content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def subset_on_taxonomy(dataframe, taxa_level, name):
"""
Return only rows of the datframe where the value in column taxa_level
matches the specified name.
:param dataframe: Pandas DataFrame with columns like 'Kingdom',
'Phylum', 'Class', ...
:param taxa_level: a taxagenetic label such as "Genus" or "Order"
:param name: taxa_level name to match
:return: subset of Pandas DataFrame matching the selection
"""
#print(dataframe.columns)
return dataframe[dataframe[taxa_level] == name]
|
a1d72a96b277791d677e2bf81073ed7f4daa423f
| 17,021 |
def translation_existed(target_lang, translations):
""" Checks if the translation for a given key existed """
if target_lang in translations:
return True
return False
|
dffc81fd875ba134a34b35c587a43ab9af019f01
| 497,129 |
def nii_to_json(nii_fname):
"""
Replace Nifti extension ('.nii.gz' or '.nii') with '.json'
:param nii_fname:
:return: json_fname
"""
if '.nii.gz' in nii_fname:
json_fname = nii_fname.replace('.nii.gz', '.json')
elif 'nii' in nii_fname:
json_fname = nii_fname.replace('.nii', '.json')
else:
print('* Unknown extension for %s' % nii_fname)
json_fname = nii_fname + '.json'
return json_fname
|
bcd5e6d6c24943fe1e32e05dc36e9011ce24ecfc
| 592,095 |
from typing import Dict
from typing import Any
def get_test_data() -> Dict[str, Any]:
"""
Auxiliary method to return test data args.
:return: Test data.
"""
return {
"root": {
"branch1": {"number": 23, "string": "value"},
"branch2": {"object": object(), "boolean": True}
}
}
|
78b162e8f6b2b1b8f82e73f55bf0bc5f3425e829
| 621,664 |
import random
def calc_pi(N):
""" Estimates pi using Monte-Carlo """
M = 0 # Initialize the counter
for i in range(N):
# Simulate impact coordinates
x = random.uniform(-1, 1)
y = random.uniform(-1, 1)
# True if impact happens inside the circle
if x**2 + y**2 < 1.0:
M += 1
return 4 * M / N
|
cdd56bfa5544dcf9850b06ca33dc13de046723ea
| 459,842 |
def _append(so_far, item):
""" Appends an item to all items in a list of lists. """
for sub_list in so_far:
sub_list.append(item)
return so_far
|
19163d1c02a3a248100e5c49e09a71068ac10ce7
| 541,978 |
def deleteItemByName(folderID, itemName, token, communicator):
"""Delete an item from a folder based on its name
folderID -- ID of the folder.
itemName -- Name of the item to delete.
token -- Authentication token.
communicator -- Midas session communicator.
Returns a boolean indicating success or failure."""
folderChildren = communicator.folder_children(token, folderID)
folder_children_items = folderChildren["items"]
for item in folder_children_items:
if item["name"] == itemName:
communicator.delete_item(token, item["item_id"])
return True
return False
|
688a6c4eba13e13ab497afb07cb42f3fcff4eade
| 540,044 |
def get_min_max_landmarks(feature: list):
"""
Get minimum and maximum landmarks from training set
:param feature: list of features
:return: min/max landmarks
"""
return feature[-6:-3], feature[-3:]
|
604c9b947d67795fe9cfec25159b410b6a0f3453
| 128,674 |
def cutoff_depth(d: int):
"""A cutoff function that searches to depth d."""
return lambda game, state, depth: depth > d
|
af7396a92f1cd234263e8448a6d1d22b56f4a12c
| 705,354 |
def optimal_tuning_ratio(mass_ratio):
"""
Returns optimal tuning ratio (TMD freq / Mode freq) per eqn (7) in
Warburton & Ayorinde (1980)
"""
return 1 / (1 + mass_ratio)
|
0f6070465a7d2249bdc990f435848c4fc42cf87c
| 129,628 |
def getPolygonBounds(polygon):
"""
:param polygon:多边形上经纬度列表,eg:[(127.23,39.12),(126.23,36.45)]
:return:多边形外切矩形四个点的经纬度坐标信息元组,eg:(max_lng,min_lng,max_lat, min_lat)
"""
# 边界上的坐标列表化
lng_lst = [x[0] for x in polygon]
lat_lst = [x[1] for x in polygon]
# 将坐标进行处理,获得四个角落的坐标,构造一个矩形网络
max_lng, min_lng = max(lng_lst), min(lng_lst)
max_lat, min_lat = max(lat_lst), min(lat_lst)
return max_lng, min_lng, max_lat, min_lat
|
d317abf703b03c7e23af853ccd40a49f192fdce2
| 427,375 |
def separate_pauli(sigma):
"""Function
Extract coefficient and pauli word from a single QubitOperator 'sigma'
Args:
sigma (QubitOperator):
Returns:
coef (complex): coefficient
pauli (str): pauli word
"""
tmp = str(sigma).replace("]", "").split("[")
return complex(tmp[0]), tmp[1]
|
3ef0f1f65a78c91d42f093e1a3ef3c2fea92ceb1
| 200,802 |
def fill_in_the_blanks(noun, verb, adjective):
"""Fill in the blanks and returns a completed story."""
story = "I never knew anyone that hadn't {1} at least once in their life, \
except for {2}, old Aunt Polly. She never {1}, not even when that {0} came to \
town.".format(noun, verb, adjective)
return story
|
648b315f73493c95ded815acd676740f271e8476
| 465,699 |
def _GetGroupByKey(entity, property_names):
"""Computes a key value that uniquely identifies the 'group' of an entity.
Args:
entity: The entity_pb.EntityProto for which to create the group key.
property_names: The names of the properties in the group by clause.
Returns:
A hashable value that uniquely identifies the entity's 'group'.
"""
return frozenset((prop.name(), prop.value().SerializeToString())
for prop in entity.property_list()
if prop.name() in property_names)
|
c886168258b18c5cfd57d9c596df8bfd7608532a
| 275,410 |
def file_extension(path):
"""Get the file extension of a path/filename."""
return path.split('/')[-1].split('.')[-1]
|
fe43378040e752d81df7c6775bb66b2b2c650ccf
| 381,004 |
def get_source(source, provider):
"""
Returns `source` if given, otherwise `provider`
"""
if not source:
source = provider
return source
|
d84f1543ae9f31cec8709c6b2fbdc4c2e18142d0
| 582,297 |
def reference_vector_argument(arg):
"""
Determines a reference argument, so as not to duplicate arrays of reals, vectors and row vectors,
which usually have the same implementation.
:param arg: argument
:return: reference argument
"""
if arg in ("array[] real", "row_vector"):
return "vector"
return arg
|
693d96b305a892ddaf9f7f97fe6f5270e63a4c59
| 532,656 |
def _localize(dt, tzinfo):
"""
:return: A localized datetime
:paramd dt: Naive datetime
:param tzinfo: A pytz or python time zone object
Attempts to localize the datetime using pytz if possible. Falls back to the builtin
timezone handling otherwise.
"""
try:
return tzinfo.localize(dt)
except AttributeError:
return dt.replace(tzinfo=tzinfo)
|
f68588195197b250d88a710f01196d6dd701c2d1
| 637,518 |
import collections
def group_locations_by(locations, attribute):
"""
Group locations into a dictionary of lists based on an attribute.
:param list locations: A list of locations.
:param str attribute: Attribute name.
"""
grouped = collections.defaultdict(list)
for location in locations:
value = getattr(location, attribute)
grouped[value].append(location)
return grouped
|
3734eb79af2252f5e8d06d8d9fcb7322ed32ab0e
| 325,100 |
import types
def _type_repr(obj):
"""Return the repr() of an object, special-casing types (internal helper).
If obj is a type, we return a shorter version than the default
type.__repr__, based on the module and qualified name, which is
typically enough to uniquely identify a type. For everything
else, we fall back on repr(obj).
"""
if isinstance(obj, type):
if obj.__module__ == 'builtins':
return obj.__qualname__
return f'{obj.__module__}.{obj.__qualname__}'
if obj is ...:
return('...')
if isinstance(obj, types.FunctionType):
return obj.__name__
return repr(obj)
|
1da7d3af3a2fa31e909c2c00f59e92af32dfbf4e
| 583,234 |
import json
def validateInputParametersFile(filename):
"""
Validates an input (json) file to check if
it contains the required keys. It does not
validate the values of the keys.
:param filename: Is a "Path" object that
contains the input model parameters for
the simulation.
:return: A dictionary loaded from the input
file.
:raises ValueError: if a keyword is missing
from the file.
"""
# Import locally the json package.
# Open the file in "Read Only" mode.
with open(filename, 'r') as input_file:
# Load the model parameters.
model_params = json.load(input_file)
# Required keys in the json file.
required_keys = ("Trees", "Well_No", "Output_Name", "IC_Filename",
"Data_Filename", "Water_Content", "Environmental",
"Soil_Properties", "Site_Information", "Simulation_Flags",
"Hydrological_Model", "Hydraulic_Conductivity")
# Check the keywords for membership in the file.
for k in required_keys:
# The order in here doesn't matter.
if k not in model_params:
raise ValueError(f" Key: {k}, is not given.")
# _end_if_
# _end_for_
# Show message.
print(" Model parameters are given correctly.")
# _end_with_
# The dictionary will contain all the input parameters.
return model_params
|
adfc97191c56f32d16f5723a3a905736e2337046
| 184,089 |
def split_song_header(song_header):
"""Split the song title in half, to retrieve its artist an name.
Examples::
>>> song_header = 'Daughter:Run Lyrics'
>>> split_song_header(song_header)
(Daughter, Run)
Args:
song_header (string): song header / title to split
Returns:
tuple: artist name and song name.
"""
song_parts = song_header.split(':')
artist_name = song_parts[0].strip()
song_name = song_parts[-1].replace(' Lyrics', '').strip()
return artist_name, song_name
|
d6299960264e41c23d2ae107ed242a043dd01a57
| 509,294 |
import logging
def get_logger_name(mylogger) -> str:
"""Find the name of the logger provided.
This is useful when configuring logging.
"""
ld = logging.Logger.manager.loggerDict
# ld = logman.loggerDict
# print("loggernames {}".format(ld.keys()))
for k, v in ld.items():
if v == mylogger:
return k
return 'not found'
|
757fdbd620d4707bf892adac4332dafd13420420
| 440,358 |
def char_size(c):
"""Get `UTF8` char size."""
value = ord(c)
if value <= 0xffff:
return 1
elif value <= 0x10ffff:
return 2
raise ValueError('Invalid code point')
|
dd14e4e340697ce74472eefa55700a74c7029dce
| 219,615 |
def __build_variable_string(translation, variables) -> str:
"""
Takes two parameters.
- translation: the string that will be used as the format in the translation string.
- variables: a list of variables that are used as replacement strings in the translation string.
Returns the translation string with the variables formatted in the correct way for the stringsdict file.
__build_variable_string("This is an ${example}", ["${example}"]) -> "This is an %#@__example__@"
"""
for variable in variables:
translation = translation.replace(variable, f"%#@{variable}@")
translation = translation.replace("${", "__").replace("}", "__")
return translation
|
3482b6a7f0e8f89ad610e4421de05847c07e2281
| 262,059 |
def transformToRGB(lst):
"""
Change representation from 0-255 to 0-1, for triples value corresponding to RGB.
"""
def normToOne(x): return float(x)/255.
return [(normToOne(x), normToOne(y), normToOne(z)) for x, y, z in lst]
|
ec83893155bfaca7cbbec8281bd84ccb8401a48f
| 75,050 |
def find_error_line(view, after):
"""Returns the first error after the given point."""
error_linenumbers = view.find_by_selector("constant.numeric.linenumber.error")
if not error_linenumbers:
return None
for region in error_linenumbers:
if region.begin() > after:
return region
# Go back to the first error.
return error_linenumbers[0]
|
94ba3966c0355e4ca3cdb0d4636a70e4c0764d6c
| 596,018 |
def user_enabled(client, username):
"""
Checks if user is enabled. Takes:
* keystone client object
* username
Returns bool
"""
return client.users.list(name=username)[0].enabled
|
d6f264a670e3ad21954e55354a8a8e49bf47d12d
| 381,727 |
from datetime import datetime
def is_datetime(string):
"""
Check if a string can be converted to a datetime object.
:param string: the string
:return: True if the string can be converted to a datetime object, False otherwise
"""
try:
datetime.strptime(string, "%Y-%m-%d %H.%M.%S")
except Exception:
return False
return True
|
d1fa368d1b7ac45b85661bd4b72771d088c4ac6f
| 38,309 |
def square_summation(limit):
"""
Returns the summation of all squared natural numbers from 0 to limit
Uses the short form summation formula for summation of squares
:param limit: {int}
:return: {int}
"""
return (limit * (limit + 1) * (2 * limit + 1)) // 6 if limit >= 0 else 0
|
e12830d76c48b23e08a3fcbc4de89ebf4f8dba21
| 447,828 |
import re
import uuid
def extract_uuid(filename):
"""
Given a filename containing a kernel, extract the uuid in
the kernel name.
Parameters
----------
filename : str
The name of the kernel-...-json file with the connection info.
Returns
-------
uuid : str or None
The extracted uuid, or None if not found.
"""
extracted = re.match(
".*kernel-([0-9a-f]{8}-?[0-9a-f]{4}-?4[0-9a-f]{3}-"
"?[89ab][0-9a-f]{3}-?[0-9a-f]{12}).json",
filename,
)
if extracted is not None:
return uuid.UUID(extracted.group(1))
else:
return None
|
eccad7b6eaef3e0f16b531baec6bf701db4a960d
| 595,122 |
def write_lines(new_lines, lines, edit_index):
"""
Inserts new lines where specified
:param new_lines: the new lines to be added
:param lines: holds all the current lines of output html file
:param edit_index: the index to insert new lines
:return: new contents of output html file
"""
lines[edit_index:edit_index] = new_lines
edit_index += len(new_lines)
return lines, edit_index
|
e89d374b22aed26e57401d2529733b352baf3b8e
| 215,869 |
def get_ont_query(predicate):
"""Return an ontology query based on the linking predicate."""
ont_query = """
SELECT ?sub ?res WHERE {
?sub <""" + predicate + """> ?res .
}
"""
return ont_query
|
11d377d4ac80af6cdafb09aebedbfeb16fbba8ab
| 512,742 |
def one_hot_to_int(x):
"""
Parameters
----------
x: torch.tensor; (N samples X C classes)
Returns
-------
torch.tensor; (N samples)
"""
return x.argmax(dim=1)
|
64315136e1db137bb7638b0125bffbb6f4e94185
| 325,756 |
def str_to_int(s):
"""Convert binary strings (starting with 0b), hex strings (starting with 0x), decimal strings to int"""
if s.startswith("0x"):
return int(s, 16)
elif s.startswith("0b"):
return int(s, 2)
else:
return int(s)
|
47ac2e7755d9a4d10b1e0712ad23aabb2c0489f5
| 48,547 |
def indent_string (s):
"""Put two spaces before each line in s"""
lines = s.split ("\n")
lines = [" " + i for i in lines]
lines = [("" if i == " " else i) for i in lines]
return "\n".join (lines)
|
3b8edef2d454aabb31afdeeab9417a6b487d3c0e
| 310,302 |
def ordinal(n):
"""Return the ordinal for an int, eg 1st, 2nd, 3rd. From user Gareth on
codegolf.stackexchange.com """
suffixes = {1: "st", 2: "nd", 3: "rd"}
return str(n) + suffixes.get(n % 10 * (n % 100 not in [11, 12, 13]), "th")
|
daa87b1b43d7c89348a9034aff389feb3b0b14d5
| 286,500 |
def lower_first(string):
"""Return a new string with the first letter capitalized."""
if len(string) > 0:
return string[0].lower() + string[1:]
else:
return string
|
fc6fba78d15633f1ab21105fbd46883797444fb1
| 700,609 |
def bartz_sigma_sanchez(T_e, T_avg, w=0.6):
"""Correction factor for the Bartz equation.
Reference:
[1] M. Martinez-Sanchez, "Convective Heat Transfer: Reynolds Analogy,"
MIT 16.512 Lecture 7. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-2005/lecture-notes/lecture_7.pdf
Arguments:
T_e (scalar): Static temperature of the fluid external to the boundary layer
[units: kelvin].
T_avg (scalar): Average temperature through the boundary layer, used to adjust
the effective density and viscosity of the boundary layer. Martinez-Sanchez
suggests :math:`T_{avg} = (T_e - T_w)/2` for flow around Mach 1.
w (scalar): Viscosity is assumed to vary as :math:`T^w`. Martinez-Sanchez
suggests :math:`w = 0.6` [units: dimensionless].
Returns:
scalar: The Bartz equation correction factor :math:`\sigma`.
"""
return (T_e / T_avg)**(0.8 - 0.2 * w)
|
9230d56ae5b33836a39c9272ca4996aa89126792
| 424,639 |
def _generate_stack_status_path(stack_path):
"""
Given a path to the stack configuration template JSON file, generates a path to where the
deployment status JSON will be stored after successful deployment of the stack.
:param stack_path: Path to the stack config template JSON file
:return: The path to the stack status file.
>>> self._generate_stack_status_path('./stack.json')
'./stack.deployed.json'
"""
stack_status_insert = 'deployed'
stack_path_split = stack_path.split('.')
stack_path_split.insert(-1, stack_status_insert)
return '.'.join(stack_path_split)
|
b0573148565e8cf338d4bc6877151cbe4186ebf5
| 58,509 |
def is_color(im):
"""Returns True if the image is a color image (3 channels) and false if not."""
return len(im.shape) == 3
|
d598571ea5315fff8912f1f08e8c469dc76f1b75
| 153,137 |
def mk_filter_by_unk_ratio(vocab, max_unk_ratio=0.0, is_tbptt=False):
"""Return a filter function that takes a sentence, and returns True if a sentence
meet a criterion (unk ratio is below max).
NOTE: each sentence contains a bos and an eos, which are excluded for calculating unk ratio.
If is_tbptt is True, offset is changed to 1 (since each sentence only contains eos).
"""
if max_unk_ratio == 0.0: return lambda sent: True
offset = 1 if is_tbptt else 2
def filter(sent):
cnt = len([w for w in sent if not vocab.contains(w)])
return cnt / (len(sent) - offset) < max_unk_ratio
return filter
|
113242f681c195819e3ccc827997a8ba1b92082f
| 560,735 |
def _jinja2_filter_icon_style(value):
"""Formats the icon style for templates"""
return 'ok' if value else 'remove'
|
11486e9f53bda2e340d3ae262abbed16fdc3fdb5
| 171,978 |
import typing
def convert_value(dtype: typing.Any, value: typing.Any, default: typing.Any = None) -> typing.Union[typing.Any, None]:
"""
Return the passed value in the specified value if it is not None and does not raise an Exception
while converting. Returns the passed default if the conversion failed
:param dtype: The datatype the value should be returned
:param value: The value that should be converted
:param default: The default Value that should be returned if the conversion failed
:return: The converted value or the default passed value
"""
try:
if value is None:
return default
return dtype(value)
except Exception:
return default
|
3fd02525daf5db4b8761b3af3746004db9459429
| 58,451 |
def get_reddit_posts(subreddits, limit, score, num_comments):
"""Collect submissions related data, including title, link, current score, the number of comments, etc.
Params:
-------
subreddits: list
a list of praw.Reddit.subreddit instances
limit: int
maximum number of submissions per subreddit
score: int
the minimal threshold of *score*
num_comments: int
the minimal threshold of *number of comments*
Return:
-------
data: dict
all the submissions related data
"""
data = {}
for subreddit in subreddits:
data[subreddit.display_name] = []
for submission in subreddit.hot(limit=limit):
if (submission.stickied is False) and (submission.score >= score or submission.num_comments >= num_comments):
post = {}
post['title'] = submission.title
post['shortlink'] = submission.shortlink
post['score'] = submission.score
post['num_comments'] = submission.num_comments
data[subreddit.display_name].append(post)
return data
|
664720609116cdd4512cec225b18fbb51a1e7369
| 614,656 |
def get_label2id(labels):
"""
Get label2id mapping based on labels
Args:
labels: list of labels.
Return:
label2id map
"""
return {v: str(k) for k, v in enumerate(labels)}
|
644b9ce55a3df43eb8c85ed8086b2d10dbcc6951
| 84,592 |
def select_text_color(r, g, b):
"""
Choose a suitable color for the inverse text style.
:param r: The amount of red (an integer between 0 and 255).
:param g: The amount of green (an integer between 0 and 255).
:param b: The amount of blue (an integer between 0 and 255).
:returns: A CSS color in hexadecimal notation (a string).
In inverse mode the color that is normally used for the text is instead
used for the background, however this can render the text unreadable. The
purpose of :func:`select_text_color()` is to make an effort to select a
suitable text color. Based on http://stackoverflow.com/a/3943023/112731.
"""
return '#000' if (r * 0.299 + g * 0.587 + b * 0.114) > 186 else '#FFF'
|
a8663b261c0d6ae087d08e8ecb67a77d51935b10
| 678,960 |
import torch
def reduce_sign_any(input_tensor, dim=-1):
"""A logical or of the signs of a tensor along an axis.
Args:
input_tensor: Tensor<float> of any shape.
axis: the axis along which we want to compute a logical or of the signs of
the values.
Returns:
A Tensor<float>, which as the same shape as the input tensor, but without the
axis on which we reduced.
"""
boolean_sign = torch.any(
((torch.sign(input_tensor) + 1) / 2.0).bool(), dim=dim
)
return boolean_sign.type(input_tensor.dtype) * 2.0 - 1.0
|
72dde84d97a8744c880bd7bbc92cb020cbe0d156
| 575,253 |
def _transform_interval(
interval, first_domain_start, first_domain_end, second_domain_start, second_domain_end
):
"""
Transform an interval from one domain to another.
The interval should be within the first domain [first_domain_start, first_domain_end]
For example, _transform_interval((3, 5), 0, 10, 100, 200) would return (130, 150)
"""
def transform_value(value):
position = (value - first_domain_start) / (first_domain_end - first_domain_start)
return position * (second_domain_end - second_domain_start) + second_domain_start
return [transform_value(value) for value in interval]
|
c1743f605ec7093ed3ceb42193251c12339c3bc6
| 454,726 |
def get_diff(df, column1, column2):
"""Get the difference between two column values.
Args:
df: Pandas DataFrame.
column1: First column.
column2: Second column.
Returns:
Value of summed columns.
Usage:
df['item_quantity_vs_mean'] = get_diff(df, 'item_quantity', 'item_code_item_quantity_mean')
"""
return df[column1] - df[column2]
|
1fc5ec361cfdd28775257980c28b4924fdab4eeb
| 24,810 |
def mime_to_pltfrm(mime_string):
"""
Translates MIME types to platform names used
by tng-cat. Returns: 5gtango|osm|onap
"""
pattern = ["5gtango", "osm", "onap"]
for p in pattern:
if p in str(mime_string).lower():
return p
return None
|
05d424fb1371466f3372bf8b052a0cb97b7852a8
| 437,904 |
import textwrap
def _format_doc(docstring, prefix):
"""Use textwrap to format a docstring for markdown."""
initial_indent = prefix
# subsequent_indent = " " * len(prefix)
subsequent_indent = " " * 2
block = docstring.split("\n")
fmt_block = []
for line in block:
line = textwrap.fill(
line,
initial_indent=initial_indent,
subsequent_indent=subsequent_indent,
width=len(subsequent_indent) + 80,
)
initial_indent = subsequent_indent
fmt_block.append(line)
return "\n".join(fmt_block)
|
1bf2bf0ee35f9b6e345eb8c70355d0a86bf74290
| 636,567 |
def sum_bbox(bbox1, bbox2):
"""Summarizes two bounding boxes. The result will be bounding box which
contains both provided bboxes.
:type bbox1: list
:param bbox1: first bounding box
:type bbox2: list
:param bbox2: second bounding box
:rtype: list
:return: new bounding box
"""
if not bbox1 or not bbox2:
return bbox1 + bbox2
x0, y0, x1, y1 = bbox1
_x0, _y0, _x1, _y1 = bbox2
new_x0 = min(x0, _x0, x1, _x1)
new_x1 = max(x0, _x0, x1, _x1)
new_y0 = min(y0, _y0, y1, _y1)
new_y1 = max(y0, _y0, y1, _y1)
return [new_x0, new_y0, new_x1, new_y1]
|
83c0eddfe03e66843cbbc6c7de21be6688905087
| 87,956 |
def convert_variable(datatype, variable):
"""
Convert variable to number (float/int)
Used for dataset metadata and for query string
:param datatype: type to convert to
:param variable: value of variable
:return: converted variable
:raises: ValueError
"""
try:
if variable and datatype == "int":
variable = int(variable)
elif variable and datatype == "float":
variable = float(variable)
return variable
except ValueError:
raise
|
adaf06dde50a3667ee72000f5e346e41415ca2e7
| 234,302 |
def is_ebx(line):
"""Determines whether the line of code is a part of the rolling
key update (EBX register).
Args:
line (AsmBlock): one asm instruction with its operands
"""
return (len(line.args) >= 1
and str(line.args[0]) in ["EBX", "BX", "BL"]
and not line.name == "MOV")
|
76301b0ae8a5d96de2e8794e62487325ebddadab
| 469,773 |
def diff21(n: int) -> int:
"""Absolute difference between n and 21.
Returns abs(n-21) if n <= 21 and abs(n-21) * 2 if n > 21.
"""
diff = abs(n - 21)
if n > 21:
return diff * 2
return diff
|
8b6638a586ff2bf14cce4781bf7da0b9ae20c527
| 391,702 |
def add_commas(number):
"""1234567890 ---> 1,234,567,890"""
return "{:,}".format(number)
|
3db1b2c73b2a65367458155745ba9f27f3e88917
| 140,483 |
import pickle
def load_object(pathname):
"""Load an object from disk using pickle.
Parameters
----------
pathname : str
Full path of the file where the object is stored.
Returns
-------
obj : any type
Object loaded from disk.
"""
with open(pathname, 'rb') as fid:
obj = pickle.load(fid)
return obj
|
3780e8ba607c35253bc22fff158e8ef09ca6d66e
| 203,808 |
def get_user_attribute_default(attribute, ctx):
"""Return the default value for the given attribute of the user passed in the context.
:param attribute: attribute for which to get the current value
:param ctx: click context which should contain the selected user
:return: user attribute default value if set, or None
"""
default = getattr(ctx.params['user'], attribute)
# None or empty string means there is no default
if not default:
return None
return default
|
1fd290a391f2a2fd2bccc8437ad6b355495cc576
| 351,450 |
def cgi2dict(form, linelist):
"""Convert the form from cgi.FieldStorage to a python dictionary"""
params = {'linelist': linelist.value}
for key in form.keys():
if key != 'linelist':
params[key] = form[key].value
return params
|
c935c8f3393439a6632cd4a70c7a684c3ce42a85
| 634,683 |
def apply_function_on_axis_dataframe(df, func, axis=0):
"""Apply a function on a row/column basis of a DataFrame.
Args:
df (pd.DataFrame): Dataframe.
func (function): The function to apply.
axis (int): The axis of application (0=columns, 1=rows).
Returns:
pd.DataFrame: Dataframe with the applied function.
Examples:
>>> df = pd.DataFrame(np.array(range(12)).reshape(4, 3), columns=list('abc'))
>>> f = lambda x: x.max() - x.min()
>>> apply_function_on_axis_dataframe(df, f, 1)
0 2
1 2
2 2
3 2
dtype: int64
>>> apply_function_on_axis_dataframe(df, f, 0)
a 9
b 9
c 9
dtype: int64
"""
return df.apply(func, axis)
|
631a9e3e62f8fc382f26450a9d9399842a544bda
| 596,522 |
import requests
def _prepare(*args, **kwargs):
""" Return a prepared Request. """
return requests.Request(*args, **kwargs).prepare()
|
5762d24e340483516ca5aaad8911e43572274f05
| 219,225 |
def leapdays(y1, y2):
"""Return number of leap years in range [y1, y2).
Assume y1 <= y2."""
y1 -= 1
y2 -= 1
return (y2//4 - y1//4) - (y2//100 - y1//100) + (y2//400 - y1//400)
|
d66a6ee4633bdcb3719805f404e60adfe2a7fa6d
| 229,810 |
def rec_fact(num):
"""rec_fact(int) -> int
Recursive function which takes an integer and computes the factorial.
>>> rec_fact(4) # 4*3*2*1 = 24
24
"""
if not isinstance(num, int):
raise TypeError("Must be a positive int")
if num == 0:
return 1
return num * rec_fact(num - 1)
|
636b81145ac424c1d680bb95470c91773d37e7bd
| 592,776 |
def content_loss(P, X, layer):
"""
Defines the content loss contribution from two images at a specific layer. Reasoning: If the content of
two images is the same the response of a given layer for each image should be the same.
Note that additionally there is a 1 / image size factor which was not in the original paper
"""
p = P[layer]
x = X[layer]
# slight change to cost function with respect to paper, which makes it independent of image size
M = p.shape[2] * p.shape[3]
loss = (1./(2*M)) * ((x - p)**2).sum()
return loss
|
40acaf3b1f447a98e73eed17536a406b138c9b56
| 398,276 |
def tf_sched(cur_epoch,epochs,final_tf_ratio):
"""
modified teacher forcing ratio according to epoch counts
Args:
cur_epoch: (int) current epoch
epochs: (int) total epochs
final_tf_ration: (float) smallest teacher forcing ratio
Returns:
teacher forcing ratio for current epoch
"""
thres=int(0.2*epochs)
if cur_epoch<thres:
tf_ratio=1
else:
tf_ratio=final_tf_ratio+(epochs-cur_epoch)*(1-final_tf_ratio)/(epochs-thres)
if tf_ratio>1:
tf_ratio=1
elif tf_ratio<final_tf_ratio:
tf_ratio=final_tf_ratio
return tf_ratio
|
f24f5efb9f5d570d8d3f9abde4ca371b9ad24d5f
| 513,306 |
import yaml
def load(stream, is_safe=True):
"""Converts a YAML document to a Python object.
:param stream: the YAML document to convert into a Python object. Accepts
a byte string, a Unicode string, an open binary file object,
or an open text file object.
:param is_safe: Turn off safe loading. True by default and only load
standard YAML. This option can be turned off by
passing ``is_safe=False`` if you need to load not only
standard YAML tags or if you need to construct an
arbitrary python object.
Stream specifications:
* An empty stream contains no documents.
* Documents are separated with ``---``.
* Documents may optionally end with ``...``.
* A single document may or may not be marked with ``---``.
Parses the given stream and returns a Python object constructed
from the first document in the stream. If there are no documents
in the stream, it returns None.
"""
yaml_loader = yaml.Loader
if is_safe:
if hasattr(yaml, 'CSafeLoader'):
yaml_loader = yaml.CSafeLoader
else:
yaml_loader = yaml.SafeLoader
return yaml.load(stream, yaml_loader)
|
ddb6d38f637aa38b70e647ff0566ae765408da29
| 418,017 |
def result_to_dict(res):
"""
:param res: :any:`sqlalchemy.engine.ResultProxy`
:return: a list of dicts where each dict represents a row in the query where the key \
is the column name and the value is the value of that column.
"""
keys = list(res.keys())
return [dict(zip(keys, row)) for row in res]
|
9c93c1e23db07cf14f4b3a3f9e353368bdb28e16
| 426,127 |
def gpib_control_ren(library, session, mode):
"""Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local
state of the device.
Corresponds to viGpibControlREN function of the VISA library.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param mode: Specifies the state of the REN line and optionally the device remote/local state.
(Constants.GPIB_REN*)
:return: return value of the library call.
:rtype: :class:`pyvisa.constants.StatusCode`
"""
return library.viGpibControlREN(session, mode)
|
4d9fc21bb3bca7cbd98c94c064500d0ce319e5cc
| 683,409 |
def read_minisat_result(result_path):
"""Read the output from minisat.
Returs one of:
None -- empty file
'UNSAT' -- unsatisfiable result
dict containing the assignment -- satisfiable result
"""
with open(result_path) as f:
s = f.read().rstrip()
head = s.split()[0]
if len(s) == 0:
return None
if s.startswith('UNSAT'):
return 'UNSAT'
elif s.startswith('INDET'):
return 'INDET'
elif s.startswith('SAT'):
A = {}
s = [int(e) for e in s.split()[1:]]
for e in s:
if e < 0:
A[-e] = False
else:
A[e] = True
return A
else:
raise Exception('Unknown result {}'.format(head))
|
a0462fad0dcbdb18cad33df479cdc7336bf07fbf
| 214,688 |
import calendar
def millis(input_dt):
"""Convert datetime to milliseconds since epoch
Parameters
----------
input_df : datetime
Returns
-------
int
"""
return 1000 * int(calendar.timegm(input_dt.timetuple()))
|
b395c419b78d7721f4d67acc7987491af447896b
| 461,396 |
def filter_columns(data,column_names):
"""Keep selected columns in the dataframe."""
selected_columns = data[column_names]
return selected_columns
|
c6056aaff62201f6a6e666f82613aa5cd95de369
| 614,208 |
def str_to_bool(val):
"""
cast a string to a bool
Parameters:
val: the string to cast
Returns:
(casted_val, success)
casted val: the casted value if successful, or None
success: bool if casting was successful
"""
if val == 'True':
return (True, True)
elif val == 'False':
return (False, True)
else:
return (None, False)
|
fdcedf41a136f14e13584a191985f120b5a637a2
| 487,064 |
import random
def rand_int(start=1, end=10, seed=None):
"""
Returns a random integer number between the start and end number.
.. versionadded:: 2015.5.3
start : 1
Any valid integer number
end : 10
Any valid integer number
seed :
Optional hashable object
.. versionchanged:: 2019.2.0
Added seed argument. Will return the same result when run with the same seed.
CLI Example:
.. code-block:: bash
salt '*' random.rand_int 1 10
"""
if seed is not None:
random.seed(seed)
return random.randint(start, end)
|
e7e56a2b3f6b7684fe75c26ac96b59215db953f0
| 641,172 |
def trim_keys(dict_):
"""remove dict keys with leading and trailing whitespace
>>> trim_keys({' name': 'value'}) == {'name': 'value'}
True
"""
return {k.strip(): v for k, v in dict_.items()}
|
67662f9e4636118dacf8595c1f4e2b6ea85fb2fa
| 498,469 |
def list_vm(client, resource_group_name=None):
"""
Returns a list of VMware virtual machines in the current subscription.
If resource group is specified, only the virtual machines
in that resource group would be listed.
"""
if resource_group_name is None:
return client.list_by_subscription()
return client.list_by_resource_group(resource_group_name)
|
12db2abd8ba4ffd7905a826ad5b56f7259cf6016
| 180,386 |
def restore_original_texture_name(filename: str) -> str:
"""Create original texture name from RSB filename"""
newfilename = filename
if filename.startswith("TGA"):
#Strip TGA from front of filename
newfilename = filename[3:]
newfilename = newfilename[:-4] + ".tga"
else:
newfilename = newfilename[:-4] + ".bmp"
return newfilename
|
a295a682af551982cf5d46f61c42325ba7ea9181
| 169,854 |
def _clear_bits(basis_state, apply_qubits):
""" Set bits specified in apply_qubits to zero in the int basis_state.
Example:
basis_state = 6, apply_qubits = [0, 1]
6 == 0b0110 # number in binary representation
calling this method returns sets the two right-most bits to zero:
return -> 0b0100 == 4
>>> _clear_bits(6, [0, 1])
4
:type basis_state: int
:type apply_qubits: [int]
:param basis_state: An arbitrary integer.
:param apply_qubits: Bits to set to zero.
:return: int
"""
return basis_state - (sum(1 << i for i in apply_qubits) & basis_state)
|
97f27fc0843c76bb05d98f3c62a52d09cfd3e9cc
| 302,626 |
def identity(image, *args, **kwargs):
"""Returns the first argument unmodified."""
return image
|
9330f42fa6d18465d7a081d6da3bf38669fb5e57
| 191,313 |
def get_progress_rate(k, c_species, v_reactants):
"""Returns the progress rate for a reaction of the form: va*A+vb*B --> vc*C.
INPUTS
=======
k: float
Reaction rate coefficient
c_species: 1D list of floats
Concentration of all species
v_reactants: 1D list of floats
Stoichiometric coefficients of reactants
RETURNS
========
w: float
prgress rate of this reaction
NOTES
=====
PRE:
- k, each entry of c_species and v_reactants have numeric type
- c_species and v_reactants have the same length
POST:
- k, c_species and v_reactants are not changed by this function
- raises a ValueError if k <= 0
- raises an Exception if c_species and v_reactants have different length
- returns the prgress rate w for the reaction
EXAMPLES
=========
>>> get_progress_rate(10, [1.0, 2.0, 3.0], [2.0, 1.0, 0.0])
20.0
"""
if k <= 0:
raise ValueError('k must be positive.')
if len(c_species) != len(v_reactants):
raise Exception('List c_species and list v_reactants must have same length.')
w = k
for c, v in zip(c_species, v_reactants):
w *= pow(c, v)
return w
|
6baaaa07fe0814dbc50516b29ba55087c4ec23fd
| 12,431 |
def query(field, op, value, type=''):
"""Assemble a dict representing a query filter.
:param field: Field to query
:type field: String
:param op: Query operator
:type op: String
:param value: Value to query
:type value: String
:param type: Type of the value
:type type: String
:return: Query filter dict
:rtype: Dict
"""
return {
'field': field,
'op': op,
'value': value,
'type': type
}
|
9fa98cbfefc062782e8aa1e89bcaabcac926a49a
| 572,894 |
import json
def get_json(content):
"""Decode the JSON records from the response.
:param content: the content returned by the eBird API.
:type content: http.client.HTTPResponse:
:return: the records decoded from the JSON payload.
:rtype: list
"""
return json.loads(content.decode("utf-8"))
|
3e2e88063ddc730170212e635e11e64aca474a47
| 650,737 |
def fuzzy_match_reference(fuzzy_matcher, reference):
"""
Args:
fuzzy_matcher: instance of FuzzyMatcher, with index of publications in place.
reference: reference
Returns:
matched reference (citations), including publication & doc id.
"""
return fuzzy_matcher.match(reference)
|
13041f6a7de1cdc67728174a3168b198fa252b12
| 478,872 |
def encode_headers(headers):
"""Encodes HTTP headers.
Args:
headers: Dictionary of HTTP headers.
Returns:
String containing encoded HTTP headers.
"""
return '\n'.join(["%s: %s"%(k,headers[k]) for k in sorted(headers.keys())])
|
21ce28af5fa62cc5be12b6543a078c5ca9890093
| 181,337 |
import torch
def normalize(tensor, min=None, max=None):
"""
Normalize the tensor values between [0-1]
Parameters
----------
tensor : Tensor
the input tensor
min : int or float (optional)
the value to be considered zero. If None, min(tensor) will be used instead (default is None)
max : int or float (optional)
the value to be considered one. If None, max(tensor) will be used instead (default is None)
Returns
-------
Tensor
a tensor with [min-max] retargeted in [0-1]
"""
if min is None:
min = torch.min(tensor)
if max is None:
max = torch.max(tensor)
return torch.div(torch.add(tensor, -min), (max-min))
|
46f413ffc1aacde12ab6f8d95bba105fc58f86d3
| 663,868 |
import locale
def generate_sorted_sem_terms(sem_features):
"""
Generates 1, 2, 3, 4-grams of lexicographically sorted semantic terms
according to UTF-8 order.
Args:
sem_features: list of semantic features.
Returns:
List of semantic terms in lexicographic order.
"""
terms = list()
if len(sem_features) <= 0:
return terms
# Sort terms according to UTF-8
locale.setlocale(locale.LC_ALL, "")
sem_features.sort(cmp=locale.strcoll)
# 4 terms
terms = [[sem_features[i] + '$' + sem_features[i + 1] + '$' +
sem_features[i + 2] + '$' + sem_features[i + 3]
for i in range(len(sem_features) - 3)]]
# 3 terms
terms += [[sem_features[i] + '$' + sem_features[i + 1] + '$' +
sem_features[i + 2] for i in range(len(sem_features) - 2)]]
# 2 terms
terms += [[sem_features[i] + '$' + sem_features[i + 1]
for i in range(len(sem_features) - 1)]]
# 1 term
terms += [[sem_features[i] for i in range(len(sem_features))]]
return terms
|
5cb53b977acfb7c5f79444f455bd6b829aea4774
| 165,644 |
import functools
def require_privilege(level, message=None):
"""Decorate a function to require at least the given channel permission.
`level` can be one of the privilege levels defined in this module. If the
user does not have the privilege, `message` will be said if given. If it is
a private message, no checking will be done."""
def actual_decorator(function):
@functools.wraps(function)
def guarded(bot, trigger, *args, **kwargs):
# If this is a privmsg, ignore privilege requirements
if trigger.is_privmsg:
return function(bot, trigger, *args, **kwargs)
channel_privs = bot.channels[trigger.sender].privileges
allowed = channel_privs.get(trigger.nick, 0) >= level
if not trigger.is_privmsg and not allowed:
if message and not callable(message):
bot.say(message)
else:
return function(bot, trigger, *args, **kwargs)
return guarded
return actual_decorator
|
ec1e255f2c4bd91eed6d4f549c6f13baab7146e2
| 349,315 |
import hashlib
def HashToCurve(curve, hash_oid, hv):
"""
Hash the provided input data into a curve point. The data (hv) is
either raw unhashed data, or a hash value if the data was pre-hashed.
'hash_oid' identifies the hash function used for pre-hashing; use b''
(empty string) for raw unhashed data. Returned point can be any point
on the group, including the neutral N.
"""
n = curve.K.encodedLen
sh = hashlib.shake_256()
sh.update(curve.bname)
sh.update(b'-hash-to-curve:')
sh.update(hash_oid)
sh.update(b':')
sh.update(hv)
blob = sh.digest(2 * n)
return curve.MapToCurve(blob[:n]) + curve.MapToCurve(blob[n:])
|
feb30406604a6f466a57e2c1c1a5da0a1d65b63d
| 217,531 |
def school2nation(id_num):
"""
Takes school id, returns nation id of the school.
"""
if id_num < 97100000:
return id_num // 100000 * 10000
if id_num < 97200000:
return 7240000
if id_num < 97400000:
return 8400000
return 320100
|
74e7eb74b2adf1cd2c8855a1bcc35eddf38586e3
| 633,639 |
def _undo_op(arg, string, strict=False):
"""
Undo symbolic op if string is in str(op).
Returns <arg> untouched if there was no symbolic op.
Parameters
----------
arg : any symbolic variable.
string : str
String that specifies op.
strict : bool
Whether to force op undo or not (default False).
"""
if hasattr(arg.owner, 'op'):
owner = arg.owner
if string in str(owner.op):
return owner.inputs[0]
elif strict:
raise ValueError(string + ' not found in op ' +
str(owner.op) + '.')
elif strict:
raise ValueError(string + ' op not found in variable ' +
str(arg) + '.')
return arg
|
c2cd121ae2ebce49c921fff0f63e0dfd844565d9
| 614,543 |
def underline_filter(text):
"""Jinja2 filter adding =-underline to row of text
>>> underline_filter("headline")
"headline\n========"
"""
return text + "\n" + "=" * len(text)
|
417340cef3dce0348e197d7af9150b8407a8fa5e
| 65,423 |
def wind_dir(degrees):
"""Provide a nice little unicode character of the wind direction"""
# Taken from jenni
if degrees == 'VRB':
degrees = '\u21BB' # ↻
elif (degrees <= 22.5) or (degrees > 337.5):
degrees = '\u2B06' # ⬆
elif (degrees > 22.5) and (degrees <= 67.5):
degrees = '\u2197' # ↗
elif (degrees > 67.5) and (degrees <= 112.5):
degrees = '\u27A1' # →
elif (degrees > 112.5) and (degrees <= 157.5):
degrees = '\u2198' # ↘
elif (degrees > 157.5) and (degrees <= 202.5):
degrees = '\u2B07' # ⬇
elif (degrees > 202.5) and (degrees <= 247.5):
degrees = '\u2199' # ↙
elif (degrees > 247.5) and (degrees <= 292.5):
degrees = '\u2B05' # ←
elif (degrees > 292.5) and (degrees <= 337.5):
degrees = '\u2196' # ↖
return degrees
|
2ddc9445d9da8607ca32ab6536b6c254be8e1bf2
| 177,598 |
def get_paren_substring(string: str) -> str | None:
"""Get the contents enclosed by the first pair of parenthesis
Parameters
----------
string : str
A string
Returns
-------
str | None
The part of the string enclosed in parenthesis e.g. or None
Examples
--------
>>> get_paren_substring('some line(a, b, (c, d))')
'a, b, (c, d)'
If the line has incomplete parenthesis however, ``None`` is returned
>>> get_paren_substring('some line(a, b') is None
True
"""
i1 = string.find("(")
i2 = string.rfind(")")
if -1 < i1 < i2:
return string[i1 + 1 : i2]
else:
return None
|
20694128171cf17f9aa23f1cb049591424e0276f
| 200,704 |
def mocked_elasticsearch(mocked_elasticsearch_module_patcher):
"""
Fixture that resets all of the patched ElasticSearch API functions
"""
for mock in mocked_elasticsearch_module_patcher.patcher_mocks:
mock.reset_mock()
return mocked_elasticsearch_module_patcher
|
0dabc985d1dbcd7eda3d365447c1241f54143644
| 641,438 |
def xyz_to_zne(st):
"""
Convert channels in obspy stream from XYZ to ZNE.
"""
for tr in st:
chan = tr.stats.channel
if chan[-1] == 'X':
tr.stats.channel = chan[:-1] + 'E'
elif chan[-1] == 'Y':
tr.stats.channel = chan[:-1] + 'N'
return st
|
37c7b28ea81d41abc606c9b3ec1e1ce7788ff7f6
| 172,785 |
import collections
def filter_dataframes(dfs, xs, ys, table_ys, args_list, valid_keys):
"""Process necessary information from dataframes in the Bokeh format.
In the following explanation, N is assumed to be the number of experiments.
For xs_dict and ys_dict:
These are dictionary of list of list.
To make it simple, we focus on particular `x` in `xs`. Everything is
the same for `ys_dict`.
`x` is usually a timescale values such as iteration or epoch.
Here are some characteristics:
1. xs_dict[x] is list of list
2. len(xs_dict[x]) == N
3. xs_dict[x][i] is list. For example, if log is recorded every
epoch and `x` is epoch, xs_dict[x][i] == [1, 2, 3, 4, ...].
For tables:
This is a dictionary of list of scalars or strings.
The keys correspond to the column keys of the data table.
The keys are the combination of all `valid_keys` and `table_ys`.
tables[key][i] is `key` value recorded in the i-th experiment.
For example, if key=='main/loss', this is the minimum loss value during
training time recorded for the i-th experiment.
Args:
dfs (list of pd.DataFrame)
xs (list of strings)
ys (list of strings)
table_ys (dictionary)
args_list (list of dictionaries)
valid_keys (list of strings)
"""
# Descs: descriptions
# ys_dict == {string (y): List(Serial Data)}
xs_dict = {x: [] for x in xs}
ys_dict = {y: [] for y in ys}
tables = collections.OrderedDict(
[(key, []) for key in ['index'] + valid_keys + list(table_ys.keys())])
for i, args in enumerate(args_list):
# get df from a result
tmp = dfs
for key, val in args.items():
if val is None:
tmp = tmp[tmp[key].isnull()]
else:
tmp = tmp[tmp[key] == val]
for x in xs:
xs_dict[x].append(tmp[x].values.tolist())
for y in ys:
ys_dict[y].append(tmp[y].values.tolist())
for table_y, value_type in table_ys.items():
if value_type == 'min':
tables[table_y].append(tmp[table_y].min())
elif value_type == 'max':
tables[table_y].append(tmp[table_y].max())
else:
raise ValueError
for key in valid_keys:
if key in args:
tables[key].append(args[key])
else:
tables[key].append(None)
tables['index'] = list(range(len(args_list)))
return xs_dict, ys_dict, tables
|
903ce855378d174370117d9cb729f1052c682ac4
| 695,596 |
def one_level_dict(res):
""" Transforms nested dict to dictionary only one level deep """
configs = []
roots = []
iters = []
energies = []
waves = []
ints = []
for config in res:
for root in res[config]:
for iteration in res[config][root]["peaks"]:
data = res[config][root]["peaks"][iteration]
for val in data:
energy, wave, intensity = val
configs.append(config)
roots.append(root)
iters.append(iteration)
energies.append(energy)
waves.append(wave)
ints.append(intensity)
output = {}
output["Config"] = configs
output["Root"] = roots
output["Iteration"] = iters
output["Transition Energies (eV)"] = energies
output["Wavelength (nm)"] = waves
output["Intensity (au)"] = ints
return output
|
a1657aff2e22eb9012a07f5a2bcb6ea1db264490
| 551,914 |
def get_lines(self):
"""The list returned contains all the Line of the SurRing
Parameters
----------
self : SurfRing
A SurfRing object
Returns
-------
line_list : list
list of lines delimiting the surface
"""
line_list = self.out_surf.get_lines()
line_list.extend(self.in_surf.get_lines())
return line_list
|
9a9966fa86ed8f4a5aebc996fa4252ad67d12ffb
| 640,200 |
def create_filename(ticker, interval, mmyy):
"""
Create a filename based on a set of given parameter values.
:param ticker: the ticker symbol
:param interval: the time interval of the data
:param mmyy: the date (in mmyy format) for which data is being fetched
:return: filename string
"""
return f"{ticker}_{interval}_{mmyy[2:]}{mmyy[0:2]}.DAT"
|
8ed5f59dacfc381748b19be3bdea6f255308c6cb
| 604,546 |
def collect_blocks(d_blocks, ayear, n):
"""
Collect a block of patents for a window of n years regarding a focus
year.
If n is possitive the patents are from the future.
If n is possitive the patents are from the past.
Parameters
----------
d_blocks : A dictionary of patent blocks, the key is the year, and the
value is a list of indexes of the patents belongin to that year.
ayear: The focus year
n: The window size
Returns
-------
block : A list with all the patents in the window of n years (past or
or future)
"""
inc = int(n/abs(n))
ayears = list(range(ayear+inc, ayear+n+inc, inc))
block = []
for i in ayears:
if i in d_blocks:
block.extend(d_blocks[i])
return block
|
ea7029092610a59e50c5ff9e59f06f16a43a3420
| 121,205 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.