2e
| 166,726 |
def Residuals(xs, ys, inter, slope):
"""Computes residuals for a linear fit with parameters inter and slope.
Args:
xs: independent variable
ys: dependent variable
inter: float intercept
slope: float slope
Returns:
list of residuals
"""
res = [y - inter - slope*x for x, y in zip(xs, ys)]
return res
|
cce5519c6adddf95b29712d51c698aeb1d531fa4
| 200,091 |
def set_compare(a, b):
"""
Compare two iterables a and b. set() is used for comparison, so only
unique elements will be considered.
Parameters
----------
a : iterable
b : iterable
Returns
-------
tuple with 3 elements:
(what is only in a (not in b),
what is only in b (not in a),
what is common in a and b)
"""
a, b = set(a), set(b)
return (a-b, b-a, a.intersection(b))
|
db8e3674198c411355486062cde0258dbaecc5fb
| 164,394 |
def outName(finpName):
"""Returns output filename by input filename"""
i = finpName.rfind('.')
if i != -1:
finpName = finpName[0:i]
return finpName + '.hig'
|
b23092a5356bd6f37ac76bab5af422feb446a3f3
| 654,353 |
def bounds(a):
"""Return a list of slices corresponding to the array bounds."""
return tuple([slice(0,a.shape[i]) for i in range(a.ndim)])
|
fa9c7c8ed51d5c10ecd4392a72c6efe379a9407b
| 696,738 |
import hashlib
def sha256(code, input):
"""sha256 <string> -- Create a sha256 hash of the input string"""
return code.say(hashlib.sha256(input.group(2)).hexdigest())
|
58935c8513a158725ed8e2f42be4c7fdda16c390
| 124,193 |
def legendre_polynomial(x: float, n: int) -> float:
"""Evaluate n-order Legendre polynomial.
Args:
x: Abscissa to evaluate.
n: Polynomial order.
Returns:
Value of polynomial.
"""
if n == 0:
return 1
elif n == 1:
return x
else:
polynomials = [1, x]
for k in range(1, n):
new = ((2 * k + 1) * x * polynomials[-1] - k * polynomials[-2]) / (k + 1)
polynomials.append(new)
return polynomials[-1]
|
9c1890f54ae0a91b8d4cd8771f7a944fd3f7e7ab
| 638,006 |
def compute_adaptive_order(freq, order_min, order_max):
"""
Computes the superlet order for a given frequency of interest
for the fractional adaptive SLT (FASLT) according to
equation 7 of Moca et al. 2021.
This is a simple linear mapping between the minimal
and maximal order onto the respective minimal and maximal
frequencies.
Note that `freq` should be ordered low to high.
"""
f_min, f_max = freq[0], freq[-1]
assert f_min < f_max
order = (order_max - order_min) * (freq - f_min) / (f_max - f_min)
# return np.int32(order_min + np.rint(order))
return order_min + order
|
4ffd3dbff4d62437a479b527a0363afb27c3556b
| 364,996 |
def check_param(var, datatype):
"""Checks if a variable is the correct data type.
If it's not correct, return the error message to raise.
Parameters
-----------
var
the variable to check.
datatype
the data type to compare against.
Returns
----------
str
the error message to raise.
"""
if isinstance(var, datatype):
return ''
return f"{[name for name, value in locals().items() if var == value][0]} expects '{datatype.__name__}' not '{type(var)}'"
|
51c8ed53e516b3f6b53c2f584ca94f82ed2dd60d
| 596,530 |
def split_into_characters(s: str) -> list[str]:
"""
>>> split_into_characters("PyCon")
['P', 'y', 'C', 'o', 'n']
"""
return [character for character in s]
|
db6a8f5235dec5b9995b682c1c03472fac67ac6a
| 530,435 |
def pre_post_delete_callback(req, form, storable):
"""
Called before or after an item is deleted.
The return value from a postdelete callback has no effect.
"""
return True
|
536fc7adee4aac56c32983b60b283e6340d9bee9
| 444,822 |
def partition(word: str, partitions: int) -> int:
"""
Find a bucket for a given word.
:param word:
:param partitions:
:return:
"""
a = ord('a')
z = ord('z')
value = ord(word[0].lower())
if partitions > 1 and a <= value <= z:
pos = value - a
return int(pos * (partitions - 1) / (z - a + 1)) + 1
# Catch-all for numbers, symbols and diacritics.
return 0
|
ddf981ca7cdd5ad3bd45f524c706c5901bfeb892
| 77,084 |
def getRowUnit(sudoku, i):
"""
Finds a cell's peers in the row that it is in.
Peers are the other numbers in the puzzle.
Input
sudoku : 9x9 numpy array of integers.
i: row index of cell in the puzzle.
Output
temp_row : numpy list of the cell's peers in the specified row.
"""
temp_row = []
for y in range(0, 9):
temp_row.append(sudoku[i][y])
return temp_row
|
8b129d54cfea218401a508329278287a537a9436
| 506,110 |
def rosenbrock(x, y):
"""Rosenbrock function, minimum at (1,1) with value of 0"""
return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2
|
dea89459bda6cae4b7b2e44f4cfd6f9d135cb46a
| 537,820 |
def get_roi(countours, img_height, img_width):
"""
Computes bounding box which must contain all the passed contours
Arguments:
contours -- numpy array of shape [num_points, 1, 2]
img_height -- int, image height
img_width -- int, image width
Returns:
4 numbers representing x and y coordinates of bottom left and upper right corners of the resulting ROI
"""
miny, maxy = float('inf'), -float('inf')
minx, maxx = float('inf'), -float('inf')
for item in countours[:, :]:
x, y = item[0]
miny = min(y, miny)
maxy = max(y, maxy)
minx = min(x, minx)
maxx = max(x, maxx)
offset = 15
minx = max(minx - offset, 0)
maxx = min(maxx + offset, img_width)
miny = max(miny - offset, 0)
maxy = min(maxy + offset, img_height)
return int(minx), int(maxx), int(miny), int(maxy)
|
a849ee8e21c1b951b112f7f93db4389ce9a1dc45
| 440,209 |
from email.mime.text import MIMEText
import uuid
def new_message(from_email, to_email):
"""Creates an email (headers & body) with a random subject"""
msg = MIMEText('Testing')
msg['Subject'] = uuid.uuid4().hex[:8]
msg['From'] = from_email
msg['To'] = to_email
return msg.as_string(), msg['subject']
|
4895121a4193df9c07dfaf4dc4e48c4c8909360d
| 251,414 |
import base64
def base64_encode(string):
"""
Encodes data with MIME base64
This encoding is designed to make binary data survive transport through transport layers that are not 8-bit clean, such as mail bodies.
"""
return base64.b64encode(string)
|
d1632c2952fc470a322926aae6a32a6cbe3cc930
| 613,735 |
def select_columns_by_type(df, dtypes):
"""Return the list of columns which are of object or datetime type
Parameters
----------
df: pandas.DataFrame
Returns
-------
List[str]
"""
return [
column_name
for column_name, column_type in df.dtypes.to_dict().items()
if column_type in dtypes
]
|
23ae845c52df0d4ff26b5c691ff8298f6187772e
| 490,030 |
import importlib
def is_openeye_installed(oetools=('oechem', 'oequacpac', 'oeiupac', 'oeomega')):
"""
Check if a given OpenEye tool is installed and Licensed.
If the OpenEye toolkit is not installed, returns False.
Parameters
----------
oetools : str or iterable of strings, Optional, Default: ('oechem', 'oequacpac', 'oeiupac', 'oeomega')
Set of tools to check by their string name. Defaults to the
complete set that YANK *could* use, depending on feature requested.
Only checks the subset of tools if passed. Also accepts a single
tool to check as a string instead of an iterable of length 1.
Returns
-------
all_installed : bool
True if all tools in ``oetools`` are installed and licensed, False otherwise.
"""
# Complete list of module: License function name.
tools_license = {'oechem': 'OEChemIsLicensed',
'oequacpac': 'OEQuacPacIsLicensed',
'oeiupac': 'OEIUPACIsLicensed',
'oeomega': 'OEOmegaIsLicensed'}
# Cast oetools to tuple if its a single string.
if type(oetools) is str:
oetools = (oetools,)
# Check if the input oetools are known.
if not set(oetools).issubset(set(tools_license)):
raise ValueError("Expected an OpenEye tools subset of {}, but instead "
"got {}".format(tuple(tools_license), oetools))
# Try loading the module.
for tool in oetools:
try:
module = importlib.import_module('openeye.' + tool)
except ImportError:
return False
# Check that we have the license.
if not getattr(module, tools_license[tool])():
return False
return True
|
0e434bef7bf9eaad11bb03993bf46b30875633cf
| 419,181 |
def recvall(sock, size: int):
"""Receive data of a specific size from socket.
If 'size' number of bytes are not received, None is returned.
"""
buf = b""
while size:
newbuf = sock.recv(size)
if not newbuf:
return None
buf += newbuf
size -= len(newbuf)
return buf
|
6a0f6814cdaf6847d467f4c5620c3897b1ff2ac8
| 35,183 |
def _check_for_too_many_exclusions(exclude_instances, available_instances,
delta, groups_members):
"""
Check whether the amount of exluded instances will make it possible to
scale down by the given delta.
:param exclude_instances: A list of node instance IDs to exclude.
:param available_instances: A list of all available instance IDs. For
groups this should include both the group
instance IDs and the member node instance
IDs.
:param delta: How much to scale by. This is expected to be negative.
:param groups_members: A dict of group instances with their members,
e.g. produced by get_groups_with_members
:return: A string detailing problems if there are any, or an empty
string if there are no problems.
"""
if groups_members:
excluded_groups = set()
# For groups, we must add all group instances to the exclusions that
# contain an excluded node instance as one of their members, AND we
# must add all group instances that are excluded, as the
# exclude_instances list could legitimately contain both
for inst in exclude_instances:
for group, members in groups_members.items():
if inst in members or inst == group:
excluded_groups.add(group)
planned_group_instances = len(groups_members) + delta
if planned_group_instances < len(excluded_groups):
return (
'Instances from too many different groups were excluded. '
'Target number of group instances was {group_count}, but '
'{excluded_count} excluded groups.'.format(
group_count=planned_group_instances,
excluded_count=len(excluded_groups),
)
)
else:
planned_num_instances = len(available_instances) + delta
if planned_num_instances < len(exclude_instances):
return (
'Target number of instances is less than excluded '
'instance count. Target number of instances was '
'{target}. Excluded instances were: '
'{instances}. '.format(
target=planned_num_instances,
instances=', '.join(exclude_instances),
)
)
# No problems found, return no error
return ''
|
dca3588e02c8eaf60c6511dfedb3a3b281d64992
| 609,614 |
def is_word(s):
""" String `s` counts as a word if it has at least one letter. """
for c in s:
if c.isalpha(): return True
return False
|
524ed5cc506769bd8634a46d346617344485e5f7
| 706,470 |
def unstream(data, version_tag, bits_per_value, int_size):
"""
This function is a pythonic adaptation of Reddit user bxny5's unstream
function for decoding minecraft chunkheightmap data, written in perl.
https://www.reddit.com/r/Minecraft/comments/bxny75/fun_with_chunk_data_heightmap_edition/
"""
legacy = True
if version_tag.value > 2230: # 2230 == MC version 1.15.2 ( this is the cut off )
legacy = False
bl = 0
result = []
value = 0
for byte in data:
for num in range(int_size):
bit = (byte >> num) & 0x01
value = (bit << bl) | value
bl += 1
if bl >= bits_per_value:
result.append(value)
value = 0
bl = 0
if not legacy:
bl = 0
return result
|
59e69159315a7ee0c7384be7f198f6906d1daa8d
| 153,502 |
def get_client_region(client):
"""Gets the region from a :class:`boto3.client.Client` object.
Args:
client (:class:`boto3.client.Client`): The client to get the region
from.
Returns:
string: AWS region string.
"""
return client._client_config.region_name
|
6727f8e21fee77a2d869c1c4f3aa077a22145f1d
| 67,098 |
def all_equal(values: list):
"""Check that all values in given list are equal"""
return all(values[0] == v for v in values)
|
8ed08f63959367f3327554adc11b1286291963d8
| 708,786 |
def irb_decay_to_gate_infidelity(irb_decay, rb_decay, dim):
"""
Eq. 4 of [IRB], which provides an estimate of the infidelity of the interleaved gate,
given both the observed interleaved and standard decay parameters.
:param irb_decay: Observed decay parameter in irb experiment with desired gate interleaved between Cliffords
:param rb_decay: Observed decay parameter in standard rb experiment.
:param dim: Dimension of the Hilbert space, 2**num_qubits
:return: Estimated gate infidelity (1 - fidelity) of the interleaved gate.
"""
return ((dim - 1) / dim) * (1 - irb_decay / rb_decay)
|
09f5b504ffffb047dc903a19bd51753c46cca7c2
| 675,239 |
def expected_errors(snippets):
"""Get and normalize expected errors from snippet."""
out = snippets.pop(0)
assert out.startswith("[GraphQLError(")
return " ".join(out.split()).replace("( ", "(").replace('" "', "")
|
57ff4693779ef221daf400d0b2fef68bfbd4d581
| 635,424 |
def float_to_str(value: float) -> str:
"""Converts double number to string using {.12g} formatter."""
return format(value, ".12g")
|
404855c3c17ff19c3ef6275f0d5584b6e8f73350
| 228,721 |
def rotate_patches_90deg(patches):
"""
Rotate patch dictionary as if original image is rotated by 90-degree
CCW.
"""
def rot_pos(i, j):
"""
Board Coordinates:
i
9 ... 1
------ 1 j
| | ...
------ 9
"""
return (10 - j, i)
def rot_patch(patch):
"""
Image coordinates:
|---->x
|
\|/ y
"""
return {
"image": patch["image"].transpose([1, 0, 2])[::-1]
}
return {
rot_pos(*pos): rot_patch(patch)
for (pos, patch) in patches.items()
}
|
f488cb151b869d740c47464816329e730a12f3f0
| 668,965 |
from pathlib import Path
def default_sftp_path(this_path, default_path):
"""
If ``this_path`` exists, return it as a path, else, return
the ``pathlib.Path.name`` of the default path
"""
return Path(this_path) if this_path else Path(Path(default_path).name)
|
4b63a77a318593c80f830e810d516ca3aa2fcc75
| 380,687 |
import re
def _is_abbreviation_for(abbreviated, full):
"""
>>> _is_abbreviation_for('yr', 'years')
True
>>> _is_abbreviation_for('years', 'years')
True
>>> _is_abbreviation_for('szco', 'years')
False
Thanks to Michael Brennan
http://stackoverflow.com/questions/7331462/check-if-a-string-is-a-possible-abbrevation-for-a-name/7332054#7332054
"""
abbreviated = abbreviated.strip()
if abbreviated:
pattern = ".*".join(abbreviated)
return bool(re.match("^" + pattern, full, re.IGNORECASE))
|
05e90d501c93e17cd56fa33df73d4b64149da8ec
| 199,095 |
def get_strict_smarts_for_atom(atom):
"""
For an RDkit atom object, generate a simple SMARTS pattern.
Parameters
----------
atom: rdkit.Chem.Atom
RDKit atom.
Results
-------
symbol: str
SMARTS symbol of the atom.
"""
symbol = atom.GetSmarts()
if "[" not in symbol:
symbol = "[" + symbol + "]"
return symbol
|
7f6d8f79056f9dd08b99369f02f7d795fbd5866f
| 194,376 |
def get_type(transaction):
"""
:return: the type of the transaction
"""
return transaction['type']
|
4f66830f7c1e3bdc5d6b2c4ccc5db493014b9e5f
| 697,943 |
def _convert_space_to_shape_index(space):
"""Map from `feature` to 0 and `sample` to 1 (for appropriate shape indexing).
Parameters
----------
space : str, values=('feature', 'sample')
Feature or sample space.
Returns
-------
return : int, values=(0, 1)
Index location of the desired space.
"""
if space == 'feature':
return 1
if space == 'sample':
return 0
|
20ec5aad29366929973b2bfa8e503a5bcbbb9a3a
| 638,398 |
def compss_wait_on(obj):
"""
Dummy compss_wait_on
:param obj: The object to wait on.
:return: The same object defined as parameter
"""
return obj
|
cb433878c460a507d98c1c3a8880626f804b201f
| 28,565 |
def snake_to_title_case(text):
"""Converts column_title to "Column Title"
"""
return ' '.join(map(lambda x: x.capitalize(), text.split('_')))
|
fa9accb2650d0ad20bc235e28db16debd625f565
| 177,646 |
def formatMultiplier(stat : float) -> str:
"""Format a module effect attribute into a string, including a sign symbol and percentage symbol.
:param stat: The statistic to format into a string
:type stat: float
:return: A sign symbol, followed by stat, followed by a percentage sign.
"""
return f"{'+' if stat >= 1 else '-'}{round((stat - (1 if stat > 1 else 0)) * 100)}%"
|
5ab9df157d54a5414fc9cba46d0f73512a8a6c4c
| 43,002 |
def get_datatype(value):
""" Determine most appropriate SQLite datatype for storing value.
SQLite has only four underlying storage classes: integer, real,
text, and blob.
For compatibility with other flavors of SQL, it's possible to
define columns with more specific datatypes (e.g. 'char',
'date'), but since these are still mapped to the underlying
storage classes there's not much point in using them when
generating native SQLite SQL.
Therefore, this function takes an incoming value and attempts
to guess the best SQLite datatype for storing it. This can
then be used to help decide the schema of the column where the
value will be stored.
It defaults to the text datatype, not the super-general blob
datatype, because read_csv reads each row in as text rather
than binary data.
Unlike in other SQL flavors, misdefining a column's datatype
affinity is not fatal, because in the end any type of value
can be stored in any column. In the end, the datatype
returned by this function is just a suggestion for SQLite.
See:
* https://www.sqlite.org/datatype3.html
* http://ericsink.com/mssql_mobile/data_types.html
* http://www.techonthenet.com/sqlite/datatypes.php
"""
try:
int(value)
return 'INTEGER'
except ValueError:
try:
float(value)
return 'REAL'
except ValueError:
return 'TEXT'
|
d70c935e463b6ba9e92422a33e1cfcc9fcf7cb1f
| 508,765 |
def __get_topic_info(model, count_vectorizer, n_top_words):
"""
A utility method that generates the detailed topic information
:param model: LDA model trained int topic_modeller method
:param count_vectorizer: vectorizer object to get statistical results
:param n_top_words: num of words for each topic
:return: topic info
"""
words = count_vectorizer.get_feature_names()
topic_info = {}
for topic_idx, topic in enumerate(model.components_):
topic_info[topic_idx] = [words[i] for i in topic.argsort()[:-n_top_words - 1:-1]]
return topic_info
|
024ba487efdca6510074a01bb2154890aaed96f7
| 294,713 |
def convert_field_format(fieldAsArray):
"""
Description:
converts the polygon given as nested arrays
to nested tuples.
Parameters:
fieldAsArray: [ [ [x, y], ... ], ... ]
Return:
( ( (x, y), ... ), ... )
"""
return tuple( tuple( tuple(vertex) for vertex in ring) for ring in fieldAsArray )
|
6cc2e47435dcc9581ed60d45f9c5786d0010886c
| 484,566 |
def consecutive(span):
"""
Check if a span of indices is consecutive
:param span: the span of indices
:return: whether the span of indices is consecutive
"""
return [i - span[0] for i in span] == range(span[-1] - span[0] + 1)
|
6d80f0184e09d9b374ded8707a0198ebd7431599
| 453,762 |
def set_defaults(hotpotato):
"""
Set default values for keys in a dictionary of input parameters.
Parameters
----------
hotpotato : dictionary
Dictionary of input parameters gathered from a configuration script
Returns
-------
hotpotato : dictionary
Input dictionary with keys set to default values
"""
# Default S/N threshold for ON pointings = 8
if hotpotato['on_cutoff']=='':
hotpotato['on_cutoff'] = 7.5
# Default S/N threshold for OFF pointings = 6
if hotpotato['off_cutoff']=='':
hotpotato['off_cutoff'] = 6.0
# Default cluster radius = 1 ms
if hotpotato['cluster_radius']=='':
hotpotato['cluster_radius'] = 1.0e-3
return hotpotato
|
9ce2583b3873b0c9102461eec21dc43682928508
| 458,016 |
def standardize_severity_string(severity):
"""
Returns the severity string in a consistent way.
Parameters
----------
severity : str
The severity string to standardize.
Returns
-------
severity : str
The standardized severity string.
"""
return severity.title()
|
a52e3f0b299d25d56425f2c5cdd69bb43825e8c3
| 606,176 |
def parent(index: int) -> int:
"""Gets parent's index.
"""
return index // 2
|
fd00111ac33ff77f28f30d2f5f0bcf375206f705
| 110,153 |
def split_rows(sentences, column_names):
"""
Creates a list of sentence where each sentence is a list of lines
Each line is a dictionary of columns
:param sentences:
:param column_names:
:return:
"""
new_sentences = []
root_values = ['0', 'ROOT', 'ROOT', 'ROOT', 'ROOT', 'ROOT', '0', 'ROOT', '0', 'ROOT']
start = [dict(zip(column_names, root_values))]
for sentence in sentences:
rows = sentence.split('\n')
sentence = [dict(zip(column_names, row.split())) for row in rows if row[0] != '#']
sentence = start + sentence
new_sentences.append(sentence)
return new_sentences
|
444733a9c169bedae8dc0045cd696cafed7085e2
| 709,383 |
import torch
def _linear_interpolation_utilities(v_norm, v0_src, size_src, v0_dst, size_dst, size_z):
"""
Computes utility values for linear interpolation at points v.
The points are given as normalized offsets in the source interval
(v0_src, v0_src + size_src), more precisely:
v = v0_src + v_norm * size_src / 256.0
The computed utilities include lower points v_lo, upper points v_hi,
interpolation weights v_w and flags j_valid indicating whether the
points falls into the destination interval (v0_dst, v0_dst + size_dst).
Args:
v_norm (:obj: `torch.Tensor`): tensor of size N containing
normalized point offsets
v0_src (:obj: `torch.Tensor`): tensor of size N containing
left bounds of source intervals for normalized points
size_src (:obj: `torch.Tensor`): tensor of size N containing
source interval sizes for normalized points
v0_dst (:obj: `torch.Tensor`): tensor of size N containing
left bounds of destination intervals
size_dst (:obj: `torch.Tensor`): tensor of size N containing
destination interval sizes
size_z (int): interval size for data to be interpolated
Returns:
v_lo (:obj: `torch.Tensor`): int tensor of size N containing
indices of lower values used for interpolation, all values are
integers from [0, size_z - 1]
v_hi (:obj: `torch.Tensor`): int tensor of size N containing
indices of upper values used for interpolation, all values are
integers from [0, size_z - 1]
v_w (:obj: `torch.Tensor`): float tensor of size N containing
interpolation weights
j_valid (:obj: `torch.Tensor`): uint8 tensor of size N containing
0 for points outside the estimation interval
(v0_est, v0_est + size_est) and 1 otherwise
"""
v = v0_src + v_norm * size_src / 256.0
j_valid = (v - v0_dst >= 0) * (v - v0_dst < size_dst)
v_grid = (v - v0_dst) * size_z / size_dst
v_lo = v_grid.floor().long().clamp(min=0, max=size_z - 1)
v_hi = (v_lo + 1).clamp(max=size_z - 1)
v_grid = torch.min(v_hi.float(), v_grid)
v_w = v_grid - v_lo.float()
return v_lo, v_hi, v_w, j_valid
|
7e664fec2d3198c8124131541f2d07658a9f1f83
| 672,935 |
def MakePartition(block_dev, part):
"""Helper function to build Linux device path for storage partition."""
return '%s%s%s' % (block_dev, 'p' if block_dev[-1].isdigit() else '', part)
|
3e21c773a69b7c49bb4aad4210b9d168099565ef
| 35,041 |
def fixture_sample_id() -> str:
"""Return a sample id"""
return "sample"
|
781a9824ad1faffdbda867c2f8df3b335c285fbc
| 252,329 |
from typing import Dict
from typing import List
from typing import OrderedDict
def order_dict(value: Dict, ordering: List, ignore_missing=False) -> OrderedDict:
"""
Convert a dict to an OrderedDict with key order provided by ``ordering``.
"""
new_value = OrderedDict()
for elem in ordering:
if elem in value:
new_value[elem] = value[elem]
elif not ignore_missing:
new_value[elem] = None
return new_value
|
150fdc9f954cc939966410199a95ecbef22f2a4c
| 449,555 |
def acenx(n, asx=25., agx=5.):
"""n-th analyser center (starting from 0!) in x, given its size (asx)
and gap between two (agx) in mm
"""
return (asx + agx) * n
|
6cc02676a9f0134fbc9deea93dcfe34b3113f358
| 140,654 |
def search_for_pod_info(details, operator_id):
"""
Get operator pod info, such as: name, status and message error (if failed).
Parameters
----------
details : dict
Workflow manifest from pipeline runtime.
operator_id : str
Returns
-------
dict
Pod informations.
"""
info = {}
try:
if "nodes" in details["status"]:
for node in [*details["status"]["nodes"].values()]:
if node["displayName"] == operator_id:
info = {"name": node["id"], "status": node["phase"], "message": node["message"]}
except KeyError:
pass
return info
|
678b6bab7fbcab9223ceaa735f4e8b83d0d3676e
| 522,758 |
def CollectSpecies(species_data):
"""
Returns the list of unique species label present in the input list.
this function is mostly used in the last test.py
"""
species_list= []
for item in range(len(species_data)):
species_label= species_data[item][0]
species_list.append(species_label)
return species_list
|
239cd3f102a9b5070ad4fd42470103e2ba5a5216
| 561,254 |
def _pyval_field_major_to_node_major(keys, values, depth):
"""Regroup each field (k, v) from dict-of-list to list-of-dict.
Given a "field-major" encoding of the StructuredTensor (which maps each key to
a single nested list containing the values for all structs), return a
corresponding "node-major" encoding, consisting of a nested list of dicts.
Args:
keys: The field names (list of string). Must not be empty.
values: The field values (list of python values). Must have the same length
as `keys`.
depth: The list depth at which dictionaries should be created.
Returns:
A nested list of dict, with depth `depth`.
"""
assert keys
if depth == 0:
return dict(zip(keys, values))
nvals = len(values[0])
assert all(nvals == len(values[i]) for i in range(1, len(values)))
return [
_pyval_field_major_to_node_major(keys, value_slice, depth - 1)
for value_slice in zip(*values)
]
|
b98d867d6b47fdbf494ed81b709a28440b0731c9
| 269,305 |
def solution(A, B): # O(N)
"""
Find common elements in 2 lists.
>>> solution([1, 2, 3, 7, 1, 5], [7, 3, 6])
[7, 3]
>>> solution([2, 4, 5, 10, 1, 2, 4, 4], [10, -1, 3])
[10]
>>> solution([4, 5, 2, 2, 1], [3, 6, -1])
[]
"""
elements = {} # O(1)
for value in A: # O(N)
elements[value] = True # O(1)
common_elements = [] # O(1)
for value in B: # O(N)
if value in elements: # O(1)
common_elements.append(value) # O(1)
return common_elements # O(1)
|
309f83713e4162e8d8c48712c83e32b474279d01
| 541,144 |
import re
def get_perf_event(data, separator=" "):
"""
From data, Read the numbers provided by perf
:param data: The output to process
:param separator: In perf, it is usally number+<separator>+descriptor>
:return: A dict of all the values found by perf
"""
data = str(data)
result = dict()
line = re.findall("\d+(?:,\d+)*" + separator + "(?:[^\s]+)", data)
for counter in line:
value = re.findall("\d+(?:,\d+)*", counter)[0]
name = re.findall("\d+(?:,\d+)*" + separator + "([^\s]+)", counter)[0]
result[name] = int(value.replace(',', ''))
return result
|
a79adfcc8c26512fda30386ddd0f8e9183144a10
| 563,075 |
def create_mosaic_pars(mosaic_wcs):
"""Return dict of values to use with AstroDrizzle to specify output mosaic
Parameters
-----------
mosaic_wcs : object
WCS as generated by make_mosaic_wcs
Returns
--------
mosaic_pars : dict
This dictionary can be used as input to astrodrizzle.AstroDrizzle with
the syntax 'AstroDrizzle(filenames, **mosaic_pars)'
"""
mosaic_pars = dict(
driz_sep_rot=mosaic_wcs.orientat,
driz_sep_scale=mosaic_wcs.pscale,
driz_sep_outnx=mosaic_wcs.array_shape[1],
driz_sep_outny=mosaic_wcs.array_shape[0],
driz_sep_ra=mosaic_wcs.wcs.crval[0],
driz_sep_dec=mosaic_wcs.wcs.crval[1],
driz_sep_crpix1=mosaic_wcs.wcs.crpix[0],
driz_sep_crpix2=mosaic_wcs.wcs.crpix[1],
final_rot=mosaic_wcs.orientat,
final_scale=mosaic_wcs.pscale,
final_outnx=mosaic_wcs.array_shape[1],
final_outny=mosaic_wcs.array_shape[0],
final_ra=mosaic_wcs.wcs.crval[0],
final_dec=mosaic_wcs.wcs.crval[1],
final_crpix1=mosaic_wcs.wcs.crpix[0],
final_crpix2=mosaic_wcs.wcs.crpix[1]
)
return mosaic_pars
|
e9a8a499ce3a9196fcaf4f57c4bda4aa25905655
| 668,496 |
from datetime import datetime
def str_to_datetime(dt_str: str) -> datetime:
"""
Converts a datetime in string format to datetime format.
Parameters
----------
dt_str : str
Represents a datetime in string format, "%Y-%m-%d" or "%Y-%m-%d %H:%M:%S"
Returns
-------
datetime
Represents a datetime in datetime format
Example
-------
>>> from pymove.utils.datetime import str_to_datetime
>>> time_1 = '2020-06-29'
>>> time_2 = '2020-06-29 12:45:59'
>>> print(type(time_1), type(time_2))
'<class 'str'> <class 'str'>'
>>> print( str_to_datetime(time_1), type(str_to_datetime(time_1)))
'2020-06-29 00:00:00 <class 'datetime.datetime'>'
>>> print(str_to_datetime(time_2), type(str_to_datetime(time_2)))
'2020-06-29 12:45:59 <class 'datetime.datetime'>'
"""
if len(dt_str) == 10:
return datetime.strptime(dt_str, '%Y-%m-%d')
else:
return datetime.strptime(dt_str, '%Y-%m-%d %H:%M:%S')
|
75ab00a545d56abdf475bba0e405972f13c0a30e
| 512,883 |
def reformat_large_tick_values(tick_val, pos):
"""
Turns large tick values (in the billions, millions and thousands) such as
4500 into 4.5K and also appropriately turns 4000 into 4K
(no zero after the decimal).
"""
if tick_val >= 1000000000:
val = round(tick_val/1000000000, 1)
new_tick_format = '{:}B'.format(val)
elif tick_val >= 1000000:
val = round(tick_val/1000000, 1)
new_tick_format = '{:}M'.format(val)
elif tick_val >= 1000:
val = round(tick_val/1000, 1)
new_tick_format = '{:}K'.format(val)
elif tick_val < 1000:
new_tick_format = round(tick_val, 1)
else:
new_tick_format = tick_val
# make new_tick_format into a string value
new_tick_format = str(new_tick_format)
# code below will keep 4.5M as is but change values such as 4.0M to 4M since
# that zero after the decimal isn't needed
index_of_decimal = new_tick_format.find(".")
if index_of_decimal != -1:
value_after_decimal = new_tick_format[index_of_decimal+1]
if value_after_decimal == "0":
# remove the 0 after the decimal point since it's not needed
new_tick_format = new_tick_format[0:index_of_decimal] + new_tick_format[index_of_decimal+2:]
return new_tick_format
|
5d39e9406afc1c33aa364ff3cd353585ec609e61
| 604,223 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.