content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import requests
import json
def fetch_entanglement_graph(host="proxy", port=8000, path="/dict"):
"""
Fetches the entanglement graph from a running instance of playcloud.
Args:
host(str, optional): Host of the playcloud instance
port(int, optional): Port number of the listening playcloud instance
path(str, optional): Path of the endpoint on the playcloud server that dumps the graph
Returns:
dict: The entanglement graph
"""
url = "http://{:s}:{:d}{:s}".format(host, port, path)
req = requests.get(url)
assert req.status_code == 200
graph = json.loads(req.text)
return graph
|
6e5c522405d01809989ce354acce3816d65ca879
| 335,274 |
def format_BUILD_MAP_UNPACK_WITH_CALL(oparg):
"""The lowest byte of oparg is the count of mappings, the relative
position of the corresponding callable f is encoded in the second byte
of oparg."""
rel_func_pos, count = divmod(oparg, 256)
return ("%d mappings, function at %d" % (count, count + rel_func_pos))
|
b7176dcdd412aa64cf73e055cc9f0f3efce3f6bf
| 576,628 |
def aggregate_norm_comparison(factor_df, M_matrix):
"""
Aggregate factor information with cosine similarity matrix, which contains the
true norm.
"""
return factor_df.groupby(['kernel', 'factor', 'iter']).agg('sum').merge(
M_matrix.set_index(['kernel', 'factor', 'iter']),
left_index=True,
right_index=True,
suffixes=('_linear', '_factor')
)
|
060dcd08e2147be49d40d04af802daf3286cfe02
| 99,018 |
def find_threshold_crossings(arr, _threshold):
"""
Find all indices at which a threshold is crossed from above and from below
in an array. Used for finding indices to compute ap widths and half widths.
"""
#print("threshold = {}".format(_threshold))
ups = []
downs = []
for i, _ in enumerate(arr[:-1]): # Don't iterate on last element
# Get crossings of threshold from below
if arr[i] < _threshold:
if arr[i+1] >= _threshold:
ups.append(i)
# Get crossings of threshold from above
if arr[i] > _threshold:
if arr[i+1] <= _threshold:
downs.append(i)
return ups, downs
|
907a6ab3f1c8e058f968064765168e399e497b4a
| 259,307 |
def process_cutoff_line(list_):
"""Process a cutoff line."""
cutoffs = []
for i in [1, 2]:
if list_[i] == 'None':
cutoffs += [None]
else:
cutoffs += [float(list_[i])]
return cutoffs
|
4e7c22a5304901b35edddd2e27ccb11714186f02
| 332,549 |
def seven_seg(a: bool, b: bool, c: bool, d: bool, e: bool, f: bool, g: bool) -> str:
"""Given a set of 7 boolean values corresponding to each segment, returns
a string representation of a 7 segment display.
The display looks like this:
_
|_|
|_|
And the mapping of the booleans is as follows:
a
fgb
edc
"""
return (
(" _" if a else "") + "\n"
+ ("|" if f else " ") + ("_" if g else " ") + ("|" if b else "") + "\n"
+ ("|" if e else " ") + ("_" if d else " ") + ("|" if c else "") + "\n")
|
49ca9e4c3a98a7ac64744a968e90efa58a3f44a0
| 381,614 |
def truncate(s, eps):
"""
Find the smallest k such that sum(s[:k]**2) \geq 1-eps.
"""
mysum = 0.0
k=-1
while (mysum < 1-eps):
k += 1
mysum += s[k]**2
return k+1
|
fc9b5984316e969961b496fd54425e4f52f025ff
| 704,032 |
def from_bytes(array: bytes) -> str:
"""Decodes the string from UTF-8."""
return array.decode("utf-8")
|
4782da935e9d849105c4116dabbb21abd67e047f
| 381,883 |
def bounds_check(values, lower, upper):
"""Perform a simple bounds check on an array.
:param values: an array of values.
:param lower: the lower bound of the valid range.
:param upper: the upper bound of the valid range.
:type values: array[float]
:type lower: float
:type upper: float
:returns: mask - a boolean array that is True when values is between lower and upper.
:rtype: array[bool]
"""
mask = (values >= lower) & (values <= upper)
return mask
|
c99882cdbf33116e29ee80b9bd065893e236e076
| 424,085 |
def government_furloughing(t, states, param, t_start_compensation, t_end_compensation, b_s):
"""
A function to simulate reimbursement of a fraction b of the income loss by policymakers (f.i. as social benefits, or "tijdelijke werkloosheid")
Parameters
----------
t : pd.timestamp
current date
param: float
initialised value of b
t_start_compensation : pd.timestamp
startdate of compensation
t_end_lockdown : pd.timestamp
enddate of compensation
b_s: float
fraction of lost labor income furloughed to consumers under 'shock'
Returns
-------
b: float
fraction of lost labor income compensated
"""
if t < t_start_compensation:
return param
elif ((t >= t_start_compensation) & (t < t_end_compensation)):
return b_s
else:
return param
|
2ed0cc447df832290b59eb048b09bb8dd8373438
| 332,309 |
def handle_store(event):
"""Handle a C-STORE request event."""
# Decode the C-STORE request's *Data Set* parameter to a pydicom Dataset
ds = event.dataset
# Add the File Meta Information
ds.file_meta = event.file_meta
# Save the dataset using the SOP Instance UID as the filename
ds.save_as(ds.SOPInstanceUID, write_like_original=False)
# Return a 'Success' status
return 0x0000
|
4bd11106e1bb7b2c17931a710daa7133d5e8e9e3
| 547,631 |
def check_parens(string, pairs="()"):
"""
Check a string for non-matching braces or other character pairs and return
a list of failures, or an empty set if everything is OK.
`if check_parens(string, brackets):` is a good way to find bad brackets in
a string.
Pairs should be a string of paired braces, such as "[]" or "{}[]<>()".
If `pairs` is excluded, only checks parentheses. Checking pairs of quotes
(where the opening and closing character is the same) is not supported;
every character in `pairs` should be unique.
The return value is a set of tuples of (character, depth, position). The
function immediately returns with the first dangling closing character it
finds, with the position it was found at in the string and a depth of -1. If
the end of the string is reached and there are still dangling contexts, the
set may have multiple values with varying positive depth for each opening
character, but the position will be None.
>>> check_parens("()") == set()
True
>>> check_parens("((()())())") == set()
True
>>> check_parens("[<><>]", "[]<>") == set()
True
>>> check_parens("))asdf]", "[]") == {(']', -1, 6)}
True
>>> check_parens("{{{(", "{}()") == {('(', 1, None), ('{', 3, None)}
True
>>> check_parens(check_parens.__doc__, "{}") == {('{', 5, None)}
True
>>> check_parens(check_parens.__doc__, "<>") == {('>', -1, 960)}
True
"""
begins = {}
ends = {}
counters = []
it = iter(pairs)
for begin, end in zip(it, it):
begins[begin] = len(counters)
ends[end] = len(counters)
counters.append(0)
for position, ch in enumerate(string):
if ch in begins:
counters[begins[ch]] += 1
elif ch in ends:
index = ends[ch]
counters[index] -= 1
if counters[index] < 0:
return {(ch, -1, position)}
return {
(begin, counters[ct_idx], None)
for begin, ct_idx in begins.items() if counters[ct_idx]
}
|
35b05bd2560f1252f04257919f9f50cdcda9b53a
| 416,656 |
def count_model_parameters(model):
"""Count trainable parameters of a given model
Args:
model(object): torch model object
Returns:
trainable_parameters(int): number of trainable parameters
"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
17b32f0e37f9f47fca4de17ee4cfc27cbaa12b02
| 71,667 |
def intfs_only(s1code):
"""Given s1code, keep only interfaces (.h); ignore implementations (.f90)."""
return [(l, f, c) for l, f, c in s1code if f.endswith(".h")]
|
2e43d16d87aa7b427f58622d973229c082e9a67d
| 633,449 |
def reciprocal_rank(sort_data):
""" calculate reciprocal rank
If our returned result is 0, 0, 0, 1, 1, 1
The rank is 4
The reciprocal rank is 1/4
Args:
sort_data: List of tuple, (score, gold_label); score is in [0, 1], glod_label is in {0, 1}
Return:
reciprocal rank
"""
sort_label = [x[1] for x in sort_data]
assert 1 in sort_label
reciprocal_rank = 1. / (1 + sort_label.index(1))
return reciprocal_rank
|
9217533c2ff1dcca83e44c28a7851c25932fbba0
| 465,464 |
import re
def remove_numbers(tweet):
"""
Replaces all numbers in a tweet with the word
'number'.
INPUT:
tweet: original tweet as a string
OUTPUT:
tweet with all numbers removed
"""
words = re.split(r'\s+', tweet)
new_words = []
for word in words:
if bool(re.search(r'\d', word)):
new_words.append('number')
else:
new_words.append(word)
return ' '.join(new_words)
|
833d94513f5e845149f788494ff50ee929c7d36d
| 383,325 |
def add_local_pi_info(data, pi_id, pi_name, location):
"""
Take a dictionary of data read from a sensor and add information relating
to the pi from which the data was being collected
Returns a dictionary with the extra information
"""
if data is not None:
data['location'] = location
data['piname'] = pi_name
data['piid'] = pi_id
return data
|
f8243068c247a78b24cb03732279680f86ea9dff
| 322,100 |
def exclude(values, quality_flags=None):
"""
Return a timeseries with all questionable values removed.
All NaN values will be removed first and then iff `quality_flag` is set
(not 0) the corresponding values will also be removed.
Parameters
----------
values : pandas.Series
Timeseries values.
quality_flags : pandas.DataFrame
Timeseries of quality flags. Default is None.
Returns
-------
pandas.Series :
Timeseries of values excluding non-quality values.
"""
# Missing values
bad_idx = values.isna()
# Handle quality flags
if quality_flags is not None:
consolidated_flag = quality_flags.any(axis=1)
bad_quality_idx = (consolidated_flag != 0)
bad_idx = bad_idx | bad_quality_idx
return values[~bad_idx]
|
cc6ef9b69b035854fc3bd28873b49c4f6742e5ca
| 354,359 |
import requests
import json
def get_request(url):
"""Simple GET Request.
Args:
url (str): URL with parameters to GET request to.
Returns:
dict: Dictionary form of a JSON response.
"""
r = requests.get(url)
return json.loads(r.text)
|
732d6cd54be1e56e610ebec2a07dcd046ed8dbf1
| 543,098 |
def get_unicode_code_points(string):
"""Returns a string of comma-delimited unicode code points corresponding
to the characters in the input string.
"""
return ', '.join(['U+%04X' % ord(c) for c in string])
|
dada87ad2fef1948fd899fc39bd1abe7c105ac6c
| 690,854 |
def coords_to_float(coord):
"""Convert a latitude or longitude coordinate from a string to a float, taking into account N, E, S, W.
For example, '48.2S' to -48.2
Parameters
----------
coord : str
The string form of the coordinate
Returns
-------
float
The coordinate in float form
"""
if coord != None:
if str(coord)[-1] == 'N' or str(coord)[-1] == 'E':
return float(str(coord)[:-1])
elif str(coord)[-1] == 'S' or str(coord)[-1] == 'W': # removes the letter from '48.2S' and puts a negative
return float(str(coord)[:-1]) * -1
else:
return coord
else:
return coord
|
2eafa12802cd1932ce54419414287f0a8ed0dac0
| 601,307 |
import base64
def encode_str_for_draft(input_str):
"""
Given a string, return UTF-8 representation that is then base64 encoded.
"""
if isinstance(input_str, str):
binary = input_str.encode('utf8')
else:
binary = input_str
return base64.b64encode(binary)
|
a8010bf9dfeed5d145dfb0ad81a4cc3bd34c6bad
| 504,696 |
def processing_lines(
lines: list, skip_lines: list = ["# Databricks notebook source\n"]
):
"""Apply logic to transform databricks specific lines to jupyter lines.
Args:
lines (list): contains each line of code
skip_lines (list, optional): Lines to be skipped. Defaults to ["# Databricks notebook source\n"].
Returns:
[list]: logic processed lines
"""
# filter out specific databricks lines
filtered_lines = [line for line in lines if line not in skip_lines]
# replace the databricks command for new cell with line break which is for jupyter
processed_lines = [
"#%%" if line == "# COMMAND ----------\n" else line for line in filtered_lines
]
if processed_lines[0] == "\n":
processed_lines.pop(0)
return processed_lines
|
5760c97410a1bfa3f464ee88c471d1c6c6687013
| 497,936 |
def andTruthTable() -> None:
"""And truth table.
Prints a truth table for the and operator.
Returns:
None. Only prints out a table.
"""
print(" _______________________________\n",
"|A and B | Evaluates to:|\n",
"|_______________|______________|\n",
"|False and False| False |\n",
"|False and True | False |\n",
"|True and False | False |\n",
"|True and True | True |\n",
"|_______________|______________|\n")
return None
|
2e10a431932c304c9720a1599db1ea3e26f14505
| 382,220 |
from typing import Tuple
def get_classes(config: dict) -> Tuple[str, str]:
"""
Return human readable model and dataset classes from the given config.
:param config: configuration dict
:return: a tuple of (model.class, dataset.class)
"""
return config['model']['class'], config['dataset']['class']
|
db3e49052ba2ee22e2ae4ddb9b214af454abf5a4
| 544,470 |
def tuple_or_list(target):
"""Check is a string object contains a tuple or list
If a string likes '[a, b, c]' or '(a, b, c)', then return true,
otherwise false.
Arguments:
target {str} -- target string
Returns:
bool -- result
"""
# if the target is a tuple or list originally, then return directly
if isinstance(target, tuple) or isinstance(target, list):
return target
try:
target = eval(target)
if isinstance(target, tuple) or isinstance(target, list):
return target
except:
pass
return None
|
f29d4685b8e8bbb0c7e5c800a34a226782cdc7ae
| 679,866 |
import math
def _getOS(box1, box2):
"""Compute orientation similarity between two 3D boxes"""
angle_diff = box1['rotation_y'] - box2['rotation_y']
return (1 + math.cos(angle_diff)) / 2
|
1d41444885df4aab208ea344405062f96e026334
| 299,352 |
def base32_decode(base32_value: str) -> int:
"""
Convert base32 string to integer
Example 'A' -> 10
"""
return int(base32_value, 32)
|
3abebc1d84830a016c8beb880a3aedb14838c428
| 619,177 |
def _is_correct_task(task: str, db: dict) -> bool:
"""
Check if the current data set is compatible with the specified task.
Parameters
----------
task
Regression or classification
db
OpenML data set dictionary
Returns
-------
bool
True if the task and the data set are compatible
"""
if task == "classification":
return db['NumberOfSymbolicFeatures'] == 1 and db['NumberOfClasses'] > 0
elif task == "regression":
return True
else:
return False
|
49790d8e2b7a16ee9b3ca9c8bc6054fde28b3b6f
| 4,641 |
def get_weight_op(weight_schedule):
"""Returns a function for creating an iteration dependent loss weight op."""
return lambda iterations: weight_schedule(iterations)
|
c3f4a01159a6a4b3ed309bf094b1821a542ada32
| 23,137 |
def load_html(starthtml, endhtml):
"""Load beginning and ending HTML to go in outpul file"""
start_html = starthtml.read()
end_html = endhtml.read()
return(start_html, end_html)
|
6b67d50b44d59c56d2df4246ed49fd9570b43f34
| 545,437 |
def nice_number(num):
"""If num can be an int, make it an int."""
if int(num) == num:
return int(num)
else:
return num
|
97e45021519b39c44f540d96204373a6d59690d0
| 564,180 |
import inspect
def get_stack_level() -> int:
"""
Return the stack level in Python.
"""
return len(inspect.stack(0))
|
a6f66f9e548023a3536616df69cf75c24294a694
| 521,674 |
def get_smallest_divs(soup):
"""Return the smallest (i.e. innermost, un-nested) `div` HTML tags."""
return [
div for div in soup.find_all("div") if not div.find("div") and div.text.strip()
]
|
f3181c7f3cd5b4c82f060780e23dcf34028316e8
| 47,281 |
def namespace(api, name, description):
"""Return namespace name for the given module."""
return api.namespace(
'/'.join(name.split('.')[3:]).replace('_', '-'),
description=description
)
|
0694a157a0d2d2c4e3aec83076c76f04fd5336d8
| 523,631 |
import random
def get_tweet(in_file):
""" Open up input file read all quotes into a list, return random quote """
possible = []
for tweet in in_file.read().split("DELIM"):
possible.append(tweet.strip())
return random.choice(possible)
|
bff12f0ccf5d0a8d5297456b67eac861afc6d10b
| 244,060 |
def check_cloud(path: str):
"""Naive check to if the path is a cloud path"""
if path.startswith("s3:"):
return True
return False
|
f622fd3b479a2bca7e2ed405c861a5ae528b65a8
| 572,298 |
from typing import List
def has_class(rr_list: List) -> bool:
"""Determines if the list contains a resource class."""
return any(r_class in rr_list for r_class in ('IN', 'CS', 'CH', 'HS'))
|
f26be46349c9f586f3270193487df61963570bb2
| 303,209 |
import re
def cleanse_column(column):
"""
Template function for cleansing column names.
Columns beginning with / or _ will have these removed.
Columns containing spaces, /, (, ), - will be replaced with underscores.
Multiple _ in a row will be replaced with a single _
:param column: String column name from source system
:return: Cleansed column name
"""
column = column.lower()
if column.startswith("/"):
column = column.replace("/", "", 1)
if column.startswith('_'):
column = column.replace('_', "", 1)
# Replace all /,-,(,), blank spaces with _
p = re.compile(r'(/|-|\(|\)|\s)')
column = p.sub('_', column)
# After replacing values find any multiple _ and replace them with a single underscore
p = re.compile(r'(_{2,})')
column = p.sub('_', column)
return column
|
7979c3a324500c5aa3a8e361d6cbf5efcd867334
| 340,913 |
def invert_dictionary(dictionary):
"""Invert a dictionary.
NOTE: if the values of the dictionary are not unique, the function returns the one of the mappings
Args:
dictionary (dict): A dictionary
Returns:
dict: inverted dictionary
Examples:
>>> d = {"a": 1, "b": 2}
>>> d_inv = invert_dictionary(d)
>>> json.dumps(d_inv, sort_keys=True)
'{"1": "a", "2": "b"}'
"""
return {v: k for k, v in dictionary.items()}
|
28f3aef9b4f377f40cb68f87277d34f2e2817eda
| 598,348 |
def collect_reducer_set(values):
"""Return the set of values
>>> collect_reducer_set(['Badger', 'Badger', 'Badger', 'Snake'])
['Badger', 'Snake']
"""
return sorted(list(set(values)))
|
c83e87711cf2f6543c3658493d9feb7f6d5f080a
| 364,936 |
def set_kwargs_from_dflt(passed: dict, dflt: dict) -> dict:
"""Updates ++passed++ dictionary to add any missing keys and
assign corresponding default values, with missing keys and
default values as defined by ++dflt++"""
for key, val in dflt.items():
passed.setdefault(key, val)
return passed
|
3c0555c3276a20adbbc08f1a398605c6e6d37bd9
| 658,608 |
def _VarsToLines(variables):
"""Converts |variables| dict to list of lines for output."""
if not variables:
return []
s = ['vars = {']
for key, tup in sorted(variables.iteritems()):
hierarchy, value = tup
s.extend([
' # %s' % hierarchy,
' "%s": %r,' % (key, value),
'',
])
s.extend(['}', ''])
return s
|
238db698f6027acc7855212b531f1c79a3ac137d
| 172,225 |
def register(name: str, registry: dict):
"""
Register a class or a function with name in registry.
For example:
CLS = {}
@register("a", CLS)
class A(object):
def __init__(self, a=1):
self.a = a
cls_a = CLS['a'](1)
In this way you can build class A given string 'a'.
Args:
name (str): the registering name of this class.
registry (dict): a dict to register classess.
"""
def register_cls(cls):
if name in registry:
raise KeyError("{0} has already been registered!")
else:
registry[name] = cls
return cls
return register_cls
|
b1238babbbbc986cee1b1eaae6468ab027081467
| 647,197 |
def yesno(ans):
"""Convert user input (Yes or No) to a boolean"""
ans = ans.lower()
if ans == 'y' or ans == 'yes':
return True
else:
return False
|
15f74a66ae82742cf74254db7f3dc1a6682dc38c
| 114,736 |
def step2_form_factory(mixin_cls, entry_form_class, attrs=None):
"""
Combines a form mixin with a form class, sets attrs to the resulting class.
This is used to provide a common behavior/logic for all wizard content
forms.
"""
if attrs is None:
attrs = {}
# class name is hardcoded to be consistent with the step 1 form.
# this is meant to be used only in the context of the form wizard.
class_name = 'WizardStep2Form'
meta_class = type(entry_form_class)
FormClass = meta_class(class_name, (mixin_cls, entry_form_class), attrs)
return FormClass
|
5f51919f042642718815809d05493d55593627bd
| 347,628 |
def _join_type_and_checksum(type_list, checksum_list):
"""
Join checksum and their correlated type together to the following format:
"checksums": [{"type":"md5", "checksum":"abcdefg}, {"type":"sha256", "checksum":"abcd12345"}]
"""
checksums = [
{
"type": c_type,
"checksum": checksum,
}
for c_type, checksum in zip(type_list, checksum_list)
]
return checksums
|
7f09ee72c6f51ad87d75a9b5e74ad8ef4776323f
| 706,195 |
import logging
def _loggerBySpec(logger):
"""Logger maybe a logger, logger name, or None for default logger, returns the
logger."""
if not isinstance(logger, logging.Logger):
logger = logging.getLogger(logger)
return logger
|
f5a71eccdd53a30c725b602046effecb558738e6
| 404,955 |
def validate_token(token):
"""
Just a utility method that makes sure provided token follows a 'Bearer token' spec
:param token: A JWT token to be validated
:return: The token itself, None if not valid
:rtype: str
"""
if token:
# Token should be string with 'Bearer token'
tokens = token.split(' ')
# Make sure first token is Bearer
if (len(tokens) == 2) and (tokens[0] == 'Bearer'):
# Make sure token can be splitted by 3 using '.'
elements = tokens[1].split('.')
if len(elements) == 3:
return tokens[1]
else:
raise Exception
else:
raise Exception
else:
return None
|
cbeb8733bba3a8c77a635e160e7b3ce0cf7323b6
| 207,218 |
from datetime import datetime
import re
def parse_nowcast(text):
"""
Parses the immediate aurora forecast.
http://services.swpc.noaa.gov/text/aurora-nowcast-map.txt
"""
time = datetime.max # forecast time remains far in the future if time not found in the file
data = []
for line in map(lambda l: l.decode('utf_8').strip(), text):
if line:
if not line.startswith('#'):
for p in line.split():
data.append(int(p) if p != 'n/a' else 0)
else:
m = re.search('^# Product Valid At: (.*)', line)
if m:
time = datetime.strptime(m.group(1), '%Y-%m-%d %H:%M')
return data, time
|
64255c019b89e62766eccb109b0320bbaa3d3f1d
| 232,973 |
def is_alarms_table(table):
""" True if table of alarms notifications """
phrase = 'alarm'
return phrase == table.short_title[:len(phrase)].lower()
|
9d6d2d5ff2bb34fd834ce57262b1f740aa28b023
| 606,547 |
from datetime import datetime
def get_time_range(delta):
"""Return time range by delta."""
end = datetime.now().timestamp()
start = end - delta
return start, end
|
402c98aea6e961af0d8756be0c4833225468c562
| 311,121 |
def postprocess_data(raw_data, decoded):
"""
Remove generation artifacts and postprocess outputs
:param raw_data: loaded data
:param decoded: model outputs
"""
raw_data['target'] = [x.replace('\n', ' ') for x in raw_data['target']]
raw_data['decoded'] = [x.replace('<n>', ' ') for x in decoded]
return [dict(zip(raw_data, t)) for t in zip(*raw_data.values())]
|
1de79a3e6ef1e3d253f94b327c4bfde144d993e9
| 507,595 |
from typing import List
import logging
def is_method(string_method: str, methods: List[str]) -> bool:
"""
Test if string_method is a method in methods
:param string_method: String to test
:type string_method: string
:param methods: list of available methods
:type methods: list of strings
:returns: True if string_method a method and False otherwise
:rtype: bool
"""
if string_method in methods:
return True
logging.error('% is not in available methods : ', string_method + ', '.join(methods))
return False
|
f897c06320f67cd1dfcdcc294857fee1a5429e48
| 419,298 |
import socket
def port_check(host, port, timeout=2):
"""
Perform a basic socket connect to 'host' on 'port'.
Args:
host: String of the host/ip to connect to
port: integer of the port to connect to on 'host'
timeout: integer indicating timeout for connecting. Default=2
Returns:
Boolean whether the connection was successful or now
"""
skt = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
skt.settimeout(timeout)
try:
skt.connect((host, int(port)))
skt.shutdown(socket.SHUT_RDWR)
return True
except Exception: ##pylint: disable=broad-except
return False
finally:
skt.close()
|
743738cc2ccb712207a9df3889834c52a491cb45
| 527,180 |
def get_name_arg(argd, *argnames, default=None):
""" Return the first argument value given in a docopt arg dict.
When not given, return default.
"""
val = None
for argname in argnames:
if argd[argname]:
val = argd[argname].lower().strip()
break
return val if val else default
|
df0e43032c99df127030d59b3d8393a1c82e60cd
| 231,968 |
def ebc_to_srm(ebc: float) -> float:
"""
Convert from European Brewing Convention (EBC) color system to
Standard Reference Method (SRM) color system.
"""
return ebc / 1.97
|
cea03fa3688e5a9a23431e7802b8fe510c089f72
| 213,940 |
from typing import Iterable
def check_all_dicts(iterable_dict: Iterable[dict]):
"""Check if Iterable contains all dictionaries
Args:
iterable_dict (Iterable[dict]): Iterable of dictionaries
"""
# Check if dict
def check_dict(d):
return isinstance(d, dict)
# Check if all instances are type dict, return True or False
all_dict = all(map(check_dict, iterable_dict))
# print(all_dict)
if not all_dict:
raise BaseException("Iterable has mixed types, expected Iterable[dictionaries]")
return True
|
0e87989d600d303e9bdadf04725c398841bcd214
| 30,839 |
def replicaset_config(client):
"""
Return the replicaset config document
https://docs.mongodb.com/manual/reference/command/replSetGetConfig/
"""
rs = client.admin.command('replSetGetConfig')
return rs
|
5d2b3e2801fa96b6186a24edb00d849285dd9045
| 166,900 |
def clog2(x):
"""Ceiling log 2 of x.
>>> clog2(0), clog2(1), clog2(2), clog2(3), clog2(4)
(0, 0, 1, 2, 2)
>>> clog2(5), clog2(6), clog2(7), clog2(8), clog2(9)
(3, 3, 3, 3, 4)
>>> clog2(1 << 31)
31
>>> clog2(1 << 63)
63
>>> clog2(1 << 11)
11
"""
x -= 1
i = 0
while True:
if x <= 0:
break
x = x >> 1
i += 1
return i
|
e3cceb918d048fd796685fc43850d93369f82ef2
| 95,235 |
def nameAndVersion(aString):
"""Splits a string into the name and version number.
Name and version must be seperated with a hyphen ('-')
or double hyphen ('--').
'TextWrangler-2.3b1' becomes ('TextWrangler', '2.3b1')
'AdobePhotoshopCS3--11.2.1' becomes ('AdobePhotoshopCS3', '11.2.1')
'MicrosoftOffice2008-12.2.1' becomes ('MicrosoftOffice2008', '12.2.1')
"""
for delim in ('--', '-'):
if aString.count(delim) > 0:
chunks = aString.split(delim)
vers = chunks.pop()
name = delim.join(chunks)
if vers[0] in '0123456789':
return (name, vers)
return (aString, '')
|
79b5680c998313260f6f64bddc2ff9ee236453fd
| 408,481 |
import unicodedata
import re
def text_to_slug(value, joiner="-"):
"""
Normalize a string to a "slug" value, stripping character accents and removing non-alphanum characters.
A series of non-alphanumeric characters is replaced with the joiner character.
"""
# Strip all character accents: decompose Unicode characters and then drop combining chars.
value = "".join(
c for c in unicodedata.normalize("NFKD", value) if not unicodedata.combining(c)
)
# Replace all remaining non-alphanumeric characters with joiner string. Multiple characters get collapsed into a
# single joiner. Except, keep 'xn--' used in IDNA domain names as is.
value = re.sub(r"[^A-Za-z0-9.]+(?<!xn--)", joiner, value)
# '-' in the beginning or end of string looks ugly.
return value.strip(joiner)
|
dad52fc9e9a7781125d3c08495d421c3daa3750a
| 556,593 |
def qualified_column(column_name: str, alias: str = "") -> str:
"""
Returns a column in the form "table.column" if the table is not
empty. If the table is empty it returns the column itself.
"""
return column_name if not alias else f"{alias}.{column_name}"
|
9920d71e94c0e17bd7a5ce5d0f5c4fabdacfab5e
| 124,197 |
def includes(collection, sought, start=None):
"""Is sought in collection, starting at index start?
Return True/False if sought is in the given collection:
- lists/strings/sets/tuples: returns True/False if sought present
- dictionaries: return True/False if *value* of sought in dictionary
If string/list/tuple and `start` is provided, starts searching only at that
index. This `start` is ignored for sets/dictionaries, since they aren't
ordered.
>>> includes([1, 2, 3], 1)
True
>>> includes([1, 2, 3], 1, 2)
False
>>> includes("hello", "o")
True
>>> includes(('Elmo', 5, 'red'), 'red', 1)
True
>>> includes({1, 2, 3}, 1)
True
>>> includes({1, 2, 3}, 1, 3) # "start" ignored for sets!
True
>>> includes({"apple": "red", "berry": "blue"}, "blue")
True
"""
if isinstance(collection, dict):
return sought in collection.values()
if start is None or isinstance(collection, set):
return sought in collection
return sought in collection[start:]
|
a786b7190cd684b4fae780edf9113a077ab9f12a
| 574,475 |
def im_fits_path(source, band, epoch, stoke, base_path=None):
"""
Function that returns path to im-file for given source, epoch, band and
stokes parameter.
:param base_path: (optional)
Path to route of directory tree. If ``None`` then use current directory.
(default: ``None``)
"""
return base_path + source + '/' + epoch + '/' + band.upper() + '/im/' +\
stoke.upper() + '/'
|
33e52dcb28fd98e290d3546e44208fbb9665f6a8
| 57,856 |
import importlib
def class_name_to_type(classname):
"""
Turns the class name into a type.
:param classname: the class name to convert (a.b.Cls)
:type classname: str
:return: the type
:rtype: type
"""
p = classname.split(".")
m = ".".join(p[:-1])
c = p[-1]
return getattr(importlib.import_module(m), c)
|
3cf11ff27fb41f5fb2b65084d60a518f0965a741
| 319,440 |
def addDegrees(heading, change):
"""
Calculate a new heading between 0 and 360 degrees
:param heading: Initial compass heading
:param change: Degrees to add
:return: New heading between 0 and 360 degrees
"""
heading += change
return heading % 360
|
3af817cefb867706d4fd586e13a92b84b04f80b8
| 304,568 |
def complex_to_coord(num, flip=600):
"""
Transform a complex number to pygame coordinate.
Parameters
----------
num : complex
The complex number to transformm.
flip : int, optional
The height of the drawing, or the height of the original
pygame window. That is, the maximum value that num.complex can
have. Used to flip the coordinate over the x-axis to comply with
how the pygame coordinate system works. The default is 600.
Returns
-------
x : float
The x-coordinate.
y : float
The y-coordinate.
"""
x = num.real
y = flip - num.imag
return (x,y)
|
3d537f81f368db38f458f755a466c958c1c8150a
| 465,277 |
import math
def mean(data):
"""
Calculates the mean of a data set
Args:
data: the list with the data
"""
n = len(data)
if (n > 0) :
result = math.fsum(data) / n
return result
|
37af41822db8596c19b9cf3a3f97c96ad1cdf49b
| 144,707 |
def first4_last4_every_other_removed(seq):
"""With the first and last 4 items removed, and every other item in between"""
return seq[4:-4:2]
|
8e12112d97f7be2a50ecd6159f1295d100809f67
| 495,455 |
import re
def _check_if_item_allowed(item_name, allow_patterns, disallow_patterns):
"""
Check if an item with ``item_name`` is allowed based on ``allow_patterns``
and ``disallow_patterns``.
Parameters
----------
item_name: str
Name of the item.
allow_patterns: list(str)
Selected item should match at least one of the re patterns. If the value is ``[None]``
then all items are selected. If ``[]``, then no items are selected.
disallow_patterns: list(str)
Items are deselected based on re patterns in the list: if an item matches at least one
of the patterns, it is deselected. If the value is ``[None]`` or ``[]`` then no items
are deselected.
Returns
-------
boolean
Indicates if the item is permitted based on ``allow_patterns`` and ``disallow_patterns``.
"""
item_is_allowed = False
if allow_patterns:
if allow_patterns[0] is None:
item_is_allowed = True
else:
for pattern in allow_patterns:
if re.search(pattern, item_name):
item_is_allowed = True
break
if item_is_allowed:
if disallow_patterns and (disallow_patterns[0] is not None):
for pattern in disallow_patterns:
if re.search(pattern, item_name):
item_is_allowed = False
break
return item_is_allowed
|
6a14239913140130eb8ce0d12a797039a7625172
| 43,394 |
import fnmatch
def _match_in_cache(cache_tree, list_of_names):
"""
:type cache_tree: defaultdict
:description cache_tree: a defaultdict initialized with the tree() function. Contains names
of entries in the kairosdb, separated by "." per the graphite convention.
:type list_of_names: list
:description list_of_names: list of strings, in order, that will be sought after in the cache tree.
:rtype: list
:return: A list of matches, possibly empty.
Given a cache_tree, and a prefix, returns all of the values associated with that prefix,
that is, the keys that reside under the prefix.
"""
head_item = list_of_names[0]
# print "head_item is {0}".format(head_item)
head_item_matches = [ m for m in cache_tree.keys() if fnmatch.fnmatch(m, head_item) ]
if head_item not in cache_tree.keys():
# print "A"
return [] # Empty List to signify we're done here
elif len(list_of_names) == 1:
# print "B"
return cache_tree[head_item].keys()
else:
# print "C"
tail_list = list_of_names[1:]
return _match_in_cache(cache_tree[head_item], tail_list)
|
e559125f4b62a87956e0d30f5d8c3e4b2c7abef8
| 26,956 |
def get_corresponding_letter(index, sentence):
"""
Get the letter corresponding to the index in the given sentence
:param index: the wanted index.
:param sentence: the reference sentence.
:return: the corresponding letter if found, 'None' otherwise.
"""
if index < len(sentence.letters):
return sentence.letters[index]
else:
return None
|
4bc6df4228d2e8fc9fdd7ce2791c33d5f2a96257
| 673,829 |
def calDensityIG(MW, CoSp):
"""
calculate: density of ideal gas (IG) [kg/m^3]
args:
MW: molecular weight [kg/mol]
CoSp: concentration species [mol/m^3]
"""
try:
# density
den = MW*CoSp
return den
except Exception as e:
pass
|
34fa96a3425975e2d80ddbe24753148746a7ea67
| 218,694 |
def nested_select(d, v, default_selected=True):
"""
Nestedly select part of the object d with indicator v. If d is a dictionary, it will continue to select the child
values. The function will return the selected parts as well as the dropped parts.
:param d: The dictionary to be selected
:param v: The indicator showing which part should be selected
:param default_selected: Specify whether an entry is selected by default
:return: A tuple of two elements, the selected part and the dropped part
Examples:
>>> person = {'profile': {'name': 'john', 'age': 16, 'weight': 85}, \
'relatives': {'father': 'bob', 'mother': 'alice'}}
>>> nested_select(person, True)
({'profile': {'name': 'john', 'age': 16, 'weight': 85}, 'relatives': {'father': 'bob', 'mother': 'alice'}}, {})
>>> nested_select(person, {'profile': False})
({'relatives': {'father': 'bob', 'mother': 'alice'}}, {'profile': {'name': 'john', 'age': 16, 'weight': 85}})
>>> nested_select(person, {'profile': {'name': False}, 'relatives': {'mother': False}})
({'profile': {'age': 16, 'weight': 85}, 'relatives': {'father': 'bob'}},
{'profile': {'name': 'john'}, 'relatives': {'mother': 'alice'}})
"""
if isinstance(v, dict):
assert isinstance(d, dict)
choosed = d.__class__()
dropped = d.__class__()
for k in d:
if k not in v:
if default_selected:
choosed.setdefault(k, d[k])
else:
dropped.setdefault(k, d[k])
continue
if isinstance(v[k], dict):
assert isinstance(d[k], dict)
child_choosed, child_dropped = nested_select(d[k], v[k])
if child_choosed:
choosed.setdefault(k, child_choosed)
if child_dropped:
dropped.setdefault(k, child_dropped)
else:
if v[k]:
choosed.setdefault(k, d[k])
else:
dropped.setdefault(k, d[k])
return choosed, dropped
else:
other = d.__class__() if isinstance(d, dict) else None
return (d, other) if v else (other, d)
|
84aa16adfb324fef8452966087cbf446d57893d2
| 11,575 |
def verify_user_prediction(user_inputs_dic: dict, correct_definition_dic: dict):
"""
Verifies user prediction json against correct json definition
returns true if correct format, false if not
"""
if user_inputs_dic.keys() != correct_definition_dic.keys():
return False
for user_key, user_value in user_inputs_dic.items():
possible_values = correct_definition_dic[user_key].keys()
if user_value not in possible_values:
return False
return True
|
de1d2b579ab312929f64196467a3e08874a5be42
| 14,735 |
import codecs
def hex(b):
"""Convert the given bytes to hexadecimal string representation.
Parameters
----------
b : bytes
The byte string to convert
Returns
-------
str
Hexadecimal string
"""
return codecs.encode(b, "hex").decode("ascii")
|
0aa07627e97474ffa9af259197b6c5ff4042940a
| 426,158 |
import math
def rad_to_deg(r):
"""Radians to degrees
"""
return r * 180.0 / math.pi
|
d993a2ee9549af0d629d107015f0cd86ca8854ab
| 470,229 |
import uuid
def build_request_body(method, params):
"""Build a JSON-RPC request body based on the parameters given."""
data = {
"jsonrpc": "2.0",
"method": method,
"params": params,
"id": str(uuid.uuid4())
}
return data
|
372df70bd17e78f01de5f0e537988072ac9716cc
| 699,892 |
from typing import Iterable
from typing import Union
from pathlib import Path
from typing import Optional
import re
from typing import Collection
from typing import Set
def find_files(
paths: Iterable[Union[str, Path]],
include: Optional[re.Pattern],
excludes: Optional[Collection[re.Pattern]],
) -> Set[Path]:
"""
Recurse any directories specified in 'paths', and include any files specified.
For recursive searches, only include paths which match 'include'.
For all paths, exclude any which match 'exclude'.
"""
final_paths: Set[Path] = set()
for path in paths:
p = Path(path)
if p.is_dir():
final_paths.update(
x for x in p.glob("**/*") if (not include or include.search(str(x)))
)
elif p.is_file():
final_paths.add(Path(p))
for exclude in excludes or []:
final_paths = {x for x in final_paths if not exclude.search(str(x))}
return final_paths
|
15ebdf322ad05e6e21d2c2878e2591533befef82
| 312,132 |
def is_query_parameter_value(value) -> bool:
"""
Checks if a value is a query parameter value.
:param value: The value to check.
:return: True if the value is a query parameter value,
False if not.
"""
# Must be a string or list of strings
return isinstance(value, str) or (isinstance(value, list) and all(map(lambda sub: isinstance(sub, str), value)))
|
8e5b3b67e352532056b47a316b010111820aa806
| 308,224 |
import torch
def concat_and_flatten(items):
"""
Concatenate feature vectors together in a way that they can be handed into
a linear layer
:param items A list of ag.Variables which are vectors
:return One long row vector of all of the items concatenated together
"""
return torch.cat(items, 1).view(1, -1)
|
9dcbcbb21bcc995abd641feec6d227543e08c082
| 247,526 |
def parse_unit(unit):
"""Parse a unit string
Parameters
----------
unit : str
String describing a unit (e.g., 'mm')
Returns
-------
factor : float
Factor that relates the base unit to the parsed unit.
E.g., `parse_unit('mm')[0] -> 1e-3`
baseunit : str
Physical unit without the prefix.
E.g., `parse_unit('mm')[1] -> 'm'`
"""
if unit is None or len(unit) == 0:
return 1.
unit_type = unit[-1]
unit_scale = unit[:-1]
mu1 = '\u00B5'
mu2 = '\u03BC'
unit_map = {'Y': 1E24, 'Z': 1E21, 'E': 1E18, 'P': 1E15, 'T': 1E12, 'G': 1E9,
'M': 1E6, 'k': 1E3, 'h': 1e2, 'da': 1E1, 'd': 1E-1, 'c': 1E-2,
'm': 1E-3, mu1: 1E-6, mu2: 1E-6, 'u': 1E-6, 'n': 1E-9,
'p': 1E-12, 'f': 1E-15, 'a': 1E-18, 'z': 1E-21, 'y': 1E-24}
if len(unit_scale) == 0:
return 1., unit_type
else:
return unit_map[unit_scale], unit_type
|
0ada612f10ac515651d6713e4a30cd6be4341b0a
| 595,331 |
def getTreeString(x, y, z, numLogs):
""" Returns a Malmo string to use in the mission XML to create a tree. """
leavesHeight = y + 4
treeHeight = y + numLogs
return """
<DrawingDecorator>
<DrawSphere x="{x}" y="{yLeaves}" z="{z}" radius="3" type="leaves" />
<DrawLine x1="{x}" y1="{y}" z1="{z}" x2="{x}" y2="{yTreeHeight}" z2="{z}" type="log" />
</DrawingDecorator>""".format(x=x, y=y, z=z, yLeaves=leavesHeight, yTreeHeight=treeHeight)
|
204680a811a98843f38abcdf028387e84277add2
| 537,936 |
import json
def nfa_json_importer(input_file: str) -> dict:
""" Imports a NFA from a JSON file.
:param str input_file: path+filename to JSON file;
:return: *(dict)* representing a NFA.
"""
file = open(input_file)
json_file = json.load(file)
transitions = {} # key [state in states, action in alphabet]
# value [Set of arriving states in states]
for p in json_file['transitions']:
transitions.setdefault((p[0], p[1]), set()).add(p[2])
nfa = {
'alphabet': set(json_file['alphabet']),
'states': set(json_file['states']),
'initial_states': set(json_file['initial_states']),
'accepting_states': set(json_file['accepting_states']),
'transitions': transitions
}
return nfa
|
a821e29a6e02b14f381e737550ac00c61da9509c
| 525,423 |
def calc_time_factor(start_breach, end_breach):
"""
calculates the fraction of island height to be reduced during simulation
:param start_breach: start time (island should be inundated here)
:param end_breach: end time
:return: return the timing ratio
"""
total_time = abs(end_breach - start_breach)
num_time_steps = total_time / 7.5 # current run timesteps every 7.5 seconds or so
tf = 1 / num_time_steps # calculate how many steps it takes to reach 100% breach
return tf
|
c57e91445674dce3f6ec58dd63c809d374cb84ad
| 361,729 |
def _replace_reserved_char(s):
"""Return the given string with all its brackets and # replaced by _."""
for c in '()[]{}#':
s = s.replace(c, '_')
return s
|
32b74b3a36577378ca23e8982e001595599f4c48
| 614,456 |
def after_request(response):
"""Define acceptable response headers."""
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
response.headers.add('Access-Control-Allow-Methods', 'GET,POST')
return response
|
709061cd1bae2dad04cc34170d745261d0223f1e
| 649,305 |
def merge_2_dictionnaries(dict1, dict2):
""" Merge two dictionnaries together by adding the values """
result = dict1
for k, v in dict2.items():
result[k] = (result.get(k) or 0) + v
return result
|
ca4e1834460bb27374f74532bde59627f9e99d51
| 245,738 |
def keys_as_sorted_list(dict):
"""
sorted keys of the dict
:param dict: dict input
:return: sorted key list
"""
return sorted(list(dict.keys()))
|
db8ba319724115a5b410eb7bad2847ef23d2977e
| 339,862 |
def nop(arch = None):
"""Returns a no operation instruction."""
if arch in ['i386', 'amd64']:
return 'nop'
elif arch in ['arm', 'thumb']:
return 'orr r4, r4, r4'
elif arch in ['mips']:
return 'or $ra, $ra, $ra'
|
6afb0e4bcfff5e4cf34bd7a02d74e65bf7635473
| 288,380 |
def get_version(client):
"""Return ES version number as a tuple"""
version = client.info()['version']['number']
return tuple(map(int, version.split('.')))
|
c4a5f3d3e4e6326b6a7f5eed20d3e3e5b3c408c8
| 60,677 |
def chunkify(lst, n):
"""
e.g.
lst = range(13) & n = 3
return = [[0, 3, 6, 9, 12], [1, 4, 7, 10], [2, 5, 8, 11]]
"""
return [lst[i::n] for i in range(n)]
|
641faa77c32934c4d110357f47a2ce96ad687faa
| 209,554 |
def vsum(pos, delta):
"""Sums two vectors in tuple/list format"""
return (pos[0]+delta[0],pos[1]+delta[1])
|
0a10a7cea9d3bfa9f939ed392c6c4aa36e1de589
| 390,627 |
def _split_header(code):
"""Extract the Implectus header from a generated code string."""
lines = code.splitlines()
assert len(lines) > 3
assert lines[0].startswith("# # Autogenerated"), "Missing header"
assert lines[1].startswith("# This file was"), "Missing header"
assert lines[2].startswith("# edit `"), "Missing header"
assert not lines[3], "Missing gap"
return "\n".join(lines[:3]), "\n".join(lines[4:])
|
77873a071c747dff96f36f11514a8e1b8693daa9
| 230,980 |
import torch
def mask_fill(
fill_value: float,
tokens: torch.Tensor,
embeddings: torch.Tensor,
padding_index: int,
) -> torch.Tensor:
"""
Function that masks embeddings representing padded elements.
:param fill_value: the value to fill the embeddings belonging to padded tokens.
:param tokens: The input sequences [bsz x seq_len].
:param embeddings: word embeddings [bsz x seq_len x hiddens].
:param padding_index: Index of the padding token.
"""
padding_mask = tokens.eq(padding_index).unsqueeze(-1)
return embeddings.float().masked_fill_(padding_mask, fill_value).type_as(embeddings)
|
e89e2a0f807765694ff68109b7d1a5adfec0297b
| 670,567 |
import re
def convert_to_lowercase_and_underscore(name):
"""
The Shared Memory is in CamelCase - convert the names to Python Standard lowercase with underscores
http://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-camel-case
I have already changed the names in sim_info.py, so this function is no longer used
"""
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
|
268e643e476c754b1bd785967e909d90351d5dee
| 558,403 |
import importlib
def import_module(libname):
""" Function import module using string representation """
return importlib.import_module(libname)
|
1fe10e5c655a363a45ea742e33dd9d23a221b178
| 120,350 |
def drop_info(df):
"""Takes a dataframe and drop rows whitout an splitted `info`
length diferrent than four.
Parameters
----------
df :
The dataframe to search.
Returns
-------
The dataframe processed.
"""
before = df.shape
print(f'Shape before dropping: {before}')
# df.dropna(subset=['info'])
df = df[df['info'].str.split(',').apply(len) == 4]
after = df.shape
print(f'Shape after dropping: {after}\n' + '-' * 10)
print(f'Dropped: {before[0] - after[0]} rows\n')
return df
|
fb18f874eaf925c6651aa912009749806fc0b1f4
| 586,733 |
def document_metas_from_data(document_data, claimant):
"""
Return a list of document meta dicts for the given document data.
Returns one document meta dict for each document metadata claim in
document_data.
Each dict can be used to init a DocumentMeta object directly::
document_meta = DocumentMeta(**document_meta_dict)
:param document_data: the "document" sub-object that the client POSTed to
the API as part of a new or updated annotation
:type document_data: dict
:param claimant: the URI that the browser was at when this annotation was
created (the top-level "uri" field of the annotation)
:type claimant: unicode
:returns: a list of zero or more document meta dicts
:rtype: list of dicts
"""
def transform_meta_(document_meta_dicts, items, path_prefix=None):
"""Fill document_meta_dicts with document meta dicts for the items."""
if path_prefix is None:
path_prefix = []
for key, value in items.items():
keypath = path_prefix[:]
keypath.append(key)
if isinstance(value, dict):
transform_meta_(document_meta_dicts, value, path_prefix=keypath)
else:
if not isinstance(value, list):
value = [value]
type_ = ".".join(keypath)
if type_ == "title":
# We don't allow None, empty strings, whitespace-only
# strings, leading or trailing whitespaces, or empty arrays
# in document title values.
value = [v.strip() for v in value if v and v.strip()]
if not value:
continue
document_meta_dicts.append(
{"type": type_, "value": value, "claimant": claimant}
)
items = {k: v for k, v in document_data.items() if k != "link"}
document_meta_dicts = []
transform_meta_(document_meta_dicts, items)
return document_meta_dicts
|
a7060fe7b17f06e6bbf4ea2748315fec7392fbe8
| 143,419 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.