content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def format_dictlist(dictlist, features): """ Convert a list of dictionaries to be compatible with create_csv_response `dictlist` is a list of dictionaries all dictionaries should have keys from features `features` is a list of features example code: dictlist = [ { 'label1': 'value-1,1', 'label2': 'value-1,2', 'label3': 'value-1,3', 'label4': 'value-1,4', }, { 'label1': 'value-2,1', 'label2': 'value-2,2', 'label3': 'value-2,3', 'label4': 'value-2,4', } ] header, datarows = format_dictlist(dictlist, ['label1', 'label4']) # results in header = ['label1', 'label4'] datarows = [['value-1,1', 'value-1,4'], ['value-2,1', 'value-2,4']] } """ def dict_to_entry(dct): """ Convert dictionary to a list for a csv row """ relevant_items = [(k, v) for (k, v) in dct.items() if k in features] ordered = sorted(relevant_items, key=lambda k_v: header.index(k_v[0])) vals = [v for (_, v) in ordered] return vals header = features datarows = list(map(dict_to_entry, dictlist)) return header, datarows
e9e6e27fd698a6eabe7b7ceb9794d295c9fb2e42
554,973
import re def to_address(text): """ Convert address text with possible leading '#' to an interger address value. :param str text: Address text to convert :returns: Integer address or None if not a valid address """ if isinstance(text, int): return int(text) if isinstance(text, str): try: value = int(re.sub(r'^#', '', text.strip())) except ValueError: return None return value return None
ef2510c5746dad8bd6bee1e9e470b1cb5241921c
287,492
def has_group(user, group_name): """Checks whether a user is in a specific group. Args: group_name(str): a string representation of a group's name Returns: boolean: True or False depending on whether user belongs to a group. """ if user.is_superuser: return True else: return user.groups.filter(name=group_name).exists()
da1631314d4a09ea10e31f8b952fffe182d07705
540,598
import math def C_fingas_corr(C, thickness): """ Returns the constant C used in fingas model corrected with the slick thickness, used if the slick is less than 1.5 mm source : (Fingas, 2015) Parameters ---------- C : Fingas constant thickness : Slick thickness [m] """ if thickness > 1.5 / 1000: print("Slick thickness is more than 1.5 mm, correction not needed") return C + 1 - 0.78 * math.sqrt(thickness/1000)
a1fa0a96a2d54bbf7919b6f9fa87f94d028eaa51
409,359
def apply_to_feature(feature_df,groupby_func_name=None,function=None): """ Apply a function to the entries for each feature. feature_df ... dataframe with index (chrom, feature_name, pos) (Such as the output of data_per_feature()) groupby_func_name ... name of the function of the groupby object to apply to the data This is faster than applying a function object. function ... alternatively: function object to apply """ groups = feature_df.groupby(lambda idx: idx[1]) if groupby_func_name is not None: return getattr(groups,groupby_func_name)() elif function is not None: return groups.apply(function) else: raise ValueError("Either groupby_func_name or function have to be given.")
4457641597303e2b422f84840c6e6fd2446b9c74
47,366
def set_d_type(x, d_type): """Sets the d_type of a numpy array.""" if not isinstance(x[0, 0], d_type): x = x.astype(d_type) return x
d3fa6619745f7e7f06fa9d9eba5f4ad8158eff33
422,250
def calc_rate(rate, rate_long, maturity): """Approximate a current interest rate. Permforms linear interpolation based on the current 1-year and 10-year rates and the maturity of the bond. Parameters ---------- rate : float 1-year interest rate. rate_long : float 10-year interest rate. maturity : int Maturity of the bond in years. Returns ------- float Approximated interest rate. """ return rate + (rate_long - rate)*(maturity - 1) / 9
c9a92d3df99697e281ba34e44b38678a5a970123
198,297
from typing import Counter def chars(lines, coverage= 0.9995): """returns a string containing the most frequent types of characters which cover the strings in `lines`, ordered by their ranks. rank 0 is rigged to always be the whitespace. """ char2freq = Counter(char for line in lines for char in line) total = sum(char2freq.values()) cover = char2freq[" "] del char2freq[" "] chars = [" "] for char, freq in char2freq.most_common(): if coverage <= (cover / total): break chars.append(char) cover += freq return "".join(chars)
c6feb25cb8b8f546bf1d90c685bb1e089979de69
420,733
def validation_error(exc, request): """Handle a ValidationError.""" request.response.status_int = exc.status_int return {"error": exc}
bde482b980e3c19833d7c0d727127792f6137416
470,431
import torch def correct(output, target, topk=(1,)): """Computes how many correct outputs with respect to targets Does NOT compute accuracy but just a raw amount of correct outputs given target labels. This is done for each value in topk. A value is considered correct if target is in the topk highest values of output. The values returned are upperbounded by the given batch size [description] Arguments: output {torch.Tensor} -- Output prediction of the model target {torch.Tensor} -- Target labels from data Keyword Arguments: topk {iterable} -- [Iterable of values of k to consider as correct] (default: {(1,)}) Returns: List(int) -- Number of correct values for each topk """ with torch.no_grad(): maxk = max(topk) # Only need to do topk for highest k, reuse for the rest _, pred = output.topk(k=maxk, dim=1, largest=True, sorted=True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.item()) return res
8608bc5f555bdde96a021347fd32a1f0179b03cf
643,059
def check_sheet_cols(name): """ Callable mini-function passed to pd.read_excel(usecols=function). Grab the first column to use as an index, then all columns starting with column 4. """ return True if name == 0 or name >= 4 else False
b6fe4eda2c45d08cce9dec7a202d43512576c672
100,034
def split_mapping_by_keys(mapping, key_lists): """Split up a mapping (dict) according to connected components Each connected component is a sequence of keys from mapping; returned is a corresponding sequence of head mappings, each with only the keys from that connected component. """ mappings = [] for seq in key_lists: mappings.append(dict((head_id, value) for head_id, value in list(mapping.items()) if head_id in seq)) return mappings
1bdccf60c9073fff0dc3152c32b000e5233e095c
340,344
def vtime2obspytime( vtime ): """ Converts valve time string to UTCdatetime (an obspy object). Parameters ---------- vtime: list List of strings of valve times (yyyymmddHHMMSS). Outputs --------- obspytime: list List of UTCdatetime objects. """ obspytime = [nowtime.strptime(nowtime, '%Y%m%d%H%M%S') for nowtime in vtime] return obspytime
28f7871a4dd9fc7b4dca65488c35db21030506ee
273,198
import math def select_from_menu(title, menuEntries): """ Prompt user to select from an on-screen menu. If the option list contains only a single option it will be auto-selected. Args: title: The title string. menuEntries: The list of options. Returns: The selected list index, or None if no selection made. """ assert len(menuEntries) > 0 # The caller is responsible for handling this case if len(menuEntries) == 1: print("\nSelect a %s:" % title) print(" Auto-selected %s" % menuEntries[0]) return 0 selection = None while True: try: # Print the menu print("\nSelect a %s:" % title) countW = int(math.log10(len(menuEntries))) + 1 message = " %%%uu) %%s" % countW for i, entry in enumerate(menuEntries): print(message % (i + 1, entry)) print(message % (0, "Exit gator_me.py")) # Process the response response = int(input("\n Select entry: ")) if response == 0: return None elif 0 < response <= len(menuEntries): selection = response - 1 break else: raise ValueError() except ValueError: print(" Please enter an int in range 0-%u" % len(menuEntries)) print("\n Selected %s" % menuEntries[selection]) return selection
f0ad904cc4b78ed5142857596f60a216742542f9
462,225
def best_model_compare_fn(best_eval_result, current_eval_result, key): """Compares two evaluation results and returns true if the second one is greater. Both evaluation results should have the value for key, used for comparison. Args: best_eval_result: best eval metrics. current_eval_result: current eval metrics. key: key to value used for comparison. Returns: True if the loss of current_eval_result is smaller; otherwise, False. Raises: ValueError: If input eval result is None or no loss is available. """ if not best_eval_result or key not in best_eval_result: raise ValueError(f'best_eval_result cannot be empty or key "{key}" is ' f'not found.') if not current_eval_result or key not in current_eval_result: raise ValueError(f'best_eval_result cannot be empty or key "{key}" is ' f'not found.') return best_eval_result[key] < current_eval_result[key]
43947b3db0643d2ae4886cb2cb85f7393e1f9aa5
101,944
def get_extrema(list): """Returns the max and min x and y values from a list of coordinate tuples in the form of (min_x, max_x, min_y, max_y).""" max_x = max(list,key=lambda item:item[0])[0] max_y = max(list,key=lambda item:item[1])[1] min_x = min(list,key=lambda item:item[0])[0] min_y = min(list,key=lambda item:item[1])[1] return (min_x, max_x, min_y, max_y)
16072e44eb6c8ead2e2726b888a59d97f96703a4
479,294
def best_validation_rows(log_df, valid_col='valid_accuracy', second_criterion='iterations_done'): """ Takes a dataframe created by scripts/logs_to_dataframe.py and returns a dataframe containing the best-validation row for each log. """ return log_df.sort_values([valid_col,second_criterion],ascending=False).drop_duplicates(['log'])
9541adb6653a93bfe0385bd24beedf80b065dde7
15,114
def decode(byte_data): """ Decode the byte data to a string if not None. :param byte_data: the data to decode """ if byte_data is None: return None return byte_data.decode()
c773802dd490ca32de7542366c49487e16a411e0
62,466
from typing import Any from typing import Match import re from textwrap import dedent def formatter(string_to_be_printed: str, **kwargs: Any) -> str: """ Perform recursive string formatting on a string. Any keywords enclosed in curly quotation marks are expanded using the keyword arguments passed into the function with a few details: * The formatter is applied recursively to the expanded string. E.g., formatter("“a”", a="expanded “b”", b="expanded c") returns 'expanded expanded c'. * If a keyword is a comma-separated list like “a, b, c”, then each of the keywords "a", "b", and "c" are expanded and the results of joined with intervening commas. If any expansion results in the None object, the formatter acts as if that term were not there. E.g., formatter("“a, b, c”", a="expanded a", b=None, c="expanded c") returns 'expanded a, expanded c'. * Any keyword can contain a ':' in which case the Python string formatting applies, e.g., “a:.6f” would look for 'a' in the keyword arguments and expanded the floating point number to six decimal places. formatter("“a:.3f, b:3d”", a=1.23456, b=7) returns '1.235, 007' Finally, the returned string is unindented and stripped of whitespace at either end. """ def repl(m: Match[str]) -> str: keyword = m.group(1) retval = [] for x in keyword.split(','): add_space = x and x[-1] == ' ' x = x.strip() if x == '': retval.append('') continue if kwargs[x.split(':')[0]] is not None: y = str(('{' + x + '}').format(**kwargs)) if add_space: y += ' ' retval.append(y) return ", ".join(retval) try: retval = re.sub(r"“(.+?)”", repl, dedent(string_to_be_printed)).strip('\n') except KeyError as e: raise Exception(f"No key \"{e.args[0]}\" found in {kwargs} for formatted string " f"{string_to_be_printed}.") from None if '“' in retval: return formatter(retval, **kwargs) return retval
e89e18958f3aef81119e3218145724dceaf4d48a
538,681
def create_records_versions_bp(app): """Create records versions blueprint.""" ext = app.extensions["invenio-rdm-records"] return ext.records_versions_resource.as_blueprint( "bibliographic_records_versions_resource" )
9d865a4b7aa0033ae695aed5faf16c08387f3aec
379,446
def format_msg(sym, msg): """ Formats console message. """ return ' {} {}'.format(sym, msg)
12b0df2c139a0847571d09eefe3d8fa6506c69b6
368,387
def dash_to_mul(input_string): """Replace '-' with '*' in input_string.""" return input_string.replace("-", "*")
c868a014aacbbdceddb28cc9e5ada0ae7ef8a930
189,683
def upload_source_path(instance, filename): """ Get the path to upload the file to. To avoid a lot of files in a single directory, nests within project. """ return "projects/{project}/sources/upload-{id}-{filename}".format( project=instance.project.id, id=instance.id, filename=filename )
924f0e341a4b6d98d4a438425ede18f3b50adde4
324,025
import operator def get_isa_extensions(instruction_form): """Returns a hashable immutable set with names of ISA extensions required for this instructions form""" return frozenset(map(operator.attrgetter("name"), instruction_form.isa_extensions))
710006b73ea1875f18c4ce4222b82908f84a9bdb
222,021
def organize_combinations(attribute_names, attribute_combinations): """Organise the generated combinations into list of dicts. Input: attribute_name: ["latency", "reliability"] attribute_combinations: [[1,99.99], [2,99.99], [3,99.99], [1,99.9], [2,99.9], [3,99.9]] Output: combinations = [{'latency': 1, 'reliability': 99.99}, {'latency': 2, 'reliability': 99.99}, {'latency': 3, 'reliability': 99.99}, {'latency': 1, 'reliability': 99.9}, {'latency': 2, 'reliability': 99.9}, {'latency': 3, 'reliability': 99.9} ] """ combinations = [] for combination in attribute_combinations: comb = {} for (name, value) in zip(attribute_names, combination): comb[name] = value combinations.append(comb) return combinations
b07dcb6b2ce589ce942b3e43b0e7075a54cb5d37
188,887
from typing import Dict def is_call_status_update(item: Dict) -> bool: """Checks if a dynamoDB Stream item is a call status update event""" return item.get("EventType") in [ "START_TRANSCRIPT", "CONTINUE_TRANSCRIPT", "CONTINUE", "END_TRANSCRIPT", "TRANSCRIPT_ERROR", "ERROR", "END", "ADD_CHANNEL_S3_RECORDING_URL", ]
c02e61c9417b69cad2c397346963e3dd3ef6af0c
283,532
def hdu_get_time(hdu, time_format='bmjd'): """ Will be used as a key function for the list.sort() or sorted() functions. Example, hdus.sort(key=hdu_fits_by_time) where hdus is a list of HDU objects, will call hdu_by_time() on each element in the list, and then sort the elements according to the value returned from the key function, that is in this case hdu_by_time(). Parameters ---------- hdu: HDU object The HDU object which is an element in the list that is to be sorted. time_format: str, optional The time format you want to sort by, even though it should not matter. Returns ------- float It's the header entry BMJD_OBS (Barycentric Julian Date of observation), which will then be used as the comparison attribute of each element in the list to sorted. If a different time format is specified using the 'time_format' keyword, then the returned value will be the corresponding header value. """ format_to_kwrd = { 'bmjd': 'BMJD_OBS', 'hmjd': 'HMJD_OSB', 'mjd': 'MJD_OBS', 'utc': 'UTCS_OSB', 'date': 'DATE_OBS', 'dce': 'ET_OBS' } if format_to_kwrd.get(time_format): return hdu.hdr[format_to_kwrd.get(time_format)] else: return hdu.timestamp
d51f06b584eb2f26ede7a002eb44dd65e331bfbd
644,394
import tempfile import json def create_credential_tmp_file(credentials: dict) -> str: """ Given a credentials' dict, store it in a tmp file :param credentials: dictionary to store :return: path to find the file """ with tempfile.NamedTemporaryFile(delete=False) as fp: cred_json = json.dumps(credentials, indent=4, separators=(",", ": ")) fp.write(cred_json.encode()) return fp.name
291e7a286cc8473d9bffc9b9a45929a69fa39cad
360,165
def simplify_DFA(states, alphabet, transitions, initialState, finalStates): """ Return given DFA with every transition to initialState removed for clarity """ new_transitions = [] for from_s, to_s, s in transitions: if to_s != initialState: new_transitions.append( (from_s, to_s, s) ) return (states, alphabet, new_transitions, initialState, finalStates)
c40591c910edea249b4b8bba27637a0f7114336a
261,124
from typing import Dict from typing import Optional def org_and_count_value_from_sparql_response(sparql_response: Dict) -> Optional[Dict]: """Map sparql-response to dict with orgId and count value.""" org = sparql_response.get("organizationNumber") org_value = org.get("value") if org else None count = sparql_response.get("count") count_value = count.get("value") if count else None return ( {"org": org_value.strip().replace(" ", ""), "count": count_value} if org_value and count_value else None )
9f02838656eb00f4c07ca960565507f95523781e
332,702
import unicodedata def normalize_text(text): """Normalize unicode string to NFD form.""" return unicodedata.normalize('NFD', text)
95ee89f0f938c4b14afe71917d90e0bfc0f77d41
494,767
def values_from_analysis(line): """ Utility method to obtain the instruction count values from the relative line in the final analysis output text file. :param line: string from log file :return: list of values """ values = line.strip().split('\t')[1] values = values.translate({ord(c): None for c in '[],'}).split() return [int(val) for val in values]
14e12b0f7788909bd5b4aa7ae92e911defc76a04
225,195
def date_range_to_seconds(datetime1, datetime2): """ Computes the number of seconds between two datetime """ return (datetime2 - datetime1).total_seconds()
d4f3ae25ccd935b9f2757e1005e4d1935ab31907
611,074
def keep_file(gcov): """ Some files should not be considered in coverage. Files to skip include system files (in /usr), the unit tests themselves (in tests/ directories) and the unit test infrastructure (in external_codes/) """ source_file = gcov.tags['Source'] path_elements = source_file.split('/') # Only looking at specific depths of directories. This might need # to be expanded, for example if unit test directories contain # subdirectories. try: if path_elements[-2] == 'tests': #print 'Unit test, skipping' return False if path_elements[-3] == 'external_codes': #print 'External code, skipping' return False except IndexError: pass if source_file.startswith('/usr/'): return False return True
66fbab9b92ae1b0d7818562b9becd1fbe1b8946e
413,291
def shell_sort(lst: list): """Shell sort implementation.""" counter = 0 lst_copy = lst length = len(lst_copy) interval = length // 2 while interval > 0: for i in range(interval, length): temp = lst_copy[i] j = i counter += 1 while j >= interval and lst_copy[j-interval] > temp: if lst_copy[j-interval] > temp: counter += 1 lst_copy[j], lst_copy[j - interval] = lst_copy[j-interval], lst_copy[j] j -= interval else: break lst_copy[j] = temp interval = interval // 2 return counter
e6bb351165bbf82af134c8b9fb59a0771ef4c760
274,183
def escape(keyword): """ Escape the backtick for keyword when generating an actual SQL. """ return keyword.replace('`', '``')
50fbd9098cb8af1f1ca9128a9cfe751f78c52d24
597,478
def breakable_speed(end_speed, trajectory): """ Computes the max speed that can break to reach *end_speed* Args: end_speed: The speed at the end of the trajectory in km/h (num) trajectory: The distance over which to descelerate in m (num) Returns: The maximum absolute speed at the beginning of the trajectory that ensures a desceleration to *end_speed* """ # The car is about 5m long, it descelerated from 280 to 0 # in about 12-14 times its length, which would be 60-70m. # Assuming a linear decrease in speed, the maximum rate # of desceleration is therefore -280/65 = -4.31 km/h/m. # To be safe, we use half that: -2.15 return trajectory * 2.15 + end_speed
0c24fb8a6e0a67488d4e7532b1ad505613395698
331,754
import math def build_old_mild_beliefs(num_agents, low_pole, high_pole, step): """Builds mildly polarized belief state, in which half of agents has belief decreasing from 0.25, and half has belief increasing from 0.75, all by the given step. """ middle = math.ceil(num_agents / 2) return [max(low_pole - step*(middle - i - 1), 0) if i < middle else min(high_pole - step*(middle - i), 1) for i in range(num_agents)]
d79de923597ef5c786d7036d36fbd8a5dcc87968
549,142
def normalization(data, dmin=0, dmax=1, save_centering=False): """ Normalization in [a, b] interval or with saving centering x` = (b - a) * (xi - min(x)) / (max(x) - min(x)) + a Args: data (np.ndarray): data for normalization dmin (float): left interval dmax (float): right interval save_centering (bool): if True -- will save data centering and just normalize by lowest data Returns: np.ndarray: normalized data """ # checking on errors if dmin >= dmax: raise Exception("Left interval 'dmin' must be fewer than right interval 'dmax'") if save_centering: return data / abs(min(data)) else: min_x = min(data) max_x = max(data) return (data - min_x) * (dmax - dmin) / (max_x - min_x) + dmin
acfa7aaae1bb7eb5752751f5c929ddb7868ccf49
703,816
def add_lyrebird_seq(lyrebird, sequence, taxon, inner_name, inner_family, priority=100, repbase_name=None, proofs=None): """ Simply add a sequence to lyrebird db. :param lyrebird: lyrebird object :param sequence: sequence :param taxon: taxon :param inner_name: inner_name :param inner_family: inner_family :param priority: priority, default 100 :param repbase_name: repbase name, default None :param proofs: proofs dictionary """ full_name = ":".join((sequence, inner_name, inner_family, taxon)) if not proofs: proofs = {} data = {'sequence': sequence, 'full_name': full_name, 'priority': priority, 'family_name': inner_family, 'file_name': "lyrebird", 'inner_name': inner_name, 'repbase_name': repbase_name, 'taxons': taxon, 'name_taxon': "%s:%s" % (inner_name, taxon), 'meta': proofs, } obj = lyrebird.add_lyrebird_seq(data) return obj
73ee1f97a0127e1d36e8550faee975bec8c1c08b
318,159
def model_fn_example(dataset_tensor, batch_size, evaluation): """ Example of the signature of the function that creates the model used in the Trainer and Evaluator. :param tf.Tensor dataset_tensor: the tensor created from the dataset :param int batch_size: the batch size for the model, the same used in the dataset. :param bool evaluation: True if this model is for evaluation, False if it is for training. :return: returns the graph data, this is what session.run will execute during the training, for the test it will only execute the summary operator. """ graph_data = None return graph_data
d430669078457f803647bd67eee02dd3317bc542
251,733
def is_terminal(subtree): """True if this subtree consists of a single terminal node (i.e., a word or an empty node).""" return not isinstance(subtree, list)
e8300ade3b119297022650ceac791a1c117700e3
247,347
def is_absolute_url(path_or_url: str): """ Checks if the provided string is a path or an absolute URL (prefixed by 'http' or 'https'). Parameters ---------- path_or_url The path or URL to check. Returns ------- bool True if the provided string is an absolute URL, False otherwise. """ return path_or_url.startswith('http')
71229b053eafa44be7d739601cbfebf4d30a3e71
135,602
def is_permutation(s, t): """ Returns True iff s is a permutation of t. Clarifications to ask the interviewer: - How are the strings encoded? ASCII? Unicode? - What kinds of characters are used? Alphanumeric? Punctuation? Here, we assume that all strings are encoded with ASCII (256 chars). Recall that the ord() function takes as input an 8-bit ASCII string of length one and returns the integer value of the byte in [0, 255]. Otherwise, if the string is encoded with Unicode (2^16 = 65536 chars), then the ord() function will return the integer representing the Unicode code point of the character in [0, 65535]. """ #--------------------------------------------------------------------------- # Algorithm 1: Cross off matching characters from strings. # O(n^2) time, O(n) space. #--------------------------------------------------------------------------- # Algorithm 2: Sort both strings and compare one-by-one. # O(n log n) time, O(n) space. #--------------------------------------------------------------------------- # Algorithm 3: Compare character counts (implemented below). # O(n) time, O(n) space. #--------------------------------------------------------------------------- MAX_CHARS = 256 char_counts = [0] * MAX_CHARS for c in s: char_counts[ord(c)] += 1 for c in t: char_counts[ord(c)] -= 1 return not any(char_counts)
7ec4672e6b5e4d9cd0f70cec806908198259300d
441,184
def compile_partitions(datapkg_settings): """ Given a datapackage settings dictionary, extract dataset partitions. Iterates through all the datasets enumerated in the datapackage settings, and compiles a dictionary indicating which datasets should be partitioned and on what basis when they are output as tabular data resources. Currently this only applies to the epacems dataset. Datapackage settings must be validated because currently we inject EPA CEMS partitioning variables (epacems_years, epacems_states) during the validation process. Args: datapkg_settings (dict): a dictionary containing validated datapackage settings, mostly read in from a PUDL ETL settings file. Returns: dict: Uses table name (e.g. hourly_emissions_epacems) as keys, and lists of partition variables (e.g. ["epacems_years", "epacems_states"]) as the values. If no datasets within the datapackage are being partitioned, this is an empty dictionary. """ partitions = {} for dataset in datapkg_settings['datasets']: for dataset_name in dataset: try: partitions.update(dataset[dataset_name]['partition']) except KeyError: pass return partitions
df65541171f77e89a037217d0a947f8111082e6e
523,115
def income_tax(pre_tax_income): """ Returns the total amount of tax at a rate of 35% in any amount over the free tax allowance of 11000£ :param pre_tax_income: The yearly income before tax. :return: The amount of tax to be paid. """ tax_allowance = 11000 tax_rate = 0.35 # Calculate the tax to be paid on the taxable income that is greater than the free tax allowance. if pre_tax_income <= tax_allowance: return 0 else: return (pre_tax_income - tax_allowance) * tax_rate
82f08dadf512f441737d7ea3a24aafc8009f5a8b
180,031
import re def match_in(key): """Is the key the 'in' keyword""" rx = re.compile("^_?([iI][nN])_?$") match = rx.match(key) if match: return True return False
e4a50a28e53f7acaad8d0bb9c48fe9e0d5ff64d2
621,916
def find_start_end_dates(dates1, dates2): """Find start and end dates between lists (or arrays) of datetime objects that do not have the same length. The start date will be the later of two dates. The end date will be the earlier of the two dates. :param dates1: List or array of datetime objects :type dates1: list or numpy.ndarray :param dates2: List or array of datetime objects :type dates2: list or numpy.ndarray :returns: Tuple of start date and end date :rtype: tuple :raises: ValueError for non overlapping dates """ # convert dates to sets for set intersection date1_set = set(dates1) date2_set = set(dates2) if date1_set.intersection(date2_set): # start date if dates2[0] > dates1[0]: start_date = dates2[0] else: start_date = dates1[0] # end date if dates2[-1] > dates1[-1]: end_date = dates1[-1] else: end_date = dates2[-1] return start_date, end_date else: raise ValueError("No overlapping dates.")
4bf80b329e88891560f8653bc46ed5dc00ab8261
434,761
import re def format_title(book_title): """ Return formatted book title: "Actual Book Title! (Series identifier #3)" -> "Actual Book Title!" "History of 4D Fish Slapping [Silly, Part 4]" -> "History of 4D Fish Slapping" Along with CSV formatting """ book_title = ' '.join(book_title.split()).replace('&amp;', '&') book_title = re.sub(r'(\(|\[)(.*)(\)|\])','', book_title) book_title = '"' + book_title.replace('"', '""') + '"' if book_title[-2:-1] == ' ': book_title = book_title[:-2] + '"' return book_title
4528925679d3d54fef889a6032c571f272075639
373,903
def GetGuestPolicyUriPath(parent_type, parent_name, policy_id): """Return the URI path of an osconfig guest policy.""" return '/'.join([parent_type, parent_name, 'guestPolicies', policy_id])
a30934a84e8e87b53eaddc8667a81329a527aa0c
493,770
def lldb_find_variable(frame, name): """ Find a variable. If the variable is not found, try looking for it in parent frames. """ var = frame.FindVariable(name) if var.IsValid(): return var thread = frame.GetThread() frame_id = frame.GetFrameID() if frame_id == thread.GetNumFrames(): raise ValueError("Variable not found (name=%s)" % name) return lldb_find_variable(thread.GetFrameAtIndex(frame_id + 1), name)
dae43e8759ed562ca227108df1c47977e0395688
203,435
def _find_depth(node, current_depth): """ Recursive function traversing a tree and returning the maximum depth. """ if node.left == -1 and node.right == -1: return current_depth + 1 elif node.left != -1 and node.right == -1: return _find_depth(node.l, current_depth + 1) elif node.right != -1 and node.left == -1: return _find_depth(node.r, current_depth + 1) elif node.right != -1 and node.left != -1: return max(_find_depth(node.left, current_depth + 1), _find_depth(node.right, current_depth + 1))
1635223fafb69961185adcfc606ae4e16813263e
388,298
def is_sorted(l): """Checks if the list is sorted """ return all(l[i] <= l[i+1] for i in range(len(l)-1))
548e85d98ee7873a64f14c38376059f2300a564b
61,575
def get_insight(df): """ Get insight from a youtube_history dataframe transformed by transform() Parameters ---------- df : DataFrame A youtube_history dataframe transformed by transform() Returns ------- df_info : dictionary Contains informations about a specific youtube_history dataframe transformed by transform() """ df_info = {} df_info['period'] = { "from" : min(df['year']), "to" : max(df['year']) } df_info['nbr_watched'] = df.shape[0] df_info['first'] = df.iloc[-1, df.columns.tolist().index("titleUrl")] df_info['last'] = df.iloc[0, df.columns.tolist().index("titleUrl")] return df_info
86e586fe1cdad77d0f3248585c4b2feb8716503f
654,821
def nag_function_is_input(name): """ Check wether a NAG function name is of type input """ if name[0:1] == 'i': return True else: return False
0bc4a63036ea23b29ea7edaa65fbb62bf72d1c98
338,176
def is_mobile_app(request): """ Detects requests from mobile application (It will change some view)""" user_agent = request.headers.get("User-Agent") return "mobile-app-web-view" in user_agent
d3f54acf42a724072af6f264a08f43ffb77aacda
445,935
def get_device_mac(run_command_fn, dev_name, netns_name=None): """Find device MAC address""" if netns_name: command_prefix = "ip netns exec %s " % netns_name else: command_prefix = "" (output, _) = run_command_fn("%scat /sys/class/net/%s/address" % (command_prefix, dev_name)) return output[0]
19f9a745f107ce2f00717d783e20cfcfe25fe19a
668,971
def valid_input(prompt, options): """Validates user input, repeats the prompt on invalid valid_input. Args: prompt: A str representing the prompt a player sees options: A list of strs representing the allowed inputs Returns: response: A str representing the players choice """ while True: response = input(prompt) if response in options: return response
d6c01765145e1c942fefb6dd27f0e4b772a908b2
457,743
import math def sine_easeout(pos): """ Easing function for animations: Sine Ease Out """ return math.sin(pos * math.pi / 2)
524169e7bd447bfd38c95fc2171e4a33d1508c46
554,655
def transform(func, data): """Apply <func> on each element in <data> and return the list consisting of the return values from <func>. >>> data = [[10,20], [30,40], [50,60]] ... chart_data.transform(lambda x: [x[0], x[1]+1], data) [[10, 21], [30, 41], [50, 61]] """ out = [] for r in data: out.append(func(r)) return out
06fc74738292e3fa191d28212b68a60325ee76e1
370,592
def str2list(string): """Returns list contained in a string. Args: string (str): A string containing a list. Returns: (list): inferred list from the string. """ # Removing brackets "[" "]" from the string string = string[1:-1] # Splitting at "," output = string.split(",") # Removing trailing, leading space and residue ' ' characters output = [ string.strip()[1:-1] for string in output ] return output
39289d0aabb3e391f25ecd0040e759ccf33b5d5b
145,310
def getLimOrderValue(odds, volume): """ Calculate max price matched (to lay) and min (to back) in order to place a limit order """ if volume>0: #BACK odds_back = odds[odds[:,1]>0] odds_back = odds_back[odds_back[:,0].argsort()] odds_back = odds_back[::-1] odds_back[:,1] = odds_back[:,1].cumsum(axis=0) pos = odds_back[:,1]>volume lim_value = odds_back[pos][0][0] else: # LAY odds_lay = odds[odds[:,1]<0] odds_lay = odds_lay[odds_lay[:,0].argsort()] odds_lay[:,1] = odds_lay[:,1].cumsum(axis=0) pos = odds_lay[:,1]<volume lim_value = odds_lay[pos][0][0] return lim_value
e1d0c08d47d692a563572afa49dc829638c32de1
577,976
def GetColumn(data, index): """Extracts the given column from the dataset. data: sequence of rows index: which column Returns: map from int year to float datum """ res = {} for row in data: try: year = int(row[0]) res[year] = float(row[index]) / 10.0 except ValueError: pass return res
be56b64d447f393c7c0c929f56058d2d3ce5a400
543,058
def make_location(location, protocol): """ Creates location object given a location and a protocol. :param str location: file path :param str protocol: protocol, for now only accepting `uri` :return: the location subconfiguration :rtype: obj :raises ValueError: if a protocol other than `uri` is used. """ # elif protocol == "localPath": # return { "uri": location, "locationType": "LocalPathLocation"} if protocol == "uri": return {"uri": location, "locationType": "UriLocation"} else: raise TypeError(f"invalid protocol {protocol}")
1b8350f5c71017fcdfed90a7965d3c4dbf219785
551,460
def coalesce_repeated_switches(cmd): """Combines known repeated command line switches. Repetition of a switch notably happens when both per-test switches and the additional driver flags specify different --enable-features. For instance: --enable-features=X --enable-features=Y Conceptually, this indicates to enable features X and Y. However Chrome's command line parsing only applies the last seen switch, resulting in only feature Y being enabled. To solve this, transform it to: --enable-features=X,Y """ def parse_csv_switch(prefix, switch, values_set): """If |switch| starts with |prefix|, parses it as a comma-separated list of values and adds them all to |values_set|. Returns False if the switch was not a match for |prefix|.""" if not switch.startswith(prefix): return False values = switch[len(prefix):].split(',') for value in values: values_set.add(value) return True def add_csv_switch(prefix, values_set, result): if len(values_set) == 0: return sorted_values = sorted(list(values_set)) result.append('%s%s' % (prefix, ','.join(sorted_values))) result = [] ENABLE_FEATURES_FLAG = '--enable-features=' DISABLE_FEATURES_FLAG = '--disable-features=' enabled_set = set() disabled_set = set() for switch in cmd: if parse_csv_switch(ENABLE_FEATURES_FLAG, switch, enabled_set): continue if parse_csv_switch(DISABLE_FEATURES_FLAG, switch, disabled_set): continue result.append(switch) # Append any coalesced (comma separated) flags to the end. add_csv_switch(ENABLE_FEATURES_FLAG, enabled_set, result) add_csv_switch(DISABLE_FEATURES_FLAG, disabled_set, result) return result
6ad19dd99adf2faf4ed6719b316c0d83dcb1e759
116,410
def find_vswitch_id_for_name(name, vswitch_map): """ Returns the vSwitch K2 id for a given vSwitch Name :param name: The vSwitch Name :param vswitch_map: The vSwitch map from the HMC Topo :returns: vSwitch K2 ID """ for item in vswitch_map.iteritems(): vswitch_id = item[0] vswitch_k2_obj = item[1] vswitch_k2_name = vswitch_k2_obj.element.findtext('SwitchName') if vswitch_k2_name == name: return vswitch_id return None
200cb64fba04a4704626a35c2a62ea447955903e
393,639
def get_uid_search_xpath(uid): # type: (str) -> str """Method to get the XPath expression for a UID that might contain quote characters. Parameters ---------- uid : str Original UID string with XPath expression. Returns ------- str Processed XPath expression to escape quote characters using "concat()". """ if '"' in uid or '&quot;' in uid: uid_concat = "concat('%s')" % uid.replace('&quot;', "\',\'\"\',\'").replace('"', "\',\'\"\',\'") return './/*[@uID=' + uid_concat + ']' else: return './/*[@uID="' + uid + '"]'
f3626595b13a9a9cae44d7f5cb9729602e902db9
693,842
def is_audit_field(elem, audit_field): """ Checks if the tag's k-attribute is the field to be audited """ return elem.attrib['k'] == audit_field
266e8218daf6ac5a5ab3c80e75523535552bb73a
398,622
def postpend_str(base_word: str, postpend: str, separator: str='') -> str: """Appends str:postpend to str:base_word with default str:separator, returns a str """ return f'{base_word}{separator}{postpend}'
6cf5c2e0fbd6f79e84c3b26fc27590904293b9eb
656,499
def get_level_of_theory(inp_path): """ This helper method returns level of theory given a quantum input file. Currently it supports Gaussian inputs only. """ level_of_theory_dict = { "um062x/cc-pvtz": "M06-2X/cc-pVTZ" } with open(inp_path, 'r') as f_in: for line in f_in.readlines(): if '# opt freq ' in line: level_of_theory_in_file = line.split(' ')[3].strip().lower() level_of_theory = level_of_theory_dict[level_of_theory_in_file] return level_of_theory else: raise Exception('Can not find level of theory in {0}.'.format(inp_path))
abcffed64fa31c4a1614e948586dc444df3a7d14
557,224
import csv def dict_from_tsvfile(filename): """open a tab separated two column file, return it as a str->str dict""" d = {} with open(filename) as csvfile: reader = csv.reader(csvfile, delimiter='\t') for row in reader: d[row[0]] = row[1] return d
cece7b5a06cee4bf5c8082f56d2f1e235d021497
621,660
from datetime import datetime def prep_datetime(dt): """Prepare datetime for the i14y API. If the passed value is a Python datetime object, convert it to an ISO 8601 string. If None, return None. Otherwise raises a ValueError. """ if isinstance(dt, datetime): return dt.isoformat() if dt is None: return None raise ValueError(dt)
d91d3dc32e70e4c2c88c142743660d6ee087f1f1
161,276
import pickle def _encode(value): """Convert a Python object to work with memcached.""" return pickle.dumps(value)
3cb4ae05e655780c52e70d0f1084735ad1e0b291
524,903
import yaml def _plotit_loadWrapper(fpath): """ yaml.safe_load from path """ with open(fpath) as f: res = yaml.safe_load(f) return res
3f21044063b61dbba8dc12bb0cc9d9517b7323ee
205,396
def makeWheel(population): """Helper for the RWS in creating a proportional distribution among elements in a given array Args: population(list): List of int/float Returns: list: The generated wheel """ wheel = [] total = sum([p for p in population]) top = 0 for i in range(len(population)): p = population[i] f = p/total wheel.append((top, top+f, i)) top += f return wheel
54eca37b2ce9b9cb86a593a88163cf4b8bf0c572
599,461
def extract_metas(bs4): """Extracting meta tags from BeautifulSoup object :param bs4: `BeautifulSoup` :return: `list` List of meta tags """ meta_tags = [] metas = bs4.select('meta') for meta in metas: meta_content = {} meta_attrs = [ 'charset', 'name', 'content', 'property', 'http-equiv', 'itemprop' ] for attr in meta_attrs: if meta.has_attr(attr): meta_content.update({attr: meta[attr]}) meta_tags.append(meta_content) return meta_tags
2ffb40bccd1c00762d59c85cfb6b0878a1f75a4f
590,136
def _rstrip_location_id(device_dict): """Strips location_id down to base hex value with no trailing zeroes.""" return device_dict['location_id'].split()[0].rstrip('0')
fda90dcc158da0e92c8818adee7ff6dc9852fa6c
606,647
def mag2mom(mw): """Converts magnitude to moment - dyne-cm""" return 10 ** (3.0 / 2.0 * (mw + 10.7))
c1e1ee38b69d4ba07e48fb9c85eab0f2d1ab11c9
240,917
def register_assign_cycles(N, case=0): """ Determine cycles that stem from performing an in-place assignment of the elements of an array. In the following. we cannot naively assign the source index to the dest index, If we assigned the value at index 0 to index 1, the assignment from index 1 to index 3 would be invalid, for example: src: [3, 0, 2, 1] dest: [0, 1, 2, 3] assignment cycles can be broken by using a temporary variable to store the contents of a source index until dependent assignments have been performed. In this way, the minimum number of registers can be used to perform the in-place assignment. Returns ------- list of lists of tuples For example, `[[(0, 2), (2, 0)], [1, 3], [3, 1]]` """ dest = range(N) src = [(N - case + n) % N for n in dest] deps = {d: s for d, s in zip(dest, src) if d != s} for di, d in enumerate(dest): si = src.index(d) if si > di: deps[si] = di cycles = [] while len(deps) > 0: k, v = deps.popitem() cycle = [(k, v)] while True: try: k = v v = deps.pop(k) except KeyError: # Check that the last key we're trying # to get is the first one in the cycle assert k == cycle[0][0] break cycle.append((k, v)) cycles.append(cycle) return cycles
32eae9f1d347de1e520b6f4fc137b4785f76fcc5
203,622
import re def replace_pair(pair, sentences, indices): """Replace all occurrences of a token pair ('ABC', 'XYZ') with a new symbol 'ABC XYZ'""" first, second = pair pair_str = ' '.join(pair) pair_str = pair_str.replace('\\', '\\\\') changes = [] pattern = re.compile(re.escape(first + '\t' + second)) for j, freq in indices[pair].items(): if freq < 1: continue tokens = sentences[j] new_snetence = '\t'.join(tokens) new_snetence = pattern.sub(pair_str, new_snetence) new_snetence = tuple(new_snetence.split('\t')) sentences[j] = new_snetence changes.append((j, new_snetence, tokens)) return changes
4c98aa3be524dd0b9eee50030eb49c12d08a24e8
566,339
def get_header_list(sheet): """ Get a list of header row cell values. :param sheet: :return: Returns a list of values from the first row in the sheet. """ return [c.value for c in sheet.row(0)]
9b9ec77529b8e24296316ab47bf8eadff44ffdf5
618,978
def get_filetypes_keys(ilist): """ Extracts keys as a list of strings given a list of dicts from parsing a .hlsp file. :param ilist: The input list of dicts. :type ilist: list :returns: list - a list of keys as strings. """ return [[*x][0] for x in ilist]
cb42d25db0654c5e73c5fd355bb39ef0f6b00fe6
340,785
def has_material(obj, name): """check if obj has a material with name""" return name in obj.data.materials.keys()
3c8ce0daaacf59b49e486d09266d6bc94f805590
662,885
def is_even(n: int) -> bool: # suggested solution """ Check if a given number is even Using modulo 2, and checking if the remainder is zero """ return n % 2 == 0
e49e3a5bfbf565071d363f6eadcd8604bc0cdfe3
629,426
import math def _selection_size_heuristic(num_samples): """Return size of mini-batch, given size of dataset.""" # Incrase size of mini-batch gradually as number of samples increases, # with a soft cap (using log). # But do not return size larger than number of samples return min(num_samples, int(20.0 * (math.log(num_samples + 10, 2) - math.log(10.0) + 1.0)))
605694af4875ac295ae9dea63b1ebda4308c038a
680,309
def components(pattern): """Return the op, x, and y arguments; x and y are None if missing.""" x = pattern[1] if len(pattern) > 1 else None y = pattern[2] if len(pattern) > 2 else None return pattern[0], x, y
caa7b5265a1377db87a489b10dceec4cd9acd460
461,754
def return_synapse_positions(X): """Filters a NeuroSynapsis matrix and returns only the matrix of synapse positions. # Arguments: X (numpy array): A matrix in the NeuroSynapsis matrix format. # Returns: numpy array: A matrix of size samples x dimensions. """ return X[:,2:5]
9091263674cf6e2b25ba543fb1be8218435f23a0
513,743
import itertools def disjunktna_unija(*skupovi): """Unija skupova, osiguravajući da su u parovima disjunktni.""" for skup1, skup2 in itertools.combinations(skupovi, 2): assert skup1.isdisjoint(skup2) return set().union(*skupovi)
60e2d2b930f83d5e93ba10f0e1f0b1df6b075815
175,727
import urllib3 import certifi def download_file(ctx, path, dest, accept = ""): """ Download a file to a NuvIoT Parameters ---------- ctx: Context Object that defines how this method should call the server to include authentication. path: Path used to make the request, the auth and server information will be used from the ctx object. dest: The full path including the file name and extension of where the downloaded file should be saved. Returns ------- Will return True if the file is download and saved locally, other wise it will return False. """ if ctx.auth_type == 'user': headers={'Authorization': 'Bearer ' + ctx.auth_token} else: headers={'Authorization': 'APIKey ' + ctx.client_id + ':' + ctx.client_token} if(accept != ""): headers['Accept'] = accept url = ctx.url + path print("Downloading file: %s" % url) chunk_size = 65536 http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) r = http.request("GET", url, headers=headers, preload_content=False) if r.status > 299: print('Failed http %d url: %s' % (r.status, url)) print('Headers: ' + str(headers)) print('--------------------------------------------------------------------------------') print() r.release_conn() return False print('Headers: ' + str(r.headers)) print('Headers: ' + str(r.headers["Content-Disposition"])) with open(dest, 'wb') as out: while True: data = r.read(65535) if not data: break out.write(data) r.release_conn() return True
ab0ab1274673fa3c1292da53bee49d12a877e90a
533,069
def divide(value1: int, value2: int) -> float: """ Used to divide the number of cards to check that nothing was lost. Handles division by 0 by returning 0, which is the reciprocal. """ if value1 == value2: # good for 0/0 return 1.0 else: try: div_value = value1 / float(value2) except ZeroDivisionError: div_value = 0. return div_value
afc70043f3a60d2cbca1fce5bc0f49ac6fbd046c
33,154
def get_corepy_output(code, inst): """Take an instruction, and return a hex string of its encoding, as encoded by CorePy""" hex_list = inst.render() hex = "" for x in hex_list: hex += "%02x" % (x) return hex
26816cc8d424bfeb6db9e3a404f22a648c0d0d41
32,605
def _replace_code(code, replacements): """ Replaces code with new code. :param str code: code to replace :param list replacements: list of tuples containing (start, end, replacement) """ new_code = '' index = 0 for start, end, code_string in sorted(replacements): new_code += code[index:start] + code_string index = end new_code += code[index:] return new_code
a664d204c06509c7402c4593018463dfd394c5b0
310,221
def _s(s): """return an empty sentence for None """ return "" if s is None else s
bcfacd0f5fc64ecae3db5033a759bad6fe10b328
456,536
def extract_ip(scan): """ Grabs IP address from the Nmap scan output. """ scanlist = scan.split() ip = scanlist[scanlist.index("report") + 2] return ip
536cc9727f0839d575714a4cead1dcc474026667
437,808
def read_script(file): """ Opens a namelist file within a context manager. Parameters ---------- :param file: string Path to the namelist file you wish to open. :return: file object """ with open(file, 'r') as script: return script.read()
c7e3f4ae9f2f8fcdb32359de06ad974d3c6e5af1
319,933
def get_cont_dist(ins_1, ins_2, norm=2): """ get dimensional distance for continuous data Parameters: ins_1 (nd-array) - array 1 ins_2 (nd-array) - array 2 norm (int) - type of norm use, default is 2 Returns: dist (array) - the dimenional distance between ins_1 and ins_2 """ dist = abs(ins_1 - ins_2)**norm return dist
30c873f6e09b9dc0cb2b435281596c6bb3a65e18
461,147
import pwd def _getuid(user): """Return uid for user.""" return pwd.getpwnam(user).pw_uid
406ae3af4909ed8617274cb3fabe1ea05ef2755a
470,327
def select(P): """ The normal selection strategy. INPUT: - ``P`` -- a list of critical pairs OUTPUT: an element of P EXAMPLES:: sage: from sage.rings.polynomial.toy_d_basis import select sage: A.<x,y> = PolynomialRing(ZZ, 2) sage: f = -y^2 - y + x^3 + 7*x + 1 sage: fx = f.derivative(x) sage: fy = f.derivative(y) sage: G = [f, fx, fy] sage: B = set((f1, f2) for f1 in G for f2 in G if f1 != f2) sage: select(B) (-2*y - 1, 3*x^2 + 7) """ min_d = 2**20 min_pair = 0, 0 for fi, fj in sorted(P): d = fi.parent().monomial_lcm(fi.lm(), fj.lm()).total_degree() if d < min_d: min_d = d min_pair = fi, fj return min_pair
aaf2d7445b8715b9a98013c8c23d4f0dac78fe55
526,055
def _dict_of_targetid(submitid, charid, journalid): """ Given a target of some type, return a dictionary indicating what the 'some type' is. The dictionary's key will be the appropriate column on the Report model. """ if submitid: return {'target_sub': submitid} elif charid: return {'target_char': charid} elif journalid: return {'target_journal': journalid} else: raise ValueError('no ID given')
db4698f0732cd30a116c92d2b6350e798527af70
623,296
def clean_whitespace(df, columns): """ Clean leading/trailing whitespace from specific columns Args: df (table): pandas dataframe columns (list): column labels Returns: dataframe """ df[columns] = df[columns].apply(lambda x: x.str.strip()) return df
29ceeea3ad4784399579a0649e1ae2deb2bc202f
303,315