content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def replace_right(source, target, replacement, replacements=None): """ String replace rightmost instance of a string. Args: source (string): the source to perform the replacement on target (string): the string to search for replacement (string): the replacement string replacements (int or None): if an integer, only replaces N occurrences otherwise only one occurrence is replaced """ return replacement.join(source.rsplit(target, replacements))
636fc9068329f6b6734a2fe1a360adf2285a47fa
443,957
def is_empty_or_html(line): """Return True for HTML line and empty (or whitespace only) line. line -- string The Rfam adaptor that retrieves records inlcudes two HTML tags in the record. These lines need to be ignored in addition to empty lines. """ if line.startswith('<pre') or line.startswith('</pre'): return True return (not line) or line.isspace()
07fd597f43f158e03ac00065640de848f2540253
554,075
from typing import Dict def is_balanced(color: Dict) -> bool: """takes a dictionary whose keys are 'R', 'G', and 'B' and whose values are between 0 and 1 as input and returns True if they add up to 1.0 >>> is_balanced({'R': 0.2, 'G': 0.6, 'B': 0.2}) True >>> is_balanced({'R': 0.6, 'G': 0.6, 'B': 0.2}) False >>> is_balanced({'R': 0.1, 'G': 0.6, 'B': 0.3}) True """ values = list(color.values()) sum = 0.0 for value in values: sum += value if sum == 1.0: return True else: return False
350a28a27b37921966af485833a7be46622d2952
204,273
def edgepoints_from_network(network, attribute=False): """ Obtains a list of projected points which are midpoints of edges Parameters: network: a network with/without attributes attribute: boolean if true, one of return values includes attributes for each edge Returns: id2linkpoints: a dictionary that associates a sequential id to a projected, midpoint of each edge id2attr: a dictionary that associates a sequential id to the attributes of each edge link2id: a dictionary that associates each edge to its id """ link2id, id2linkpoints, id2attr = {}, {}, {} counter = 0 for n1 in network: for n2 in network[n1]: if (n1,n2) not in link2id or (n2,n1) not in link2id: link2id[(n1,n2)] = counter link2id[(n2,n1)] = counter if type(network[n1][n2]) != list: half_dist = network[n1][n2]/2 else: half_dist = network[n1][n2][0]/2 if n1[0] < n2[0] or (n1[0] == n2[0] and n1[1] < n2[1]): id2linkpoints[counter] = (n1,n2,half_dist,half_dist) else: id2linkpoints[counter] = (n2,n1,half_dist,half_dist) if attribute: id2attr[counter] = network[n1][n2][1:] counter += 1 return id2linkpoints, id2attr, link2id
2a5a40c43b803ed75d48800423123fb7a52ffa60
144,843
import torch def mse_loss(x, x_hat): """ Returns the MSE between an image and its reconstruction INPUT: x: Tensor (B, C, H, W) -> source image x_hat: Tensor (B, C, H, W) -> reconstruction OUTPUT: mse_loss_sum: Tensor (B, 1) -> sum of the MSE for each image pair """ mse_loss = torch.nn.MSELoss(reduction='none') recons_error = mse_loss(x, x_hat) mse_loss_sum = torch.sum(recons_error, dim=(1, 2, 3)) return mse_loss_sum
4eec22e6ae42595ab31dc73a78a73af24bdb6acc
402,898
def calcSurroundingIdxs(idxs, before, after, idxLimit=None): """ Returns (idxs - before), (idxs + after), where elements of idxs that result in values < 0 or > idxLimit are removed; basically, this is useful for extracting ranges around certain indices (say, matches for a substring) that are contained fully in an array. >>> idxs = [1, 3, 4] >>> calcSurroundingIdxs(idxs, 0, 0) ([1, 3, 4], [1, 3, 4]) >>> calcSurroundingIdxs(idxs, 1, 0) ([0, 2, 3], [1, 3, 4]) >>> calcSurroundingIdxs(idxs, 1, 1) ([0, 2, 3], [2, 4, 5]) >>> calcSurroundingIdxs(idxs, 1, 1, 4) ([0, 2], [2, 4]) """ if idxLimit is None: idxs = [idx for idx in idxs if (idx - before >= 0)] else: idxs = [idx for idx in idxs if (idx - before >= 0) and (idx + after <= idxLimit)] beforeIdxs = [x - before for x in idxs] afterIdxs = [x + after for x in idxs] return beforeIdxs, afterIdxs
72b064dd8f79762e18d1dd2a9d1ab84628a4e1a8
650,130
def parse(renpy_nodes, renpy_Define, py_eval_bytecode, renpy_ADVCharacter): """ Retrieves all declared characters in renpy_nodes :param renpy_nodes: all nodes from renpy game (renpy.game.script.namemap) :param renpy_Define: the renpy Define class (renpy.ast.Define) :param py_eval_bytecode: the renpy py_eval_bytecode (renpy.python.py_eval_bytecode) :param renpy_ADVCharacter: the renpy ADVCharacter class (renpy.character.ADVCharacter) :returns: a dict with all characters """ res = {} for _key, value in renpy_nodes.iteritems(): # get all Define statements if isinstance(value, renpy_Define): char = py_eval_bytecode(value.code.bytecode) # only if it's defining an ADVCharacter if ( value.store == "store" and isinstance(char, renpy_ADVCharacter) and value.varname != "_narrator" and value.varname != "centered" and value.varname != "vcentered"): color = char.who_args["color"] if "color" in char.who_args else None res[value.varname] = { "name": char.name, "color": color } return res
2c97e91ee37f33310811890e85c481fa82f78539
270,200
def get_reference_keys(xml_node): """reference an xml_node in the catalog: ``catalog[section][line]``""" section = xml_node.tag.split("}")[-1] line = "Line %d" % xml_node.sourceline return section, line
766e875a068c344093d9ecf11d08da28c7b497b6
64,906
def equals(version:str, releases:dict) -> list: """ Get a specific release Parameters ---------- version : str desired version releases : dict dictionary of all releases in one package Returns ------- list desired release content """ vx = version.replace("==", "").replace("(", '').replace(")", '').replace(" ", '') r = [] try: remote = releases[f'{vx}'] for i in remote: r.append(i) r.append(vx) except KeyError: return ["Error"] return r
2617995aa6b669140dbf18d9b2b0b52a2d176308
15,162
from pathlib import Path def golden_snippet(filename: str) -> str: """Load the golden snippet with the name provided""" snippet_path = Path(__file__).parent / "golden_snippets" / filename return snippet_path.read_text()
f700e5928b48a881db299a139d5a1f616dcc65d6
358,608
def get_bind_addr(conf, default_port=None): """Return the host and port to bind to.""" return (conf.bind_host, conf.bind_port or default_port)
e7791a9eafd0b2386f92755a8a8d3dddd70d52ce
681,854
def parse_command(command): """ Parses a command string into a list of arguments. """ args = [] arg = "" in_quote = False for char in command: if char == '"': if in_quote: args.append(arg) arg = "" in_quote = False else: in_quote = True elif char == " " and not in_quote: args.append(arg) arg = "" else: arg += char if arg: args.append(arg) return args
8a01040c6816793b9fda8731d481ae22161df017
293,917
import six def _check_input(idadf, target, features, ignore_indexer=True): """ Check if the input is valid, i.e. if each column in target and features exists in idadf. Parameters ---------- target: str or list of str A column or list of columns to be used as target features: str or list of str A column or list of columns to be used as feature ignore_indexer: bool, default: True If True, remove the indexer from the features set, as long as an indexer is defined in idadf """ #import pdb ; pdb.set_trace() if target is not None: if isinstance(target, six.string_types): if target not in idadf.columns: raise ValueError("Unknown target column %s"%target) target = [target] else: if hasattr(target, '__iter__'): target = list(target) for x in target: if x not in idadf.columns: raise ValueError("Unknown target column %s"%x) if features is not None: if isinstance(features, six.string_types): if features not in idadf.columns: raise ValueError("Unknown feature column %s"%features) features = [features] else: if hasattr(features, '__iter__'): features = list(features) for x in features: if x not in idadf.columns: raise ValueError("Unknown feature column %s"%x) if target is None: if len(features) == 1: raise ValueError("Cannot compute correlation coefficients of only one"+ " column (%s), need at least 2"%features[0]) else: if target is not None: if len(target) == 1: features = [x for x in idadf.columns if x not in target] else: features = list(idadf.columns) else: features = list(idadf.columns) ## Remove indexer from feature list # This is useless and expensive to compute with a primary key if ignore_indexer is True: if idadf.indexer: if idadf.indexer in features: features.remove(idadf.indexer) # Catch the case where users ask for the correlation between the two same columns #import pdb ; pdb.set_trace() if target == features: if len(target) == 1: raise ValueError("The correlation value of two same columns is always maximal") if target is None: if features is None: target = list(idadf.columns) else: target = features return target, features
1f133839bf0c10396bdcf036db30251d71c7ff3f
27,591
def status(cert): """Return a string with the status of the certificate.""" value = 'Valid' if cert.is_revoked: value = 'Revoked' elif cert.is_expired: value = 'Expired' return value
b5a22642074de6730f293e9d5b24d630d37606cc
386,408
def fill_gaps(df, gap_filler_dict): """ Given a Pandas dataframe and a dictionary containing the column names the correct 'fillers' for each column, this function will fill each column with the correct values when empty cells are found. Parameters: pd_df (pd.Dataframe): the variable to which the dataframe containing the csv data is assigned gap_filler_dict (dict): a dictionary with column name and value to fill gaps as key value pairs, e.g. {"Age":"All","Sex":"T"} Returns: pd.Dataframe: A dataframe with all cells full""" df = df.fillna(gap_filler_dict, axis=1) return df
bc7f6eaac7d9d51231027673ae8408a07bd12ddc
252,774
import time def timeit(func): """ Simple wrapper to time a function. Prints the execution time after the method finishes. """ def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() print('Execution Time ({0}): {1:.5f} seconds'.format( func.__name__, end_time - start_time)) return result return wrapper
37a657ac013739329a84b619153fdfa781181bd8
23,251
def get_max_length(graphs): """ Get the max length among sequences. """ max_length = 0 for cascade_id in graphs: # traverse the graphs for max length sequence for sequence in graphs[cascade_id]: max_length = max(max_length, len(sequence[0])) return max_length
2dfa82526a291c08bfef0c8e5edb06b693caa224
19,970
async def get_events(database): """Get events.""" events_query = 'select id, name, year from events order by year, name' events = await database.fetch_all(events_query) return [dict(e) for e in events]
d4c722ea329ee46ce0f428adc7e4f6fef3d7365f
56,929
def mock_shutil_which_None(*args, **kwargs): """ Mock a call to ``shutil.which()`` that returns None """ print("[mock] shutil.which - NotFound") #if True: raise FileNotFoundError("Generated by MOCK") return None
fcf37b48fad0ddb42f58de664f0c683c06b64857
403,429
def _dart_web_application_outputs(dump_info, deferred_lib_count): """Returns the expected output map for dart_web_application.""" outputs = { "js": "%{name}.js", "deps_file": "%{name}.js.deps", "sourcemap": "%{name}.js.map", } if dump_info: outputs["info_json"] = "%{name}.js.info.json" for i in range(1, deferred_lib_count + 1): outputs["part_js%s" % i] = "%%{name}.js_%s.part.js" % i outputs["part_sourcemap%s" % i] = "%%{name}.js_%s.part.js.map" % i return outputs
f7dc13b2ced07a010baa86b03304acc17817befe
594,051
from typing import List from typing import Any from typing import Union def trim_results_by_limit(results: List[Any], limit: Union[int, str] = 100) -> List[Any]: """Trim list of results so only a limited number is returned. Args: results: The list of results. limit: The upper limit of the results to return. If limit is set to -1 all results will be returned. Return the trimmed results. """ if int(limit) == -1: return results return results[:int(limit)]
da6178158f7da10a68ffcc878af7851104095860
357,031
from typing import List def split_features_text( features_text: str) -> List[str]: """ Args: features_text: The FEATURES (i.e. annotation) section of genbank file, for example: 'FEATURES Location/Qualifiers ' source 1..168903 ' /organism="Enterobacteria phage T4" ' /mol_type="genomic DNA" ' /db_xref="taxon:10665" ' CDS complement(12..2189) ' /gene="rIIA" ' /locus_tag="T4p001" ' /db_xref="GeneID:1258593" Returns: Break it into a list of single feature text, for example feature_text_1: ' source 1..168903 ' /organism="Enterobacteria phage T4" ' /mol_type="genomic DNA" ' /db_xref="taxon:10665" feature_text_2: ' CDS complement(12..2189) ' /gene="rIIA" ' /locus_tag="T4p001" ' /db_xref="GeneID:1258593" """ list_ = [] for line in features_text.splitlines()[1:]: # first line is always 'Location/Qualifiers', so we don't need it. if line.strip() == '': # skip empty line continue if line.startswith(' '*21): # not the first line of a new feature list_[-1] += line + '\n' else: # the first line of a new feature, because it doesn't start with 21 spaces. list_.append(line + '\n') return list_
6100bf12ada0f50e8deabda8b09790306ec68556
382,515
def quantiles(data, quantiles): """ Get the given vars quantiles for the given data. :param data The dataframe. :param quantiles List of quantiles to compute. :return List of quantiles for the provided data. """ return [data.quantile(q=quantile) for quantile in quantiles]
5d1227374383cc9a528ba55c14cb41ca9efce1d4
511,713
def split(history: str) -> list: """ Splits history by specific keyword and removes leading '/' :param history: String :return: [String] """ return [his[1:] if his[0:1] == '/' else his for his in history.split('-')]
1326d066e4a98de395c9f0e4d7a3ebe893daa39f
374,272
import warnings def pull_halo_output(h5file, clusterID, apertureID, dataset): """ Function to extract a dataset from a Bahamas snapshot output. :param h5file: The h5py File object to extract the data from :param clusterID: The number of cluster in the order imposed by FoF :param apertureID: int(0-22) The index of the spherical aperture centred on the CoP :param dataset: The name of the dataset to pull :return: None if the cluster does not exist in the file, the dataset as np.ndarray if it exists """ if f'halo_{clusterID:05d}' not in h5file: warnings.warn(f"[-] Cluster {clusterID} not found in snap output.") return None else: return h5file[f'halo_{clusterID:05d}/aperture{apertureID:02d}/{dataset}'][...]
d389af763c7dc7a3c6e54a1f61f4906c7fa4dc0e
15,679
def similar_email(anon, obj, field, val): """ Generate a random email address using the same domain. """ return val if 'betterworks.com' in val else '@'.join([anon.faker.user_name(field=field), val.split('@')[-1]])
d98f5e9d75f05efba3fce28c2f2c246129fc72b8
154,899
def is_discrete(num_records: int, cardinality: int, p=0.15): """ Estimate whether a feature is discrete given the number of records observed and the cardinality (number of unique values) The default assumption is that features are not discrete. Parameters ---------- num_records : int The number of observed records cardinality : int Number of unique observed values Returns ------- discrete : bool Whether the feature is discrete """ if cardinality >= num_records: return False if num_records < 1: return False if cardinality < 1: raise ValueError("Cardinality must be >= 1 for num records >= 1") discrete = False density = num_records/(cardinality + 1) if 1/density <= p: discrete = True return discrete
44fe901c8301389327572b9795a9a0ea9622d7c0
188,522
def asy_number(value) -> str: """Format an asymptote number""" return "%.5g" % value
47b6c3ec46a76a42673d12c3c8d6a7c7f465b59d
386,871
def autoSize(image, resolution=1920): """Determines the size of an image by setting the largest side to the size of the resolution""" if image.width >= image.height: size = (resolution, round((resolution / image.width) * image.height)) else: size = (round((resolution / image.height) * image.width), resolution) return size
c0559f8454946ec5b23020f656d2a70de046e415
624,070
from datetime import datetime import hashlib def genCode(user): """ Generates a unique code to be used with URLS user : the user to generate the code for Returns : created code """ secret = "{}{}".format(user,datetime.now().strftime("%Y%m%d%H%M%S%f")) return hashlib.sha512(secret.encode('UTF-8')).hexdigest()
ec8d2dad193a52ffd908ffabca69cb99c3a4698e
504,883
def k_value(rela_count, answer_count, question_count): """ k = count(Q&A) / (count(Q) * count(A)) :param rela_count: :param answer_count: :param question_count: :return: """ if answer_count == 0: return 0 return rela_count / (answer_count * question_count)
c60703fc7dd51b7346b52955e9abfae373132027
371,526
def get_keys(dic, key_path=""): """get_keys of nested dictionary >>> a = {"a": 1, "b": {"c": 2}} >>> get_keys(a) ['/a', '/b/c'] """ keys_list = [] def get_keys(dic, key_path): if isinstance(dic, dict): for i in dic: get_keys(dic[i], key_path + "/" + str(i)) else: keys_list.append(key_path) get_keys(dic, key_path) return keys_list
1dc0bbca91d51dc5074aaaa56466e267a28e1816
593,165
def capacity_rule(mod, g, p): """ The capacity of projects of the *gen_ret_bin* capacity type is a pre-specified number for each of the project's operational periods multiplied with 1 minus the binary retirement variable. """ return mod.gen_ret_bin_capacity_mw[g, p] \ * (1 - mod.GenRetBin_Retire[g, p])
ba4ccad8d620da084912a65a80793f54fb84b374
706,271
def quote_fname(fname): """quote file name or any string to avoid problems with file/directory names that contain spaces or any other kind of nasty characters """ return '"%s"' % ( fname .replace('\\', '\\\\') .replace('"', '\"') .replace('$', '\$') .replace('`', '\`') .replace('!', '\!') )
605d9d2c8edc5dc0f71bb7f13151c1e6a6201228
409,379
def brown(text): """ Return this text formatted brown (maroon) """ return '\x0305%s\x03' % text
36eac341d092c137160803972cce9a762555058e
268,204
def ranges_overlap(range1, range2): """Whether two 2-element lists have an overlap. Args: range1, range2: Each a 2-element list with numbers. Returns: True if there is overlap, False otherwise. Raises: TypeError: An argument is not a list. ValueError: One of the list doesn’t have exactly 2 elements. """ if not isinstance(range1, list) or not isinstance(range2, list): raise TypeError('Both arguments must be a list.') if len(range1) != 2 or len(range2) != 2: raise ValueError('Both lists must have two elements each.') if max(range1) < min(range2): return False if max(range2) < min(range1): return False return True
31a9467045c53ad394a374e89d10e87110c46f40
492,848
import requests def get_user_friends_locations_list( bearer_token: str, screen_name: str, friends_num: int=50 ) -> list: """ This function gets user's friends list consisting of name-location pairs. """ base_url = 'https://api.twitter.com/' search_headers = { 'Authorization': f'Bearer {bearer_token}' } search_params = { 'screen_name': f'{screen_name}', 'count': friends_num } search_url = f'{base_url}1.1/friends/list.json' response = requests.get( search_url, headers=search_headers, params=search_params ) data = response.json() return [ (user['name'], user['location']) for user in data['users'] if len(user['location']) != 0 ]
f91f2692fa93134bdcdd5221e4f9b4aacbcecf61
307,530
import copy def sharded_transpose(args, kwargs, pg): """ Handles ``__torch_function__`` dispatch for the ``torch.Tensor.transpose`` op. Returns a new sharded tensor with the given dimensions transposed. During the transpose, we keep the original shading dim, if the sharding dim is not neither dim0 nor dim1. Otherwise, we will swap the sharding dim with the other input of transpose. Args: (same as ``torch.Tensor.transpose``.) dim0 (Int): the first dimension to be transposed. dim1 (Int): the second dimension to be transposed. Returns: new_local_shards (List[Shard]): Local shards for the new sharded tensor. st_meta (ShardedTensorMetadata): Metadata of the new sharded tensor. """ def _swap_meta_data(data, idx0, idx1): """ Swap the item at idx0 and idx1 in the data list. """ data[idx0], data[idx1] = data[idx1], data[idx0] st = args[0] dim0 = args[1] dim1 = args[2] sharding_spec = copy.deepcopy(st.sharding_spec()) if sharding_spec.dim == dim0: sharding_spec.dim = dim1 elif sharding_spec.dim == dim1: sharding_spec.dim = dim0 st_size = list(st.size()) _swap_meta_data(st_size, dim0, dim1) local_tensor = st.local_tensor().transpose(dim0, dim1).contiguous() return local_tensor, sharding_spec, tuple(st_size)
432287927eaefaea87d06e47a0fbf04c3580a951
331,819
def _get_write_mode(name: str) -> str: """Get the write mode to use with :func:`tarfile.open`.""" if name.endswith('.tar'): return 'w' if name.endswith(".tar.gz") or name.endswith(".tgz"): return "w:gz" if name.endswith(".tar.bz2"): return "w:bz2" if name.endswith(".tar.lzma"): return "w:xz" raise ValueError(f"{name} does not end with a valid tarfile extension.")
427590f8c3d4ff6a61cbf2df7c735ede5338d678
160,657
import textwrap def construct_using_clause(metarels, join_hint, index_hint): """ Create a Cypher query clause that gives the planner hints to speed up the query Parameters ---------- metarels : a metarels or MetaPath object the metapath to create the clause for join_hint : 'midpoint', bool, or int whether to add a join hint to tell neo4j to traverse form both ends of the path and join at a specific index. `'midpoint'` or `True` specifies joining at the middle node in the path (rounded down if an even number of nodes). `False` specifies not to add a join hint. An int specifies the node to join on. index_hint : bool whether to add index hints which specifies the properties of the source and target nodes to use for lookup. Enabling both `index_hint` and `join_hint` can cause the query to fail. """ using_query = "" # Specify index hint for node lookup if index_hint: using_query = ( "\n" + textwrap.dedent( """\ USING INDEX n0:{source_label}({property}) USING INDEX n{length}:{target_label}({property}) """ ) .rstrip() .format( property=property, source_label=metarels[0][0], target_label=metarels[-1][1], length=len(metarels), ) ) # Specify join hint with node to join on if join_hint is not False: if join_hint is True or join_hint == "midpoint": join_hint = len(metarels) // 2 join_hint = int(join_hint) assert join_hint >= 0 assert join_hint <= len(metarels) using_query += f"\nUSING JOIN ON n{join_hint}" return using_query
61c4dc58782aeb1bc31affb7ec2c74361eac8089
27,889
def has_duplicates(array): """Use a dictionary to write a faster, simpler version of has_duplicates""" d = dict() for elem in array: if elem in d: return True d.setdefault(elem, 1) return False
213964cef26c835a20604f788559ffb8dc28713c
66,942
import importlib def get_suite_amount_of_workers(workspace, project, suite): """Get the amount of workers defined in a suite. Default is 1 if suite does not have workers defined""" amount = 1 suite_module = importlib.import_module('projects.{0}.suites.{1}'.format(project, suite), package=None) if hasattr(suite_module, 'workers'): amount = suite_module.workers return amount
7126ba3b1cfe3ab39f100fbdc8147009f50e7440
67,922
def make_batches(size, batch_size): """Returns a list of batch indices (tuples of indices). @param size : (int) total size of the data @param batch_size : (int) batch size. @return batch_slices: (list) contains (begin_idx, end_idx) for every batch. """ num_batches = (size-1)//batch_size + 1 return [(i*batch_size, min(size, (i+1)*batch_size)) for i in range(num_batches)]
b2cfd9b3b1982d0b01d61e55286421197b5a6a2b
475,342
def make_param_name_multiple_index(param_parts): """ Make the key name from param parts. For example, ("param", "tag", "2", "1") -> ("param2", "1"). """ return (param_parts[0] + param_parts[-2], param_parts[-1])
cc3cbad59bc89273bc35ba8811f1f5d202bc8c77
44,619
def to(*args, **kwargs): """ Returns a closure that applies x.to(*args, **kwargs) to x """ def apply_to(x): return x.to(*args, **kwargs) return apply_to
f9a52a0cba1513f743190330c46d881d13efa98d
579,213
def calc_hilo(min_val, max_val, df, cols_to_test): """ Return lowest and highest values from min_val and max_val if present, or calculate from df. """ # Calculate (or blindly accept) the range of the y-axis, which must be the same for all four axes. if (max_val is None) and (len(df.index) > 0): highest_possible_score = max([max(df[col]) for col in cols_to_test]) else: highest_possible_score = max_val if (min_val is None) and (len(df.index) > 0): lowest_possible_score = min([min(df[col]) for col in cols_to_test]) else: lowest_possible_score = min_val return lowest_possible_score, highest_possible_score
49f0bc0ed1080ed0c59828fcdf1263554f32dc5e
40,737
def anchor_inside_flags(flat_anchors, valid_flags, img_shape, allowed_border=0): """Check whether the anchors are inside the border. Args: flat_anchors (torch.Tensor): Flatten anchors, shape (n, 4). valid_flags (torch.Tensor): An existing valid flags of anchors. img_shape (tuple(int)): Shape of current image. allowed_border (int, optional): The border to allow the valid anchor. Defaults to 0. Returns: torch.Tensor: Flags indicating whether the anchors are inside a valid range. """ img_h, img_w = img_shape[:2] if allowed_border >= 0: inside_flags = valid_flags & \ (flat_anchors[:, 0] >= -allowed_border) & \ (flat_anchors[:, 1] >= -allowed_border) & \ (flat_anchors[:, 2] < img_w + allowed_border) & \ (flat_anchors[:, 3] < img_h + allowed_border) else: inside_flags = valid_flags return inside_flags
2fcc56484510e1140b8cb72835d1ea6c83736d35
488,608
import re def split_string(instr, item, split): """ Split instr as a list of items separated by splits. @param instr: string to be split @param item: regex for item to be split out @param split: regex for splitter @return: list of strings """ if not instr: return [] return [h.strip() for h in re.findall( r'%s(?=%s|\s*$)' % (item, split), instr )]
848de5c1ff9d953ba4881127f61fe9a133972344
332,161
def run_test(session, m, data, batch_size, num_steps, reader): """Runs the model on the given data.""" costs = 0.0 iters = 0 state = session.run(m.initial_state) for step, (x, y) in enumerate(reader.dataset_iterator(data, batch_size, num_steps)): cost, state = session.run([m.cost, m.final_state], { m.input_data: x, m.targets: y, m.initial_state: state }) costs += cost iters += 1 return costs / iters
d430aadb12fca35cc674358c514a94da01298893
528,491
def vector_for_keys(keyed_vectors, keys: list[str]): """Return the sum of vectors in keyed_vectors for the given keys""" if not keys: raise ValueError("keys cannot be empty") return keyed_vectors[keys].sum(axis=0)
8cdd638cf2b903985aac75ace124dffcbf7f249e
491,719
def ipv6_hdr_len(ipv6): """Calculate length of headers before IPv6 Fragment header. Args: ipv6 (dpkt.ip6.IP6): DPKT IPv6 packet. Returns: int: Length of headers before IPv6 Fragment header :class:`dpkt.ip6.IP6FragmentHeader` (:rfc:`2460#section-4.5`). As specified in :rfc:`2460#section-4.1`, such headers (before the IPv6 Fragment Header) includes Hop-by-Hop Options header :class:`dpkt.ip6.IP6HopOptsHeader` (:rfc:`2460#section-4.3`), Destination Options header :class:`dpkt.ip6.IP6DstOptHeader` (:rfc:`2460#section-4.6`) and Routing header :class:`dpkt.ip6.IP6RoutingHeader` (:rfc:`2460#section-4.4`). """ hdr_len = ipv6.__hdr_len__ # IP6HopOptsHeader / IP6DstOptHeader / IP6RoutingHeader for code in (0, 60, 43): ext_hdr = ipv6.extension_hdrs.get(code) if ext_hdr is not None: hdr_len += ext_hdr.length return hdr_len
746a720c0b6c5caa3749be09fb4d99566f7cdb8e
284,080
def get_user_and_conv(conversations, event): """gets user and conversation from a hangups event""" conv = conversations.get(event.conversation_id) user = conv.get_user(event.user_id) return user, conv
fe27723f9047f4c595070025214173907d15a6b1
419,817
def sort_dict_desc(dict_of_dfs: dict, column_name: str) -> dict: """Function used to sort dictionary containing pandas dataframes in descending order based on supplied column name""" sum_of_requested_columns = dict() for _ in dict_of_dfs.keys(): sum_of_requested_columns[_] = dict_of_dfs[_][column_name].sum() sorted_dict_of_dfs = dict(sorted(sum_of_requested_columns.items(), key=lambda item: item[1], reverse=True)) return sorted_dict_of_dfs
271b761e86f51ae59a19b8773f43718dfbdc80fa
250,497
def determine_color(number): """ In number ranges from 1 to 10 and 19 to 28, odd numbers are red and even are black. In ranges from 11 to 18 and 29 to 36, odd numbers are black and even are red. """ if number >= 1 and number <= 10: return "black" if number % 2 == 0 else "red" elif number >= 19 and number <= 28: return "black" if number % 2 == 0 else "red" else: return "red" if number % 2 == 0 else "black" raise "not sure how it got here"
ab27cc7f40c497d5710645d393f909f176bbde28
627,860
def get_author_name(soup): """Get the author's name from its main page. Args: soup (bs4.element.Tag): connection to the author page. Returns: string: name of the author. Examples:: >>> from scrapereads import connect >>> url = 'https://www.goodreads.com/author/show/1077326' >>> soup = connect(url) >>> get_author_name(soup) J.K. Rowling """ author_h1 = soup.find('h1', attrs={'class': 'authorName'}) return author_h1.find('span').text
bce8e3399ebf6d8179459bcb7f45184d7b90313d
506,577
def isHellaTemp(filename): """ Determine whether or not the specified file is a 'hellanzb-tmp-' file """ return filename.find('hellanzb-tmp-') == 0
8c9276a169f72981f128e42902e19191969f14c3
449,700
import threading def _MakeParallelBenchmark(p, work_func, *args): """Create and return a benchmark that runs work_func p times in parallel.""" def Benchmark(b): # pylint: disable=missing-docstring e = threading.Event() def Target(): e.wait() for _ in range(b.N / p): work_func(*args) threads = [] for _ in range(p): t = threading.Thread(target=Target) t.start() threads.append(t) b.ResetTimer() e.set() for t in threads: t.join() return Benchmark
bf8afe146351a8f91ecb855f81cecc8f00ab0e43
193,143
def _get_conditional_probs_from_survival(surv): """ Return conditional failure probabilities (for each time interval) from survival curve. P(T < t+1 | T > t): probability of failure up to time t+1 conditional on individual survival up to time t. Args: surv (pd.DataFrame): dataframe of survival estimates, as .predict() methods return Returns: pd.DataFrame: conditional failurer probability of event specifically at time bucket """ conditional_preds = 1 - (surv / surv.shift(1, axis=1).fillna(1)) conditional_preds = conditional_preds.fillna(0) return conditional_preds
9f8067453dd9664e87a39724e2a373ed47adfcf9
603,722
def _parse_text_with_command(text: str): """ Parse string that is passed when bot command is invoked. """ if after_bot_name_text := text.split('</at>')[-1].rstrip().strip(): return after_bot_name_text.split() else: return '', []
03559b81e696064fee90c8818cb2825a93cbe719
34,057
def percent_calc(totalX, totalY): """ Takes 2 integers, uses totalX to get 1% and totalY to get final percentage Returns the final percentage as an int or 0 if not divisible e.g. if X is 0 """ try: percent = int((100 / totalX) * totalY) except ZeroDivisionError: percent = 0 return percent
25c44ebd7461db49433dac7dbf79f48178d31ace
405,119
import json def parse_as_json(data): """Attempt to parse data as json.""" return json.loads(data)
3343e96a35d54f0b59ad6afefe8b40a0c1af2170
136,001
def _node_not_implemented(node_name, cls): """Return a function that raises a NotImplementedError with a passed node name. """ def f(self, *args, **kwargs): raise NotImplementedError("{0!r} nodes are not " "implemented".format(node_name)) return f
2785a102dcfbea919d02360564206584e68896ba
490,590
import uuid def get_new_id(data_dir): """ Produce a new unique ID for a receipt, amond the receipts in the given folder. """ # A UUID is always unique return str(uuid.uuid4())
9d17aa474f04990cb06aa14f41061c45ffcd8698
490,007
def get_common_elements(element_list): """ :param element_list: list of list where each internal list contains values :return: a sorted list of elements which are common in all the internal lists """ common_element_list = set(element_list[0]) index = 1 while index < len(element_list): common_element_list = common_element_list.intersection(element_list[index]) index += 1 return sorted(list(common_element_list))
fa3233bb2945949837fd70db4d75f5803100e3ee
50,396
import ipaddress def is_address(entry): """ Check if entry is a valid IP address """ try: _ = ipaddress.ip_address(entry) except ValueError: return False return True
08e9cc24e7319d03a7a5fc9b9768db4497f76039
679,862
import json def kernel_for(notebook): """Parses the kernel metadata and returns the kernel display name. Args: notebook (Path): The path to the notebook for which to get the kernel. Returns: str: The kernel display name, if it exists. """ with open(notebook, "r") as f: nb = json.load(f) md = nb.get("metadata") if md: ks = md.get("kernelspec") if ks: return ks["display_name"] return None
6d53b4423dde8ee08296972fccbcc87cf8d40d6b
294,796
def abbrev_prompt(msg: str, *options: str) -> str: """ Prompt the user to input one of several options, which can be entered as either a whole word or the first letter of a word. All input is handled case-insensitively. Returns the complete word corresponding to the input, lowercased. For example, ``abbrev_prompt("Delete assets?", "yes", "no", "list")`` prompts the user with the message ``Delete assets? ([y]es/[n]o/[l]ist): `` and accepts as input ``y`, ``yes``, ``n``, ``no``, ``l``, and ``list``. """ options_map = {} optstrs = [] for opt in options: opt = opt.lower() if opt in options_map: raise ValueError(f"Repeated option: {opt}") elif opt[0] in options_map: raise ValueError(f"Repeated abbreviated option: {opt[0]}") options_map[opt] = opt options_map[opt[0]] = opt optstrs.append(f"[{opt[0]}]{opt[1:]}") msg += " (" + "/".join(optstrs) + "): " while True: answer = input(msg).lower() if answer in options_map: return options_map[answer]
bf3702f9254a8fe1f5879ecff987a9fb3d9ce81c
61,394
def neighbors(i, diag = False,inc_self=False): """ determine the neighbors, returns a set with neighboring tuples {(0,1)} if inc_self: returns self in results if diag: return diagonal moves as well """ r = [1,0,-1] c = [1,-1,0] if diag: if inc_self: return {(i[0]+dr, i[1]+dc) for dr in r for dc in c} else: return {(i[0]+dr, i[1]+dc) for dr in r for dc in c if not (dr == 0 and dc == 0)} else: res = {(i[0],i[1]+1), (i[0],i[1]-1),(i[0]+1,i[1]),(i[0]-1,i[1])} if inc_self: res.add(i) return res
24b55c3b092c5634ad6491f0111dc088e88d43fb
422,870
def secant(f, a, b, n): """Approximate solution of f(x)=0 on interval [a,b] by the secant method. Parameters ---------- f : function The function for which we are trying to approximate a solution f(x)=0. a,b : numbers The interval in which to search for a solution. The function returns None if f(a)*f(b) >= 0 since a solution is not guaranteed. n : (positive) integer The number of iterations to implement. Returns ------- m_N : number The x intercept of the secant line on the the Nth interval m_n = a_n - f(a_n)*(b_n - a_n)/(f(b_n) - f(a_n)) The initial interval [a_0,b_0] is given by [a,b]. If f(m_n) == 0 for some intercept m_n then the function returns this solution. If all signs of values f(a_n), f(b_n) and f(m_n) are the same at any iterations, the secant method fails and return None. Examples -------- >>> f = lambda x: x**2 - x - 1 >>> secant(f,1,2,5) 1.6180257510729614 """ if f(a) * f(b) >= 0: print("Secant method fails.") return None a_n = a b_n = b for n in range(1, n + 1): m_n = a_n - f(a_n) * (b_n - a_n) / (f(b_n) - f(a_n)) f_m_n = f(m_n) if f(a_n) * f_m_n < 0: a_n = a_n b_n = m_n elif f(b_n) * f_m_n < 0: a_n = m_n b_n = b_n elif f_m_n == 0: # print("Found exact solution.") return m_n else: # print("Secant method fails.") return None return a_n - f(a_n) * (b_n - a_n) / (f(b_n) - f(a_n))
7f23c4efb0efc38319b87f747f69b3e873d2b5a4
373,786
import encodings import base64 import hmac import hashlib def hmac_msg(prf_key_hash, feature): """ Using hmac to produce the pseudonyms for the feature vector. :param prf_key_hash: hash key as bytes :param feature: feature name as a string (encoded using 'UTF-8') :return: hmac value """ message = bytes(feature, encodings.utf_8.getregentry().name) sig = base64.b64encode(hmac.new(prf_key_hash, message, hashlib.sha256).digest()) return sig.decode()
7299335c7bcb0cb4bfe0beac8bfb930ab172891c
351,878
import re def inputValid(userInput): """Verifies user input as valid. Accepts strings. Returns True for valid input, False for invalid.""" regex = "\d+[d,D]+\d+[+,-]\d+" if re.search(regex, userInput): return True else: return False
8278fc30a25c26e2e7816a4a729210d0005c4953
593,798
def pixelNeighborhood(point, image, sigma): """ Takes in a point, an image, and sigma Calculates the width from sigma and creates a pixel "neighborhood" with the point as the center Returns the neighborhood """ width = int(8*sigma)//2 x,y = point neighborhood = image[x-width:x+width+1, y-width:y+width+1] return neighborhood
67e51f031e3a51dcea0156bab03805ddf27834cb
232,782
from typing import Union from pathlib import Path def ensure_existing_dir(path: Union[str, Path]): """Ensure provided path exists and is a directory. Args: path: path to check Returns: Path: Path object. NoneType: If path does not exists or is not a directory """ path = Path(path) if not path.exists(): return None if not path.is_dir(): return None return path
2e4fdbf0cce27e50839b70d78156eb1e5d0a76f0
97,912
def StartTranscoding(*, session, pipeline_id, video_path, outputs, output_key_prefix): """Start transcoding a video pointed to by keyname :param session: The session to user for credentials :type session: boto3.session.Session :param pipeline_id: Name of the pipeline into which this job will be pushed :type pipeline_id: str :param video_path: Path to the video file (relative to the input bucket) :type video_path: str :param outputs: The outputs to which the video file should be transcoded :type outputs: list :param output_key_prefix: The prefix for output files :type output_key_prefix: str :return: Info about the newly created job :rtype: dict """ etconn = session.connect_to("elastictranscoder") Jobs = session.get_collection("elastictranscoder", "JobCollection") jobs = Jobs(connection=etconn) job = jobs.create( pipeline_id=pipeline_id, input={"Key": video_path}, output_key_prefix="{0}/".format(output_key_prefix), outputs=outputs) # Return info for the job so that we can get status etc... return job.get()
a0bbee55ec46d0b0ec6e0c77bf72b64cc55c6360
159,522
def get_neighbors(point): """Given a 2D point (represented as a Point object), returns a list of the four points that neighbor it in the four coordinate directions. Uses the "copy" method to avoid modifying the original point.""" neighbor_points = [] up = point.copy() up.setY(up.getY()+1) neighbor_points.append(up) down = point.copy() down.setY(down.getY()-1) neighbor_points.append(down) left = point.copy() left.setX(left.getX()-1) neighbor_points.append(left) right = point.copy() right.setX(right.getX()+1) neighbor_points.append(right) return neighbor_points
eac40848e3148777df55ad7dfa3b42c2f2a35eb0
564,827
def is_tepid(G): """ Determine if G is tepid. A Game is tepid if it is numberish, but not a number; that is, it differs from a number by an infinitesimal amount. Parameters ---------- G : Game The Game of interest. Returns ------- tepid : bool Whether the Game is tepid or not. """ return G.is_numberish and not G.is_number
44c365d205a57e4acf0d802c18815fbe9ee05d0b
342,253
import copy def dict_merge(dict1, dict2): """ recursive update (not in-place). dict2 has precendence for equal keys. """ dict1 = copy.deepcopy(dict1) for key in dict2: val = dict2[key] if type(val) is dict: # merge dictionaries if key in dict1 and type(dict1[key]) is dict: dict1[key] = dict_merge(dict1[key], val) else: dict1[key] = val else: dict1[key] = val return dict1
ab43b0093cfffad60e53d9c2f61a562b011ac5e0
509,174
import re def extract_variables(sFormula): """ Extract variables in expression, e.g. {a}*x + {b} -> ['a','b'] The variables are replaced with p[0],..,p[n] in order of appearance """ regex = r"\{(.*?)\}" matches = re.finditer(regex, sFormula, re.DOTALL) formula_eval=sFormula variables=[] ivar=0 for i, match in enumerate(matches): for groupNum in range(0, len(match.groups())): var = match.group(1) if var not in variables: variables.append(var) formula_eval = formula_eval.replace('{'+match.group(1)+'}','p[{:d}]'.format(ivar)) ivar+=1 return variables, formula_eval
7ae5b836504876c815b15c87bad774334fd4dd80
17,493
def reverse_string(input): """ Return reversed input string Examples: reverse_string("abc") returns "cba" Args: input(str): string to be reversed Returns: a string that us reversed of input """ if len(input) == 0: return "" else: first_char = input[0] the_rest = slice(1, None) sub_string = input[the_rest] reversed_substring = reverse_string(sub_string) return reversed_substring + first_char
6fdae5469c4c2af268b0ea8cdb5875b078d28e0a
418,790
def centerel(elsize, contsize): """Centers an element of the given size in the container of the given size. Returns the coordinates of the top-left corner of the element relative to the container.""" w, h = elsize W, H = contsize x = (W-w)//2 y = (H-h)//2 return (x, y)
72aa035924ea2fe89d76073607f3156b75885410
83,629
import string def generate_key_table(validated_key): """Description: returns a 5x5 array containing characters according to the playfair cipher. In particular, J is replaced with L, and each of the characters in the 5x5 array is unique. Arguments: validated_key (string): takes a valid key as input. Returns: key_square (array): 5x5 array containing characters according to the playfair cipher. """ key_square = [[], [], [], [], []] outer_index, count = 0, 0 # updating key_square with validated_key for i in validated_key: if count < 5: key_square[outer_index].append(i) else: count = 0 outer_index += 1 key_square[outer_index].append(i) count += 1 # filling rest of key_square ascii_index = 0 for i in range(26): if ((string.ascii_lowercase[ascii_index] in validated_key) or (ascii_index == 9)): ascii_index += 1 continue elif count < 5: key_square[outer_index].append(string.ascii_lowercase[ascii_index]) else: count = 0 outer_index += 1 key_square[outer_index].append(string.ascii_lowercase[ascii_index]) ascii_index += 1 count += 1 return key_square
41662b27c8e246dbba2bfddb07b46d8f263b853f
78,804
def get_output(i): """Составляет эталонный набор значений, в котором все нули, а i-й элемент — 1 :param i: индекс выхода, который будет установлен в 1 :type i: int :return: эталонный набор значений :rtype: list[float] """ result = [] for j in range(10): result.append(0) result[i] = 1 return result
18b5e6a003abb3cf6cc19f6b81fa2d3bb733237b
257,179
def percent_unique_ngrams_in_train(train_ngrams_dict, gen_ngrams_dict): """Compute the percent of ngrams generated by the model that are present in the training text and are unique.""" # *Total* number of n-grams produced by the generator. total_ngrams_produced = 0 for _, value in gen_ngrams_dict.iteritems(): total_ngrams_produced += value # The unique ngrams in the training set. unique_ngrams_in_train = 0. for key, _ in gen_ngrams_dict.iteritems(): if key in train_ngrams_dict: unique_ngrams_in_train += 1 return float(unique_ngrams_in_train) / float(total_ngrams_produced)
5f07e359c186d13545aebdb573c36e5d5556faea
592,554
def build_nested_schema_dict(schema_dict): """Accepts a dictionary in form of {SchemaRef(): schema} and returns dictionary in form of {schema_name: {schema_version: schema}} """ result = {} for schema_ref, schema in schema_dict.items(): result.setdefault(schema_ref.name, {}) result[schema_ref.name][schema_ref.version] = schema return result
5e00c03e69053ed72f2ab44dae0ced3bdaa8759d
399,477
def int2ascii(i: int) -> str: """Convert an integer to an ASCII character. Args: i (int): Integer value to be converted to ASCII text. Note: The passed integer value must be <= 127. Raises: ValueError: If the passed integer is > 127. Returns: str: The ASCII character associated to the passed integer. """ if i > 127: raise ValueError('The passed integer value must be <= 127.') return chr(i)
f46ed05d425f9277ea6c97a0f8bafb070b15091c
28,958
import math def nu_e(n_n, n_e, T_e): """approximate calculation of electron collision frequency from Kelly 89 Parameters ---------- n_n : (float) neutral density cm-3 n_e : (float) electron density cm-3 T_e : (float) electron temperature K """ nu_e_n = 5.4 * 10**(-10) * n_n * T_e**(1/2) nu_e_i = (34 + 4.18 * math.log(T_e**3 / n_e)) * n_e * T_e**(-3/2) return nu_e_n + nu_e_i
3c73538dd97a4f03d0a98d8fe4427697089234e8
18,740
def get_map_annotation(conn, map_ann_id, across_groups=True): """Get the value of a map annotation object Parameters ---------- conn : ``omero.gateway.BlitzGateway`` object OMERO connection. map_ann_id : int ID of map annotation to get. across_groups : bool, optional Defines cross-group behavior of function - set to ``False`` to disable it. Returns ------- kv_dict : dict The value of the specified map annotation object, as a Python dict. Examples -------- >>> ma_dict = get_map_annotation(conn, 62) >>> print(ma_dict) {'testkey': 'testvalue', 'testkey2': 'testvalue2'} """ if type(map_ann_id) is not int: raise TypeError('Map annotation ID must be an integer') return dict(conn.getObject('MapAnnotation', map_ann_id).getValue())
3b962fdf4e63fb2afef8ab3b1ce011b45c1626cb
519,967
def get_chromosome_object(agp): """Extracts centromere coordinates and chromosome length from AGP data, and returns a chromosome object formatted in JSON""" chr = {} agp = agp.split('\n') for i, line in enumerate(agp): if len(line) == 0 or line[0] == '#': continue tabs = line.split("\t") acc = tabs[0] start = int(tabs[1]) stop = int(tabs[2]) comp_type = tabs[6] if 'acc' not in chr: chr['accession'] = acc chr['type'] = 'nuclear' if comp_type == 'centromere': chr['centromere'] = { 'start': start, 'length': stop - start } if i == len(agp) - 2: chr['length'] = stop return chr
217d27e8e85618642bcda3380480b9f2e56945fb
475,923
def pipe_soil_heat_transfer(lambda_soil, D, h0e): """ :param lambda_soil: Heat conductivity of a soil, W/(m*K) :param D: Outer diameter of the pipe, m :param h0e: Equivalent depth of the gas pipeline axis, m :return: Pipe-soil heat transfer coefficient, W/m2*K """ return (lambda_soil / D) * (0.65 + (D/h0e)**2)
5a47568b6bf7392d27897238fe1d6fa4f212eb26
244,641
def sim_file_to_run(file): """Extracts run number from a simulation file path Parameters ---------- file : str Simulation file path. Returns ------- run : int Run number for simulation file Examples -------- >>> file = '/data/ana/CosmicRay/IceTop_level3/sim/IC79/7241/Level3_IC79_7241_Run005347.i3.gz' >>> sim_file_to_run(file) 5347 """ start_idx = file.find('Run') run = int(file[start_idx+3: start_idx+9]) return run
cdbd04a85da96b163da95595dc3313be2c64dec8
668,173
def _format_key(key): """Format table key `key` to a string.""" schema, table = key table = table or "(FACT)" if schema: return "{}.{}".format(schema, table) else: return table
0f8b6b0c847c88e51ef0ecb5cb9774edd12ff8e1
308,421
def header(request, response, name, value, append=False): """Set a HTTP header. Replaces any existing HTTP header of the same name unless append is set, in which case the header is appended without replacement. :param name: Name of the header to set. :param value: Value to use for the header. :param append: True if existing headers should not be replaced """ if not append: response.headers.set(name, value) else: response.headers.append(name, value) return response
a1f730d562b6a47be5e8619c1819ceb70944e469
487,886
def take(iter, n): """Return ``n`` items from ``iter`` iterator. """ return [ value for _, value in zip(range(n), iter) ]
a806efc2324ecb081328f9389a95a84b7414ecf7
303,593
def check_water(pdb_input): """ Given a pdb file checks if it contains water molecules. :param pdb_input: pdb input file :return: True or False """ checker = False with open(pdb_input) as pdb: for line in pdb: if "HETATM" in line: if line.split()[3] == "HOH": print("Your pdb file contains water molecules") checker = True break return checker
cc09b0d9566a006bf8f289cfd02a90d52582b74c
435,620
def rotate_left(node): """Perform left rotation around given node.""" new_root = node.right grandson = new_root.left node.right = grandson new_root.left = node node.compute_height() return new_root
08128b90bd36c303025b5656077b79a24ca561ab
595,966
import logging import time def driveListFilesQueryWithNextToken(service, parentID, customQuery=None, pageToken=None): """Internal function to search items in drive folders Args: service: Drive service (from getGoogleServices()['drive']) parentID (str): Drive folder ID of parent where to search customQuery (str): optional custom query parameters pageToken (str): optional page token for paging results of large sets Returns: Tuple (items, nextPageToken) containing the items found and pageToken to retrieve remaining data """ param = {} param['q'] = "'" + parentID + "' in parents and trashed = False" if customQuery: param['q'] += " and " + customQuery param['fields'] = 'nextPageToken, files(id, name)' param['pageToken'] = pageToken param['supportsTeamDrives'] = True param['includeTeamDriveItems'] = True # print(param) retriesLeft = 5 while retriesLeft > 0: retriesLeft -= 1 try: results = service.files().list(**param).execute() items = results.get('files', []) nextPageToken = results.get('nextPageToken') # print('Files: ', items) return (items, nextPageToken) except Exception as e: logging.warning('Error listing drive. %d retries left. %s', retriesLeft, str(e)) if retriesLeft > 0: time.sleep(5) # wait 5 seconds before retrying logging.error('Too many list failures') return None
75280c3b78ac1b93cc65ee5561bc90e3e0da114d
91,904
def top_player_ids(info, statistics, formula, numplayers): """ Inputs: info - Baseball data information dictionary statistics - List of batting statistics dictionaries formula - function that takes an info dictionary and a batting statistics dictionary as input and computes a compound statistic numplayers - Number of top players to return Outputs: Returns a list of tuples, player ID and compound statistic computed by formula, of the top numplayers players sorted in decreasing order of the computed statistic. """ top_players = [] top_players_list = [] for values in statistics: key = "".join(values[info["playerid"]]) value = formula(info,values) top_players.append((key, value)) for _ in range(numplayers): max_val, max_player = 0, "" for player in top_players: if player[1] > max_val and player not in top_players_list: max_val = player[1] max_player = player[0] top_players_list.append((max_player, max_val)) return top_players_list
4fd92de417e7e1d5e239b903a108e12d0c2a41fe
351,714
def is_subset(l1: list, l2: list) -> bool: """ Test if l2 is a subset of l1, i.e. all elements of l2 are contained in l1 and return True if it the case, False otherwise. :param l1: main list :param l2: list whose elements are to be checked (if they're in l1 or not) :return: True if l2 is a subset of l1, False otherwise. """ set1 = set(l1) set2 = set(l2) return set1.issubset(set2)
09831684f55af2670ac4fd7e930c574f0265483c
44,813
def message_dict(message): """Convert a Message instance to a dict which can be written to JSON.""" msg_dict = dict() msg_dict['guid'] = message.guid msg_dict['text'] = message.text msg_dict['handle_id'] = message.handle_id msg_dict['date'] = message.date msg_dict['is_from_me'] = bool(message.is_from_me) if message.subject is not None: msg_dict['subject'] = message.subject if message.attachments: msg_dict['attachments'] = message.attachments return msg_dict
1496f7d9abbcd74e09391d585eb2eb330eeebddb
398,119
def _get_py_filename(module): """ return the full path to the .py file of a module (not the .pyc file) """ return module.__file__.rstrip('c')
5b477abe3cc5c8c9d606bdad98c102aaa26ffe13
288,790