content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def conditional_decorator(decorator, condition):
"""Checks the condition and if True applies specified decorator."""
def gen_decorator(f):
if not condition:
return f
return decorator(f)
return gen_decorator
|
4ffdf93c40ae3c23475ad447de0d124794ccce81
| 380,276 |
import decimal
def serialize_decimal(amount: decimal.Decimal) -> str:
"""Serialize a decimal value."""
return str(amount)
|
b54e9cc056a09e2e67ee61c03355f0b8b27dd0bd
| 257,393 |
import re
def aide_memoire(s):
"""Replaces all of:
'aid memoire'
'aide memoir'
'aide memoire'
'aide -memoire'
'aide-memoir'
'aide-memoire'
with 'aide memoire'.
"""
pattern = re.compile('([Aa]ide{0,1} {0,1}( |-)[Mm]emoire{0,1})')
return re.sub(pattern, 'aide memoire', s)
|
874d4ac20ca20792484cf28f9e6135d740037828
| 440,509 |
import re
def display_to_origin(display):
"""
from the display value, an stencila article version,
trim it to be the SWH origin value
e.g. for display value
https://elife.stencila.io/article-30274/v99/
return https://elife.stencila.io/article-30274/
"""
if not display:
return None
match_pattern = re.compile(r"^(https://elife.stencila.io/.*?/).*$")
return match_pattern.sub(r"\1", display)
|
1ff22328590dd2926a83406f82a2fd920b7e2f90
| 23,246 |
import collections
def sort_dict(source_dict):
"""Recursive alphabetical sort a nested dict.
Sorts a direct dict child, as well list of dicts.
Args:
source_dict: Nested dict
Returns:
OrderedDict: Sorted alphabetically by key name.
"""
sorted_dict = collections.OrderedDict()
# Alphabetical sort on key.
for key, val in sorted(source_dict.items(), key=lambda t: t[0]):
if isinstance(val, dict):
sorted_dict[key] = sort_dict(val) # Create new OrderedDict
elif isinstance(val, list):
# Sort any child dicts, otherwise skip.
lst = []
for item in val:
if isinstance(item, dict):
item = sort_dict(item)
lst.append(item)
sorted_dict[key] = lst
else:
sorted_dict[key] = val
return sorted_dict
|
06ad26f3553bd1f9ee3605c5452174315dd3aba4
| 464,506 |
import textwrap
def unindent(text: str) -> str:
"""Remove indentation from text"""
return textwrap.dedent(text).strip()
|
035c46a9921a328902f84d71316707f854bf5201
| 688,881 |
def add_tracks_to_playlist(spotify_obj, spotify_username, playlist_id, tracks_ids,
tracks_per_requests=100):
"""Method that adds tracks with given Spotify tracks IDs to Spotify user's playlist
with a given playlist ID. Spotipy.Spotify object is used to add the tracks.
Maximum tracks per request in Spotify API is 100 and the same number is set in the method
by default. Can be changed to a number below 100."""
results = []
for tracks_chunk in [tracks_ids[i:i + tracks_per_requests] for i in
range(0, len(tracks_ids), tracks_per_requests)]:
results.append(spotify_obj.user_playlist_add_tracks(spotify_username,
playlist_id,
tracks_chunk))
return results
|
08383b4a8d74989afecec217159078951eb199c5
| 243,025 |
import io
def build_wsgi_environ(scope, body):
"""
Builds a scope and request body into a WSGI environ object.
This code snippet is taken from https://github.com/django/asgiref/blob
/36c3e8dc70bf38fe2db87ac20b514f21aaf5ea9d/asgiref/wsgi.py#L52
WSGI specification can be found at
https://www.python.org/dev/peps/pep-0333/
This function helps translate ASGI scope and body into a flask request.
"""
environ = {
"REQUEST_METHOD": scope["method"],
"SCRIPT_NAME": scope.get("root_path", ""),
"PATH_INFO": scope["path"],
"QUERY_STRING": scope["query_string"].decode("ascii"),
"SERVER_PROTOCOL": "HTTP/{}".format(scope["http_version"]),
"wsgi.version": (1, 0),
"wsgi.url_scheme": scope.get("scheme", "http"),
"wsgi.input": body,
"wsgi.errors": io.BytesIO(),
"wsgi.multithread": True,
"wsgi.multiprocess": True,
"wsgi.run_once": False,
}
# Get server name and port - required in WSGI, not in ASGI
environ["SERVER_NAME"] = scope["server"][0]
environ["SERVER_PORT"] = str(scope["server"][1])
environ["REMOTE_ADDR"] = scope["client"][0]
# Transforms headers into environ entries.
for name, value in scope.get("headers", []):
# name, values are both bytes, we need to decode them to string
name = name.decode("latin1")
value = value.decode("latin1")
# Handle name correction to conform to WSGI spec
# https://www.python.org/dev/peps/pep-0333/#environ-variables
if name == "content-length":
corrected_name = "CONTENT_LENGTH"
elif name == "content-type":
corrected_name = "CONTENT_TYPE"
else:
corrected_name = "HTTP_%s" % name.upper().replace("-", "_")
# If the header value repeated,
# we will just concatenate it to the field.
if corrected_name in environ:
value = environ[corrected_name] + "," + value
environ[corrected_name] = value
return environ
|
57c80dcdc63904ee2323378d20d3e9da7c45fa6e
| 571,020 |
def _get_parameters_proto(host_calls_dictionary):
"""Get the FormalParameterProtos for the first host call in the dictionary."""
return host_calls_dictionary['host_calls'][0].parameters
|
7d62ee04bc52fe29bd36a14366c96e8ce5542c46
| 688,192 |
def convert_message(content, id):
""" Strip off the useless sf message header crap """
if content[:14] == 'Logged In: YES':
return '\n'.join(content.splitlines()[3:]).strip()
return content
|
f1e56ae59a93cd5e1d7fbd6ec37a24b90040d119
| 555,446 |
def CheckUnique(num):
"""
Function to get unique digit numbers
Args:
num(int) : number
Returns:
bool : True or False
"""
# Start traversing the numbers
repeated = [0,0,0,0,0,0,0,0,0,0]
# if a digit occcurs more than 1 time then break
while (num):
if repeated[num % 10] == 1:
break
repeated[num % 10] = 1
num = (int)(num / 10)
# num will be 0 only when above loop doesn't break thus its unique
if num == 0:
return True
return False
|
98f47f36e7d4f8d1b693d4bdfcebe7f1c8d98683
| 150,712 |
def check_output_format(expected_formats):
"""
Decorator for stream outputs that checks the format of the outputs after modifiers have been applied
:param expected_formats: The expected output formats
:type expected_formats: tuple, set
:return: the decorator
"""
def output_format_decorator(func):
def func_wrapper(*args, **kwargs):
self = args[0]
if self.output_format not in expected_formats:
raise ValueError("expected output format {}, got {}".format('doc_gen', self.output_format))
return func(*args, **kwargs)
return func_wrapper
return output_format_decorator
|
8cfcca474d3d008835f9cd722cfc9f567c7a53da
| 685,779 |
from textwrap import dedent
def docstring(**kwargs):
"""
Replace values in the decorated function docstring.
"""
def decorator(fn):
fn.__doc__ = dedent(fn.__doc__).format(name=fn.__name__, module=fn.__module__, **kwargs)
return fn
return decorator
|
3e8ae541d6ae33bcafb1562dd0ec63de3d3f703b
| 427,526 |
def convert_cidr_to_netmask(netmask_cidr: str) -> str:
"""
This function will convert a netmask CIDR in a standard netmask (255.0.0.0)
:param netmask_cidr: IP address netmask in CIDR format (/24)
:return str: IP address netmask in 255.255.255.255 format
"""
bits = 0
for i in range(32 - int(netmask_cidr), 32):
bits |= (1 << i)
return (
"%d.%d.%d.%d" %
(
(bits & 0xff000000) >> 24,
(bits & 0xff0000) >> 16,
(bits & 0xff00) >> 8,
(bits & 0xff)
)
)
|
91808f853508d56a6e1c592cd2d98abb8e9c466d
| 336,869 |
def unflatten(d):
"""
This unflattens a flattened dictionary.
Args:
d (dict|list): The object to flatten.
Returns:
items (dict): The unflattened object.
"""
items = {}
for k, v in d.items():
keys = k.split('.')
sub_items = items
for ki in keys[:-1]:
try:
sub_items = sub_items[ki]
except KeyError:
sub_items[ki] = {}
sub_items = sub_items[ki]
sub_items[keys[-1]] = v
return items
|
6e7ece99ece7c7faa9ed0e317499df5d2db098d2
| 465,578 |
def loadEntireTxtFile(filename):
"""
Load entire file (text mode) and return its content.
"""
rf = open(filename, "rU")
try:
result = rf.read()
return result
finally:
rf.close()
|
0f9f7688172c3542a78aaf1b145bef8314479285
| 346,539 |
def show_factor(factor):
"""
Convert a factor back into a string.
>>> show_factor(parse_factor('c1ds[p1m]'))
'c1ds[p1m]'
"""
return "{1}[{2}]".format(*factor)
|
f4b67ff0197d8e5d0074911ad89f9cf8a9880bae
| 393,623 |
def get_vpcs(cfmclient, uuid=None):
"""
Get a list of VPCs currently defined in Composable Fabric.
:param cfmclient: Connected CFM API client
:param uuid: specific VPC UUID to retrieve
:return: list of VPC dictionary objects
:rtype: list
"""
path = 'v1/vpcs'
if uuid:
path += '/{}'.format(uuid)
return cfmclient.get(path).json().get('result')
|
a9c9d1909332cc0fbe149755f18e416411ad08d3
| 261,158 |
def iround(x):
"""Round floating point number and cast to int."""
return int(round(x))
|
0cc45c946c8325a2e17306f79bbb759b8844a64d
| 536,013 |
import torch
import math
def importance_sampling_cross_validation(logp):
"""Compute the importance-sampling cross validation (ISCV) estimate.
The ISCV estimates the holdout log-likelihood from just an approximation to
the posterior predictive log-likelihoods on the training data.
### References:
[1]: Alan E. Gelfand, Dipak K. Dey, Hong Chang.
Model determination using predictive distributions with implementation via
sampling-based methods.
Technical report No. 462, Department of Statistics,
Stanford university, 1992.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.860.3702&rep=rep1&type=pdf
[2]: Aki Vehtari, Andrew Gelman, Jonah Gabry.
Practical Bayesian model evaluation using leave-one-out cross-validation and
WAIC.
arXiv:1507.04544
https://arxiv.org/pdf/1507.04544.pdf
[3]: Sumio Watanabe. Mathematical Theory of Bayesian Statistics.
CRC Press. 2018
https://www.crcpress.com/Mathematical-Theory-of-Bayesian-Statistics/Watanabe/p/book/9781482238068
Args:
logp: Tensor, shape (B,M,...), containing log p(y_i | x_i, theta_j)
for i=1,..,B instances and j=1,...,M models.
Returns:
iscv_logp: Tensor, (...), the ISCV estimate of the holdout log-likelihood.
iscv_logp_sem: Tensor, (...), the standard error of th emean of `iscv_logp`.
"""
logse = torch.logsumexp(-logp, 1)
iscv_logp = logse.mean(0)
iscv_logp_var = logse.std(0)
m = int(logp.shape[1])
iscv_logp -= math.log(m)
iscv_logp = -iscv_logp
iscv_logp_sem = (iscv_logp_var / float(m)).sqrt()
return iscv_logp, iscv_logp_sem
|
9bef3b3c3775e359d52a321a8e72b69d38f0fcb7
| 22,217 |
from typing import Optional
from datetime import datetime
import re
def to_datetime(timestamp: Optional[str]) -> Optional[datetime]:
"""
Convert string to datetime of formats::
'2019-05-24 09:26:22'
'Friday 24th May 2019 10:01:44'
Args:
timestamp (str): String timestamp
Returns:
datetime if input is a valid datetime string
"""
if timestamp is None:
return None
try:
# '2019-05-24 09:26:22'
return datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
except ValueError:
pass
try:
# 'Friday 1st May 2019 10:01:44'. Used in verified_at for subscribers
sub_timestamp = re.sub(r"\b([0123]?[0-9])(st|th|nd|rd)\b", r"\1", timestamp)
return datetime.strptime(sub_timestamp, "%A %d %B %Y %H:%M:%S")
except ValueError:
pass
raise ValueError("datetime string '{}' not supported".format(timestamp))
|
1eac7674da1ee00cff6bf74308ab77a630d217db
| 265,250 |
def calculate_mae_and_mape(predictions):
"""
Calculate the mean absolute error (MAE) and the median
absolute percentage error (MAPE).
"""
predicted = predictions["predicted"]
actual = predictions["actual"]
absolute_errors = (predicted - actual).abs()
mean_absolute_error = absolute_errors.mean()
# The percentage error is undefined when the actual measurement is 0.
percentage_error = absolute_errors / actual
percentage_error = percentage_error[actual != 0]
# Take the absolute value after dividing to have all positive metrics
mean_absolute_percentage_error = 100 * percentage_error.abs().median()
return mean_absolute_error, mean_absolute_percentage_error
|
749be4270ab78b94df6177cf679d35d0748cb063
| 183,124 |
def compute_factorial(n: int) -> int:
"""
Compute n-factorial.
:param n: Number to compute factorial for
:return: n-factorial
"""
if (not isinstance(n, int)) or (n < 0):
raise ValueError("compute_factorial() only accepts non-negative integer values.")
factorial = 1
for i in range(1, n + 1):
factorial *= i
return factorial
|
75061c245376f09ec01e6bcf018d04e938f419c1
| 18,632 |
def split_once_or_fail_with(strink, pattern, error_message):
"""
split selected string (string is a builtin, hence strink) using the given pattern;
raise RuntimeError with provided error message if that fails
:param strink: str, string to split
:param pattern: str, pattern to split on
:param error_message: str, error message to raise in case of split fails
:return: (str, str)
"""
try:
k, v = strink.split(pattern, 1)
except ValueError:
raise RuntimeError(error_message)
# we do this on purpose, so that ValueError is raised here
return k, v
|
f36f9e17b79741b067718e55157d9f78ee1af13d
| 258,511 |
def truncate_str(tr_str, num_chars, terminator=None):
"""
Truncates tr_str at num_chars and appends a terminator message.
If num_chars == 0, return the original string.
"""
default_terminator = "<TRUNCATED>"
if terminator is None:
terminator = default_terminator
if num_chars == 0 or len(tr_str) <= num_chars:
return tr_str
return "%s%s" % (tr_str[:num_chars], terminator)
|
09d235cb745dfee687325ac70f02effee7d0570c
| 358,743 |
import hashlib
def truncate_value(value, max_length=63, from_left=True):
"""
Truncate a value (typically a column name) to a certain number of characters,
using a hash to ensure uniqueness.
"""
hash_length = 8
truncated_length = max_length - hash_length - 1
value = value.encode('unicode-escape')
if from_left:
truncated_value = value[-truncated_length:]
else:
truncated_value = value[:truncated_length]
if len(value) > max_length:
short_hash = hashlib.sha1(value).hexdigest()[:hash_length]
return '{}_{}'.format(truncated_value.decode('utf-8'), short_hash)
return value.decode('utf-8')
|
124f90f1da40abaffdd8f3c17ca7692df2c16213
| 584,645 |
def split_dataset(data, frac_train=0.7):
"""
Splits data into training and test sets according to
'frac_train'
Parameters
----------
data : numpy.ndarray
data array to be split
frac_train : float, from 0 to 1
fraction of samples in training set
Returns
-------
training_set : numpy.ndarray
array with training observations
test_set : numpy.ndarray
array with test observations
"""
n_train = int(frac_train * data.shape[0])
return data[:n_train], data[n_train:]
|
f933cb28bc43f2d8489e8a2e1e6ad94ea4ce2d24
| 172,005 |
from typing import Any
def is_hashable(obj: Any) -> bool:
"""Test if object is hashable via duck typing.
NB: not using ``collections.Hashable`` as some objects
(e.g. pandas.Series) have a ``__hash__`` method to throw
a more specific exception.
"""
try:
hash(obj)
return True
except Exception:
return False
|
14481da808a8cfb3969f47481579f938c7e2f1bb
| 183,775 |
def _triplet_with_context(seq: str, i: int):
"""Return the ith triplet in a sequence with the
previous and following nucleotide
Args:
seq (str): Sequence
i (int): 0-based index of the target triplet.
Returns:
str: The target triplet.
"""
start = i * 3
return seq[start-1:start+4]
|
4f878f16d0d64d1eba7177c853510391196f2f06
| 282,967 |
def prime(num: int) -> bool:
"""Returns a boolean if the number is prime"""
divisors = [i for i in range(1, num + 1) if num % i == 0]
print(divisors)
return True if len(divisors) == 2 else False
|
976b84a5946679dba8f248426842ecc1e81b576b
| 607,106 |
def sequence_recovery(native_struct,designed_struct):
"""calculate percent sequence recovery between a native and designed struct"""
native_residues = native_struct.get_residues()
designed_residues = designed_struct.get_residues()
total = 0.0;
recovered = 0.0;
for native,designed in zip(native_residues,designed_residues):
if native.get_resname() == designed.get_resname():
recovered += 1
total += 1
#print recovered, total
return recovered/total
|
2b6541dd25406a1569e510f1ea59ca6bd6b14e25
| 595,268 |
import random
def cxTwoPoints(ind1, ind2):
"""Execute a two points crossover on the input individuals. The two
individuals are modified in place and both keep their original length.
:param ind1: The first individual participating in the crossover.
:param ind2: The second individual participating in the crossover.
:returns: A tuple of two individuals.
This function use the :func:`~random.randint` function from the python base
:mod:`random` module.
"""
size = min(len(ind1), len(ind2))
cxpoint1 = random.randint(1, size)
cxpoint2 = random.randint(1, size - 1)
if cxpoint2 >= cxpoint1:
cxpoint2 += 1
else: # Swap the two cx points
cxpoint1, cxpoint2 = cxpoint2, cxpoint1
ind1[cxpoint1:cxpoint2], ind2[cxpoint1:cxpoint2] \
= ind2[cxpoint1:cxpoint2], ind1[cxpoint1:cxpoint2]
return ind1, ind2
|
3491ac0010d76f52aa97e163de7766ce1c9e993c
| 146,521 |
import torch
def l2_loss(t):
"""Return the l2 loss."""
return 0.5 * torch.sum(t ** 2)
|
1cea9b6b6e8bb30698dd44675e219a3bfe05287a
| 132,274 |
def ComponentStaticLibrary(env, lib_name, *args, **kwargs):
"""Pseudo-builder for static library.
Args:
env: Environment in which we were called.
lib_name: Static library name.
args: Positional arguments.
kwargs: Keyword arguments.
Returns:
Output node list from env.ComponentLibrary().
"""
return env.ComponentLibrary(lib_name, *args, **kwargs)
|
c5a8fc1d559c6b24d02b44d3bbfe3bdb2d360cb0
| 247,023 |
import socket
def Bind(port, socket_type, socket_proto):
"""Try to bind to a socket of the specified type, protocol, and port.
This is primarily a helper function for PickUnusedPort, used to see
if a particular port number is available.
Args:
port: The port number to bind to, or 0 to have the OS pick a free port.
socket_type: The type of the socket (ex: socket.SOCK_STREAM).
socket_proto: The protocol of the socket (ex: socket.IPPROTO_TCP).
Returns:
The port number on success or None on failure.
"""
s = socket.socket(socket.AF_INET, socket_type, socket_proto)
try:
try:
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(('', port))
return s.getsockname()[1]
except socket.error:
return None
finally:
s.close()
|
2c5682b331e6bf547d1d3a8dafc52b76369aee0c
| 91,031 |
from bs4 import BeautifulSoup
def get_sorted_id_from_soup(soup:BeautifulSoup):
"""
Sorts unique and duplicated IDs in a document markup language document.
Args:
soup (BeautifulSoup): markup language as BeautifulSoup object
Returns:
unique, duplicate ({}): two lists for unique and duplicated IDs
Modules:
bs4 (BeautifulSoup)
"""
unique, dupe = [], []
for tag in soup.find_all(attrs={'id':True}):
id = tag.get('id')
if id not in unique:
unique.append(id)
else:
dupe.append(id)
sorted = {'unique': unique, 'duplicate': dupe}
return sorted
|
f6aace3f7431dbcf40b01c20b14de200d7aed680
| 293,831 |
def accuracy(tp: float, fn: float, tn: float, fp: float) -> float:
"""
Calculate accuracy.
:param tp: True positive count.
:param fn: False negative count.
:param tn: True negative count.
:param fp: False positive count.
:return: Accuracy.
"""
return 0.0 if tp + tn + fp + fn == 0 else (tp + tn) / (tp + tn + fp + fn)
|
32b31e875e68090c6a5632cdc162febda974af45
| 453,069 |
import json
def read_jsonFile(filePath):
""" Reads any json file and returns the result
"""
data = None
with open(filePath, 'r') as file:
data = json.loads(file.read())
return data
|
d611c8ac1c6be02b341cb5d0553988a18635d739
| 524,126 |
import json
def loadJsonArgs(fn):
"""
Load the .json file containing input values
Args:
fn: file name
Returns:
args: argument dictionary
"""
with open(fn) as data_file:
data = json.load(data_file)
args = {}
args['patient_id'] = data['Patient ID']
args['start_phase'] = data['Start Phase']
args['total_phase'] = data['Total Phase']
args['im_name'] = data["Image Name"]
args['model_output']=data["Output Surface Model Name"]
args['seg_name'] = data["Segmentation Name"]
args['im_top_dir'] = data["Image Top Dir"]
args['seg_folder_name'] = data["Segmentation Folder Name"]
args['im_folder_name'] = data["Image Folder Name"]
args['out_dir'] = data["Output Dir Name"]
args['num_interpolation']=data["Number of Interpolations"]
args['num_cycle'] = data["Number of Cardiac Cycles"]
args['duration'] = data["Cycle Duration (s)"]
args['edge_size'] = data["Mesh Size"]
args['mask_folder_name'] = data["Mask Folder Name"]
return args
|
51e8a0fdaf53836cf831701ff6921479a8d8e03f
| 20,030 |
from typing import List
from typing import Dict
def remove_audio_before_db(examples: List[Dict]) -> List[Dict]:
"""Remove (potentially heavy) 'audio' key from examples
Parameters
----------
examples : list of dict
Examples.
Returns
-------
examples : list of dict
Examples with 'audio' key removed.
"""
for eg in examples:
if "audio" in eg:
del eg["audio"]
return examples
|
5e0b761ffc899f5510dd0549e88ed0b6ffd9eda6
| 276,259 |
def isCompatible(c1, c2, IUPAC_compatibles):
"""
Checks compatibility between character c1 and c2
"""
if IUPAC_compatibles[c1 + "_" + c2] == 1:
return True
else:
return False
|
f8c21c1cc1b438754cd9eaa40939a59d77100536
| 576,187 |
def create_plot_data(f, xmin, xmax, n):
"""
Computes and returns values of y = f(x).
f -- function of x
xmin -- minimum value of x
xmax -- maximum value of x
n -- number of values of x
returns values of x and y
"""
xs = []
ys = []
for i in range(n):
xi = xmin + float(i) * (xmax - xmin) / (n - 1)
yi = f(xi)
xs.append(xi)
ys.append(yi)
return (xs, ys)
|
73e5245d38454f31ffc78c9bab3723f74d7db331
| 186,700 |
import math
def absolute_value(vector):
"""Returns the absolute value of a vector.
It is calculated by the
euclidean norm ``abs(a) = Sqrt( pow(a1) + pow(a2) + pow(a3) )``
:param vector: vector.abstractvector.DocumentVector
:type vector: the vector whose absolute value will be calculated
:returns: int
"""
values = [ v for v in vector.values ]
square_values = [ v**2 for v in values]
absolute_value = math.sqrt(sum(square_values))
return absolute_value
pass
|
ad29087601f706113dcadb1dd77e780c22045a80
| 582,866 |
from typing import Union
from typing import Any
from typing import Sequence
def supports_iteration(value: Union[Any, Sequence[Any]]) -> bool:
"""Returns ``True`` if the ``value`` supports iterations."""
try:
for _ in value:
return True
except TypeError:
pass
return False
|
b74b0ffc85fdfdabfdd1fb5f352c23632966eb97
| 31,650 |
def make_sql(table_name, max_rows=None, for_eval=False):
"""Creates the sql command for pulling data from BigQuery.
Args:
table_name: BigQuery table name
max_rows: if set, limits the number of rows pulled from BigQuery
for_eval: True if this is for evaluation, false otherwise
Returns:
sql command as string
"""
if for_eval:
# 1/3 of the dataset used for eval
where_clause = 'WHERE MOD(FARM_FINGERPRINT(unique_key), 3) = 0'
else:
# 2/3 of the dataset used for training
where_clause = 'WHERE MOD(FARM_FINGERPRINT(unique_key), 3) > 0'
limit_clause = ''
if max_rows:
limit_clause = 'LIMIT {max_rows}'.format(max_rows=max_rows)
return """
SELECT
CAST(pickup_community_area AS string) AS pickup_community_area,
CAST(dropoff_community_area AS string) AS dropoff_community_area,
CAST(pickup_census_tract AS string) AS pickup_census_tract,
CAST(dropoff_census_tract AS string) AS dropoff_census_tract,
fare,
EXTRACT(MONTH FROM trip_start_timestamp) AS trip_start_month,
EXTRACT(HOUR FROM trip_start_timestamp) AS trip_start_hour,
EXTRACT(DAYOFWEEK FROM trip_start_timestamp) AS trip_start_day,
UNIX_SECONDS(trip_start_timestamp) AS trip_start_timestamp,
pickup_latitude,
pickup_longitude,
dropoff_latitude,
dropoff_longitude,
trip_miles,
payment_type,
company,
trip_seconds,
tips
FROM `{table_name}`
{where_clause}
{limit_clause}
""".format(table_name=table_name,
where_clause=where_clause,
limit_clause=limit_clause)
|
2c333d1b4aa49fd63613840756028be1eabea227
| 422,200 |
def calculate_size(transformed_dataset):
"""Helper function to calculate the total size of a dataset
Args:
transformed_dataset (dict): a ``TransformedDataset`` instance, which maps (str) table name
to {'size': (float) size of the table in byte, 'row_size': (float) the size of a
row in byte, 'entries': (set) the column names, 'chosen': (set) the rows selected}
Returns:
float: the dataset size in byte
"""
size = 0
for table in transformed_dataset.values():
size += table['row_size'] * len(table['chosen'])
return size
|
5cf82114c6849ab6555a4a1fc3f6599e37ed4fae
| 124,841 |
def list_extremum(data: list, type=0) -> tuple:
"""
找到list中的极值,并返回索引,若极值有多个,则返回多个索引
Args:
data: list数据
type: 1表示执行最大值操作,0表示最小值操作
Returns:
极值,索引的列表
"""
if type == 1:
# 极大值
ex = max(data)
elif type == 0:
# 极小值
ex = min(data)
else:
raise Exception("The value of 'type' should only be 0 or 1.")
# 拿到所有索引
idx = [id for id, item in enumerate(data) if item == ex]
return ex, idx
|
adf513af5221491b51ae7a105f5feaa96617126a
| 671,255 |
def mk_endpoint_config(prj, endpoint_name, model_name):
""" Return endpoint config creation parameters. """
return {
"EndpointConfigName": prj.full_job_name(endpoint_name) + "-config",
"ProductionVariants": [
{
"VariantName": prj.full_job_name(model_name) + "-variant-1",
"ModelName": prj.full_job_name(model_name),
"InitialInstanceCount": 1,
"InstanceType": prj.deploy.instance_type,
"InitialVariantWeight": 1.0,
}
],
"Tags": prj.tags(),
}
|
e556a144abd825dcaa842d00dbc985798c487d00
| 615,594 |
from io import StringIO
def build_from_imports_py(imports_info):
"""
Build a string containing a series of `from X import Y` lines
Parameters
----------
imports_info : str or list of (str, str or list of str)
List of import info
If element is a pair first entry is the package to be imported
from and the second entry is either a string of the single name
to be
If element is a string, insert string directly
Returns
-------
str
String containing a series of imports
"""
buffer = StringIO()
for import_info in imports_info:
if isinstance(import_info, tuple):
from_pkg, class_name = import_info
if isinstance(class_name, str):
class_name_str = class_name
else:
class_name_str = "(" + ", ".join(class_name) + ")"
buffer.write(
f"""\
from {from_pkg} import {class_name_str}\n"""
)
elif isinstance(import_info, str):
buffer.write(import_info)
return buffer.getvalue()
|
4f15258af0c8040572f5b117f683b8481a970e2b
| 438,595 |
def argmin(x):
"""
Returns the index of the smallest element of the iterable `x`.
If two or more elements equal the minimum value, the index of the first
such element is returned.
>>> argmin([1, 3, 2, 0])
3
>>> argmin(abs(x) for x in range(-3, 4))
3
"""
argmin_ = None
min_ = None
for (nItem, item) in enumerate(x):
if (argmin_ is None) or (item < min_):
argmin_ = nItem
min_ = item
return argmin_
|
8d6778182bf3c18ffa6ef72093bf19a818d74911
| 4,051 |
def distance_squared(x1, y1, x2, y2):
"""
Helper function to return the square of the distance between
points (x1,y1) and (x2,y2).
:Parameters:
x1: float
X coordinate of first point
y1: float
Y coordinate of first point
x2: float
X coordinate of second point
y2: float
Y coordinate of second point
:Returns:
distsq: float
The square of the distance, (x1-x2)**2 + (y1-y2)**2
"""
xdiff = float(x1) - float(x2)
ydiff = float(y1) - float(y2)
distsq = (xdiff * xdiff) + (ydiff * ydiff)
return distsq
|
66fead189b9b1984adf5d4dc24dc57c27cf6a2d9
| 593,587 |
def get_offset_scale_attr(scale_attr=""):
"""
utility node for getting the offset scale attribute name.
:param scale_attr: <str> scale name attribute.
:return: <str> offset scale attribute. <bool> False for failure.
"""
if 'scaleX' in scale_attr:
return 'offset_scaleX'
if 'scaleY' in scale_attr:
return 'offset_scaleY'
if 'scaleZ' in scale_attr:
return 'offset_scaleZ'
return False
|
b1ac88d8e00818ae0d9ae5454533458e25211f1b
| 564,046 |
def MakeGuestAccelerators(messages, accelerator_configs):
"""Constructs the repeated accelerator message objects."""
if accelerator_configs is None:
return []
accelerators = []
for a in accelerator_configs:
m = messages.AcceleratorConfig(
acceleratorCount=a['count'], acceleratorType=a['type'])
accelerators.append(m)
return accelerators
|
015c3576aa1c490b7b4e0be104ae7def0c303ad9
| 137,864 |
import re
def _clean_requirements_entries(requirements_list: list) -> list:
""" Remove version information from a list with requirement strings. """
_entry_regex = r'^(.*?)/s*[;><=].*$'
for index, entry in enumerate(requirements_list):
requirements_list[index] = re.sub(_entry_regex, r'\1', entry)
return requirements_list
|
d826ddb6c7a1d49a7c5fe577aa649d4210edad54
| 353,158 |
def list_to_unicode_str(lst):
""" Convert list of large integers to a unicode string. """
return "".join(map(chr, lst))
|
1fc3dde75806c2cafe0c6965b15b9b19e53d05a4
| 103,926 |
def worst(category):
"""
Category status is the worst lowest status of all modules of the same
type as the category (only plots or rated modules, depending) with
positive status value (no error, data acquisition succeeded).
'unrated' modules are always per definition excluded.
If there is no correct module with positive status, the
category status is set to -1 (no information).
"""
status = 1.0
for mod in category.module_list:
if mod.dataset is None:
continue
if status > mod.dataset['status'] >= 0 and mod.type == category.type:
status = mod.dataset['status']
return status
|
876a758707be691305446fc0a106ca4c279ef13b
| 214,552 |
from typing import Dict
from typing import Any
def merge_parameters(
higher_priority_params: Dict[str, Any], lower_priority_params: Dict[str, Any]
) -> Dict[str, Any]:
"""Merge the contents of two dicts, keeping values from higher_priority_params if there are conflicts."""
return {**lower_priority_params, **higher_priority_params}
|
31fefe13b36e4e06bd6c733ac1447f938169c8ed
| 384,125 |
def rightangletriangles(i):
"""genearate all the possible right angle triangles with integer edge
for the given integer perimeter i
list of tuple: [(longest, secondlong, shortest), ..]
"""
lmin=int(i/(1+2**0.5))
lmax=int(i/2)
lt=[]
for l in range(lmin, lmax):
#
for s in range( int((i-l)/(2**0.5)) ,l):
t=i-l-s
if l*l==s*s+t*t:
lt.append((l,s,t))
#
if lt: print(i,lt)
return lt
|
558040636b93b35178c787a51d7184cfc4f04fb9
| 357,188 |
def inject_text(htmltext, intext):
"""
Insert text from a file into an html string.
Arguments:
htmltext -- string where text will be added.
intext -- input file
Returns: text with intext added between <p></p> characters
"""
parts = htmltext.split('<p></p>')
with open(intext, 'r') as infile:
adddata = infile.read()
return "%s<p>%s</p>%s" % (parts[0], adddata, parts[1])
|
0eb9cfbd29af998af0ad76c3341e8c07368b982e
| 141,283 |
def nan_check(test_dataframe):
"""
:param test_dataframe: pandas data frame
:return: bool, whether there is any missing value in the data frame.
"""
return test_dataframe.isnull().values.any()
|
c3eaf976d4d10001800f1e0946da4ae36f6887a7
| 73,289 |
from typing import Iterable
def getSqlQuery(db_table_name: str='movie') -> Iterable[str]:
"""Get the SQL query by table name.
"""
query = ''
if db_table_name == 'movie':
query = f'''
INSERT INTO {db_table_name} (
rg_id,
scraped_timestamp,
title,
year,
overview,
rating,
imdb_score,
reelgood_rating_score,
url_offset_value
)
VALUES''' + '(%s, NOW(), %s, %s, %s, %s, %s, %s, %s);'
elif db_table_name == 'availability':
query = f'''
INSERT INTO {db_table_name} (
scraped_timestamp,
rg_id,
source_name,
source_movie_id,
source_web_link
)
VALUES''' + '(NOW(), %s, %s, %s, %s);'
return query, db_table_name
|
658ffd8de7060e291700fc29af886013270ed17a
| 595,114 |
def search_viewtransforms(config, aces_id):
""" Search the config for the supplied ACES ID, return the view transform name. """
for vt in config.getViewTransforms():
desc = vt.getDescription()
if aces_id in desc:
return vt.getName()
return None
|
c49df124060819b023f8cdcdd299d7c66b950a23
| 139,410 |
def are_seqs_equal(seq_1,seq_2):
"""
seq_1: list of (onset,pitch) tuples
seq_2: list of (onset,pitch) tuples
Returns True if the two lists are equal.
"""
if len(seq_1)!=len(seq_2):
return False
for i in range(len(seq_1)):
if seq_1[i][0]!=seq_2[i][0] or seq_1[i][1]!=seq_2[i][1]:
return False
return True
|
a181800d829f72c76b88a3ce903d281da998e088
| 166,763 |
def get_state_xy(idx, num_cols):
"""Given state index this method returns its equivalent coordinate (x,y).
Args:
idx: index uniquely identifying a state
num_cols: number of colums
Returns:
values x, y describing the state's location in the grid
"""
y = int(idx % num_cols)
x = int((idx - y) / num_cols)
return x, y
|
28595312d5a8c9a6a52248e5e6c2149df5a18d90
| 199,104 |
def _parse_response(response, decode_json):
"""
Helper function that extracts the status code and
parses the response text.
"""
ret = {'status': response.status_code}
if decode_json:
try:
ret['response'] = response.json()
except ValueError:
ret['response'] = response.text
else:
ret['response'] = response.text
return ret
|
c534fb5e891e6d85471577b1482c39c0441a6840
| 399,719 |
def encodeWord(word: str, isNormalVersionForLogicallyThinkingHuman: bool) -> str:
"""Encode single word into its numerical representation in given system (e.g. "koko" -> "3131")"""
map1 = {1:['w', 'e', 'r', 'u', 'i', 'o', 'a', 's', 'z', 'x', 'c', 'v', 'n', 'm', 'ę', 'ó', 'ą', 'ś', 'ń', 'ć', 'ż', 'ź'],
2: ['p', 'y', 'j', 'g', 'q'],
3: ['t', 'l', 'b', 'd', 'h', 'k', 'ł'],
4: ["f"]}
map2 = {1:["a", "c", "e", "m", "n", "o", "r", "s", "u", "w", "z", "x", "v"],
2: ["ą", "ę", "g", "j", "p", "y", "q"],
3: ["b", "ć", "d", "h", "k", "l", "ł", "ń", "ó", "ś", "t", "ź", "ż", "i"],
4: ["f"]}
selectedVersionMap = map2 if isNormalVersionForLogicallyThinkingHuman else map1
numbered = ''
for char in word:
for key in selectedVersionMap.keys():
if char in selectedVersionMap[key]:
numbered = numbered + str(key)
break
return numbered
|
02da1f692bbfc7d50383d190a905d4a4d1595fef
| 631,735 |
def header_column_rename(header_list: list, column_name: str, column_index: int):
"""Rename column with a name
Args:
header_list (list, required): header list param to convert the month.
column_name (str, required): New name for the column
column_index (int, required): index of the column
Returns:
pandas.DataFrame: header list
"""
header_list[column_index] = column_name
return header_list
|
029691ff8a48636154aff592de25d3ac61797481
| 157,145 |
def list_of_dict_to_dict(list_of_dict, key):
"""
Converts a list of dicts to a dict of dicts based on the key provided.
Also removes the key from the nested dicts.
converts [{key: v1, k2:v12, k3:v13}, {key:v2, k2: v22, k3:v23}, ... ]
to {v1: {k2: v12, k3:v13}, v2:{k2:v22, k3:v23}, ...}
Args:
list_of_dict: eg: [{k1: v1, k2:v12, k3:v13}, {k1:v2, k2: v22, k3:v23}, ... ]
Returns:
dict_of_dict: eg: {v1: {k2: v12, k3:v13}, v2:{k2:v22, k3:v23}, ...}
"""
dict_of_dict = {}
for item in list_of_dict: # item will be the nested dict
value = item[key] # This will be the "key" in dict_of_dict
item.pop(key) # removes key from the nested dict
dict_of_dict[value] = item # adds item to the new dict
return dict_of_dict
|
e88fc4e6bec2752d7797feae1da32010088de412
| 254,592 |
def findMin(heap):
"""
Returns the minimum element in the heap.
"""
if len(heap) == 0:
raise IndexError("findmin on empty heap")
return heap[0]
|
858390e1e2d893910206ae4f0045406f737ea6c3
| 269,105 |
def add_custom_variables(reco_event,truth_event):
"""
Example of adding custom variables to the csv - this is a dummy and returns the value of
1.0 and the eventNumber twice for every event.
The objects passed to this function are the root2csv two TTrees.
This function MUST return an array
"""
return [1.0,reco_event.eventNumber,truth_event.eventNumber]
|
cebce4865314703c41e2cd346d693c518e29781e
| 64,409 |
def factorial(x: int)-> int:
"""
This function returns the `Factorial` value of a number which is specified in the function by user.
This function takes exactly one argument.
Args:
`x: int` : x should be an `integer number` for calculating the factorial value of x.
"""
fact = 1
for i in range(1, x+1):
fact*=i
return fact
|
43c9debabdee8ec0a85a1d66fd21c498761a043f
| 281,844 |
def p_wrap(content):
"""wrap string in a <p> tag"""
return "<p>%s</p>" % content
|
7f164739df4916693bb006e97c16d5eb126f4650
| 417,332 |
def gN(node):
"""
return True if node is gizmo
"""
return 'gizmo_file' in node.knobs()
|
446edcc46e775413b32ddecf844d994c2a64a2f0
| 236,675 |
def is_valid_xml_char(char):
"""Check if a character is valid based on the XML specification."""
codepoint = ord(char)
return (0x20 <= codepoint <= 0xD7FF or
codepoint in (0x9, 0xA, 0xD) or
0xE000 <= codepoint <= 0xFFFD or
0x10000 <= codepoint <= 0x10FFFF)
|
8bd5edf78246d9ba2ef4f50a48780c6a210ffdb0
| 652,528 |
def scan_for_bombs(board, n_bomb, row, column):
"""
Finds and potentially marks bombs and neighbors eligible to be openened.
Returns a dict of squares to open and squares, whos neighbors should be inspected.
"""
bombs = 0 # Bombs discovered
unopened_neighbors = [] # Unopened neighbors
val = int(board[row][column]) # Value of this square (number of bombs for neighbor)
# Bombs are discovered and unopened neighbors are found
for i in range(max(0, row - 1), min(len(board), row + 2)):
for j in range(max(0, column - 1), min(len(board[0]), column + 2)):
if board[i][j] is "x":
bombs += 1
elif board[i][j] is "?":
unopened_neighbors.append((i, j))
# Updates the number of bombs found for this square
n_bomb[row][column] = bombs
# Squares to open and bombs to mark are found.
# "update" are squares that shall notify their neighbors to re-inspect.
updates = {"update": []}
if bombs == val:
# Neighbors can be opened if the required number of bombs are discovered already
updates["open"] = unopened_neighbors
elif bombs + len(unopened_neighbors) == val:
# Bombs can be marked and their neighbors updated
for r, c in unopened_neighbors:
board[r][c] = "x"
updates["update"] = unopened_neighbors
return updates
|
e09477e5a5e33a90b101851583f94db5237e4eb4
| 440,045 |
def calibration(i):
"""This function gives wavelength as a function of spectrum array index."""
a,b = 3.04956866e-01, 3.82033291e+02
return a*i + b
|
e96b5c353d8745eb865e3a0c8fd08df34e1da134
| 355,650 |
def echo_handler(completed_proc):
"""Immediately return ``completed_proc``."""
return completed_proc
|
53f3ef51bf349ac5146014ef25b88326d5bc010e
| 705,302 |
def valueFunction1(v,alpha,_lambda,beta):
"""
The value function used in prospect theory
:param v: Value
:param alpha:
:param _lambda:
:return:
"""
if v>=0:
return v**alpha
else:
return -_lambda*(-v)**beta
|
01d325d68dc0654748db0457065013ba4796f777
| 280,661 |
from typing import Iterable
def aslist(item):
"""
Wraps a single value in a list, or just returns the list
"""
if isinstance(item, list):
value = item
elif isinstance(item, str):
value = [item]
elif isinstance(item, Iterable):
value = list(item)
else:
value = [item]
return value
|
08c97d20fb9c5644f694c570ef89b63751402e46
| 100,371 |
def get_max_words_with_ngrams(max_words, word_ngrams):
"""
Calculate the length of the longest possible sentence
:param max_words: int, the length of the longest sentence
:param word_ngrams: int
:return: int, the length of the longest sentence with word n-grams
"""
max_words_with_ng = 1
for ng in range(word_ngrams):
max_words_with_ng += max_words - ng
return max_words_with_ng
|
60cc2fc0e044dae570092e59c661a1b71ef1b617
| 505,452 |
import keyword
def make_name(name: str) -> str:
"""Generates a valid Python name from a system model name.
Args:
name (str): The system model name.
Returns:
str: The generated name.
"""
for c in '-#*%.:':
name = name.replace(c, '_')
if keyword.iskeyword(name):
return name + '_'
if name == 'id':
return 'id_'
if name == 'type':
return 'type_'
return name
|
7171a54956815a0f0c61852d1ec84464226f3dd7
| 226,104 |
def role_to_tag(role: str) -> str:
"""Return the isRole object bool tag for the given object role."""
return 'is' + role.title().replace(' ', '')
|
38dcc8348c2ebaef17e57bba2c335c6809e85b6d
| 348,446 |
def read_id_from_file(path):
"""Reading the id in first line in a file
"""
with open(path) as id_file:
return id_file.readline().strip()
|
19058ec4367bdba683e6e5bff109714c4e81be5f
| 59,479 |
def relatice_percent_difference(x,y):
"""
Calculates the relative percent difference of 2 numbers
|x-y|/avg(x,y) * 100
"""
average = abs(x + y) / 2
rpd = abs(x - y) / average * 100
return rpd
|
1573d89ad38672db2a8e3665c307f98e5a9583db
| 692,206 |
def calculate_standard_deviation(pessimistic, optimistic):
""" Calculate the standard deviation of a task. """
return round((pessimistic - optimistic) / 6, 1)
|
4f8aa9c2d118fc278d77fd378c8d727a1ccd5038
| 602,678 |
def get_line_from_two_points(p1, p2):
"""
Returns a function which takes
an x-coordinate and returns the
corresponding y-coordinate on the
line defined by the points p1, p2
"""
slope = p2[1] - p1[1]
slope /= p2[0] - p1[0]
return lambda x: (slope * (x - p1[0])) + p1[1]
|
81acd90af283b3b09e57a3e8d10a28df44a88af3
| 86,950 |
from typing import List
from typing import Tuple
def _max_len(choices: List[Tuple[str, str]]) -> int:
"""Return the maximum length of the first subitems of each item."""
return max(len(item[0]) for item in choices)
|
17cc12f2691a7b5f638017d6ae078e072ec28780
| 388,376 |
import hashlib
def make_hash(to_hash: str) -> str:
"""Return a hash of to_hash."""
hash_obj = hashlib.md5()
hash_obj.update(to_hash.encode("utf-8"))
hash_code = str(hash_obj.hexdigest())
return hash_code
|
d00796e5d3248b3c9bf9d89ec3ec850ee25ea0c3
| 514,916 |
def is_hangul_char(character):
"""Test if a single character is in the U+AC00 to U+D7A3 code block,
excluding unassigned codes.
"""
return 0xAC00 <= ord(character) <= 0xD7A3
|
aef2a700c1a1ffa0940e6d263773d62c2df41464
| 469,844 |
def _get_tolerance_line(line):
"""get a data item for a tolerance line with format (each line only one item):
i: type=rel, 1e-3
"""
assert line, 'Empty line!'
line = line.strip().replace(' ','')
stmp = line.split(':')
key = stmp[0]
_type, _val = stmp[1].split(',')
_type = _type.split('=')[-1]
tol={key:{'type':_type, 'val':float(_val)}}
return tol
|
30a0b8e604f66d49305b91983e1c82112d6caf0b
| 472,773 |
def lisää_arvaus_listalle(arvaukset, pakka, arvaus):
"""Lisää arvauksen ja pakan tilan arvauksiin.
Parametrit
----------
arvaukset : arr_like
Lista arvauksista
pakka : arr_like
Pakan tilan ennen arvausta
arvaus : int
Arvatun kortin numero
Palauttaa
---------
arr_like
Uusi lista arvauksista
"""
arvaukset.append((pakka, arvaus))
return arvaukset
|
42aefd1656eb1ce2c568471e8a560e794ff9959e
| 273,628 |
def full_overlap(aIntervalA, aIntervalB):
""" Returns True if interval A falls completely within interval B otherwise returns False"""
# Check that both inputs are 3-column intervals
if not len(aIntervalA) == len(aIntervalB) == 3:
raise Exception("Regions could not be overlapped")
if aIntervalA[0] == aIntervalB[0]:
if aIntervalA[1] >= aIntervalB[1]:
if aIntervalA[2] <= aIntervalB[2]:
return True
else:
return False
|
4c7199d26e0ae5248e632cb52a596d4573e4c589
| 114,697 |
def find_fusion_energy_per_reaction(reactants: str) -> float:
"""Finds the average fusion energy produced per fusion reaction in joules
from the fuel type.
Args:
reactants: the isotopes that are combined in the fusion even. Options
are "DD" or "DT"
Returns:
The average energy of a fusion reaction in Joules
"""
if reactants == "DT":
fusion_energy_of_neutron_ev = 14.06 * 1e6
fusion_energy_of_alpha_ev = 3.52 * 1e6
fusion_energy_per_reaction_ev = (
fusion_energy_of_neutron_ev + fusion_energy_of_alpha_ev
)
elif reactants == "DD":
fusion_energy_of_trition_ev = 1.01 * 1e6
fusion_energy_of_proton_ev = 3.02 * 1e6
fusion_energy_of_he3_ev = 0.82 * 1e6
fusion_energy_of_neutron_ev = 2.45 * 1e6
fusion_energy_per_reaction_ev = (
0.5 * (fusion_energy_of_trition_ev + fusion_energy_of_proton_ev)
) + (0.5 * (fusion_energy_of_he3_ev + fusion_energy_of_neutron_ev))
else:
raise ValueError("Only fuel types of DD and DT are currently supported")
fusion_energy_per_reaction_j = fusion_energy_per_reaction_ev * 1.602176487e-19
return fusion_energy_per_reaction_j
|
8121802f096a027c885d7569149dafb4a6a70548
| 629,890 |
def word_count(data):
"""
输入一个字符串列表,统计列表中字符串出现的次数
参数
----
data: list[str],需要统计的字符串列表
返回
----
re: dict,结果hash表,key为字符串,value为对应的出现次数
"""
re = {}
for i in data:
re[i] = re.get(i, 0) + 1
return re
|
40edfdcf65e5312ee302b341ba61921fd9f5a46e
| 634,777 |
import pathlib
def rename_item(path, new_path):
"""Rename item, returns pathlib.Path."""
path = pathlib.Path(path)
return path.rename(new_path)
|
f2440348a4002ec92f11d0948131906ae6857103
| 371,402 |
import re
def get_indent(str_):
"""
Find length of initial whitespace chars in `str_`
"""
# type: (str) -> int
match = re.search(r'[^\s]|$', str_)
if match:
return match.start()
else:
return 0
|
a9de80043341b062326bfa58322c37100c91aa06
| 689,921 |
def get_test_submission_variant(case_obj):
"""Returns a test clinvar variant submission object"""
variant_subm_obj = {
'_id' : "{}_a99ab86f2cb3bc18b993d740303ba27f".format(case_obj['_id']),
'csv_type' : "variant",
'case_id' : case_obj['_id'],
'category' : "snv",
'local_id' : "a99ab86f2cb3bc18b993d740303ba27f",
'linking_id' : "a99ab86f2cb3bc18b993d740303ba27f",
'chromosome' : "5",
'start' : "7666888",
'stop' : "7666888",
'ref' : "A",
'alt' : "T",
'clinsig' : "Pathogenic"
}
return variant_subm_obj
|
b26d77c223e7a86711118f4ab2e77cb7e4fd96b7
| 583,898 |
def read_iupred(file):
"""
Read disorder predictions produced by IUPRED2 from the .dis file
Inputs:
- file: Filename of the .dis file output by IUPRED2
Returns:
- prot: Protein sequence (string)
- dis: List of predicted disorder (values between 0 and 1)
"""
f = open(file, 'r')
dis = []
prot = ''
for line in f:
if '#' in line:
continue
tokens = line.split()
assert len(tokens) == 3
prot += tokens[1]
dis.append(float(tokens[2]))
f.close()
return prot, dis
|
4e843b060e52ba3dc3072d5df89deab6d9847b42
| 206,079 |
def get_name(fname):
"""Get the elements of the file name we need
Params:
fname -- String: The file name
c9_c8_c176_IC12_s4_l_t
Returns:
The image's component number, scan number, and hemisphere
12, 4, L
"""
if fname.endswith('.nii.gz'):
fname = fname.replace('.nii.gz', '')
name_stuff = {}
tmp = fname.split('_') # tmp is just a placeholder
elems = tmp[-4:-1] # The elements of the file name in a list
name_stuff['IC'] = elems[0][2:] # 18
name_stuff['Scan'] = elems[1][1:] # 3
name_stuff['Hemi'] = elems[2].upper()
return name_stuff
|
86928f8ee4677dc63aad08b92e5ecb84563614d7
| 277,918 |
def receiver(signal, **kwargs):
"""Decorator for registering a signal."""
def decorator(func):
signal.connect(func, **kwargs)
return decorator
|
8494911c7b96a8cfff8e55ef7949c6c39165a888
| 247,315 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.