content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
from typing import List def is_tree(pattern: List[str], row: int, col: int) -> bool: """Checks if the input pattern has a tree at the input coordinates.""" width = len(pattern[0]) pat_col = col-col//(width-1)*(width-1) # Turn width into an index if pattern[row][pat_col] == "#": return True return False
c93771bc51cc4d175979a54033871bc9a98484a9
419,330
import pickle def load_pickle(pickle_path): """Utility function for loading .pkl pickle files. Arguments --------- pickle_path : str Path to pickle file. Returns ------- out : object Python object loaded from pickle. """ with open(pickle_path, "rb") as f: out = pickle.load(f) return out
436496808be87c92fb6e46bcd4e110984ed64c85
684,530
def moretrees(a_dict): """assumes a_dict is a dictionary of key strings and value ints, representing country names and number of tree per square kilometer returns a list of strings, representing the name of countries with more than 20.000 trees per square kilometer""" green_contries_list = [] for key, value in a_dict.items(): if value >= 20000: green_contries_list.append(key) return green_contries_list
c0df584364d4b5361aec48fe84b5075f35a43d47
423,717
def test_verilog(request): """Test Verilog translation rather than python.""" return request.config.option.test_verilog
d9723d68cffde9393b5e46c3da044f0ea7a35eda
116,495
def search_stdout_contains(captured, find_me, contains_me): """Search stdout message for find_me, return true if it contains contains_me""" for msg in captured.out.split("/n"): if find_me in msg: print(f"Found '{find_me}' in '{msg}'") if contains_me in msg: print(f"Found '{contains_me}' in '{msg}'") return True return False
06a4592f6fc51683edce74dda608e9050ea3a8be
443,329
import torch def active(loss, threshold=1e-5): """ Counts how many samples contribute to the loss. Args: loss Returns: The percentage of active samples. """ return (loss > threshold).sum().to(torch.float) / len(loss)
d1a8fe96454232cedafa032b131632700815e028
235,873
def haspropriety(obj, name): """Check if propriety `name` was defined in obj.""" attr = getattr(obj, name, None) return attr and not callable(attr)
fc83254933dba169b9725182d15006cc85d1ef45
650,823
def indent_text(string, indent_level=2): """Indent every line of text in a newline-delimited string""" indented_lines = [] indent_spaces = ' ' * indent_level for line in string.split('\n'): indented_lines.append(indent_spaces + line) return '\n'.join(indented_lines)
b3cd63e1578e638624e49e5bbdc2042de83a856c
295,568
import json def json_loads(s): """Read JSON in a consistent way.""" return json.loads(s)
23b350e0cd2b56a3580944bae3e0fa9bdbd9a747
170,651
def exclusion_information(obs): """ Provides a count and percentage of growthcleanr categories by measurement type (param). Parameters: obs: a DataFrame, in the format output by setup_individual_obs_df Returns: A DataFrame with the counts and percentages """ exc = obs.groupby(['param', 'clean_cat']).agg({'id': 'count'}).reset_index().pivot(index="clean_cat", columns='param', values='id') exc['height percent'] = exc['HEIGHTCM'] / exc['HEIGHTCM'].sum() * 100 exc['weight percent'] = exc['WEIGHTKG'] / exc['WEIGHTKG'].sum() * 100 exc = exc.fillna(0) exc['total'] = exc['HEIGHTCM'] + exc['WEIGHTKG'] exc = exc[['HEIGHTCM', 'height percent', 'WEIGHTKG', 'weight percent', 'total']] exc = exc.sort_values('total', ascending=False) return exc.style.format({'HEIGHTCM': "{:.0f}".format, 'height percent': "{:.2f}%", 'WEIGHTKG': "{:.0f}".format, 'weight percent': "{:.2f}%"})
8272dc9fafa8f7cbe67c5e5faa0d8e7f08bcb83f
392,808
from dateutil.parser import parse def timestamp(date_time): """Convert a date string to number of seconds since 1 Jan 1970 00:00 UTC date: e.g. "2016-01-27 12:24:06.302724692-08" """ t0 = parse("1970-01-01 00:00:00+0000") t = parse(date_time) return (t-t0).total_seconds()
a736d92f09325252639c0505a894550dd55121f9
692,829
def a2idx(a): """ Tries to convert "a" to an index, returns None on failure. The result of a2idx() (if not None) can be safely used as an index to arrays/matrices. """ if hasattr(a, "__int__"): return int(a) if hasattr(a, "__index__"): return a.__index__()
a0d2216ee1599143daa24540d39cf9aba507aabb
116,681
def parabolic_fit(Y): """Fit a parabola to 3 y values at x=[-1,0,1]; return x0, y0.""" c = Y[1] a = 0.5 * (Y[0] + Y[2]) - Y[1] b = 0.5 * (Y[2] - Y[0]) x0 = -b / (2 * a) y0 = - b**2 / (2 * a) + c return x0, y0
bb1b7734b411a7f92b3b1b8f20a836143af5c4f4
303,850
def rd(f): """Round float to nearest integer""" return(round(int(f)))
8057da2609530bda602556a4104623c736c5da34
138,004
import torch def KLD_cost(mu_p, sig_p, mu_q, sig_q): """KLD between two gaussian distribution Parameters ---------- mu_p : :obj:`torch.tensor` sig_p : :obj:`torch.tensor` mu_q : :obj:`torch.tensor` sig_q : :obj:`torch.tensor` Returns ------- :obj:`torch.tensor` KL divergence """ KLD = 0.5 * (2 * torch.log(sig_p / sig_q) - 1 + (sig_q / sig_p).pow(2) + ((mu_p - mu_q) / sig_p).pow(2)).sum() # https://arxiv.org/abs/1312.6114 # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) return KLD
e191caab3ae0858e2976813ea0257f462d930a7d
367,599
def get_generated_cols(X_original, X_transformed, to_transform): """ Returns a list of the generated/transformed columns. Arguments: X_original: df the original (input) DataFrame. X_transformed: df the transformed (current) DataFrame. to_transform: [str] a list of columns that were transformed (as in the original DataFrame), commonly self.cols. Output: a list of columns that were transformed (as in the current DataFrame). """ original_cols = set(X_original.columns) current_cols = set(X_transformed.columns) generated_cols = list(current_cols - (original_cols - set(to_transform))) return generated_cols
8332ac6e33e5519bcb83d65b5acf0989d39aff1a
104,015
def guess_multi_value(value): """ Make the best kind of list from `value`. If it's already a list, or tuple, do nothing. If it's a value with new lines, split. If it's a single value without new lines, wrap in a list """ if isinstance(value, (tuple, list)): return value if isinstance(value, str) and '\n' in value: return [line.strip() for line in value.split('\n')] return [value]
a742a9f37f84bbcc04f550fc3525a8df0fce43b9
629,759
def filter_images(candidates): """Return only images -- i.e. remove audio files etc.""" filtered_candidates = {} for c in candidates: if 'imageinfo' not in c or not c['imageinfo']: print("Missing imageinfo:", c) continue if c['imageinfo'][0]['mime'].startswith('image'): filtered_candidates[c['pageid']] = c return filtered_candidates
8a359ff25dbf376b665eab9642924e874a14beb0
479,321
def format_like(s: str, escape='\\') -> str: """ Format and escape a string for a LIKE or ILIKE substring search. """ return '%{}%'.format(s.replace('%', escape+'%').replace('_', escape+'_'))
07ab19ab27e07c4ccf5e4c041e1c3934702e0de7
282,949
def _get_cell(row, name, decimal=False): """Retrieves a cell from a row by name.""" for cell in row.cells: if cell.name == name: if decimal: return cell.decimal_value[0] return cell.string_value[0]
16e0c5475121a3d01fdef1ca2f16e3a6e30cccba
19,033
import json def load_json(path: str): """Loads the json file from 'path' into a list of dicts Args: path (str): The path to the json file Raises: ValueError: If the provided path does not point to a json file Returns: dict: A dict of the json file """ if not ".json" in path: raise ValueError("'path' is not pointing to a json file") data = None with open(path) as f: data = json.loads(f.read()) return data
7144f06c393863c49c7645d06ed2b37be731bd04
548,450
def entity_similarity(K, R): """ The similarity metric for chains is based on how many common mentions two chains share (Luo, 2005): similarity = 2 * |K intersects R|/ (|K| + |R|) :param K: an entity (set of mentions) from the key entities :param R: an entity (set of mentions) from the response entities :return: similarity = 2 * |K intersects R|/ (|K| + |R|) """ return 2.0 * len(K.intersection(R)) / (len(K) + len(R))
0a859edf55936f832f69c35c9d84a0bd51912ec0
383,738
from typing import Union from pathlib import Path import json def read_configuration(config_info: Union[str, Path, dict]) -> dict: """ read_configuration(config_info) Reads configuration information and stores it as the instance variable "configuration". Args: config_info (str, Path, dict): Configuration information for the devices to connect to. Information can either be passed directly (dict) or can read from a file (str or Path-like). """ if not isinstance(config_info, (str, Path, dict)): raise ValueError('Unsupported type for arguement "config_info"' ' should a str/Path object to a JSON file or a' ' dictionary') if isinstance(config_info, dict): return config_info # read equipment info from file with open(config_info, 'rb') as file: configuration = json.load(file) return configuration
7d6c3e2b8eb068d34e85fbaacad6ed41a8896fc9
351,432
def is_any_descriptor(desc): """Returns true if it is an Any descriptor.""" return desc.full_name == "google.protobuf.Any"
cda9d6cac5bcf556396570abd30a5e4bd88f9288
315,448
def make_unpack_map(node): """ Make a mapping of unpack values for a template instance. Parameters ---------- node : TemplateInstanceNode The compiler node for the template instantiation. Returns ------- result : dict A dict mapping unpack name to compiler node for the template instantiation. """ return dict(zip(node.names, node.iternodes()))
7e48608fd2ca73001ca4bf3d9d8398a344b64efa
55,248
import ipaddress def get_prefix_with_offset(base, offset): """Compute prefix from base prefix plus offset. >>> get_prefix_with_offset(ipaddress.ip_network("10.0.0.0/16"), 0) IPv4Network('10.0.0.0/16') >>> get_prefix_with_offset(ipaddress.ip_network("10.0.0.0/16"), 3) IPv4Network('10.3.0.0/16') """ return ipaddress.ip_network("{}/{}".format( base[0] + base.num_addresses * offset, base.prefixlen))
b781ba077068a101311ed5b3ae461bccf1bca35f
604,308
import typing def get_path(action: typing.Dict[str, typing.Any], path_delim: str) -> typing.List[str]: """ Get path from action :param action: action object :param path_delim: delimiter to be used to split path into keys. (Not used when path is list) :return: list of keys """ path = action["path"] if isinstance(path, str): keys = [str(key) for key in action["path"].split(path_delim)] return keys elif isinstance(path, typing.List) and all(isinstance(key, str) for key in path): return path else: raise TypeError( "Action {}: path should be str or list of strings".format(action) )
b17a5ee8643b4fbeee07e2733a589f394960b71e
131,209
def all_awards_are_reviewed(request): """ checks if all tender awards are reviewed """ return all([award.status != "pending" for award in request.validated["tender"].awards])
325fb138db00b8696fa424b2a4c95e1378ddd667
29,241
import requests def request(apiEndpoint, query): """ Return the information from a List network for the queried information. Parameters ---------- apiEndpoint: str An url that links to the Lisk net of choice (mainnet, testnet, ...), see https://lisk.com/documentation/lisk-service/index.html#public-lisk-service-apis. query: str The information wanted from the api, ususally composed of an number of queries, such as transaction and the associated height. Returns ------- list: A list made of the information coming from the chosen network. Notes ----- See the Lisk Service documentation for more details at https://lisk.com/documentation/lisk-service/index.html. """ uri = apiEndpoint + query try: response = requests.get(uri) response.raise_for_status() response = response.json() if "data" in response: return response["data"] else: print("Empty data entry.") return None except requests.exceptions.HTTPError as err: print("Failed request...") raise
f4e2b830eb8a0705fd5302352981548c00c20743
388,644
def cap_col(col, q): """ Takes in a column and caps it at the given quantile Parameters: ----------- col : series A pandas series column to cap q : float (ranging 0-1) The quantile to cap at Returns ------- col_capped : series The column with the capped values """ cap_val = col.quantile(q) return col.apply(lambda x: cap_val if x > cap_val else x)
828da352b9d3c2e57f1452b05f3d4ae5c965b71b
470,762
def cpp_escape_name(name): """Escape package name to be CPP macro safe.""" return name.replace("-", "_")
57f8bb59d46c6888f4f6d2bc7f851f18ca666fc3
604,076
from typing import List from typing import Any def group_with(predicate, xs: List[Any]): """Takes a list and returns a list of lists where each sublist's elements are all satisfied pairwise comparison according to the provided function. Only adjacent elements are passed to the comparison function Original implementation here: https://github.com/slavaGanzin/ramda.py/blob/master/ramda/group_with.py Args: predicate ( f(a,b) => bool): A function that takes two subsequent inputs and returns True or Fale xs: List to group """ out = [] is_str = isinstance(xs, str) group = [xs[0]] for x in xs[1:]: if predicate(group[-1], x): group += [x] else: out.append("".join(group) if is_str else group) group = [x] out.append("".join(group) if is_str else group) return out
cf54cb6dbdf7d217ec3c40b6690c7207067beafc
580,405
def _merge_small_dims(shape_to_merge, max_dim): """Merge small dimensions. If there are some small dimensions, we collapse them: e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024 [1, 2, 768, 1, 2048] --> [2, 768, 2048] Args: shape_to_merge: Shape to merge small dimensions. max_dim: Maximal dimension of output shape used in merging. Returns: Merged shape. """ resulting_shape = [] product = 1 for d in shape_to_merge: if product * d <= max_dim: product *= d else: if product > 1: resulting_shape.append(product) product = d if product > 1: resulting_shape.append(product) return resulting_shape
807cdd4682b1387405f1b0f35cb7b1858a763357
644,189
def expand_basic(state): """ Simple function which returns child states by appending an available move to current state. """ assert(len(state) < 9) # Calculte set difference to get remaining moves. n = tuple(set(range(9)) - set(state)) # Create tuple of available new states and return to caller. c = tuple(state + (q,) for q in n) return c
0889a21b043f6f675d133fed6e3c825eb69f4a82
6,608
def moving_average(time_series, window_size=20, fwd_fill_to_end=0): """ Computes a Simple Moving Average (SMA) function on a time series :param time_series: a pandas time series input containing numerical values :param window_size: a window size used to compute the SMA :param fwd_fill_to_end: index from which computation must stop and propagate last value :return: Simple Moving Average time series """ if fwd_fill_to_end <= 0: sma = time_series.rolling(window=window_size).mean() else: sma = time_series.rolling(window=window_size).mean() sma[-fwd_fill_to_end:] = sma.iloc[-fwd_fill_to_end] ''' Moving average feature is empty for the first *n* days, where *n* is the window size, so I'll use some backfill to fill NaN values ''' sma.fillna(method='backfill', inplace=True) return sma
d71931867c419f306824e8b240a9b1bb3fff2fdd
702,645
def human2bytes(s): """Convert from a human readable string to a size in bytes. Examples -------- >>> human2bytes('1 MB') 1048576 >>> human2bytes('1 GB') 1073741824 """ symbols = ('B', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB') ix = -1 if s[-2].isdigit() else -2 letter = s[ix:].strip().upper() num = s[:ix].strip() assert letter in symbols num = float(num) prefix = {symbols[0]: 1} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i + 1) * 10 return int(num * prefix[letter])
b5e8343942f45a5b699998bb55db059f4a78980e
334,726
def clean_attrib(value): """Cleans up value string. Removes any trailing '_0' that randomly show up Args: value (str): attrib value to clean Returns: str: cleaned attribute value """ clean_value = value if value.endswith("_0"): clean_value = clean_value.strip('_0') return clean_value
b97bacf819260b9dce08fb0edcf68e0166838be2
629,579
def get_loc(index, entry, default): """Overloaded `get_loc` method from pd.Series.Index. If entry is in the `index`, returns the integer location. If not, returns the location of the default value (default must be in `index`).""" try: return index.get_loc(entry) except KeyError: return index.get_loc(default)
26cb98f336f3c78df2208cb46a5d6f26adc86a3b
532,149
from typing import Dict from typing import Any def get_type(property_description: Dict[str, Any]) -> str: """ Translate (json)schema property type to something Python understands :param property_description: from schema :return: string containing Python type """ type_name = property_description['type'] abstract_type = '' if 'items' in property_description and 'type' in property_description['items']: abstract_type = property_description['items']['type'] if type_name == 'array': return f'List[{abstract_type}]' if type_name == 'object': return 'Dict[str, Any]' if type_name == 'string': return 'str' if type_name == 'integer': return 'int' return 'str'
1da49b9007c761ebb0b9cfaadde3c69c741ec1ef
240,415
import hashlib def calculate_md5(path, blocksize=65535): """ Calculates the MD5 on a file at the given path """ hasher = hashlib.md5() with open(path, 'rb') as fileobj: buf = fileobj.read(blocksize) while len(buf) > 0: hasher.update(buf) buf = fileobj.read(blocksize) return hasher.hexdigest()
312bd69f43a6834ac821832ef7f5932a24e115e3
480,757
def legendre_symbol(a, p): """ Legendre symbol Define if a is a quadratic residue modulo odd prime http://en.wikipedia.org/wiki/Legendre_symbol """ ls = pow(a, (p - 1)/2, p) if ls == p - 1: return -1 return ls
4677c54d41172ecc4b6add122bb612448d1f0653
577,717
def does_intersect_rect(p, particles, padding, rect, is_3d = False): """ Returns true if particle p is sufficiently close or outside the rectangle (in 2d) or cuboid (in 3d) Parameters ---------- p : list Coordinates of center and radius of particle [x,y,z,r] particles : list List of center + radius of multiple particles. E.g. particles[0] is a list containing coordinates of center and radius. padding: float Minimum distance between circle boundaries such that if two circles rect: list Coordinates of left-bottom and right-top corner points of rectangle (2d) or cuboid (3d). E.g. [x1 y1, z1, x2, y2, z2] is_3d: bool True if we are dealing with cuboid Returns ------- bool True if particle intersects or is near enough to the rectangle """ if len(p) < 4: raise Exception('p = {} must have atleast 4 elements'.format(p)) if len(particles) == 0: raise Exception('particles = {} can not be empty'.format(particles)) if padding < 0.: raise Exception('padding = {} can not be negative'.format(padding)) if len(rect) < 6: raise Exception('rect = {} must have 6 elements'.format(rect)) pr = [p[0] - p[3], p[1] - p[3], p[2], p[0] + p[3], p[1] + p[3], p[2]] if is_3d: pr[2] -= p[3] pr[5] += p[3] if pr[0] < rect[0] + padding or pr[1] < rect[1] + padding or pr[3] > rect[3] - padding or pr[4] > rect[4] - padding: if is_3d: if pr[2] < rect[2] + padding or pr[5] > rect[5] - padding: return True else: return True return False
a3300c17c6f9bf3d8f47efac0c94a222f6ee34ef
16,638
def extract_number_from_money(string): """ Extract number from string following this pattern: $130,321 -> 130321 Also will round to 2 decimal places """ try: trimmed = string.replace(",", "").replace("$", "").replace(" ", "").strip() number = float(trimmed) return round(number, 2) except ValueError: print("could not parse string")
90604b35349a131910ffda53f985ec8d9ee2ab04
288,395
def is_iterable(item,protect=[str]): """ Returns a boolean value describing whether an input *item* can be considered iterable. *protect* is a list of types which should be explicitly considered non-iterable. The default is *[str,unicode]. Types *str* or *unicode* of length 1 are explicitly protected, as are items of type *dict*. This is largely a helper function for larger functions *apply_to_array*, *where_true*, and other iterable functions. """ #protect non iterables from iteration for type_to_protect in protect: if isinstance(item,type_to_protect): return False #specifically protect strings of length one, they will never trip TypeError just by indexing them over and over if isinstance(item,str) and len(item)==1: return False elif isinstance(item,type): return False elif isinstance(item,dict): return False try: iter(item); return True except TypeError: return False
037cb19772acae94631bf569e9571f09801987f3
430,798
def assign(target, *sources): """ Description ---------- Assign all values from the sources into the target dictioanary.\n Mutates target dictionary. Parameters ---------- target : dict - target dictionary to assign values to\n *sources : dict - dictionaries to pull keys and vlaues from Returns ---------- dict - dictionary containing keys and values from target and *sources Example ---------- >>> assign({}, {'a': 1, 'b': 2}) -> {'a': 1, 'b': 2} """ if not isinstance(target, dict): raise TypeError("param 'target' must be a dict") for source in sources: if not isinstance(source, dict): raise TypeError("param 'target' must be a dict") for dct in sources: for key in dct: target[key] = dct[key] return target
a375e694ee6edf9cd83304695e5014280ef6fa54
69,930
def split_data(data, ratio=0.7): """Splits data into test set and training set. :param data: The object containing data. :type data: :class:`pandas.DataFrame`. :param ratio: What portion of data to include in the training set and the test set. :obj:`0.5` means that the data will be distributed equaly. :type ratio: float """ threshold = int(len(data) * ratio) return data[:threshold], data[threshold:]
1bbff7080e913b8b5dedfd94f6b7e3f589b62dc8
357,461
import re def is_valid_password(password): """ Return if a password is valid or not. A valid password should have its length greater than 8, contain at least one digit, one uppercase letter, one lowercase letter and one special character. """ try: is_valid = True is_valid &= len(password) >= 8 is_valid &= re.search(r'\d', password) is not None is_valid &= re.search(r'[A-Z]', password) is not None is_valid &= re.search(r'[a-z]', password) is not None is_valid &= re.search(r'\W?_', password) is not None return is_valid except TypeError: raise TypeError('Password should be string, not %s' % type(password))
fccb67a407661b487d588e3ddb12b9ac72c6a59e
606,437
def sequence_accuracy_score(y_true, y_pred): """ Return sequence accuracy score. Match is counted only when the two sequences are equal. :param y_true: true labels :param y_pred: predicted labels :return: sequence accuracy as a fraction of the sample (1 is prefect, 0 is all incorrect) """ total = len(y_true) matches = sum(1 for yseq_true, yseq_pred in zip(y_true, y_pred) if list(yseq_true) == list(yseq_pred)) return matches / total
0c6bfb851dd101258f12df8b9efece543b8280d0
163,859
import itertools def group_by(iterable, iteratee): """ Splits an iterable into sets, grouped by the result of running each value through iteratee. If iteratee is a string instead of a function, groups by the property named by iteratee on each of the values. params: iterable, iteratee iterable -> a list, tuple, iterator, generator iteratee -> a function or a lambda, taking single value as input and returning a transformed value on which iterable will be grouped Returns a dictionary Examples: >>> _.group_by([1.3, 2.1, 2.4], lambda x:math.floor(x)) >>> {1: [1.3], 2: [2.1, 2.4]} """ grouped_iterators = itertools.groupby(iterable, iteratee) return dict((x,list(y)) for x,y in grouped_iterators)
79371a848d3ff290765e34df45f56d65aa74170e
582,228
from pathlib import Path def curr_file_path() -> Path: """Get cuurent file path.""" return Path(__file__).absolute()
2820bf09cf5027b374c8d1622055eb18d596b87d
425,106
def hour_to_24(hour, meridian): """ Converts a 12-hour representation to a 24-hour representation. e.g. 12, "AM" => 0 6, "AM" => 6 12, "PM" => 12 3, "PM" => 15 11, "PM" => 23 """ # first, if it's 12 whatever, subtract the 12 because it's actually 0 if hour == 12: hour -= 12 # if it's PM, add 12 if meridian == "PM": hour += 12 return hour
0e4fa99e86d7f36841bec0254abfa49f6be372fa
588,204
def config(context, key): """ Get a value from the config by key """ site = context['__CACTUS_SITE__'] result = site.config.get(key) if result: return result return ""
155aac652a87d958a4dd662ce91faaaa69be8bbe
291,888
def handle_storage_class(vol): """ vol: dict (send from the frontend) If the fronend sent the special values `{none}` or `{empty}` then the backend will need to set the corresponding storage_class value that the python client expects. """ if "class" not in vol: return None if vol["class"] == "{none}": return "" if vol["class"] == "{empty}": return None else: return vol["class"]
a2747b717c6b83bb1128f1d5e9d7696dd8deda19
697
def default_account(web3): """Returns the default account which is used to deploy contracts""" return web3.eth.defaultAccount
f3b5e684fd050e04ff46b508ca516b5047914cd4
661,632
def get_curve_color(buffer): """ Return prefered color for plots for any buffer Parameters ---------- buffer: str Name of buffer Returns ------- str color name """ color = {'NNO': 'green', 'QFM': 'darkorange', 'IW': 'black', 'HM': 'red', 'CoCoO': 'blue', 'ReReO': 'magenta', 'Graphite': 'gray', 'QIF': 'mediumaquamarine', 'SiSiO2': 'purple', 'CrCr2O3': 'teal', 'MoMoO2': 'olive', 'CaCaO': 'peru', 'AlAl2O3': 'chartreuse', 'KK2O': 'deeppink', 'MgMgO': 'maroon', 'MnMnO': 'midnightblue', 'NaNa2O': 'dodgerblue', 'TiTiO2': 'orangered'} return color[buffer]
8b27f7c19da0e24139e3de357058cce71772d90c
94,113
def handleNum(node, line): """ Converts the Num node to represent the type of the value (Int, Float). """ return node.n.__class__.__name__.capitalize()
b0beb5a6d48696c40dcfdd11e305433f49e40965
528,276
import random def _rand_range(start: int, end: int, seed: int | None = None): """Generates a random number in a range with an optional seed value. Args: start: The starting value end: THe ending value seed: Optional seed Returns: A random integer between start and end. """ if seed: random.seed(seed) return random.randrange(start, end)
ddec6f754396debc353d118a0f7294439807a53d
342,258
import heapq def heap_sort(arr): """ Sorts list arr using a heap. """ heapq.heapify(arr) out = [] while True: try: min_value = heapq.heappop(arr) out.append(min_value) except IndexError as err: break return out
6c549d43269fb05887e1eee827925ec294a7bca5
296,895
import re def get_urls(inputfiles): """ This function takes as input the list of files containing the hostnames and normalizes the format of the hostnames in order to be able to perform valid HTTP/HTTPS requests. Args: inputfiles -- list of inputfiles Returns: urls -- list of normalized URLs which can be queries """ urls = [] scheme_rgx = re.compile(r'^https?://') for ifile in inputfiles: urls.append(ifile.read().splitlines()) urls = set([n for l in urls for n in l]) urls = list(filter(None, urls)) for i in range(len(urls)): if not scheme_rgx.match(urls[i]): urls[i] = 'http://' + urls[i] return urls
abf1c0fdb533f763e4cd4b0bcf0a2a74f436a051
102,346
def parse(f, comment="#"): """ Parse a file in ``.fasta`` format. :param f: Input file object :type f: _io.TextIOWrapper :param comment: Character used for comments :type comment: str :return: names, sequence :rtype: list[str], list[str] """ starter = ">" empty = "" if "b" in f.mode: comment = b"#" starter = b">" empty = b"" names = [] sequences = [] name = None sequence = [] for line in f: if line.startswith(comment): continue line = line.strip() if line.startswith(starter): if name is not None: names.append(name) sequences.append(empty.join(sequence)) name = line[1:] sequence = [] else: sequence.append(line.upper()) if name is not None: names.append(name) sequences.append(empty.join(sequence)) return names, sequences
fa0da8089656799f669ff1e7472f5f2ced8c0f54
440,541
from pathlib import Path from typing import Tuple def check_for_file_overwrite(file: Path, default_yes: bool = True) -> Tuple[bool, bool]: """ Check if a file exists and prompt the user for overwrite """ exists = False abort = False if file.exists() is True: abort = True exists = True resp: str if default_yes is True: resp = input(f"The file {file} already exists. Overwrite? [Y/n)") if resp in ["", "Y", "y", "yes"]: abort = False else: resp = input(f"The file {file} already exists. Overwrite? [y/N)") if resp in ["Y", "y", "yes"]: abort = False return abort, exists
be982a72c2beafa2bed720cd85d73102dee6f230
117,103
from typing import Dict import re def _load_env(file_handler) -> Dict: """Deserializes an environment file like .env-devel and returns a key-value map of the environment Analogous to json.load """ PATTERN_ENVIRON_EQUAL = re.compile(r"^(\w+)=(.*)$") # Works even for `POSTGRES_EXPORTER_DATA_SOURCE_NAME=postgresql://simcore:simcore@postgres:5432/simcoredb?sslmode=disable` environ = {} for line in file_handler: m = PATTERN_ENVIRON_EQUAL.match(line) if m: key, value = m.groups() environ[key] = str(value) return environ
cd08b7dce9ed6d20d0fbf507f480771c0e37139e
161,073
def _generate_site_config(dns_name, site_domain, devstack=False): """ Generate the site configuration for a given site """ if devstack: lms_url_fmt = "{domain}-{dns_name}.e2e.devstack" else: lms_url_fmt = "{domain}-{dns_name}.sandbox.edx.org" return { "lms_url": lms_url_fmt.format(domain=site_domain, dns_name=dns_name), "platform_name": f"{site_domain}-{dns_name}" }
eb3d1b1a69a08c43ee75f85faf6f6d07b3499900
497,888
def GenerateFirefoxCommandLine(firefox_path, profile_dir, url): """Generates the command line for a process to run Firefox Args: firefox_path: String containing the path to the firefox exe to use profile_dir: String containing the directory of the profile to run Firefox in url: String containing url to start with. """ profile_arg = '' if profile_dir: profile_dir = profile_dir.replace('\\', '\\\\\\') profile_arg = '-profile %s' % profile_dir cmd = '%s %s %s' % (firefox_path, profile_arg, url) return cmd
0fe18e2ecd69cfb75b17e4c7e0f0dedd089a3d2d
609,164
def binary(x: int, pre: str='0b', length: int=8): """ Return the binary representation of integer x Input: x: an integer of any size pre: the prefix for the output string, default 0b length: length of the output in binary if its representation has smaller length default is 8 i,e, 2**8=256 int, a byte Return: The binary representation of integer x with a minimum lenght of "length" padded with trailing 0s """ return '{0}{{:{1}>{2}}}'.format(pre, 0, length).format(bin(x)[2:])
287e5bb87f31b71ad7ccd1cf65fab729794eeef4
25,262
def is_left(p0, p1, p2): """ Input: three points P0, P1, and P2 Return: > 0 for P2 left of the line through P0 to P1 = 0 for P2 on the line < 0 for P2 right of the line """ p0x, p0y = p0 p1x, p1y = p1 p2x, p2y = p2 # logging.log(level=GEOM_ALG_INFO, # msg=(p1x - p0x) * (p2y - p0y) - (p2x - p0x) * (p1y - p0y)) return (p1x - p0x) * (p2y - p0y) - (p2x - p0x) * (p1y - p0y)
ac84166f613735ebca8b0632c2dc0f4bfd4f310b
399,105
import re def format_missing_carats_units(s: str) -> str: """Add missing carats to a malformed unit string. Will format a string 'm-1' to 'm^-1'. Parameters ---------- s: str Unit string. Returns ------- str Formatted unit string. """ where = [m.start() for m in re.finditer("[-+][0-9]", s)] for count, i in enumerate(where): s = s[: i + count] + "^" + s[i + count :] where2 = [m.start() for m in re.finditer("[a-z ][0-9]", s)] for count, i in enumerate(where2): s = s[: i + count + 1] + "^" + s[i + count + 1 :] return s
321a3503588a2ac0da324fab67ab8244680532d6
173,220
def offset(targets,yof,xof): """ Offset targets(x,y) found in a sub-image """ ret = [] for t in targets: ofs = (t[0]+yof,t[1]+xof,t[2],t[3]) ret.append(ofs) return ret
844bf9eaa0d71f5e0de45e9b0f9a07ca26f7938d
297,215
def get_resize_dimensions(original_size, dimensions): """ Gets the ideal resize dimensions given the original size. :param original_size: Original size. :param dimensions: Default target dimensions. :return: Ideal dimensions. """ dim_x, dim_y = dimensions img_x, img_y = original_size if img_x >= img_y: return int(dim_x), int(img_y * (dim_x / (img_x * 1.0))) else: return int(img_x * (dim_y / (img_y * 1.0))), int(dim_y)
fdcebf6e571ea7306c3f951749a9745343e5f73f
297,574
def strip(pre, s): """Strip prefix 'pre' if present. """ if s.startswith(pre): return s[len(pre):] else: return s
4fd3a227d2404ed1fdcdfcbea628aad1170cc278
654,844
def is_odd(nr): """Confirms that a number is odd Args: nr (float): the number Returns: bool: True if the number is odd, False otherwise """ if nr % 2 == 0: return False else: return True
5ca2f0d69f9472a3810c956cfce91dcb6ccb315a
580,179
def get_images(directory): """ Gets all PNG, JPG, GIF, and BMP format files at path :param Path directory: location to search for image files """ files = [] patterns = ('*.png', '*.jpg', '*.gif', '*.bmp') for pattern in patterns: files.extend(directory.glob(pattern)) return files
e6c599814d5d31de5a64e502d88f40996d49888f
45,841
def tick2milisecond(tempo: int, ticks_per_beat: int) -> float: """calculate how many miliseconds are in one tick""" return tempo / (1000 * ticks_per_beat)
6de882bfebcc17ff4964cbe4ba986dc3eff85663
366,842
def _ci_to_hgvs_coord(s, e): """ Convert continuous interbase (right-open) coordinates (..,-2,-1,0,1,..) to discontinuous HGVS coordinates (..,-2,-1,1,2,..) """ def _ci_to_hgvs(c): return c + 1 if c >= 0 else c return (None if s is None else _ci_to_hgvs(s), None if e is None else _ci_to_hgvs(e) - 1)
a25cee5f587b59fd52779f6eeba363f3ddda77b0
686,444
def own_commit(repo, commit): """Return true iff commit appears to be from the repo owner.""" return not commit.author or commit.author == repo.owner or commit.author.login == 'web-flow'
21b33d0c8b62d5e5e546ac1b5067754188747588
601,082
def getMTevents(MTs): """ This function takes in the `BSE_RLOF` output category from COMPAS, and returns the information on the Mass Transfer (MT) events that happen for each seed. The events do not have to be in order, either chronologically or by seed, this function will reorder them as required. OUT: tuple of (returnedSeeds, returnedEvents, returnedTimes) returnedSeeds (list): ordered list of the unique seeds in the MTs file returnedEvents (list): list of sublists, where each sublist contains all the MT events for a given seed. MT event tuples take the form : (stellarTypePrimary, stellarTypeSecondary, isRlof1, isRlof2, isCEE) returnTimes (list): is a list of sublists of times of each of the MT events """ mtSeeds = MTs['SEED'][()] mtTimes = MTs['Time<MT'][()] mtPrimaryStype = MTs['Stellar_Type(1)<MT'][()] mtSecondaryStype = MTs['Stellar_Type(2)<MT'][()] mtIsRlof1 = MTs['RLOF(1)>MT'][()] == 1 mtIsRlof2 = MTs['RLOF(2)>MT'][()] == 1 mtIsCEE = MTs['CEE>MT'][()] == 1 # We want the return arrays sorted by seed, so sort here. mtSeedsInds = mtSeeds.argsort() mtSeeds = mtSeeds[mtSeedsInds] mtTimes = mtTimes[mtSeedsInds] mtPrimaryStype = mtPrimaryStype[mtSeedsInds] mtSecondaryStype = mtSecondaryStype[mtSeedsInds] mtIsRlof1 = mtIsRlof1[mtSeedsInds] mtIsRlof2 = mtIsRlof2[mtSeedsInds] mtIsCEE = mtIsCEE[mtSeedsInds] # Process the MT events returnedSeeds = [] # array of seeds - will only contain seeds that have MT events returnedEvents = [] # array of MT events for each seed in returnedSeeds returnedTimes = [] # array of times for each event in returnedEvents (for each seed in returnedSeeds) lastSeed = -1 # initialize most recently processed seed for seedIndex, thisSeed in enumerate(mtSeeds): # iterate over all RLOF file entries thisTime = mtTimes[seedIndex] # time for this RLOF file entry thisEvent = (mtPrimaryStype[seedIndex], mtSecondaryStype[seedIndex], mtIsRlof1[seedIndex], mtIsRlof2[seedIndex], mtIsCEE[seedIndex]) # construct event tuple # If this is an entirely new seed: if thisSeed != lastSeed: # same seed as last seed processed? returnedSeeds.append(thisSeed) # no - new seed, record it returnedTimes.append([thisTime]) # initialize the list of event times for this seed returnedEvents.append([thisEvent]) # initialize the list of events for this seed lastSeed = thisSeed # update the latest seed # Add event, if it is not a duplicate try: eventIndex = returnedEvents[-1].index(thisEvent) # find eventIndex of this particular event tuple in the array of events for this seed if thisTime > returnedTimes[-1][eventIndex]: # ^ if event is not a duplicate, this will throw a ValueError returnedTimes[-1][eventIndex] = thisTime # if event is duplicate, update time to the later of the duplicates except ValueError: # event is not a duplicate: returnedEvents[-1].append(thisEvent) # record new event tuple for this seed returnedTimes[-1].append(thisTime) # record new event time for this seed return returnedSeeds, returnedEvents, returnedTimes # see above for description
3e7bf450cab0dfc17fc3cc8c85e4b7c15d67b82e
244,613
def setrep(s): """Returns a string representation of a set of type strings. s: set of strings Returns: string """ rep = ', '.join(s) if len(s) == 1: return rep else: return '(' + rep + ')' return
fd07214daa97c9c01949bbf3f576fd1573c65335
389,917
def getter(name, key=None): """ Creates a read-only property for the attribute name *name*. If a *key* function is provided, it can be used to post-process the value of the attribute. """ if not key: key = lambda x: x def wrapper(self): return key(getattr(self, name)) wrapper.__name__ = wrapper.__qualname__ = name return property(wrapper)
1e0e7a500a7fbe55c17b8ba76765c9c7611cc1ba
446,431
def _GetTopN(objects, n): """Returns top n objects with maximum count. Args: objects: any object that has count property n: number of top elements to return Returns: top N elements if objects size is greater than N otherwise the map elements in a sorted order. """ return sorted(objects, key=lambda o: o.count, reverse=True)[:n]
d5739323b7c6027fd241451515b6469f40bb157b
526,681
from typing import List from typing import Dict from typing import Any def prepare_human_readable_dict_for_pdns(results: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """ Prepare human-readable dictionary for passive DNS command. :param results: passive DNS details. :return: human-readable dict """ return [{ 'First (GMT)': result.get('firstSeen', ''), 'Last (GMT)': result.get('lastSeen', ''), 'Source': ', '.join(result.get('source', [])), 'Value': result.get('value', ''), 'Collected (GMT)': result.get('collected', ''), 'Record Type': result.get('recordType', ''), 'Resolve': result.get('resolve', ''), 'Resolve Type': result.get('resolveType', ''), 'Record Hash': result.get('recordHash', '') } for result in results]
a1d399fefe23cf4f642289e2745292d2cdce406f
157,795
def merge_options(global_conf, local_conf, key, *, keep_list_order=False): """Merge the conf using override: local conf is prioritary over global. If keep_list_order is True, list are merged global+local. Might have duplicate. If false, duplication are removed. """ global_keyed_conf = global_conf.get(key) # Could be None local_keyed_conf = local_conf.get(key) # Could be None if global_keyed_conf is None or local_keyed_conf is None: return global_keyed_conf or local_keyed_conf if isinstance(global_keyed_conf, list): if keep_list_order: options = list(global_keyed_conf) options += local_keyed_conf return options options = set(global_keyed_conf) else: options = dict(global_keyed_conf) options.update(local_keyed_conf) return options
5bd6f1f1bece1bee8f05ada5c0b5f32a0a22f931
568,236
from typing import Literal from typing import List def get_foot_marker(foot: Literal["left", "right"]) -> List[str]: """Get the names of all markers that are attached ot a foot (left or right)""" sensors = ["{}_fcc", "{}_toe", "{}_fm5", "{}_fm1"] return [s.format(foot[0]) for s in sensors]
518fbb3f68cbf8622b2bf1fa85f9ecae8008c456
701,401
def dictHasExact(dict, keys): """ Verify if dict has exactly what expected """ if len(dict) != len(keys): return False for i in keys: if dict.get(i) is None: return False return True
a42079f72dd1664136eb7512a1b6a37e20f96c09
176,531
def time_diff(end, start): """Take two times formatted HHMM and return end-start, in hours.""" end = 60 * int(end[:2]) + int(end[2:]) start = 60 * int(start[:2]) + int(start[2:]) return float(end-start) / 60
c0d624760e128d48c30268ec81ecd0ae572996a5
619,264
def append(iterable, data): """Appends data to the iterable. :param iterable: collection of data to transform :type iterable: list :param data: any type of data to be appended """ iterable.append(data) return iterable
f9a1fecb05baa54a2b8b023d554b56f24a9a1f9e
265,638
def resolve_job_range(ids): """Resolve ranges from a list of ids. Given list of id strings can contain ranges separated with '-'. For example, '1-10' will result in a range from 1..10. :param ids: string or list of strings of ids :type ids: string or list of strings :returns: resolved list of ids :rtype: list of integers :raises ValueError: if on of the ids could not be converted to a valid, positive id """ if not isinstance(ids, (list, tuple)): ids = [ids] r = [] def to_id(i): try: v = int(i) if v < 0: raise ValueError("Job ids have to be >= 0!") return v except: raise ValueError("Unable to convert '%s' to a job id. A valid" " job id has to be a number" % i) for i in ids: s = i.split("-") if len(s) == 1: r.append(to_id(i)) elif len(s) == 2: start = to_id(s[0]) end = to_id(s[1]) start, end = min(start, end), max(start, end) r.extend(range(start, end + 1)) else: raise ValueError("Unable to guess a job range from %s" % i) return r
2497e646fcc8fda113f485247115dc94f6adb5de
251,847
def coord_to_tuple(coordinates): """Transform coordinates to a 2 tuple.""" if type(coordinates) == str: center = tuple(map(float, coordinates.split(','))) elif type(coordinates) == dict: center = tuple(coordinates.values()) elif type(coordinates) == tuple: center = coordinates elif (type(coordinates) == list) and (len(coordinates) == 2): center = tuple(coordinates) else: print('invalid coordinate type') center = None return center
8889e5e72b1fcaa58baa4eb4ee48e3c5d011368e
287,986
def find_concat_dim(da, possible_concat_dims): """ look for available dimensions in dataaray and pick the one from a list of candidates PARAMETERS ---------- da : xarray.DataArray xmitgcm llc data array possible_concat_dims : list list of potential dims RETURNS ------- out : str dimension on which to concatenate """ out = None for d in possible_concat_dims: if d in da.dims: out = d return out
fa6bb3bf6774cefd1ea05fa75b9d80ef9fd042bb
188,616
def _get_raster_extent(src): """ extract projected extent from a raster dataset (min_x, max_x, min_y, max_y) Parameters ---------- src : gdal raster Returns ------- (min_x, max_x, min_y, max_y) """ ulx, xres, xskew, uly, yskew, yres = src.GetGeoTransform() lrx = ulx + (src.RasterXSize * xres) lry = uly + (src.RasterYSize * yres) return ulx, lrx, lry, uly
49ed0b3c583cbfa5b9ecbc96d94aec42aeba3a32
2,014
def next_multiple(x: int, k: int = 512) -> int: """Calculate x's closest higher multiple of base k.""" if x % k: x = x + (k - x % k) return x
fbf8cf548851d0c57867292f9ddcfc33de9b03c0
696,350
def _filter_single_by_max(move_data, **kwargs): """ Filters from a dataframe rows with features below value. Parameters ---------- move_data : dataframe Dataframe to be filtered. **kwargs : arguments - arg1 : feature - arg2 : value Returns ------- dataframe Filtered dataframe. """ return move_data[move_data[kwargs['arg1']] <= kwargs['arg2']]
8021f4e474c50598e9a3a6b20b7e421d4ac3a2be
540,197
def int_to_roman(n): """ Convert an integer to its standard Roman Numeral representation """ V = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1] S = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"] out = "" for val,sym in zip(V,S): while n >= val: out += sym n -= val return out
3127e7d7097758872f559ef918d790f282320669
683,396
def color_diff_par(pair): """ Find the difference between two colors. This is part of `closest_color_parallel` below, but multiprocessing cannot pickle nested functions. Parameters ---------- pair : (rgb, pixel) Check how close `rgb` is to `pixel`. Returns ------- int The difference between `rgb` and `pixel`. """ rgb, x = pair r, g, b = rgb return abs(r - x[0]) ** 2 + abs(g - x[1]) ** 2 + abs(b - x[2]) ** 2
cb982ebe270a7e9311ad7d89a335b62abeb93f32
504,290
def output_test(filename: str, pattern: str) -> bool: # pylint: disable=unused-argument """Test the output. Always passes if ``pattern == "pass"``. Otherwise, fails. """ return pattern == "pass"
08306ad22970df3aaf475742ecd270a571b52031
465,560
import re def splitExpression(expression): """ Parse a license expression into its constituent identifiers. Arguments: - expression: SPDX license expression Returns: array of split identifiers """ # remove parens and plus sign e2 = re.sub(r'\(|\)|\+', "", expression, flags=re.IGNORECASE) # remove word operators, ignoring case, leaving a blank space e3 = re.sub(r' AND | OR | WITH ', " ", e2, flags=re.IGNORECASE) # and split on space e4 = e3.split(" ") return sorted(e4)
322329e7d3248e4589c52584f84a2be435471cd8
485,417
from typing import List from typing import Any def del_double_elements(l_elements: List[Any]) -> List[Any]: """get deduplicated list, does NOT keep Order ! >>> del_double_elements([]) [] >>> sorted(del_double_elements(['c','b','a'])) ['a', 'b', 'c'] >>> sorted(del_double_elements(['b','a','c','b','a'])) ['a', 'b', 'c'] >>> sorted(del_double_elements(['x','x','x','y','y'])) ['x', 'y'] """ if not l_elements: return l_elements return list(set(l_elements))
58e099d9648cb80384b1eee549605abcb805b4c2
301,045
import json import importlib def load_mesh(file_name): """Load discretize mesh saved to json file. For a discretize mesh that has been converted to dictionary and written to a json file, the function **load_mesh** loads the json file and reconstructs the mesh object. Parameters ---------- file_name : str Name of the json file being read in. Contains all information required to reconstruct the mesh. Returns ------- discretize.base.BaseMesh A discretize mesh defined by the class and parameters stored in the json file """ with open(file_name, "r") as outfile: jsondict = json.load(outfile) module_name = jsondict.pop( "__module__", "discretize" ) # default to loading from discretize class_name = jsondict.pop("__class__") mod = importlib.import_module(module_name) cls = getattr(mod, class_name) if "_n" in jsondict: jsondict["shape_cells"] = jsondict.pop( "_n" ) # need to catch this old _n property here data = cls(**jsondict) return data
fde5d9adb80c8873433b4753e5d961cd61f79582
179,542
def cut_neighbor_sequences(seq_s, flanking_i): """ cut the flanking sequences :param seq_s: string, seq :param flanking_i: size of flanking seq :return: strings, cut (start), cut (the rest), cut (last) """ assert type(seq_s) is str return seq_s[0:flanking_i], seq_s[flanking_i:-flanking_i], seq_s[-flanking_i:]
65f9b1fb45c46e0d968533ff0e81099e0526f571
26,510
def create_clip_in_selected_slot(creator, song, clip_length=None): """ Create a new clip in the selected slot of if none exists, using a given creator object. Fires it if the song is playing and displays it in the detail view. """ selected_slot = song.view.highlighted_clip_slot if creator and selected_slot and not selected_slot.has_clip: creator.create(selected_slot, clip_length, legato_launch=True) song.view.detail_clip = selected_slot.clip return selected_slot.clip
675b793b346aa40744b36ea30f6828be06bd49be
101,143
def is_python(filename): # type: (str) -> bool """See if this is a Python file. Do *not* import the source code. """ if not filename.endswith(".py"): return False return True
9ef454875db37e5a3c5cefa8c6f31fcc49beca44
517,661