content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def leavesToString(leaves): """Return the leaves as concatenated string with whitespace separation.""" retstr = "" for e in leaves: retstr = retstr + e[0] + " " return retstr
a43fdfebbd000e4948c38557276b1fbba2aced57
121,757
def replay_args(parser, show_all_task_softmax=True): """This is a helper function of function :func:`parse_cmd_arguments` to add an argument group for options regarding Generative Replay. Args: parser (argparse.ArgumentParser): The argument parser to which the group should be added. show_all_task_softmax (bool): Whether option `all_task_softmax` should be shown. Note: Only sensible for classification tasks. Returns: The created argument group, in case more options should be added. """ agroup = parser.add_argument_group('Replay options') agroup.add_argument('--use_replay', action='store_true', help='Whether generative replay should be used as a ' + 'method to prevent catastrophic forgetting. ' + 'If option "hnet_all" is enabled, a replay ' + 'model per task is learned within one task-' + 'conditioned hypernetwork. Otherwise, ' + 'forgetting within the replay model is ' + 'prevented by replaying data from a ' + 'checkpointed replay model before starting to ' + 'learn a new task.') if show_all_task_softmax: # This enables what we call CL3. agroup.add_argument('--all_task_softmax', action='store_true', help='If enabled, the replay model is used to ' + 'train a multi-head classifier whose ' + 'softmax predictions are computed across ' + 'all output heads.') agroup.add_argument('--replay_pm_strength', type=float, default=1., help='The strength of the prior-matching term if ' + 'replay is used. Default: %(default)s.') agroup.add_argument('--replay_rec_strength', type=float, default=1., help='The strength of the reconstruction term if ' + 'replay is used. Default: %(default)s.') agroup.add_argument('--replay_distill_reg', type=float, default=1., help='The strength of the soft-target distillation ' + 'loss if replay is used. Default: %(default)s.') agroup.add_argument('--replay_true_data', action='store_true', help='This is a sanity check. If enabled, actual ' + 'data from previous tasks will be replayed. ' + 'The autoencoder is still trained, even though ' + 'the decoder has no influence in training the ' + 'target model.') agroup.add_argument('--coreset_size', type=int, default=-1, metavar='N', help='This option is only valid in combination with ' + 'option "use_replay". If "-1", then coresets ' + 'are deactivated. Otherwise, a positive integer ' + 'is expected denoting the size of a coreset per ' + 'task. In this case, no decoder (VAE) will be ' + 'trained. Instead, data from the coreset is ' + 'replayed. Default: %(default)s.') return agroup
ecc69b700a0221a9be7400d203f6dab2a7745bdd
663,911
from typing import Tuple def grammar_resource(location: str) -> Tuple[str, str]: """ Given a module-like location, return the package and resource of a grammar :param location: a module-like location, such as ``"bootpeg.grammar.peg"`` :return: a package and resource, such as ``"bootpeg.grammar", "peg.bpeg"`` """ if location == "__main__": location = __import__("__main__").__spec__.name package, _, name = location.rpartition(".") return package, f"{name}.bpeg"
2581f2cc7115f6871ebd7974be99f22e3835d9d1
154,768
def conflicting(a, b): """ Totals the number of conflicting characters between two strings Parameters ---------- a: str b: str Returns ------- int """ comp = zip(a, b) diff = abs(len(a)-len(b)) d = sum(1 for x,y in comp if x != y) return d + diff
65e111786e56da9610e290fd5a56c41039690f68
301,810
import json def convert_json(data): """Convert string to JSON if possible or return None otherwise. Args: data (str): Data. Returns: dict: Loaded dict. """ try: return json.loads(data) except ValueError: return None
668c1fa29ec48e3f311ee93b2e5d0c64c6708518
201,928
def get_grid_sizes(image_shape, base_grid_size): """utility function that compute the sizes of the grid system Arguments: image_shape {tuple} -- the shape of the image base_grid_size {int} -- the size of the cell in base grid Returns: list -- a list of the grid sizes """ if base_grid_size == 32: return [int(image_shape[0] / x) for x in [32, 16, 8]] else: values = [] for x in [base_grid_size, base_grid_size / 2, base_grid_size / 4]: # if image_shape[0] % x != 0: # raise ValueError( # f'the base grid size {base_grid_size} is not divisible per the image size' # ) values.append(int(image_shape[0] / x)) return values
ebae894942d4d09010e8819b12178dcf59d0ac79
436,251
def remove_seq_duplicates(question): """ Removes consequent sbj placeholders""" i = 0 while i < len(question) - 1: if question[i] == question[i + 1] and question[i] == "sbj": del question[i] else: i = i + 1 return question
08445451ae9f9258607d24eb202471a24d588d2e
243,924
import pkg_resources def entrypoints(section): """ Returns the Entry Point for a given Entry Point section. :param str section: The section name in the entry point collection :returns: A dictionary of (Name, Class) pairs stored in the entry point collection. """ return {ep.name: ep.load() for ep in pkg_resources.iter_entry_points(section)}
55c82839129a3aa6a321a812d93795594ee9d333
305,551
def userpar_override(pname, args, upars): """ Implement user parameter overrides. In this implementation, user parameters *always* take precedence. Any user parameters passed to the Primitive class constructor, usually via -p on the 'reduce' command line, *must* override any specified recipe parameters. Note: user parameters may be primitive-specific, i.e. passed as -p makeFringeFrame:reject_method='jilt' in which case, the parameter will only be overridden for that primitive. Other primitives with the same parameter (e.g. stackFlats reject_method) will not be affected. This returns a dict of the overridden parameters and their values. """ parset = {} for key, val in list(upars.items()): if ':' in key: prim, par = key.split(':') if prim == pname: parset.update({par: val}) elif key in args: parset.update({key: val}) return parset
4634d73b332f85c68507ededcc85913a080b970c
463,446
def is_bit_set(number: int, position: int) -> bool: """ Is the bit at position set? Details: Shift the bit at position to be the first (smallest) bit. Then check if the first bit is set by anding the shifted number with 1. >>> is_bit_set(0b1010, 0) False >>> is_bit_set(0b1010, 1) True >>> is_bit_set(0b1010, 2) False >>> is_bit_set(0b1010, 3) True >>> is_bit_set(0b0, 17) False """ return ((number >> position) & 1) == 1
638df8c7ab0976d31dd268a1496f8d210d9fd27e
147,486
import torch def per_face_normals(mesh : torch.Tensor): """Compute normals per face. Args: mesh (torch.Tensor): #F, 3, 3 array of vertices """ vec_a = mesh[:, 0] - mesh[:, 1] vec_b = mesh[:, 1] - mesh[:, 2] normals = torch.cross(vec_a, vec_b) return normals
0f6c51125ec33dc5aa8faa913b5fefba03bdd1f5
64,497
from typing import Collection from typing import Tuple import hashlib def triple_set_hash( mapped_triples: Collection[Tuple[int, int, int]], ) -> str: """ Compute an order-invariant hash value for a set of triples given as list of triples. :param mapped_triples: The ID-based triples. :return: The hash digest as hex-value string. """ # sort first, for triple order invariance return hashlib.sha512("".join(map(str, sorted(mapped_triples))).encode("utf8")).hexdigest()
f66b409ca6f5ad586ecb33e4d1f7eef8e5a5c3e4
262,295
from typing import List def read_tour(path: str) -> List[int]: """Reads a TSPLIB-formatted TSP tour file, and returns it in the form of an ordered list of point IDs. """ tour = [] with open(path, "r") as f: for line in f: if "TOUR_SECTION" in line: break for line in f: line = line.strip() if "-1" in line or "EOF" in line or not line: break fields = line.strip().split() point_id = int(fields[0]) tour.append(point_id) return tour
9ac341a6343804a59e48130f764d91b39dcc6f2c
292,584
import getpass def get_default_db_name() -> str: """Uses the username to generate the db name Returns: str: The default database name """ user: str = getpass.getuser() return f"{user}_antares_launcher_db.json"
3d906383849f648125747d4d9a7f586bfaed0a12
276,539
import string def text_template(text, variables): """Substitutes '${PLACEHOLDER}'s within the text with the corresponding values from variables.""" template = string.Template(text) return template.safe_substitute(variables)
e1397376fe225f875c67d883954549bc774294fb
555,927
def removecommongaps(s1, s2): """Remove common gap characters between the two sequences. Return s1, s2 with these characters removed. """ if len(s1) != len(s2): raise ValueError('Sequences must be same length') return ( ''.join(b1 for b1, b2 in zip(s1, s2) if b1 != '-' or b2 != '-'), ''.join(b2 for b1, b2 in zip(s1, s2) if b1 != '-' or b2 != '-'), )
a73c4227b00203033d0aacebc5d8f378fd5ce009
75,664
import torch def _make_aligned_labels(inputs): """Uses the shape of inputs to infer batch_size, n_classes, and n_sample_per_class. From this, we build the one-hot encoding label tensor aligned with inputs. This is used to keep the lable information when tensors are flatenned across the n_class and n_sample_per_class. Args: inputs: tensor of shape (batch, n_classes, n_sample_per_class, z_dim) containing encoded examples for a task. Returns: tensor of shape (batch, n_classes, n_sample_pc, n_classes) containing the one-hot encoding label of each example """ batch, n_classes, n_sample_pc, z_dim = inputs.shape identity = torch.eye(n_classes, dtype=inputs.dtype, device=inputs.device) return identity[None, :, None, :].expand(batch, -1, n_sample_pc, -1).contiguous()
7eaeb9f627b31f1b58ef58be3858dde13e3e7d4a
482,607
def load(fl, normalise=False): """ load airfoil args: fl (str): filename kwargs: normalise (bool): flag determining whether the airfoil is normalised to unit length returns: [(x,y),...] airfoil point coordinates """ d = [] print("loading airfoil %s" % fl) for i in open(fl, "r").readlines(): try: xy = [float(j) for j in i.split()] if len(xy) in [2, 3]: d.append(xy) except: pass x, y = list(zip(*d)) if normalise: mx = min(x) dx = max(x) - min(x) print("normalise factor %f" % dx) x = [(i - mx) / dx for i in x] y = [i / dx for i in y] return list(zip(x, y))
4032a703a66465799aadfa08dd7888682b0a767d
666,156
def guess_num() -> str: """ 049 Create a variable called comp_num and set the value to 50. Ask the user to enter a number. While their guess is not the same as the comp_num value, tell them if their guess is too low or too high and ask them to have another guess. If they enter the same value as comp_num, display the message “Well done, you took [count] attempts”. """ comp_num = 50 guess = int(input("Entrer une chifre: ")) attempts = 1 while guess != comp_num: guess = int(input("Was your guess too high or too low? Enter another number: ")) attempts += 1 return f"Well done you took {attempts} attempts."
3467316d23498cca220987b3e0004973010f8901
623,708
import re def cond_add_quotes(s): """If there are spaces in the input string s, put quotes around the string and return it... if there are not already quotes in the string. @type s: string @param s: path name @rtype: string @return: string with quotes, if necessary """ if re.search(r'[ ]',s) and not ( re.search(r'["].*["]',s) or re.search(r"['].*[']",s) ): return '\"' + s + '\"' return s
a476e27fea96ef5c26600ccf2a73b43dbfafb21d
591,805
def _get_or_create_plot_data(data, plotdata): """Create a new name for `data` if necessary, or check it is a valid name. """ valid_names = plotdata.list_data() if not isinstance(data, str): name = plotdata.set_data("", data, generate_name=True) else: if data not in valid_names: msg = '{} is not an existing name for plot data' raise ValueError(msg.format(data)) name = data return name
6afd6549939f19a561e932f0db297fa532fee898
241,485
def determine_trial_result(CI_lower, CI_upper, value): """ :param CI_lower: confidence interval lower bound :param CI_upper: confidence interval upper bound :param value: value to check (does the confidence interval include the value?) :return: 1 if the CI covers the value, 0 otherwise """ if value < CI_lower: return -1 elif value > CI_upper: return 1 else: return 0
536bbbeb1c9b1f1911cfd22eb3e56dc7bef3bc54
275,764
def compute_hash(func, string): """compute hash of string using given hash function""" h = func() h.update(string) return h.hexdigest()
903bad55afccaf5c186172be066250e7227b26b4
553,879
def get_field_name(data, original_key, alternative_value): """ check which column name used in the BioSamples record, if both provided column names not found, return '' :param data: one BioSamples record in JSON format retrieved from API :param original_key: field name to be checked :param alternative_value: alternative field name to be checked :return: either original key or alternative value if found in the data, if not found return '' """ # biosamples record always has characteristics section if original_key not in data['characteristics']: if alternative_value in data['characteristics']: return alternative_value else: return '' return original_key
07b9f01e5d1e0fe58a654c4ea55287a744cd291f
33,290
def get_default_replacement_func(placeholders): """ Get a default function for use by perform_placeholder_replacements() :param dict placeholders: a dict of placeholders for the replacements :returns: a function that seach the placeholder dict for a replacement :rtype: function """ return lambda m: placeholders.get(m.group(1), m.group(0))
567bbe4ad1726325d8005c0ba3409351fc0e45f5
158,310
def is_collection(obj): """ Check if a object is iterable. :return: Result of check. :rtype: bool """ return hasattr(obj, '__iter__') and not isinstance(obj, str)
70fa0262ea7bf91a202aade2a1151d467001071e
5,054
def dup_neg(f, K): """ Negate a polynomial in ``K[x]``. **Examples** >>> from sympy.polys.domains import ZZ >>> from sympy.polys.densearith import dup_neg >>> f = ZZ.map([1, 0, -1]) >>> dup_neg(f, ZZ) [-1, 0, 1] """ return [ -coeff for coeff in f ]
28c2eedd3865726ac25275a570b3354a40601b2e
500,438
def create_dict(breadcrumbs, value=None): """ Created a dict out of the breadcrumbs in a recursive manner. each entry in the breadcrumb should be a valid dictionary key. If value is None, the last string within' the breadcrumbs becomes the final value. :param breadcrumbs: :param value: :return: """ if value is not None: if not breadcrumbs: return value elif len(breadcrumbs) == 1: return breadcrumbs[0] return {breadcrumbs[0]: create_dict(breadcrumbs[1:], value)}
f2f4d2be32aa96b31703cc548edff3999bd42bd3
49,525
def binary(i, width): """ >>> binary(0, 5) [0, 0, 0, 0, 0] >>> binary(15, 4) [1, 1, 1, 1] >>> binary(14, 4) [1, 1, 1, 0] """ bs = bin(i)[2:] bs = ("0" * width + bs)[-width:] b = [int(c) for c in bs] return b
0a9ee440d14cc0fccc8b3d7c83c36582a4583749
37,280
import math def convert_unit_names(output_unit_list): """ A helper function to convert units to text representation. Parameters ---------- output_unit_list : list of float A list of the output units to parse. Returns ------- conc_unit_names : list of str A list of concentration unit names. flux_unit_names : list of str A list of flux unit names. """ conc_unit_names = [] flux_unit_names = [] for output_unit in output_unit_list: if math.isclose(output_unit, 1e-12): conc_unit = 'pmol mol$^{-1}$' flux_unit = 'pmol m$^{-2}$ s$^{-1}$' elif math.isclose(output_unit, 1e-9): conc_unit = 'nmol mol$^{-1}$' flux_unit = 'nmol m$^{-2}$ s$^{-1}$' elif math.isclose(output_unit, 1e-6): conc_unit = '$\mu$mol mol$^{-1}$' flux_unit = '$\mu$mol m$^{-2}$ s$^{-1}$' elif math.isclose(output_unit, 1e-3): conc_unit = 'mmol mol$^{-1}$' flux_unit = 'mmol m$^{-2}$ s$^{-1}$' elif math.isclose(output_unit, 1e-2): conc_unit = '%' flux_unit = '% m$^{-2}$ s$^{-1}$' elif math.isclose(output_unit, 1.): conc_unit = 'mol mol$^{-1}$' flux_unit = 'mol m$^{-2}$ s$^{-1}$' else: conc_unit = 'undefined unit' flux_unit = 'undefined unit' conc_unit_names.append(conc_unit) flux_unit_names.append(flux_unit) return conc_unit_names, flux_unit_names
8a84ed26b2341bfa161becec3ebf395cda3f5d61
480,787
def dist(v1, v2): """ distance between two vectors. """ d = ((v2.x - v1.x)**2 + (v2.y - v1.y)**2) ** 0.5 return d
d06b3fb6543a1531d71db7345912153008e7e7d1
40,990
from typing import Set def possible_types(name: str) -> Set[str]: """Build a set of all possible types from a fully qualified name.""" labels = name.split('.') label_count = len(labels) types = set() for count in range(label_count): parts = labels[label_count - count - 4 :] if not parts[0].startswith('_'): break types.add('.'.join(parts)) return types
214533e94c3eadbcdfe9f1462e4490a211894a9e
131,776
def format_tc_rate(rate): """ Formats a bits/second rate into a tc rate string """ if rate >= 1000000000 and (rate % 1000000000) == 0: return "%.0fgbit" % (rate / 1000000000.) elif rate >= 1000000 and (rate % 1000000) == 0: return "%.0fmbit" % (rate / 1000000.) elif rate >= 1000: return "%.0fkbit" % (rate / 1000.) else: return "%.0fbit" % rate
df96b0139a1303e2d8be6cbda4afa22fa1d63049
208,546
def best_match(names, i): """ Find matches starting from index i. Matches have to be at least 3 letters, otherwise it's a mess for big sets. Go with largest set of matches instead of longer matches. Return (number of matches, matching chars) """ matchlen = 3 nmatches = 1 while (i+nmatches < len(names) and names[i+nmatches][:matchlen] == names[i][:matchlen]): nmatches += 1 while matchlen < 8 and all([names[i+j][:matchlen+1] == names[i][:matchlen+1] for j in range(1,nmatches)]): matchlen += 1 return nmatches, names[i][:matchlen]
150ac3b1169714af16b7930662ca0f3498b0cb2b
354,924
from typing import Optional from typing import Iterable from typing import Any def iterable_to_fields(fields: Optional[Iterable[Any]]) -> str: """Convert iterable to query fields string""" fields = f"{', '.join(i for i in fields)}" if fields else "*" return fields
d11f3f984059033523fafbb781c1400b7b04f462
353,832
def _find_provider(hass, prov_type): """Return provider for type.""" for provider in hass.auth.auth_providers: if provider.type == prov_type: return provider return None
e8cfa630f961f330785064c9b8e0d51d2231ef35
692,885
from pathlib import Path def get_project_root() -> Path: """Return the path to project (i.e. the top level dat_analysis folder which contains src etc""" return Path(__file__).parent.parent.parent
546015b3555ff7ace6109e064dd94ae7db9491de
32,980
def get_best_rssi_per_location(sensors): """Find the strongest signal in each location.""" best_rssi = {} for sensor in sensors.values(): location = sensor["location"] rssi = sensor["rssi"] if rssi and (location not in best_rssi or rssi > best_rssi[location]): best_rssi[location] = rssi return best_rssi
0d4a51efe0468251aa47b0cd551c35c88e7f62b0
93,632
import random def populate(num_rats, min_wt, max_wt, mode_wt): """Initialize a population with a triangular distribution of weights.""" return [int(random.triangular(min_wt, max_wt, mode_wt))\ for i in range(num_rats)]
e69809b25ea63fba0487794e6d0f4982897461c2
672,421
def get_manga_target(flag_id, bitmasks, header): """Get MANGA_TARGET[``flag_id``] flag. Parameters: flag_id (str): Flag ID number (e.g., "1" for MANGA_TARGET1). bitmasks (dict): `Maskbit` objects. header (`astropy.io.fits.header.Header`): File header. Returns: `Maskbit` """ flag_id = str(int(flag_id)) manga_target = bitmasks['MANGA_TARGET{}'.format(flag_id)] try: manga_target.mask = int(header['MNGTRG{}'.format(flag_id)]) except KeyError: manga_target.mask = int(header['MNGTARG{}'.format(flag_id)]) return manga_target
cbf678fed5000367bc3536bdd1d36ffe94ab1331
217,639
def parse_datafile(path, data_names, transform_funcs, cols_to_parse=[]): """Parses a data file given by path and structured as a table where rows are separated by \n and columns are separated by any of whitespaces. The first line in the file will be ignored. Processed columns are given by cols_to_parse (all columns will be processed if it is empty). Corresponding names and transformation functions for columns in cols_to_parse are given by data_names and transform_funcs. Transformation function must be a mapping string -> type. Returns a dictionary where a key corresponds to a column name (i.e., taken from data_names) and a value corresponds to a list of the columns values taken from all rows. """ if cols_to_parse == []: cols_to_parse = range(len(data_names)) if len(data_names) != len(transform_funcs) or len(data_names) != len(cols_to_parse): raise Exception('Number of data names, transform functions and columns to be parsed is inconsistent') data = {} for data_name in data_names: data[data_name] = [] f = open(path, 'r') # if not found, expection will be raised anyway lines = f.readlines() for line in lines[1:]: # skip the first line tmp = line.split() if len(tmp) < len(data_names): raise Exception('Number of given data names is larger than number of columns we have in the data file.') for i, data_name in enumerate(data_names): val = tmp[cols_to_parse[i]] data[data_name].append(transform_funcs[i](val)) return data
ad89308c50a293f8347c89fba19a7e19c9ce4008
536,174
import importlib def import_(module_name, name): """Imports an object by a relative module path:: Profiler = import_('profiling.profiler', 'Profiler') """ module = importlib.import_module(module_name, __package__) return getattr(module, name)
26346e3d51fc2683fd3d1680ad1a89bd3713fdc6
430,940
def momentum_update(update, learning_rate, mu, momentum, use_nesterov): """Computes a momentum update for a single parameter.""" momentum = (mu * momentum) + update if use_nesterov: update = learning_rate * ((mu * momentum) + update) else: update = learning_rate * momentum return update, momentum
ce73d3a04616647daccd6646e32667d75b7a0195
553,076
def _capability(interface, version=3, supports_deactivation=None, cap_type='AlexaInterface'): """Return a Smart Home API capability object. https://developer.amazon.com/docs/device-apis/alexa-discovery.html#capability-object There are some additional fields allowed but not implemented here since we've no use case for them yet: - properties.supported - proactively_reported - retrievable `supports_deactivation` applies only to scenes. """ result = { 'type': cap_type, 'interface': interface, 'version': version, } if supports_deactivation is not None: result['supportsDeactivation'] = supports_deactivation return result
b12abc29c9fa1dd5bb7e8795be6dd6de8c865f40
664,814
def _find_subcommand(args): """Return the subcommand that has been passed, if any. Parameters ---------- args : list The argument list. Returns ------- Optional[:class:`str`] If a subcommand is found, returns the string of its name. Returns None otherwise. Notes ----- This assumes that "manim" is the first word in the argument list, and that the subcommand will be the second word, if it exists. """ subcmd = args[1] if subcmd in [ "cfg" # , 'init', ]: return subcmd else: return None
2921dbb86b73a28ef51fb7a74638a86da47a6fed
519,327
import re def get_all_sections_of_type(rose_conf, pat): """ Extract all the sections matching a given regex pattern rose_conf : original rose configuration pat : regex pattern """ res = '' for section in rose_conf.sections(): m = re.match(pat, section) if m: res += ',' + m.group(1) return res[1:].split(',')
d9951120e662b71cb566bcdaf40faae67f4f7b53
471,017
def urlify(input_string): """Urlify a string.""" return input_string.replace(' ', '%20')
f69b0f97c4a67370eaccdad4730fd5335410598f
286,056
import re def natural_sort_key(sort_key, _nsre=re.compile('([0-9]+)')): """ Pass to ``key`` for ``str.sort`` to achieve natural sorting. For example, ``["2", "11", "1"]`` will be sorted to ``["1", "2", "11"]`` instead of ``["1", "11", "2"]`` :param sort_key: Original key to be processed :return: A list of string and integers. """ keys = [] for text in _nsre.split(sort_key): if text.isdigit(): keys.append(int(text)) else: keys.append(text) return keys
69a2a18701fdcf72041cdac9037c19b3f2561c6c
657,965
def changeTwoStar(G, A, i): """ Change statistic for two-star *--o \ o """ return (G.degree(i) * (G.degree(i) - 1))/2.0 if G.degree(i) > 1 else 0
912a862f93c8331bb128c74de2c92ce6688e34eb
170,642
import re def get_ns_dict(xml): """Take an xml string and return a dict of namespace prefixes to namespaces mapping.""" nss = {} def_cnt = 0 matches = re.findall(r'\s+xmlns:?(\w*?)\s*=\s*[\'"](.*?)[\'"]', xml) for match in matches: prefix = match[0]; ns = match[1] if prefix == '': def_cnt += 1 prefix = '_' * def_cnt nss[prefix] = ns return nss
065b67ac38fb52057c2f79377991c1d4ec53be77
403,888
import socket def ip_check(serverip): """ Taken from EARCIS code. Check if the server IP passed in is a valid IPv4/v6 address, if not, return False; otherwise, return True. Input: (serverip) % (str) Output: Boolean """ try: socket.inet_aton(serverip) #Would fail if it is not a valid IPv4 address. except socket.error: try: socket.inet_pton(socket.AF_INET6, serverip) #Would fail if it is not a valid IPv6 address. except socket.error: return False return True
202c6d7167d3dafafc922743ee3fe56fa14d5bb3
478,843
import re def resolve_cpus(name, target): """ Returns a list of cpu numbers that corresponds to a passed name. Allowed formats are: - 'big' - 'little' - '<core_name> e.g. 'A15' - 'cpuX' - 'all' - returns all cpus - '' - Empty name will also return all cpus """ cpu_list = list(range(target.number_of_cpus)) # Support for passing cpu no directly if isinstance(name, int): cpu = name if cpu not in cpu_list: message = 'CPU{} is not available, must be in {}' raise ValueError(message.format(cpu, cpu_list)) return [cpu] # Apply to all cpus if not name or name.lower() == 'all': return cpu_list # Deal with big.little substitution elif name.lower() == 'big': name = target.big_core if not name: raise ValueError('big core name could not be retrieved') elif name.lower() == 'little': name = target.little_core if not name: raise ValueError('little core name could not be retrieved') # Return all cores with specified name if name in target.core_names: return target.core_cpus(name) # Check if core number has been supplied. else: core_no = re.match('cpu([0-9]+)', name, re.IGNORECASE) if core_no: cpu = int(core_no.group(1)) if cpu not in cpu_list: message = 'CPU{} is not available, must be in {}' raise ValueError(message.format(cpu, cpu_list)) return [cpu] else: msg = 'Unexpected core name "{}"' raise ValueError(msg.format(name))
b4ababdbe1f89daa719909d0c202bba3bd6109d3
564,524
import torch def flatten(params): """ Turns a module's parameters (or gradients) into a flat numpy array params: the module's parameters (or gradients) """ with torch.no_grad(): return torch.cat([p.data.view(-1) for p in params])
1e278028f1878aa1cadc730fe03007cb6062f4c3
624,359
import math def area(r): """ Function calculating area of circle of radius r """ return math.pi*r**2
14a1d36cad6789662d053b3d71a1ec8993ca225d
330,813
def dynamic_range_compression(db, threshold, ratio, method='downward'): """ Execute dynamic range compression(https://en.wikipedia.org/wiki/Dynamic_range_compression) to dB. :param db: Decibel-scaled magnitudes :param threshold: Threshold dB :param ratio: Compression ratio. :param method: Downward or upward. :return: Range compressed dB-scaled magnitudes """ if method is 'downward': db[db > threshold] = (db[db > threshold] - threshold) / ratio + threshold elif method is 'upward': db[db < threshold] = threshold - ((threshold - db[db < threshold]) / ratio) return db
1c5434a4bda28959bfa4b71a594e2cf6fbd71b79
670,801
def __splitTime(sec): """Splits a timestamp into hour, minute, and second components. :type sec: int :param sec: timestamp as an epoch :rtype: tuple :return: (hour, min, sec) """ minute, sec = divmod(sec, 60) hour, minute = divmod(minute, 60) return hour, minute, sec
cc2c80f1c5e9df8c0f4b374bfe31cc2132767cc0
571,299
import torch def gram_matrix(input_tensor): """ Compute Gram matrix :param input_tensor: input tensor with shape (batch_size, nbr_channels, height, width) :return: Gram matrix of y """ (b, ch, h, w) = input_tensor.size() features = input_tensor.view(b, ch, w * h) features_t = features.transpose(1, 2) # more efficient and formal way to avoid underflow for mixed precision training input = torch.zeros(b, ch, ch).type(features.type()) gram = torch.baddbmm( input, features, features_t, beta=0, alpha=1.0 / (ch * h * w), out=None ) # naive way to avoid underflow for mixed precision training # features = features / (ch * h) # gram = features.bmm(features_t) / w # for fp32 training, it is also safe to use the following: # gram = features.bmm(features_t) / (ch * h * w) return gram
f79e037d7b827d6d8a1da53c7773d9b74f393732
452,377
def _EraseTombstone(device, tombstone_file): """Deletes a tombstone from the device. Args: device: An instance of DeviceUtils. tombstone_file: the tombstone to delete. """ return device.RunShellCommand( 'rm /data/tombstones/' + tombstone_file, root=True)
00e6f316062785d7465f501ea743a2dc94864aef
9,419
def dec(x): """Decrements its argument""" return x - 1
a7c5b7275d2837ccfdaf0f9c1197ad15d9dedf73
383,015
def make_url(action: str, team: str = 'authenticate') -> str: """ Make an url based on team and action :param team: Name of team :param action: An Teamwork action :return: An url based on url and action """ url = f'https://{team}.teamwork.com/{action}.json' return url
96e0e965bf1f3886204bff38a448452ac1aab2eb
171,782
def distinct_series(df, keep="first"): """Verb: select distinct values from Series Parameters ----------- keep : which instance to keep in case of duplicates (see :meth:`pandas.Series.duplicated`) """ duplicated = df.duplicated(keep) return df[~duplicated]
174c7eee3315d8b6e91704633351b3e124a4b273
567,193
def basename(name): """ Generate the basename from a ros name. Args: name (:obj:`str`): ros name Returns: :obj:`str`: name stripped up until the last slash or tilde character. Examples: .. code-block:: python basename("~dude") # 'dude' basename("/gang/dude") # 'dude' """ return name.rsplit('/', 1)[-1].rsplit('~', 1)[-1]
5738713b8c46f6b792d86ddde44c56ac44c1f230
458,853
def validate_fields(fields, about_file_path, running_inventory, base_dir, reference_dir=None): """ Validate a sequence of Field objects. Return a list of errors. Validation may update the Field objects as needed as a side effect. """ errors = [] for f in fields: val_err = f.validate( base_dir=base_dir, about_file_path=about_file_path, running_inventory=running_inventory, reference_dir=reference_dir, ) errors.extend(val_err) return errors
3be183856a6c736d240ef9ea68126d4afa166846
131,497
def bonds2str(bonds): """ Convert list of bonds into TopoCIF string. """ bs = [] for b in bonds: bs.append(" ".join( [f"{x:<5}" for x in b[:3]] + [f"{1:>3}"] + \ ["{:>2} {:>2} {:>2}".format(*b[3])] + [f"{1:>3}"] + \ ["{:>2} {:>2} {:>2}".format(*b[4])] + [f"{'V':>2}{1:>2}"] )) return "\n".join(bs)
1b2a9644ed3ff67ba78f2744d73c7b63460aebef
468,016
import collections def duplicate_indices(iterable): """Make an iterator that returns duplicate items from the ``seq`` along with the the indices of that item. :: >>> seq = ['a', 'b', 'c', 'b', 'd'] >>> dups = duplicate_indices(seq) >>> next(dups) ('b', [1, 3]) """ tally = collections.defaultdict(list) for i, item in enumerate(iterable): tally[item].append(i) dups = ((item, idxs) for item, idxs in tally.items() if len(idxs) > 1) return dups
6b3b693a6f38e13b6015aea3376223338d47edd2
396,035
import unicodedata import re def friendly_filename_or_url(value: str) -> str: """ Normalize any string to be file name and URL friendly. Convert to lowercase, remove non-alpha characters, and convert spaces to hyphens. """ # Taken from: # https://stackoverflow.com/questions/295135/turn-a-string-into-a-valid-filename/295466#295466 value = str(unicodedata.normalize('NFKD', value).encode('ascii', 'ignore')) value = str(re.sub('[^\w\s-]', '', value).strip().lower()) value = str(re.sub('[-\s]+', '-', value)) return value
8245946e0aa82bba36b89791ae145e9e0c778c89
255,721
def icontains(header_value: str, rule_value: str) -> bool: """ Case insensitive implementation of str-in-str lookup. Parameters ---------- header_value : str String to look within. rule_value : str String to look for. Returns ------- bool Whether *rule* exists in *value* """ return rule_value.lower() in header_value.lower()
00f56eea5d63f1f31fc2eeee1b0bd54fed6b6a56
363,918
def hot_to_smile(onehot_encoded, alphabet): """ Go from one-hot encoding to smile string """ # From one-hot to integer encoding integer_encoded = onehot_encoded.argmax(1) # print('integer_encoded ', integer_encoded) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) # print('DECODING: ', int_to_char) # integer encoding to smile regen_smile = "".join(int_to_char[x] for x in integer_encoded) regen_smile = regen_smile.strip() return regen_smile
7cb360754fa80b63428f4bb360237ab2efa0ace5
525,825
def Weight_In_Pounds(Weight): """Format Weight into Pounds String""" if Weight < 0 : raise ValueError("Number Cannot Be Negative") Weight_Display = f"{Weight} lbs" return Weight_Display
94d519f0f21bd607b7ee07d374db3e81bf553396
371,842
def nextmonth(yr, mo): """get next month from yr/mo pair""" return (yr+mo / 12, mo % 12+1)
149b203b7988980e1ab3f9ca02b3817874437a64
116,097
from typing import List def get_canonical_label(num_list: List[dict], denom_list: List[dict], lang: str = "en") -> str: """Use the processed numerators and denominators from a unit input to create a label.""" if not denom_list: # No denominators return " ".join([n[f"label_{lang}"] for n in num_list]) elif not num_list: # No numerators result = ["reciprocal"] result.extend([d[f"label_{lang}"] for d in denom_list]) return " ".join(result) # Mix of numerators and denominators result = [] result.extend([n[f"label_{lang}"] for n in num_list]) result.append("per") result.extend([d[f"label_{lang}"] for d in denom_list]) return " ".join(result)
2b7e37d92ad9ae51f0857473a764d8d69ddf57fd
537,477
def differences_product(diff): """Product of count of differences 1 and 3.""" return diff.count(1) * diff.count(3)
3bd6c2f809a082e87a5523e30137f9161da7ace1
132,785
def get_coord_mapping_for_ref(aln): """ :param aln: sequence alignnment for the reference :return: dict of (0-based aln pos, 0-based ref pos) and dict of (0-based ref pos, 0-based aln pos) """ aln_i = 0 ref_i = 0 map_aln_to_ref = {} map_ref_to_aln = {} for i,s in enumerate(aln): if s != '-': map_ref_to_aln[ref_i] = aln_i map_aln_to_ref[aln_i] = ('M', ref_i) ref_i += 1 else: # insertion w.r.t reference map_aln_to_ref[aln_i] = ('I', ref_i) aln_i += 1 return map_aln_to_ref, map_ref_to_aln
ab25555a6386ea5bb662b954f63363292b0299b6
165,304
import re def filter_paragraphs(paragraphs, contains=None): """Filter paragraphs to only those containing one of a list of strings Parameters ---------- paragraphs : list of str List of plaintext paragraphs from an article contains : str or list of str Exclude paragraphs not containing this string as a token, or at least one of the strings in contains if it is a list Returns ------- str Plaintext consisting of all input paragraphs containing at least one of the supplied tokens. """ if contains is None: pattern = '' else: if isinstance(contains, str): contains = [contains] pattern = '|'.join(r'[^\w]%s[^\w]' % shortform for shortform in contains) paragraphs = [p for p in paragraphs if re.search(pattern, p)] return '\n'.join(paragraphs) + '\n'
be80e7e56b487fa4badad19eea10eb7159a5fa60
171,949
def zip_tasks_verbose_output(table, stdstreams): """Zip a list of strings (table) with a list of lists (stdstreams) :param table: a formatted list of tasks :param stdstreams: for each task, a list of lines from stdout/stderr tail """ if len(table) != len(stdstreams): raise ValueError('Can only zip same-length lists') output = [] for i in range(len(table)): output.append(table[i]) output.extend([line for line in stdstreams[i]]) return output
33d74cd274ec39330cbc127a3088a430b80d234a
701,523
def calculate_route_cost(route_locations, route, jobs, cost_matrix): """ Calculates cost of each route. :param route_locations: Job locations indexes in route. :param route: Job ids in route. :param jobs: Jobs information, which includes job ids, location indexes and delivery. :param cost_matrix: Array of location to location travel cost. :return: Route cost including traveling cost and service cost """ route_cost = 0 for node in range(len(route_locations) - 1): traveling_cost = cost_matrix[route_locations[node]][route_locations[node + 1]] service_cost = jobs[route[node]][2] route_cost = route_cost + traveling_cost + service_cost return route_cost
683961e28cfe7cdd662a5e0dca877495280559ce
173,353
def formatted_time(t, sep=' '): """Return a number of seconds as a string in days, hours, mins and maybe secs.""" t = int(t) fmts = (('{:d}d', 86400), ('{:02d}h', 3600), ('{:02d}m', 60)) parts = [] for fmt, n in fmts: val = t // n if parts or val: parts.append(fmt.format(val)) t %= n if len(parts) < 3: parts.append(f'{t:02d}s') return sep.join(parts)
29d15c88289a8c23a3d1a6f4b95d6aaee253b655
304,428
def read_split_file(split_file): """ Read text file with pre-defined split, returning list of examples. One example per row in text file. """ with open(split_file) as f: # file may contain integer indices or string identifiers (e.g. PDB # codes) lines = f.readlines() try: split = [int(x.strip()) for x in lines] except ValueError: split = [x.strip() for x in lines] return split
2430bbee9a80688749fea6ddd10b718eff7bcd0e
85,277
import socket def get_node_ep(hostname, remote_addr): """ Return the endpoint to be used for the node based by trying to resolve the hostname provided :param hostname: the provided hostname :param remote_addr: the address the request came from :returns: the node's location """ try: socket.gethostbyname(hostname) return hostname except socket.gaierror: return remote_addr
2c452149bbea8375abe09ac38096b3bb4e8342b2
169,103
def facet_processing(facets): """ Convert PySolr facet return to regular dictionary form """ facet_fields_dict = {} for facet_field, facet_data in facets.items(): facet_pairs = zip(facet_data[::2], facet_data[1::2]) facet_dict = {} for key, value in facet_pairs: facet_dict[key] = value facet_fields_dict[facet_field] = facet_dict return facet_fields_dict
b4ecb556dc377ab1ac97fb516f3d00b47fb1f7ba
444,247
import torch import math def pure_tone(freq: float, sr: float = 128, dur: float = 4, device=None): """ Return a pure tone, i.e. cosine. Args: freq (float): frequency (in Hz) sr (float): sample rate (in Hz) dur (float): duration (in seconds) """ time = torch.arange(int(sr * dur), device=device).float() / sr return torch.cos(2 * math.pi * freq * time)
9995fe5252096eb2a15658a6678c6cbd209972d1
217,517
def normcase(s): """Normalize case of pathname. Makes all characters lowercase and all altseps into seps.""" return s.replace('\\', '/').lower()
d8c0b9c0e178fee092444f40d53e070138294169
302,962
import collections def __label_units(units_dict, unit_id_dict): """Remaps the keys of dictionary to their label in another dictionary Args: units_dict (dict): Dictionary of unit_ids to steps_when_seen. unit_id_dict (dict): Dictionary of unit_ids to unit_labels. Returns: Dictionary: { unit_id : step_when_seen } <int> : <int> Example: With a dictionary of {... 43 : "Viking" ... } we would remap a units_dict of: { ... 43 : 800 ... } to { ... "Viking" : 800 ... } """ labeled_units_seen_dict = collections.OrderedDict() for unit_id, step in units_dict.items(): label = unit_id_dict[int(unit_id)] labeled_units_seen_dict[label] = step return labeled_units_seen_dict
998a8eddaeba0e60252832940a100fe144177f02
244,458
def noop_parser(_name, _entity_type, _node): """Macro and component parser that does nothing and returns an empty dict. Used as default parsers for Macro. """ return {}
ac1283b5864dd961d452a11cd2b8c8f9baee272d
526,992
import re def get_space_normalized_segment(segment): """Remove leading/trailing as well as multiple spaces from a string. :param str segment: a segment (sentence) :return: a string with no leading/trailing spaces and only containing single whitespaces :rtype: str """ return re.sub(r'\s{2,}', ' ', segment).strip()
5f1c04f28e5fda8fc501f979652846aacbb33cd8
650,305
import torch def no_length_penalty(lengths): """A dummy function that returns a no penalty (1).""" return torch.ones_like(lengths).to(torch.float).unsqueeze(-1)
d4aa6dbabdb06feaf10f5567950273b7d6d12700
276,543
import math def get_mux_dimensions(I, max_height): """Finds the row and column count for the given mux. Parameters ---------- I : int Input count. max_height : int Maximum height in gate pitches. Returns ------- Tuple[int] Row and column count. """ col_cnt = int(min(max_height / 2.0, math.ceil(I ** 0.5))) row_cnt = int(math.ceil(I / float(col_cnt))) return row_cnt, col_cnt
83075d72344d914d5e02566c4bdc270477c17e51
253,082
def fahrenheit_to_kelvin(temperature): """Convert from Fahrenheit to Kelvin :param temperature: degree understood to be in Fahrenheit NOTE: Fahrenheit to Kelvin formula: K = 5/9(°F - 32) + 273.15 Subtract by 32, multiply by 5/9, then add 273.15. """ return (5.0 / 9.0) * (temperature - 32) + 273.15
85c9f76f2738a9c59d4785cd3c084f91dc6c4045
460,780
def _ReviewersFromChange(change): """Return the reviewers specified in the |change|, if any.""" reviewers = set() reviewers.update(change.ReviewersFromDescription()) reviewers.update(change.TBRsFromDescription()) # Drop reviewers that aren't specified in email address format. return set(reviewer for reviewer in reviewers if '@' in reviewer)
df35481850c25024dac205922291d1f257609dd7
470,121
import operator def add_globals(env): """ Adds built-in procedures and variables to env. """ env.update({ '+': operator.add, '-': operator.sub, '*': operator.mul, '/': operator.truediv, '>': operator.gt, '<': operator.lt, '>=': operator.ge, '<=': operator.le, '=': operator.eq }) env.update({'True': True, 'False': False}) return env
cb5653dd447e8d4992addaec616d1e5f7870b462
188,615
from typing import Sequence from typing import Tuple from typing import List from typing import Dict import csv def parse(raw: Sequence[str]) -> Tuple[List[str], List[List[str]], List[List[float]], Dict[str, int]]: """Returns a tuple of (hdrs, data, timeseries, column idx map)""" data = list(csv.reader(raw)) print(len(data)) print(len(data[0])) # check that it's actually a matrix print(set(len(r) for r in data)) hdrs, data = data[0], data[1:] ts = [[float(x) for x in r[12:]] for r in data] col = {l: i for i, l in enumerate(hdrs)} return hdrs, data, ts, col
b420ca46d86670dc9f97fac35166ffa5c98fa1ab
83,440
def gather_file_lines(filename): """Read all file lines into a list in memory""" with open(filename, 'r') as mdf: return mdf.readlines()
4e1fcf629746fd70c0cf57daeb31344c95fdb8a0
579,496
def merge_dicts(inputs): """ Merge multiple input dicts into a single dict. Parameters ---------- inputs : list List of dictionaries. """ output = {} for i in inputs: output.update(i) return output
77bd9906136bce7ff7b18f62f43ca4b8cba685a8
363,882
def annualize_ret(returns, periods): """ Annualizes a set of returns """ cum_ret = (1 + returns).prod() n_periods = returns.shape[0] return cum_ret ** (periods / n_periods) - 1
cca4d8f28b26a63b53cc0235fcba7b43f0c8a69d
195,589
import math def secondsToPhraseTime(seconds): """ Converts seconds to a phrase time (ex: 65 = 1 minute 5 seconds). """ ONE_DAY = 60 * 60 * 24 ONE_HOUR = 60 * 60 ONE_MINUTE = 60 ONE_YEAR = 60 * 60 * 24 * 365 remaining_seconds = seconds result_string = '' if remaining_seconds > ONE_YEAR: years = remaining_seconds / ONE_YEAR years = math.floor(years) remaining_seconds = remaining_seconds - years * ONE_YEAR result_string += '1 year ' if 1 == years else str(int(years)) + ' years ' if ONE_DAY < remaining_seconds: days = remaining_seconds / ONE_DAY days = math.floor(days) remaining_seconds = remaining_seconds - days * ONE_DAY result_string += '1 day ' if 1 == days else str(int(days)) + ' days ' if ONE_HOUR < remaining_seconds: hours = remaining_seconds / ONE_HOUR hours = math.floor(hours) remaining_seconds = remaining_seconds - hours * ONE_HOUR result_string += '1 hour ' if 1 == hours else str(int(hours)) + ' hours ' if ONE_MINUTE < remaining_seconds: minutes = remaining_seconds / ONE_MINUTE minutes = math.floor(minutes) remaining_seconds = remaining_seconds - minutes * ONE_MINUTE result_string += '1 minute ' if 1 == minutes else str(int(minutes)) + ' minutes ' result_string += '1 second ' if 1 == remaining_seconds else str(int(remaining_seconds)) + ' seconds ' return str(result_string)
728eb5e377e4bf202d84231b1937921c9184fb31
178,983
def dictAsKvParray(data, keyName, valueName): """ Transforms the contents of a dictionary into a list of key-value tuples. For the key-value tuples chosen names for the keys and the values will be used. :param data: The dictionary from which the date should be obtained. \t :type data: Dict<mixed, mixed> \n :param keyName: The name assigned to the key of the tuples. \t :type keyName: string \n :param valueName: The name assigned to the value of the tuples \t :type valueName: string \n :returns: A list of key-value tuples with the chosen names for the keys and values. \t :rtype: [{keyName: mixed, valueName: mixed}] \n """ res = [] for key in data.keys(): res.append({keyName: key, valueName: data[key]}) return res
00aad99776eec512be1e510b9c783e4118b31cd9
70,364
def get_split_indices(word, curr_tokens, include_joiner_token, joiner): """Gets indices for valid substrings of word, for iterations > 0. For iterations > 0, rather than considering every possible substring, we only want to consider starting points corresponding to the start of wordpieces in the current vocabulary. Args: word: string we want to split into substrings curr_tokens: string to int dict of tokens in vocab (from previous iteration) include_joiner_token: bool whether to include joiner token joiner: string used to indicate suffixes Returns: list of ints containing valid starting indices for word """ indices = [] start = 0 while start < len(word): end = len(word) while end > start: subtoken = word[start:end] # Subtoken includes the joiner token. if include_joiner_token and start > 0: subtoken = joiner + subtoken # If subtoken is part of vocab, "end" is a valid start index. if subtoken in curr_tokens: indices.append(end) break end -= 1 if end == start: return None start = end return indices
203543d4b46942a4aa6dc80918f27cadd0a6b05c
450,088
def existing_query(query): """ Returns: Query: With a single "True" view (maps all rows) called "one". """ query.data = { 'views': { 'one': { 'map': 'function(doc, meta){emit(1, doc);}', }, }, } query.create_update() return query
0843310c59ae4f45679d9f42a8005f87fbb4ac5c
366,063
import re def _parse_s3_uri(s3_uri): """Parse an Amazon S3 URI into bucket and key entities Parameters ---------- s3_uri : str The Amazon S3 URI Returns ------- dict dict with keys "bucket" and "key" """ # Parse s3_uri into bucket and key pattern = r"(s3:\/\/)?(?P<bucket>[^\/]*)\/(?P<key>.*)" m = re.match(pattern, s3_uri) if m is None: raise ValueError( f"s3_uri is not a valid URI. It should match the regex " f"pattern {pattern}. You provided {s3_uri}." ) else: return m.groupdict()
4f2e90a8b39ce38112e284a02564e743ecdd7a41
306,787
def prf(correct, pred_sum, gold_sum): """ Calculate precision, recall and f1 score Parameters ---------- correct : int number of correct predictions pred_sum : int number of predictions gold_sum : int number of gold answers Returns ------- tuple (p, r, f) """ if pred_sum: p = correct / pred_sum else: p = 0 if gold_sum: r = correct / gold_sum else: r = 0 if p + r: f = 2 * p * r / (p + r) else: f = 0 return p, r, f
403e5149bca0740f879616367e555ac75cc95801
488,462