content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import random
def random_guesser_v1(passage):
"""Takes in a string and returns a dictionary with
6 keys for the binary values representing
features of the string, and another six keys
representing the scores of those features.
Note: for the scores, 0 represents no score,
while -1 represents '?'
Arguments
---------
passage: string to be converted to dictionary with feature scores.
"""
features_dict = {}
features = ["is_accountability", "is_unobjectivity",
"is_inaccuracy", "is_fact-basedness",
"is_influential", "is_opinionated"]
features_score = ["score_accountability", "score_unobjectivity",
"score_inaccuracy", "score_fact-basedness",
"score_influential", "score_opinionated"]
for i in range(len(features)):
features_dict[features[i]] = random.randrange(2)
features_dict[features_score[i]] = random.randrange(-1, 4)
return features_dict
|
b2759839fcdd59d36aa2bf6643750970affc77a1
| 28,042 |
def min_max_dates_dict(min_max_dates):
"""Calculates dates needed by the pipeline, starting from min and max dates.
Generates dictionary of dates needed for the calculation starting from a
tuple containing min_date and max_date from the input logs.
Args:
min_max_dates: Tuple containing min_date and max_date for the input
data.
Returns:
Dictionary containing info related to dates needed for the calculation.
"""
min_date, max_date = min_max_dates
tot_days = (max_date - min_date).days
if round(tot_days * 0.05) < 30:
cohort_days = 30
else:
cohort_days = round(round(tot_days * 0.05) / 30) * 30
return {
'min_date': min_date,
'max_date': max_date,
'total_days': tot_days,
'half_days': round((tot_days / 2) + 0.1),
'cohort_days': cohort_days
}
|
14b99c9dd6096131d0d18f77da73a5c1c8d5f885
| 69,572 |
def calculate_compensated_moment(moment_sample, x_sample, interp_gap, interp_reference, beta):
"""
Calculates the compensated moment for a measurement of a sample.
"""
return moment_sample - interp_reference(x_sample) + (beta * interp_gap(x_sample))
|
c370dae8b5d5bfb7a4f60b5dbdbedffb4e70a3f2
| 495,849 |
def convertir(T: list) -> int:
"""
T est un tableau d'entiers, dont les éléments sont 0 ou 1 et représentatn un entier écrit en binaire.
Renvoie l'écriture décimale de l'entier positif dont la représentation binaire est donnée par le tableau T.
"""
n = 0
for i in range(len(T)):
n += T[i]*2**(len(T)-i-1)
return n
|
74a38f5bcb7f09fe18c09306d0c168d259fb3dc1
| 242,102 |
def graph_ready(f):
"""No-op decorator that explicitly marks a function as graph-ready.
Graph-ready functions are assumed to not need any conversion.
Args:
f: Any callable.
Returns:
f itself.
"""
setattr(f, '__pyct_is_compile_decorator', True)
return f
|
742c60dd90658fdcd9f09a601015736b6029746e
| 146,097 |
def _get_binding(pdb_filename):
"""
Get binding mode of pdb file. x if none.
e.g. 11as_r_u.pdb would give u
"""
if "_u" in pdb_filename:
return "u"
elif "_b" in pdb_filename:
return "b"
else:
return "x"
|
177273f3eb69498f760050e9c366859527082c24
| 100,753 |
def CheckDoNotSubmitInFiles(input_api, output_api):
"""Checks that the user didn't add 'DO NOT ' + 'SUBMIT' to any files."""
keyword = 'DO NOT ' + 'SUBMIT'
# We want to check every text files, not just source files.
for f, line_num, line in input_api.RightHandSideLines(lambda x: x):
if keyword in line:
text = 'Found ' + keyword + ' in %s, line %s' % (f.LocalPath(), line_num)
return [output_api.PresubmitError(text)]
return []
|
2c347ef3497335ae0b33128e9a9d60c36cc65017
| 110,838 |
def example(a: int, b: int) -> int:
"""
Returns the sum of a and b, except one or both are 0 then it returns 42.
:param a: The first operand
:type a: int
:param b: The second operand
:type b: int
:returns: The conditional sum
:rtype: int
.. testsetup::
from <%= rootPackage %>.<%= mainModule %> import example
>>> example(1, 2)
3
>>> example(0, 4)
42
"""
return a + b if a != 0 and b != 0 else 42
|
aac4b49706753f40390277d9c19de08323e96799
| 61,449 |
from typing import List
def split_into_lists(input_list: List, target_number_of_lists: int) -> List[List]:
"""
Evenly splits list into n lists.
E.g split_into_lists([1,2,3,4], 4) returns [[1], [2], [3], [4]].
:param input_list: object to split
:param target_number_of_lists: how many lists to split into
:returns: list of lists containing original items
"""
quotient, reminder = divmod(len(input_list), target_number_of_lists)
return [input_list[i * quotient + min(i, reminder):(i + 1) * quotient + min(i + 1, reminder)] for i in
range(target_number_of_lists)]
|
daf9bcad6d86d3654c36bca15f1c9943acb21159
| 679,270 |
def bulk_docs(docs, **kwargs):
"""Create, update or delete multiple documents.
http://docs.couchdb.org/en/stable/api/database/bulk-api.html#post--db-_bulk_docs
:param list docs: The sequence of documents to be sent.
:param kwargs: (optional) Arguments that :meth:`requests.Session.request` takes.
:rtype: (str, str, dict)
"""
if ("json" not in kwargs) or (not isinstance(kwargs["json"], dict)):
kwargs["json"] = {}
kwargs["json"]["docs"] = docs
return "POST", "_bulk_docs", kwargs
|
00aa6fc07f507bba63ea044f3addeba2c77fdc18
| 141,478 |
import requests
import logging
def get_reply(session, url, post=False, data=None, headers=None, quiet=False):
"""
Download an HTML page using the requests session. Low-level function
that allows for flexible request configuration.
@param session: Requests session.
@type session: requests.Session
@param url: URL pattern with optional keywords to format.
@type url: str
@param post: Flag that indicates whether POST request should be sent.
@type post: bool
@param data: Payload data that is sent with request (in request body).
@type data: object
@param headers: Additional headers to send with request.
@type headers: dict
@param quiet: Flag that tells whether to print error message when status
code != 200.
@type quiet: bool
@return: Requests response.
@rtype: requests.Response
"""
request_headers = {} if headers is None else headers
request = requests.Request('POST' if post else 'GET',
url,
data=data,
headers=request_headers)
prepared_request = session.prepare_request(request)
reply = session.send(prepared_request)
try:
reply.raise_for_status()
except requests.exceptions.HTTPError as e:
if not quiet:
logging.error("Error %s getting page %s", e, url)
logging.error("The server replied: %s", reply.text)
raise
return reply
|
4baa985db090d0f88762c8f6cfadff084f2b88ad
| 4,738 |
def read_layout(f_name):
"""
Read a layout (symbols assigned to key positions) from a file.
Args:
f_name (str): File name of the layout.
Returns:
The symbols accumulated in a list of lists representing the key placement.
Example:
The layout file might look like this:
a b c
d e f g
h i j
This function returns [['a', 'b', 'c'], ['d', 'e', 'f', 'g'], ['h', 'i', 'j']].
"""
layout = []
with open(f_name) as f:
for line in f:
line = line.strip()
layout.append(line.split())
return layout
|
837bada7134b34f64b16951dd21c1ac01a561561
| 344,094 |
def net_label_styler(net_label: str) -> str:
"""Returns the stylised net_label to make CE unified and ET/Voyager less verbose.
Assumes that ET's declared as 'ET_ET1','ET_ET2','ET_ET3' in network_spec.
Args:
net_label: Network label, e.g. 'A+_H..A+_L..V+_V..K+_K..A+_I'.
"""
return (
net_label.replace("CE2", "CE")
.replace("ET_ET1..ET_ET2..ET_ET3", "ET_E")
.replace("Voyager", "Voy")
)
|
42ac5259c4025658bafab7793a5d7311662196c0
| 235,275 |
def _val_in( val_0, magnitude ):
"""
Returns magnitude with the sign such that abs(val_0 + mag2) < abs(val_0)
If mag < 0, does the opposite.
If abs(mag) > 1, may result in an overshoot.
"""
if val_0 < 0:
pass
elif val_0 > 0:
magnitude = -magnitude
else:
# Because one cannot draw closer to 0 if one is already there:
if magnitude > 0: magnitude = 0
# And since we don't want d to be always negative:
else: magnitude = -magnitude
return magnitude
|
b1962196508ec95a4a41c504bdf146dd9735cca3
| 358,981 |
def isMultiPolygonal(fire):
"""
return true if the object is a MultiPolygon
"""
return True if fire["geometry"]["type"] == "MultiPolygon" else False
|
c30f885a41b418450030340a9ed15281d902c173
| 144,769 |
def is_no_cache_key_option(number):
"""Return ``True`` iff the option number identifies a NoCacheKey option.
A :coapsect:`NoCacheKey option<5.4.2>` is one for which the value
of the option does not contribute to the key that identifies a
matching value in a cache. This is encoded in bits 1 through 5 of
the *number*. Options that are :func:`unsafe<is_unsafe_option>`
are always NoCacheKey options.
"""
return (0x1c == (number & 0x1e))
|
aad8173794ae13fe885316f8048d66e547addc7b
| 653,114 |
import hmac
import hashlib
def signature(params, shared_secret):
"""
Calculate the digital signature for parameters using a shared secret.
Arguments:
params (dict): Parameters to sign. Ignores the "signature" key if present.
shared_secret (str): The shared secret string.
Returns:
str: The 32-character signature.
"""
encoded_params = "".join([
f"{key}:{params[key]}"
for key in sorted(params.keys())
if key != "signature"
])
hasher = hmac.new(shared_secret.encode('utf-8'), encoded_params.encode('utf-8'), hashlib.sha256)
return hasher.hexdigest()
|
c2c93f477ebe5145edaf99a62ba5caa37b32b859
| 446,077 |
import six
def FormatTagSpecifications(resource_type, tags_dict):
"""Format a dict of tags into arguments for 'tag-specifications' parameter.
Args:
resource_type: resource type to be tagged.
tags_dict: Tags to be formatted.
Returns:
A list of tags formatted as arguments for 'tag-specifications' parameter.
"""
tags = ','.join('{Key=%s,Value=%s}' %
(k, v) for k, v in six.iteritems(tags_dict))
return 'ResourceType=%s,Tags=[%s]' % (resource_type, tags)
|
9db57935ea724a7334b98a5160f0eb09f6325ded
| 622,927 |
def init_bytearray(payload=b'', encoding='utf-8'):
"""Initialize a bytearray from the payload."""
if isinstance(payload, bytearray):
return payload
if isinstance(payload, int):
return bytearray(payload)
if not isinstance(payload, bytes):
try:
return bytearray(payload.encode(encoding=encoding))
except AttributeError:
raise ValueError("payload must be a str or bytes")
return bytearray(payload)
|
71cf2c6df77aa341ba2ec1f5f8ac11855b448295
| 219,759 |
def str_to_bytes(input_str):
"""Convert string to bytes.
"""
return input_str.encode()
|
da623777a875fe2deb2cb9189c06c89453139617
| 554,358 |
def convert_rgb_tuple(tuple_256):
"""Convert R,G,B Decimal Code from 8-bit integers to [0, 1] floats.
E.g. (255, 247, 0) -> (1., 0.9686... , 0.) representing a specific
yellow colour, namely #FFF700 in Hex(ademical).
"""
return tuple(float(rgb_int) / 255 for rgb_int in tuple_256)
|
1748c6207b58d68ace9e947359cd686964ceb207
| 47,812 |
import re
def printable(text):
"""
Convert text to only printable characters, as a user would see it.
"""
ansi = re.compile(r'\x1b\[[^Jm]*[Jm]')
return ansi.sub('', text).rstrip()
|
653fbbdd2e03d6c43cd26b6823ba6a3c22dcbd18
| 443,929 |
import re
def affinity_locality_predicate(write_affinity_str):
"""
Turns a write-affinity config value into a predicate function for nodes.
The returned value will be a 1-arg function that takes a node dictionary
and returns a true value if it is "local" and a false value otherwise. The
definition of "local" comes from the affinity_str argument passed in here.
For example, if affinity_str is "r1, r2z2", then only nodes where region=1
or where (region=2 and zone=2) are considered local.
If affinity_str is empty or all whitespace, then the resulting function
will consider everything local
:param affinity_str: affinity config value, e.g. "r1z2"
or "r1, r2z1, r2z2"
:returns: single-argument function, or None if affinity_str is empty
:raises: ValueError if argument invalid
"""
affinity_str = write_affinity_str.strip()
if not affinity_str:
return None
matchers = []
pieces = [s.strip() for s in affinity_str.split(',')]
for piece in pieces:
# matches r<number> or r<number>z<number>
match = re.match("r(\d+)(?:z(\d+))?$", piece)
if match:
region, zone = match.groups()
region = int(region)
zone = int(zone) if zone else None
matcher = {'region': region}
if zone is not None:
matcher['zone'] = zone
matchers.append(matcher)
else:
raise ValueError("Invalid write-affinity value: %r" % affinity_str)
def is_local(ring_node):
for matcher in matchers:
if (matcher['region'] == ring_node['region']
and ('zone' not in matcher
or matcher['zone'] == ring_node['zone'])):
return True
return False
return is_local
|
349858a8737def11c0f57be546638b4631fa4290
| 296,181 |
import requests
def download_from_url(url: str, timeout=None):
"""
Download file from the URL.
:param url: URL to download.
:param timeout: timeout before fail.
"""
try:
response = requests.get(url, allow_redirects=True, timeout=timeout)
except requests.exceptions.SSLError:
print('Incorrect SSL certificate, trying to download without verifying...')
response = requests.get(url, allow_redirects=True, verify=False,
timeout=timeout)
if response.status_code != 200:
raise OSError(str(response))
return response
|
4d4e9058bb3a093fb3bcf6aa0e6e3e3107a89f92
| 175,527 |
def make_draws(dist, params, size=200):
"""Return array of samples from dist with given params.
Draw samples of random variables from a specified distribution, dist, with
given parameters, params, return these in an array.
Parameters
----------
dist: Scipy.stats distribution object
Distribution with a .rvs method
params: dict
Parameters to define the distribution dist.
e.g. if dist = scipy.stats.binom then params could be:
{'n': 100, 'p': 0.25}
size: int, optional (default=200)
The number of random variables to draw.
Returns
-------
Numpy array: Sample of random variables
"""
return dist(**params).rvs(size)
|
795db03cc6697a6e6d84aa0cd2a54cc719714368
| 383,363 |
def digits_are_unique(n):
"""Returns whether digits in n are unique (and no 0)"""
digits = set([int(d) for d in str(n)])
if 0 in digits:
return False
return len(str(n)) == len(digits)
|
9d2363808e6f8d038d047bc279a89e3de0a93fce
| 156,004 |
from pathlib import Path
def valid_hostapd_config() -> str:
"""Get a valid hostapd config to compare."""
hostapd_config_path = Path("tests/data/hostapd/config.txt")
return hostapd_config_path.read_text(encoding="utf-8")
|
893d2801525a2365a0abfd31b0ca43e654e9b9c8
| 608,475 |
def find_shortest_path(orbit_graph, obj_start, obj_end, path=[]):
"""Find the shortest path between the start and end objects in a graph
This code is copied from the Python Patterns - Implementing Graphs essay at
https://www.python.org/doc/essays/graphs. It is gratefully re-used under
the PSF license.
Parameters
----------
orbit_graph : dict
A dictionary containing every planet (object) as keys, and the list of
objects that they connect to (either orbiting or being orbited by)
for the values.
obj_start : str
The name of the starting object
obj_end : str
The name of the end object
path : list
Objects that must be traversed in the path from obj_start to obj_end,
Default: []
Returns
-------
shortest : list
The shortest path between two objects. This path contains both the
start and end objects.
"""
path = path + [obj_start]
# If the start object is the same as the end object then return the path
# right at the start! It will be 1 element long.
if obj_start == obj_end:
return path
# If the start object is not in the graph then return None
if obj_start not in orbit_graph:
return None
# We're going to find the shortest path here, start by calling it None
shortest = None
# Step through the nodes from the start object
for node in orbit_graph[obj_start]:
# If the node is not in the path then call **this same function** to
# find the shortest path between that object and the end object!
# pass the path we've created to that function.
if node not in path:
newpath = find_shortest_path(orbit_graph, node, obj_end, path)
# If we find a new path compare it to the length of the shortest
# path. If it is shorter then replace "shortest" with this new path
if newpath:
if not shortest or len(newpath) < len(shortest):
shortest = newpath
return shortest
|
90114ce973b233a63b47fa5599785309716874b7
| 335,366 |
import six
import time
def retry(ExceptionToCheck, tries=3, delay=2, backoff=2):
"""
Retry decorator published by Saltry Crane.
http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/
"""
def deco_retry(f):
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
try_one_last_time = True
while mtries > 1:
try:
return f(*args, **kwargs)
try_one_last_time = False
break
except ExceptionToCheck:
six.print_("Retrying in %s seconds" % str(mdelay))
time.sleep(mdelay)
mtries -= 1
mdelay *= backoff
if try_one_last_time:
return f(*args, **kwargs)
return
return f_retry # true decorator
return deco_retry
|
7a9a35fb64e41535188323adb678c9eafeadc3c3
| 443,449 |
def add_versions(nodes, versions):
"""
In Dutch rechtspraak.nl data, an version can have an annotation.
:param nodes: list of node objects
:param versions: list of versions
:return: list of nodes
"""
count_version = {}
count_annotation = {}
for item in versions:
id0 = item['id']
val = item['hasVersion']
count_version[id0] = count_version.get(id0, 0) + 1
if val.lower().find('met annotatie') >= 0:
count_annotation[id0] = count_annotation.get(id0, 0) + 1
for node in nodes:
node['count_version'] = count_version.get(node['id'], 0)
node['count_annotation'] = count_annotation.get(node['id'], 0)
return nodes
|
a2fe192246f07a698095d908962586098358a801
| 114,891 |
from typing import Any
def has_column(table: Any, name: str) -> bool:
"""
Helper function for determining if a table has a column, works with h5py, pytables, and pandas
"""
if hasattr(table, "cols"):
return hasattr(table.cols, name)
return name in table
|
89a55c55c11dbcef4ed8aa77b045d1c61b677d39
| 204,144 |
def get_name_and_versions_to_delete(chart_response, keep=2):
"""
Get name and unused versions from chart api response. Please see test if confusing about the input and output.
If less than 1 to keep, return empty empty to delete
:param chart_response: api response of charts
:param keep: number of versions to keep. default only keep one
:return: Dict(str, list) contains chart name and versions
"""
name_and_versions = dict()
if keep < 1:
return name_and_versions
for k, v in chart_response.items():
name_and_versions[k] = list()
count = 0
for value in v:
if count >= keep:
name_and_versions[k].append(value['version'])
else:
count += 1
return name_and_versions
|
ba0f5ac95be3624829a3e9331f72c0ffb0ff1ad7
| 264,847 |
def atomic_masses() -> dict:
"""
Function which returns the atomic and molecular masses.
Returns
-------
dict
Dictionary with the atomic and molecular masses.
"""
masses = {}
# Atoms
masses["H"] = 1.0
masses["He"] = 4.0
masses["C"] = 12.0
masses["N"] = 14.0
masses["O"] = 16.0
masses["Na"] = 23.0
masses["Na_lor_cur"] = 23.0
masses["Na_allard"] = 23.0
masses["Na_burrows"] = 23.0
masses["Mg"] = 24.3
masses["Al"] = 27.0
masses["Si"] = 28.0
masses["P"] = 31.0
masses["S"] = 32.0
masses["Cl"] = 35.45
masses["K"] = 39.1
masses["K_lor_cut"] = 39.1
masses["K_allard"] = 39.1
masses["K_burrows"] = 39.1
masses["Ca"] = 40.0
masses["Ti"] = 47.9
masses["V"] = 51.0
masses["Fe"] = 55.8
masses["Ni"] = 58.7
# Molecules
masses["H2"] = 2.0
masses["H2O"] = 18.0
masses["H2O_HITEMP"] = 18.0
masses["H2O_main_iso"] = 18.0
masses["CH4"] = 16.0
masses["CH4_main_iso"] = 16.0
masses["CO2"] = 44.0
masses["CO2_main_iso"] = 44.0
masses["CO"] = 28.0
masses["CO_all_iso"] = 28.0
masses["CO_all_iso_Chubb"] = 28.0
masses["CO_all_iso_HITEMP"] = 28.0
masses["NH3"] = 17.0
masses["NH3_main_iso"] = 17.0
masses["HCN"] = 27.0
masses["C2H2,acetylene"] = 26.0
masses["PH3"] = 34.0
masses["PH3_main_iso"] = 34.0
masses["H2S"] = 34.0
masses["H2S_main_iso"] = 34.0
masses["VO"] = 67.0
masses["VO_Plez"] = 67.0
masses["TiO"] = 64.0
masses["TiO_all_Exomol"] = 64.0
masses["TiO_all_Plez"] = 64.0
masses["FeH"] = 57.0
masses["FeH_main_iso"] = 57.0
masses["OH"] = 17.0
return masses
|
c476014c415986ba40a11fd943d3867d140a6fdd
| 461,945 |
import six
def subclasses_of(class_, it, exclude=None):
"""Extract the subclasses of a class from a module, dict, or iterable.
Return a list of subclasses found. The class itself will not be included.
This is useful to collect the concrete subclasses of an abstract base
class.
``class_`` is a class.
``it`` is a dict or iterable. If a dict is passed, examine its values,
not its keys. To introspect the current module, pass ``globals()``. To
introspect another module or namespace, pass
``vars(the_module_or_namespace)``.
``exclude`` is an optional list of additional classes to ignore.
This is mainly used to exclude abstract subclasses.
"""
if isinstance(it, dict):
it = six.itervalues(it)
ignore = [class_]
if exclude:
ignore.extend(exclude)
class_types = six.class_types
ret = []
return [x for x in it if isinstance(x, class_types) and
issubclass(x, class_) and x not in ignore]
|
61c1973a5870977dd47a77ff00f31ba5f59a8cd9
| 293,546 |
def int_to_bin(x, w, lsb_last=True):
"""
Converts an integer to a binary string of a specified width
x (int) : input integer to be converted
w (int) : desired width
lsb_last (bool): if False, reverts the string e.g., int(1) = 001 -> 100
"""
bin_str = '{0:{fill}{width}b}'.format((int(x) + 2**w) % 2**w,
fill='0', width=w)
if lsb_last:
return bin_str
else:
return bin_str[::-1]
|
a3b31614bc464408a8b476b3a8b7a73fb566169a
| 506,466 |
import re
def raw_seconds_short(string):
"""Formats a human-readable M:SS string as a float (number of seconds).
Raises ValueError if the conversion cannot take place due to `string` not
being in the right format.
"""
match = re.match(r'^(\d+):([0-5]\d)$', string)
if not match:
raise ValueError(u'String not in M:SS format')
minutes, seconds = map(int, match.groups())
return float(minutes * 60 + seconds)
|
8c77c00737638dcaa512f161c805eb42bde4b8f0
| 180,257 |
def strip_space(text, n):
"""strip n spaces of every line in text"""
lines = (
i[n:] if (i[:n] == ' ' * n) else i
for i in text.splitlines()
)
return '\n'.join(lines)
|
21d85454bf6985f2a1e9a337e7bbf5bce96d35ca
| 345,036 |
def get_product_from_prokka_fasta_header(fasta_header: str) -> str:
""" Grabs the gene portion of a .ffn or .faa fasta header """
contig, delim, product = fasta_header.partition(" ")
return product
|
599cddcb449403880f6b1c2345043a909ff8a250
| 86,238 |
import torch
def get_output_shape(model, in_chans, input_window_samples):
"""Returns shape of neural network output for batch size equal 1.
Returns
-------
output_shape: tuple
shape of the network output for `batch_size==1` (1, ...)
"""
with torch.no_grad():
dummy_input = torch.ones(
1, in_chans, input_window_samples,
dtype=next(model.parameters()).dtype,
device=next(model.parameters()).device,
)
output_shape = model(dummy_input).shape
return output_shape
|
44420861d85e5a2dc79ca0a3e061f65fd1d3fb89
| 200,871 |
def get_all_SpeciesID(pro_seq):
"""
This function is used to get all the id from a fasta file
:param pro_dir:
:return:
"""
# pro_input = "/home/luhongzhong/ortholog_343/protein_align_s2_R/OG1587_aa_aligned.fasta"
# OG_test = list(SeqIO.parse(pro_dir, "fasta"))
OG_test = pro_seq
all_OG_ID = []
for record in OG_test:
# print(record.id)
all_OG_ID.append(record.id)
return all_OG_ID
|
8643870ddc4aada7368beef2b3a0770cd6aaf142
| 152,124 |
def add_two_ints(first_int, second_int):
"""
function to add two numbers together
:param first_int: the first number to add together
:param second_int: the second number to add together
:return: sum of inputs, may be positive or negative
:rtype: int
"""
return first_int + second_int
|
22160c395a19d53934448a4b287fd9ee591ac87a
| 202,044 |
def make_Hamiltonian(pauli_list):
"""Compute the Hamiltonian.
pauli_list is a list of tuples [(coefficient, Pauli(v,w))]
WARNING. This is exponential in the number of qubits.
"""
Hamiltonian = 0
for p in pauli_list:
Hamiltonian += p[0]*p[1].to_matrix()
return Hamiltonian
|
ab25e19d768a0db49fee74222ccbb3e8d4450ce7
| 246,515 |
def miles_per_gallon(start_miles, end_miles, amount_gallons):
"""Compute and return the average number of miles
that a vehicle traveled per gallon of fuel.
Parameters
start_miles: An odometer value in miles.
end_miles: Another odometer value in miles.
amount_gallons: A fuel amount in U.S. gallons.
Return: Fuel efficiency in miles per gallon.
"""
distance = end_miles - start_miles
mpg = distance / amount_gallons
return mpg
|
8484a81afa3498b0b09c15a5138e85637cee00e6
| 324,906 |
def _only(c):
"""Return only member of a singleton set, or raise an error if the set's not a singleton."""
assert len(c)==1,'non-singleton ' + repr(c)
for elt in c: return elt
|
a4cb38483cca680bf2072f0ea5600c2603410053
| 242,760 |
def parse_property(name,value):
"""
Parses properties in the format 'name(;|\n)key=value(;|\n)key=value'
Used by HDB++ config and archivers
"""
if '\n' in value:
value = value.split('\n')
elif ';' in value:
value = value.split(';')
else:
value = [value]
r = {'name': (value.pop(0) if '=' not in value[0] else name) }
value = [v.strip().split('=',1) for v in value]
r.update((v[0],v[-1]) for v in value)
return r
|
6cd055a0d8f562b709e632d5b90c3e1e525f3650
| 437,306 |
def split_type_name(resource_type_name):
"""Split the type name of the resource
Args:
resource_type_name (str): the type_name of the resource
Returns:
tuples: type and name of the resource
"""
return resource_type_name.split('/')
|
5180d2a8b60b0586847a353d7b144c3e84bb2daa
| 321,509 |
def view_settings(state):
"""Get all data about the view state in neuroglancer: position,
image zoom, orientation and zoom of the 3d view, and voxel size.
Parameters
----------
state : dict
Neuroglancer state as JSON dict
Returns
-------
view : dict
Dictionary with keys: position, zoomFactor, perspectiveOrientation,
perspectiveZoom, and voxelSize
"""
view = {}
view["position"] = state["navigation"]["pose"]["position"]["voxelCoordinates"]
view["zoomFactor"] = state["navigation"].get("zoomFactor", None)
view["perspectiveOrientation"] = state.get("perspectiveOrientation", None)
view["perspectiveZoom"] = state.get("perspectiveZoom", None)
view["voxelSize"] = state["navigation"]["pose"]["position"]["voxelSize"]
return view
|
3df21738922fb0e98d48c36678be1aa1174a3d25
| 151,706 |
def bson2string(bval: bytes) -> str:
"""Decode BSON UTF-8 string as string."""
return bval.decode('utf8')
|
9075e85572e6b4bb35ea56a30cd90e63a8e355d0
| 261,083 |
def normalize(p):
""" Naive renormalization of probabilities """
S = sum(p)
return [pr / S for pr in p]
|
40cf1f54a74d057d2f474a476ea9d30bc3340b07
| 599,229 |
def calc_bpm(beat_interval, sampling_freq):
"""Calculate instantaneous BPM from beat to beat interval
Args:
beat_interval: (int) number of samples in between each beat
(typically R-R Interval)
sampling_freq: (float) sampling frequency in Hz
Returns:
bpm: (float) beats per minute for time interval
"""
return 60 * sampling_freq * (1 / (beat_interval))
|
9722a514c46525a7ec8851a7042c99851e312807
| 374,663 |
def interpolate_real(r1, r2, t):
"""Linearly interpolate between two real color components."""
r1 = float(r1)
r2 = float(r2)
return r1 + t * (r2 - r1)
|
1be5307a16a96032072567648aec72df43075485
| 208,414 |
import csv
def read_elsys_file(fn):
"""Reads an Elsys CSV file and returns a list of dictionaries containing key
info for each sensor.
"""
recs = []
with open(fn, newline='') as csvfile:
reader = csv.DictReader(csvfile, delimiter=';')
for row in reader:
recs.append(dict(
model = row['SKU'],
dev_eui = row['EUI'],
app_eui = row['AppEUI'],
app_key = row["AppKey"]
))
return recs
|
8ad0270b0bfb1e28a677122744092718fb3220d3
| 293,134 |
def get_optimal_step_size_and_momentum_parameters(sketch, fixed, momentum, n, d, m):
"""
As defined in:
1. Jonathan Lacotte, Mert Pilanci, Optimal Randomized First-Order Methods for Least-Squares Problems (https://arxiv.org/abs/2002.09488)
2. Jonathan Lacotte, Mert Pilanci, Faster Least Squares Optimization (https://arxiv.org/pdf/1911.02675.pdf)
Args:
sketch: Sketching matrix used
fixed: Whether sketching matrix is redrawn at every turn
momentum: Whether heavy-ball is used or not
n: Number of rows of data matrix
d: Number of columns of data matrix
m: Sketch size
Returns: step size and momentum parameter
"""
if sketch == 'SRHT':
if fixed:
if momentum:
alpha = m / d
step_size = (2 * (alpha - 1)) / (alpha + ((alpha ** 2 - alpha) ** 0.5))
# beta = ((alpha ** 0.5) - ((alpha - 1) ** 0.5)) / (alpha ** 0.5) + ((alpha - 1) ** 0.5)
xi, gamma = m / n, d / n
lambda_h = (((1 - gamma) * xi) ** 0.5 - ((1 - xi) * gamma) ** 0.5) ** 2
Lambda_h = (((1 - gamma) * xi) ** 0.5 + ((1 - xi) * gamma) ** 0.5) ** 2
# step_size = 4 / ((1 / Lambda_h)**0.5 + (1 / lambda_h)**0.5)**2
beta = ((Lambda_h ** 0.5 - lambda_h ** 0.5) / (Lambda_h ** 0.5 + lambda_h ** 0.5)) ** 2
else:
beta = 0
step_size = 1 - d/m
else:
beta = 0
xi, gamma = m/n, d/n
step_size = (xi - gamma)**2 / (xi**2 + gamma - (2 * gamma * xi))
else:
if fixed:
if momentum:
beta = d / m
step_size = (1 - beta) ** 2
else:
beta = 0
step_size = (4 * m * d) / (m**2 + d**2)
else:
beta = 0
step_size = ((m - d) * (m - d - 3)) / (m * (m - 1))
return beta, step_size
|
2cf730c25e91046725dd51006641e1490a5c2dbb
| 400,937 |
def fix_label(label):
"""Splits label over two lines.
Args:
label (str): Phrase to be split.
Returns:
label (str): Provided label split over two lines.
"""
half = int(len(label) / 2)
first = label[:half]
last = label[half:]
last = last.replace(' ', '\n', 1)
return first + last
|
2b5e9202a0770f3c4c8324c672cd6e5656d0acb3
| 221,723 |
def render_template(template_name, context, environment):
"""Renders a jinja2 template"""
template = environment.get_template(template_name)
return template.render(context)
|
24b458a6ece91a59c51c8093c039dd554f5c7a36
| 263,193 |
def dBtoLinear(db):
"""Converts a log value to a linear value."""
return 10**(db/20);
|
120dd8b13cd4eb56de55cba86baa79bc1784cc2d
| 59,699 |
import inspect
def is_generator(func):
"""Check whether object is generator."""
return inspect.isgeneratorfunction(func)
|
489321c7e197706d541596830aa3f18b6fb01901
| 654,279 |
def mangle_sheet_name(s: str) -> str:
"""Return a string suitable for a sheet name in Excel/Libre Office.
:param s: sheet name
:return: string which should be suitable for sheet names
"""
replacements = {
':': '',
'[': '(',
']': ')',
'*': '',
'?': '',
"'": '"',
"\\": ""
}
for x, y in replacements.items():
s = s.replace(x, y)
return s
|
742728e243c0bb9e9ed0d2af1c5224c20a544f25
| 605,700 |
import requests
def request_page(url: str) -> requests.Response:
"""
This function makes a request to the webpage to be scraped
Args:
url (str): Url of the page to be scraped
Returns:
page (requests.Response): Object containing the server's response to the HTTP request
"""
headers= {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36"}
page= requests.get(url, headers= headers)
if page.status_code != 200:
print("Error processing request")
return page
|
33ff9e500d33dfcca06807e036130f12ff14d7fd
| 466,976 |
def generate_url(date: str) -> str:
"""
generate a url for the download, given a date string in format YYYY-mm-dd"""
base_url = 'https://www.rollingstone.com/charts/albums/'
url = base_url + date + '/'
return url
|
4ed337c82ddfaa03c34560250c22bbbadbb3ccb9
| 337,943 |
import struct
def unpack_fp(fmt, fp, increment=True):
"""Unpacks a structure from a file, increment the position if set.
"""
if increment:
return struct.unpack(fmt, fp.read(struct.calcsize(fmt)))
else:
pos = fp.tell()
ret = struct.unpack(fmt, fp.read(struct.calcsize(fmt)))
fp.seek(pos)
return ret
|
c7b17fc3dd5e854241f15da808439f9bb5ae4f81
| 387,478 |
def makeProcessUrl(samweb, projecturl, processid):
""" Make the process url from a project url and process id """
if not '://' in projecturl:
projecturl = samweb.findProject(projecturl)
return projecturl + '/process/' + str(processid)
|
d45ec5a5c8f5133afcf799ebb88ae7e3683dd087
| 528,344 |
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
"""Return True if the values a and b are close to each other and False otherwise. (Clone from Python 3.5)
Args:
a: A float.
b: A float.
rel_tol: The relative tolerance – it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance is
1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater
than zero.
abs_tol: The minimum absolute tolerance – useful for comparisons near zero. abs_tol must be at least zero.
Returns:
True if the values a and b are close to each other and False otherwise.
"""
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
|
270be278b3865f5faebdf1bb436daa7bec90fb9c
| 45,699 |
import re
def parse_portpin(name):
"""Finds the port name and number of a pin in a string. If found
returns a tuple in the form of ('port_name', port_number).
Otherwise returns `None`.
"""
m = re.search("P([A-Z])(\d+)", name)
if m:
port_name, port_number = m.groups()
return (port_name, int(port_number))
|
84a5f701a2bed7317051589baacedd600810e257
| 493,506 |
def freestyle_table_params(rows, aging):
"""Returns parameters for OpenSQL freestyle request"""
return {'rowNumber': str(rows), 'dataAging': str(aging).lower()}
|
f764202958acc29b4d21d481406ee029eedb28f6
| 678,199 |
def eliminate_none(data):
"""
Remove None values from dict
"""
return dict((k, v) for k, v in data.items() if v is not None)
|
d213b19d204716ae1f4c6db2103c5fe8a283ee5d
| 551,387 |
def transpose(data):
"""Transpose a data structure
1. dict
data = {'2017-8': 19, '2017-9': 13}
In: transpose(data)
Out: [('2017-8', '2017-9'), (19, 13)]
2. list of (named)tuples
data = [Member(name='Bob', since_days=60, karma_points=60,
bitecoin_earned=56),
Member(name='Julian', since_days=221, karma_points=34,
bitecoin_earned=78)]
In: transpose(data)
Out: [('Bob', 'Julian'), (60, 221), (60, 34), (56, 78)]
"""
if type(data) == dict:
# return list([*zip(*data.items())])
return list(map(tuple, zip(*data.items())))
elif type(data) == list:
return list(zip(*data))
else:
return None
|
8d734c288931123ddacbf5333bb744fdb9dc2622
| 521,832 |
import torch
def create_init_scores(prev_tokens, tensor):
"""
Create init scores in search algorithms
Args:
prev_tokens: previous token
tensor: a type tensor
Returns:
- initial scores as zeros
"""
batch_size = prev_tokens.size(0)
prev_scores = torch.zeros(batch_size).type_as(tensor)
return prev_scores
|
0da0f693041602ed7e79f4f114fedac317419875
| 572,056 |
def attack(decrypt_oracle, iv, c, t):
"""
Uses a chosen-ciphertext attack to decrypt the ciphertext.
:param decrypt_oracle: the decryption oracle
:param iv: the initialization vector
:param c: the ciphertext
:param t: the tag corresponding to the ciphertext
:return: the plaintext
"""
c_ = iv + c
p_ = decrypt_oracle(bytes(16), c_, c[-16:])
return p_[16:]
|
80106b2376a8fa2d30afe96e5a763d6153ed3936
| 37,624 |
def enumerate_possibilities(mesa, hand):
"""Finds all the way of adding to 15 using exactly 1 card from the hand,
and any arbitrary number from the mesa.
Args:
mesa -- List of Card objects
hand -- List of Card objects
Returns:
List of tuples, each representing a different possibility for adding
up to 15.
Example: [(card1, card2), (card1, card3, card4)]
Example:
>>> from quince.components.card import Card
>>> card1 = Card(1, 'oro')
>>> card2 = Card(9, 'espada')
>>> card3 = Card(2, 'oro')
>>> card4 = Card(4, 'copa')
>>> card5 = Card(3, 'copa')
>>> card6 = Card(2, 'basto')
>>> card7 = Card(5, 'espada')
>>> mesa = [card1, card2, card3, card4]
>>> hand = [card5, card6, card7]
>>> result = enumerate_possibilities(mesa, hand)
>>> result == [(card5, card1, card2, card3), (card6, card2, card4),
... (card7, card1, card2)]
True
"""
def find_permutation(card_pool, partial_sum, permutations):
"""Recursively find all permutations of card_pool and partial_sum
which add to 15, and append each result to permutations
"""
# calculate the current sum of all cards in partial_sum
current_sum = sum([card.info()[0] for card in partial_sum])
if current_sum == 15:
# found a permutation, append it to permutations
permutations.append(tuple(partial_sum))
if current_sum >= 15:
# at or beyond target sum, so stop recursing
return
# for each remaining card in card_pool, see if there is a permutation
# adding to the target, given the current partial_sum
for card in enumerate(card_pool):
remaining_cards = card_pool[card[0] + 1:]
new_partial_sum = partial_sum + [card[1]]
find_permutation(remaining_cards, new_partial_sum, permutations)
permutations = []
# for each card in the hand, find all permutations that add to 15
for card in hand:
find_permutation(mesa, [card], permutations)
return permutations
|
38bd19f1022d70ae7f32cfcc98f4d0f5f381598e
| 510,072 |
def seconds_to_str(seconds):
""" converts a number of seconds to hours, minutes, seconds.ms
"""
(hours, remainder) = divmod(seconds, 3600)
(minutes, seconds) = divmod(remainder, 60)
return "h{}m{}s{}".format(int(hours), int(minutes), float(seconds))
|
edaa063c1d5423c0404a41e83f1a1419891e685a
| 34,763 |
def events_flatten(events):
"""
Combines all overlapping events in an ordered sequence of events
"""
if len(events) <= 1:
return events
else:
a = events[0]
b = events[1]
if a.intersects(b):
return events_flatten([a.join(b)] + events[2:])
else:
return [a] + events_flatten(events[1:])
|
985dcb9a5da172c05a07a180110ba7c7de1c4fc7
| 423,750 |
from re import findall
from pathlib import Path
from typing import Dict
def _check_site(filepath: Path, site_code: str, gc_params: Dict) -> str:
"""Check if the site passed in matches that in the filename
Args:
filepath: Path to data file
site: Site code
gc_params: Dictionary of GCWERKS parameters
Returns:
str: Site code
"""
site_data = gc_params["sites"]
name_code_conversion = {value["gcwerks_site_name"]: site_code for site_code, value in site_data.items()}
site_code = site_code.lower()
site_name = findall(r"[\w']+", str(filepath.name))[0].lower()
if len(site_code) > 3:
raise ValueError("Please pass in a 3 letter site code as the site argument.")
try:
confirmed_code = name_code_conversion[site_name].lower()
except KeyError:
raise ValueError(f"Cannot match {site_name} to a site code.")
if site_code != confirmed_code:
raise ValueError(
f"Mismatch between code reasd from filename: {confirmed_code} and that given: {site_code}"
)
return site_code
|
62c6bf7e72a56cc894214c3570f256a7e8db6471
| 317,916 |
def _clean_roles(roles):
""" Clean roles.
Strips whitespace from roles, and removes empty items.
Args:
roles (str[]): List of role names.
Returns:
str[]
"""
roles = [role.strip() for role in roles]
roles = [role for role in roles if role]
return roles
|
d52b568f8a2d756f53f0b51307578f4d4afdcd08
| 667,334 |
import torch
def binary_accuracy(prediction, target):
"""Calculates accuracy between two classes using probabilities
Parameters
----------
prediction : torch.Tensor or torch.autograd.Variable
Vector of probabilities of class 1
target : torch.Tensor
Vector containing the class indices 0 or 1
"""
if isinstance(prediction, torch.autograd.Variable):
prediction = prediction.data
predicted_classes = torch.gt(prediction, 0.5)
return torch.mean(torch.eq(predicted_classes, target.byte()).float())
|
4f101992de444af744c06b361146feeee917b682
| 636,874 |
def does_contain(stackstrings, ss):
"""
Check existence of stackstring in list.
:param stackstrings: list of all recovered stackstrings
:param ss: new stackstring candidate
:return: True if candidate already in stackstring list, False otherwise
"""
hashable_ss = (ss.fva, ss.s, ss.written_at)
for s in stackstrings:
hashable = (s.fva, s.s, s.written_at)
if hashable == hashable_ss:
return True
return False
|
01dd5b3f92ceb1eb8ca5cb048e61f988164603df
| 512,351 |
def iou(bbox_1, bbox_2):
"""
Get IoU value of two bboxes
:param bbox_1:
:param bbox_2:
:return: IoU
"""
w_1 = bbox_1[2] - bbox_1[0] + 1
h_1 = bbox_1[3] - bbox_1[1] + 1
w_2 = bbox_2[2] - bbox_2[0] + 1
h_2 = bbox_2[3] - bbox_2[1] + 1
area_1 = w_1 * h_1
area_2 = w_2 * h_2
overlap_bbox = (max(bbox_1[0], bbox_2[0]), max(bbox_1[1], bbox_2[1]),
min(bbox_1[2], bbox_2[2]), min(bbox_1[3], bbox_2[3]))
overlap_w = max(0, (overlap_bbox[2] - overlap_bbox[0] + 1))
overlap_h = max(0, (overlap_bbox[3] - overlap_bbox[1] + 1))
overlap_area = overlap_w * overlap_h
union_area = area_1 + area_2 - overlap_area
IoU = overlap_area * 1.0 / union_area
return IoU
|
5a08958265d5afbb7891d408bed6c7f3e5b27f3f
| 410,218 |
def sequential_search(target, lyst):
"""
in()
顺序搜索
Returns the position of the target item if found, or -1 otherwise.
:param target:
:param lyst:
:return:
"""
position = 0
while position < len(lyst):
if target == lyst[position]:
return position
position += 1
return -1
|
9a686606dd70b95568a016f4155c6b9ae55efca0
| 655,157 |
def class_name(cls):
"""
Return class name given a class instance.
"""
return cls.__name__
|
8e4b6a32cc7b1d9fd0e9d4bab9df3091da77b0cd
| 489,790 |
def listify(s):
"""
Converts s into a list if not already. If s is None, an empty list will be returned.
"""
if s is None:
s = []
elif isinstance(s, (set, tuple)):
s = [i for i in s]
elif not isinstance(s, list):
s = [s]
return s
|
1b44b3b3a041b3df5d6cfbd08394e421b3c6e831
| 687,035 |
def compute_tf(document, term, type='raw'):
"""
This function computes the raw term-frequency (TF) for a given document and term.
:param document: array of terms (list object)
:param term: single term
:param type: Type of TF calculation to use, default is 'raw'. Other options are 'augmented' and 'boolean'
:return tf: raw term frequency of term in the document
"""
assert (type in ['raw', 'augmented', 'boolean']), "The parameter 'type' is not recognized. Please enter 'raw', 'boolean' or 'augmented' as it's value."
tf = 0.0
if type == 'raw':
tf = float(document.count(term))
if type == 'boolean':
tf = float(term in document)
if type == 'augmented':
tf = 0.5 + ((0.5 * float(document.count(term))) / float(max([document.count(x) for x in document])))
return tf
|
41065eab5b8b2aba2d5c805668f6ce6c5a185f5b
| 276,721 |
from typing import Counter
def breakdown_structure(connection_counter: Counter, rules: dict) -> Counter:
"""breaksdown the polymer structure and add new elements
Args:
connection_counter (Counter): Initial count of each connection
rules (dict): Rules how to break down each connection
Returns:
Counter: new polymer structure represented by the number for each pairs
Examples:
>>> breakdown_structure(Counter(AB = 1), {"AB":"C"})
Counter({'AC': 1, 'CB': 1})
>>> breakdown_structure(Counter(AB = 1, BC = 4), {"AB":"C", "BC":"A"})
Counter({'AC': 5, 'BA': 4, 'CB': 1})
"""
new_counter = Counter()
for poly_pair in connection_counter:
new_counter[poly_pair[0] + rules[poly_pair]] += connection_counter[poly_pair]
new_counter[rules[poly_pair] + poly_pair[1]] += connection_counter[poly_pair]
return new_counter
|
279b375cd23f1957f2c9d8454bf5f405143d9103
| 271,440 |
def NameAndAttribute(line):
"""
Split name and attribute.
:param line: DOT file name
:return: name string and attribute string
"""
split_index = line.index("[")
name = line[:split_index]
attr = line[split_index:]
return name, attr
|
7595f51d728c5527f76f3b67a99eccd82fb9e8b7
| 12,500 |
def _force_list(val):
"""Ensure configuration property is a list."""
if val is None:
return []
elif hasattr(val, "__iter__"):
return val
else:
return [val]
|
0f1f6bc48bbe68007549015d1602b9e8bc4561d9
| 416,058 |
def hasValidKey(dict, key):
""" Return True if key is in dict and not None, False otherwise.
"""
return key in dict and dict[key] is not None
|
438ca30f1b133be80389abf8304cd24b09fce1d8
| 16,624 |
def StringLiteral(str):
"""Convert string to string literal."""
literal = '"' + str.replace('\\', '\\\\').replace('"', '\\"') + '"'
return literal.encode('utf8')
|
6132ffd563b5be3c024dd0eadbffbdb6dbe5a448
| 456,486 |
def to_bytes(x):
"""Convert an integer to bytes."""
return x.to_bytes(2, 'big')
|
49eb15a37cbbc2dc235a84931b4518082a56fe67
| 179,181 |
def fromHex( h ):
"""Convert a hex string into a int"""
return int(h,16)
|
ffae24cdade04d3ab4098f13643098dff2c69ef2
| 25,459 |
def set_availability_zone(radl, zone):
"""
Modify RADL to set availability zone
"""
radl_new = ''
for line in radl.split('\n'):
if line.startswith('system'):
line = line + "\navailability_zone = '%s' and" % zone
radl_new = radl_new + line + '\n'
return radl_new
|
df1b0e46ea0c3aa97bb2c2b70dc44d99b7489983
| 359,566 |
import string
import random
def generate_string(number, chars=string.ascii_lowercase+string.digits):
"""Generate a string."""
return ''.join(random.choice(chars) for _ in range(number))
|
5517cb92930652dcaf9f15dd5d5bcd7c9fc378ec
| 159,580 |
def k_min(l, k):
"""
Gets the k smallest elements in a list and their indices.
"""
enum_l = list(enumerate(l))
l_s = sorted(enum_l, key=lambda v: v[1])
k_mins = l_s[:k]
return tuple(map(list, zip(*k_mins)))
|
99cd944b1594595d23be75c7b8fca3fd31875bbb
| 225,794 |
import math
def get_bearing(compass_device):
"""Return the vehicle's heading in radians.
When thw world's +ve x is on the left and +ve y is on top, angle is 0.
Angle increases clockwise."""
if compass_device is not None:
compass_data = compass_device.getValues()
radians = math.atan2(compass_data[2], -compass_data[0])
while radians > math.pi:
radians -= 2*math.pi
while radians < -math.pi:
radians += 2*math.pi
else:
radians = 0.0
return radians
|
b000460dd19a24834dbba34790e6fbaad45c18af
| 300,143 |
def _ExtractCommentText(comment, users_by_id):
"""Return a string with all the searchable text of the given Comment PB."""
commenter_email = users_by_id[comment.user_id].email
return '%s %s %s' % (
commenter_email,
comment.content,
' '.join(attach.filename
for attach in comment.attachments
if not attach.deleted))
|
7c372eb15805ca3f47b54c32ba9afb64208815dc
| 686,649 |
def FUNCTION_TO_REGRESS_TEMPLATE(x, a, b, c):
"""
A simple function to perform regression on.
Args:
x: A list of integers.
a,b,c: Coefficients
"""
return (x[0] * a/2) + pow(x[1], b) + c
|
46f53a3d2a7e6729f51439a355991103dcbc03c2
| 18,236 |
def require(*modules):
"""Check if the given modules are already available; if not add them to
the dependency list."""
deplist = []
for module in modules:
try:
__import__(module)
except ImportError:
deplist.append(module)
return deplist
|
88df83cd33d8bddea63e4d2fbfb4d8351a3c23b1
| 1,331 |
import functools
import builtins
import logging
def requires_ipython(fn):
"""Decorator for methods that can only be run in IPython."""
@functools.wraps(fn)
def run_if_ipython(*args, **kwargs):
"""Invokes `fn` if called from IPython, otherwise just emits a warning."""
if getattr(builtins, '__IPYTHON__', None):
# __IPYTHON__ variable is set by IPython, see
# https://ipython.org/ipython-doc/rel-0.10.2/html/interactive/reference.html#embedding-ipython.
return fn(*args, **kwargs)
else:
logging.warning(
'Method "%s" is a no-op when invoked outside of IPython.',
fn.__name__)
return run_if_ipython
|
f826621ff8a89720c932f1f396b746ae6aef4e64
| 664,174 |
def get_s3_url(s3_client, bucket, key, expires_in=604800):
""" Generate signed URL for specified object key in bucket
"""
signed_url = s3_client.generate_presigned_url(
'get_object',
Params={
'Bucket': bucket,
'Key': key
},
ExpiresIn=expires_in
)
return signed_url
|
1a90988077a938e13aad7fb4195478735cfc9bd0
| 157,743 |
def VerifyNonNegativeGems(gems):
"""Returns that all gem values are nonnegative."""
return all(count >= 0 for count in gems.values())
|
6beb0c19f502249f49864edcaf7af8d0d3c57946
| 286,045 |
def optional_one(query):
"""Like calling one() on query, but returns None instead of raising
NoResultFound.
"""
results = query.limit(1).all()
if results:
return results[0]
return None
|
07e71ff5505452e248804799755504c54d22ed03
| 145,452 |
def N2_depolarisation(wavelength):
"""
Returns the depolarisation of nitrogen :math:`N_2` as function of
wavelength :math:`\lambda` in micrometers (:math:`\mu m`).
Parameters
----------
wavelength : numeric
Wavelength :math:`\lambda` in micrometers (:math:`\mu m`).
Returns
-------
numeric
Nitrogen :math:`N_2` depolarisation.
Examples
--------
>>> N2_depolarisation(0.555) # doctest: +ELLIPSIS
1.0350291...
"""
wl = wavelength
N2 = 1.034 + 3.17 * 1.0e-4 * (1 / wl ** 2)
return N2
|
22e0ccd1bc668594a381578ff85504f534b22084
| 436,049 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.