content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_label_ids(service):
"""Returns labelIds given the service you're using. Used to add labels to messages"""
all_labels = service.users().labels().list(userId="me").execute()
return {label["name"]: label["id"] for label in all_labels["labels"]}
|
ef83b0fabe8ec38383f7b7e5aeda816516dc6d88
| 466,214 |
from typing import List
def canReach(arr: List[int], start: int) -> bool:
"""Return true iff you can reach any index in 'arr' with value 0,
starting from the specified 'start' index."""
visited = set()
leftBound = 0
rightBound = len(arr) - 1
def canReachViaDFS(curr: int) -> bool:
"""Apply DFS to check whether the zero value in 'arr' can
be reached given the 'curr' index."""
if arr[curr] == 0:
# Found the target.
return True
visited.add(curr)
left = curr - arr[curr]
if left >= leftBound and left not in visited and canReachViaDFS(left):
return True
right = curr + arr[curr]
if right <= rightBound and right not in visited and canReachViaDFS(right):
return True
visited.remove(curr)
return False
return canReachViaDFS(start)
|
ee84aed2486fcd03545bea8302c0a331a04e5ce4
| 574,851 |
def is_solution(cnf, assignment):
"""Test whether the given assignment is a solution to the CNF.
assignment is a dictionary from variable names to truth values.
It is not required that all variables in the CNF are assigned.
"""
for clause in cnf:
satisfied = False
for lit in clause:
name, val = lit
if name in assignment and val == assignment[name]:
satisfied = True
break
if not satisfied:
return False
return True
|
74c83fc8c0089261d3afa344ea9ee7e62e850621
| 631,156 |
def has_permissions(ctx, **perms):
"""Copy of code from discord.py to work outside of wrappers"""
ch = ctx.channel
permissions = ch.permissions_for(ctx.author)
missing = [perm for perm, value in perms.items() if getattr(permissions, perm, None) != value]
if not missing:
return True
return False
#raise commands.MissingPermissions(missing)
|
e1c4e260794ca8534758eb1a9b9a4b003c3dd98c
| 260,687 |
from typing import Dict
from typing import Any
def __get_cumulative_cases_count(data_json: Dict[str, Any]) -> int:
"""
Returns the cumulative number of cases stored in the given data point.
"""
try:
return data_json["cumCasesByPublishDate"]
except KeyError:
return 0
|
4e6ceef73880fe3430c92bc5a43deef545b01985
| 639,479 |
def to_sql_name(name):
"""
Ensure ``name`` is a valid SQL name.
"""
return name.lower().replace(' ', '_')
|
f3157d9444793d0af05e27317fdab2aa55531b84
| 704,007 |
def rate(e0, e1, n0, n1, nr, p):
"""
This equation is solved for p to determine the convergence rate when the
reference solution is used to measure the error.
y(p) = 0 determines the convergence rate.
e0, n0 : Error and grid number for grid "0"
e1, n1 : Error and grid number for grid "1"
nr : Reference grid number
p : Convergence rate to solve for
"""
h0 = 0.5 ** (n0 * p)
h1 = 0.5 ** (n1 * p)
hr = 0.5 ** (nr * p)
y = e0 * (h1 - hr) - e1 * (h0 - hr)
return y
|
1661abd1f867f65fe536bebd3ea319f002d2956a
| 674,874 |
def feet_to_meters(feet: float) -> float:
""" Convert feet to meters.
:param feet: a measurement in feet.
:returns: measurement in meters
"""
return feet / 0.3048
|
0ea73d0d66100405b5355844feedde5525000e60
| 230,778 |
def triangular_number(x: int) -> int:
""" Get the xth triangular number """
return (x * (x + 1)) // 2
|
db640d26cfa4ba524c18bc443fc657758260f585
| 631,341 |
import collections
def group_models_by_index(backend, models):
"""
This takes a search backend and a list of models. By calling the
get_index_for_model method on the search backend, it groups the models into
the indices that they will be indexed into.
It returns an ordered mapping of indices to lists of models within each
index.
For example, Elasticsearch 2 requires all page models to be together, but
separate from other content types (eg, images and documents) to prevent
field mapping collisions (eg, images and documents):
>>> group_models_by_index(elasticsearch2_backend, [
... wagtailcore.Page,
... myapp.HomePage,
... myapp.StandardPage,
... wagtailimages.Image
... ])
{
<Index wagtailcore_page>: [wagtailcore.Page, myapp.HomePage, myapp.StandardPage],
<Index wagtailimages_image>: [wagtailimages.Image],
}
"""
indices = {}
models_by_index = collections.OrderedDict()
for model in models:
index = backend.get_index_for_model(model)
if index:
indices.setdefault(index.name, index)
models_by_index.setdefault(index.name, [])
models_by_index[index.name].append(model)
return collections.OrderedDict([
(indices[index_name], index_models)
for index_name, index_models in models_by_index.items()
])
|
54add7cadd33d76b492a41f775137f304dbc56a6
| 357,781 |
import requests
def send_get_request(args):
"""
Send an HTTP GET request to Building Energy Gateway.
This is the datareadingrequests equivalent of
building_data_requests' post_request().
Note that it does not retry requests without SSL.
:param args: Arguments for the request.
:return: Response object.
"""
return requests.get("https://energize.andoverma.us", params=args)
|
5a286d3a34b60f28a4d1a732c360077b829d1c7d
| 355,923 |
def binary_search(search_list, search_item):
"""
Given an ordered list find the search_item.
Complexity
- Best: O(1)
- Average: O(log n)
- Worst: O(log n)
"""
li_len = len(search_list)
mid_idx = li_len / 2
mid_val = search_list[mid_idx]
if li_len == 1 and mid_val != search_item:
return None
if mid_val == search_item:
return mid_val
elif search_item < mid_val:
return binary_search(search_list[:mid_idx], search_item)
elif search_item > mid_val:
return binary_search(search_list[(mid_idx+1):], search_item)
|
11777decb457db42a3129eca84d90777cf3ba640
| 348,450 |
def insert_sort(nums):
"""
插入排序:
构建有序数组,对未排序数据,从后向前扫描找到对应位置插入
时间复杂度:
O(n^2)
@param nums: 无序数组
@return: 升序数组
>>> import random
>>> nums = random.sample(range(-50, 50), 50)
>>> insert_sort(nums) == sorted(nums)
True
>>> insert_sort([0, 5, 2, 3, 2]) == sorted([0, 5, 2, 3, 2])
True
>>> insert_sort([])
[]
"""
length = len(nums)
for i in range(1, length):
for j in range(i, 0, -1):
if nums[j] < nums[j - 1]:
nums[j], nums[j - 1] = nums[j - 1], nums[j]
return nums
|
f3c59f677a1682506db227f1e302796a7a962563
| 182,558 |
def extract_ref_uri(ref: str, uri: str) -> str:
"""Extract uri from ref."""
if ref.startswith("#/components/schemas/"):
return f"{uri}#{ref[21:]}"
else:
return f"{uri}#{ref}"
|
baab77bd50c1522161a1d2dfeccf4068ada17b32
| 203,899 |
def j2_quote(s):
"""Jinja2 custom filter that quotes a string
"""
return '"{}"'.format(s)
|
2ea55bdc9da276cb4fd5edf56d53a57ff2133899
| 550,054 |
def getsepfield(s:str, n:int, sep:str=","):
"""Get nth word in s, separated by sep"""
list=s.split(sep)
if n<0 or n>=len(list):
return ""
return list[n]
|
4ce9f941c07db19a34c99c1c454e773b736f637f
| 409,021 |
def ascii_identify(origin, *args, **kwargs):
"""Check whether given filename is ASCII."""
return (isinstance(args[0], str) and
args[0].lower().split('.')[-1] in ['txt', 'dat'])
|
9dd3b0f81f25903e17f874bc394baf7bd7c8f508
| 452,683 |
def _as_stac_instruments(value: str):
"""
>>> _as_stac_instruments('TM')
['tm']
>>> _as_stac_instruments('OLI')
['oli']
>>> _as_stac_instruments('ETM+')
['etm']
>>> _as_stac_instruments('OLI_TIRS')
['oli', 'tirs']
"""
return [i.strip("+-").lower() for i in value.split("_")]
|
5666da0b9eef7741cba7f739854a16b7c9339a0a
| 502,435 |
def annotated(**kwargs):
"""Decorator for annotating function objects with **kwargs attributes.
Args:
**kwargs (dict):
Map of attribute values to names.
Example:
Decorate `f` with `priority=10`::
@annotated(priority=10)
def f():
pass
assert f.priority == 10
"""
def _decorator(f):
for key, val in kwargs.items():
setattr(f, key, val)
return f
return _decorator
|
11f694121bf6678a3e503321123f34d9a461a2ec
| 392,127 |
def EnumTextToValue(fdesc, enum_text):
"""Looks up the value of enum_text, given the field descriptor it came from.
Args:
fdesc: the descriptor of the field the enum_text belongs to.
enum_text: the text of an enum.
Returns:
integer representing the enum_text
"""
# descriptor.py
return fdesc.enum_type.values_by_name[enum_text].number
|
50b8da1c2d447d27522e2284274403e5bca88fb1
| 527,806 |
def unpad(x, x_mask):
"""
Unpad a batch of sequences by selecting elements not masked by x_mask.
Returns a list of sequences and their corresponding lengths
"""
x_unp = []
x_unp_mask = []
x_unp_len = []
for seq, seq_mask in zip(x, x_mask):
seq_unp = seq[(1 - seq_mask)]
x_unp.append(seq_unp)
x_unp_mask.append(seq_mask[1 - seq_mask])
x_unp_len.append(seq_unp.shape[0])
return x_unp, x_unp_mask, x_unp_len
|
4a447505e11505fe5fe6139729c488957a30d9df
| 69,574 |
def descope_queue_name(scoped_name):
"""Returns the unscoped queue name, given a fully-scoped name."""
# NOTE(kgriffs): scoped_name can be either '/', '/global-queue-name',
# or 'project-id/queue-name'.
return scoped_name.partition('/')[2] or None
|
369c58e827121ae369dae2e8e898e0c9898f5224
| 269,532 |
def new_admin(user, password_hasher):
""" Create new admin user for testing. """
User = user
# Admin user mock data
admin_user_data = {
"username": "admin",
"email": "[email protected]",
"password": password_hasher.hash("admin"),
}
new_admin = User(**admin_user_data)
new_admin.save()
return new_admin
|
bc095d270ccb1f124a408a65b6a3684f407bbda0
| 649,241 |
import uuid
def get_random_filename(ext, prefix=""):
"""
Returns a randomly generated string with the specified
extension `ext` appended at the end. `ext` should have a dot.
A str `prefix` can also be prefixed to the filename.
"""
# hex returns a string with no dashes
return prefix + str(uuid.uuid4().hex) + ext
|
e148ba7f0f87cffdcbdb6bff30b4a12d399844f5
| 489,390 |
def process_secondary_inputs(dict_):
"""
This functions processes the secondary input parameters.
Parameters
----------
dict_: dict
Estimation dictionary. Returned by grmpy.read(init_file).
Returns
-------
trim: bool, default True
Trim the data outside the common support, recommended.
rbandwidth: float, default 0.05
Bandwidth for the Double Residual Regression.
reestimate_p: bool, default False
Re-estimate P(Z) after trimming, not recommended.
show_output: bool, default False
Show intermediate outputs of the estimation process.
"""
try:
dict_["ESTIMATION"]["trim_support"]
# Set default to True
except KeyError:
trim = True
else:
trim = dict_["ESTIMATION"]["trim_support"]
try:
dict_["ESTIMATION"]["reestimate_p"]
# Set default to False
except KeyError:
reestimate_p = False
else:
reestimate_p = dict_["ESTIMATION"]["reestimate_p"]
try:
dict_["ESTIMATION"]["rbandwidth"]
# Set default to 0.05
except KeyError:
rbandwidth = 0.05
else:
rbandwidth = dict_["ESTIMATION"]["rbandwidth"]
try:
dict_["ESTIMATION"]["show_output"]
# Set default to True
except KeyError:
show_output = False
else:
show_output = dict_["ESTIMATION"]["show_output"]
return trim, rbandwidth, reestimate_p, show_output
|
9773d92a294be75d2ee6f6172ff07db020e8bc7b
| 560,559 |
def is_gem_file(location):
"""
Return True if a file is a .gem archive or a .gemspec file.
"""
return location.endswith(('.gem', '.gemspec'))
|
a9b20df59e437e94b9370dfa93657141bdb61372
| 505,310 |
def _get_reason(cluster_or_step):
"""Get state change reason message."""
# StateChangeReason is {} before the first state change
return cluster_or_step["Status"]["StateChangeReason"].get("Message", "")
|
bb18c94b2647bb0cc0234c218281d900b48119fe
| 596,167 |
import json
def intrinsics(kinect, path='calibrate/IR/intrinsics_retrieved_from_kinect_mapper.json', write=False):
"""
Retrieve the depth camera intrinsics from the kinect's mapper
and write them at: calibrate/IR/intrinsics_retrieved_from_kinect_mapper.json
:param kinect: kinect instance
:param path: path to save the intrinsics as a json file
:param write: save or not save the intrinsics
:return: returns the intrinsics matrix
"""
intrinsics_matrix = kinect._mapper.GetDepthCameraIntrinsics()
if write:
with open(path, 'w', encoding='utf-8') as json_file:
configs = {"FocalLengthX": intrinsics_matrix.FocalLengthX, "FocalLengthY": intrinsics_matrix.FocalLengthY,
"PrincipalPointX": intrinsics_matrix.PrincipalPointX, "PrincipalPointY": intrinsics_matrix.PrincipalPointY,
"RadialDistortionFourthOrder": intrinsics_matrix.RadialDistortionFourthOrder, "RadialDistortionSecondOrder": intrinsics_matrix.RadialDistortionSecondOrder,
"RadialDistortionSixthOrder": intrinsics_matrix.RadialDistortionSixthOrder}
json.dump(configs, json_file, separators=(',', ':'), sort_keys=True, indent=4)
return intrinsics_matrix
|
811b4128090a7015d297a0bd85432ad321369e99
| 630,100 |
def lt(x, y):
"""Less than"""
return x < y
|
9d6b86afabea8adf527f86a06e96e1946290e602
| 405,348 |
import requests
def near(x, y, url, resource='/grid/near'):
"""Determines chips and tiles that lie a point
Args:
x (int): projection coordinate x
y (int): projection coordinate y
url (str): protocol://host:port/path
resource (str): /grid/near/resource (default: /grid/near)
Returns:
dict
Example:
>>> chipmunk.near(x=0, y=0, url='http://host:port/path')
{'chip': [{'grid-pt': [854.0, 1105.0], 'proj-pt': [-3585.0, -195.0]},
{'grid-pt': [854.0, 1104.0], 'proj-pt': [-3585.0, 2805.0]},
{'grid-pt': [854.0, 1103.0], 'proj-pt': [-3585.0, 5805.0]},
{'grid-pt': [855.0, 1105.0], 'proj-pt': [-585.0, -195.0]},
{'grid-pt': [855.0, 1104.0], 'proj-pt': [-585.0, 2805.0]},
{'grid-pt': [855.0, 1103.0], 'proj-pt': [-585.0, 5805.0]},
{'grid-pt': [856.0, 1105.0], 'proj-pt': [2415.0, -195.0]},
{'grid-pt': [856.0, 1104.0], 'proj-pt': [2415.0, 2805.0]},
{'grid-pt': [856.0, 1103.0], 'proj-pt': [2415.0, 5805.0]}],
'tile': [{'grid-pt': [16.0, 23.0], 'proj-pt': [-165585.0, -135195.0]},
{'grid-pt': [16.0, 22.0], 'proj-pt': [-165585.0, 14805.0]},
{'grid-pt': [16.0, 21.0], 'proj-pt': [-165585.0, 164805.0]},
{'grid-pt': [17.0, 23.0], 'proj-pt': [-15585.0, -135195.0]},
{'grid-pt': [17.0, 22.0], 'proj-pt': [-15585.0, 14805.0]},
{'grid-pt': [17.0, 21.0], 'proj-pt': [-15585.0, 164805.0]},
{'grid-pt': [18.0, 23.0], 'proj-pt': [134415.0, -135195.0]},
{'grid-pt': [18.0, 22.0], 'proj-pt': [134415.0, 14805.0]},
{'grid-pt': [18.0, 21.0], 'proj-pt': [134415.0, 164805.0]}]}
"""
url = '{}{}'.format(url, resource)
return requests.get(url=url, params={'x': x, 'y': y}).json()
|
5d52f48b7b1b4c26d62916fa2887cc0dd18c96af
| 224,520 |
def calc_check_digit(number):
"""Calculate the check digit."""
check = sum(((i % 9) + 1) * int(n)
for i, n in enumerate(number[:-1])) % 11
if check == 10:
check = sum((((i + 2) % 9) + 1) * int(n)
for i, n in enumerate(number[:-1])) % 11
return str(check % 10)
|
948a5bbdda6c3cc4f95042f87d65d403d739537e
| 149,541 |
def _find_id_row(table_as_list: list):
"""
Finds Id row in the first section of the 'casadm -P' output.
"""
for line in table_as_list:
if "Id" in line:
return line
raise Exception("Cannot find Id row in the 'casadm -P' output")
|
b268fb12a068b2f9bac0fc779715276f38dcff5e
| 138,311 |
def upload_global_tag(task):
"""
Get the global tag that is supposed to be used for uploads for the given task.
Parameters:
task (str): An identifier of the task. Supported values are 'master', 'validation', 'online', 'prompt', data', 'mc', 'analysis'
Returns:
The name of the GT for uploads or None if a new GT should be created by the client for each upload request.
"""
if task == 'master':
return None
elif task == 'validation':
return None
elif task == 'online':
return None
elif task == 'prompt':
return None
elif task == 'data':
return None
elif task == 'mc':
return None
elif task == 'analysis':
return None
|
d84728a9fa1eb39083b305595d2ba11e40b4fb87
| 315,819 |
def cb_format_default_value(val):
"""Value formatting callback for default cell"""
return "" if val is None else str(val)
|
71279ec635f010efe3db9731927e6df71a91eba0
| 563,991 |
def get_mask(source, source_lengths):
"""
Arguments
---------
source : [T, B, C]
source_lengths : [B]
Returns
-------
mask : [T, B, 1]
Example:
---------
>>> source = torch.randn(4, 3, 2)
>>> source_lengths = torch.Tensor([2, 1, 4]).int()
>>> mask = get_mask(source, source_lengths)
>>> print(mask)
tensor([[[1.],
[1.],
[1.]],
<BLANKLINE>
[[1.],
[0.],
[1.]],
<BLANKLINE>
[[0.],
[0.],
[1.]],
<BLANKLINE>
[[0.],
[0.],
[1.]]])
"""
T, B, _ = source.size()
mask = source.new_ones((T, B, 1))
for i in range(B):
mask[source_lengths[i] :, i, :] = 0
return mask
|
3042598f7fe1ecc0a9b4f69ab3e8fca6823e7d32
| 585,870 |
def hasUserMatch(uList, tweetJSON):
"""Returns true if a tweet from any user in QUERY_FROM_USERS is found"""
return any(keyword in tweetJSON['user']['screen_name'] for keyword in uList)
|
b327520045927331a774f6fe84a5ee882184489b
| 407,251 |
import requests
def get_html(url):
""" Returns the HTML of the url page """
r = requests.get(url, headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 11_1_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36'
})
html = r.text
return html
|
555a16dca9c3e5fbae3c356f6c9b11332e673755
| 225,333 |
def identity(x):
"""
The identity function. Returns its argument.
not to be confused with the id() builtin
>>> identity('foo')
'foo'
"""
return x
|
914f6432f202712f159e16ed40f0b4c9c458acca
| 69,431 |
def get_copiable_service_data(service, *, questions_to_exclude=None, questions_to_copy=None):
"""
Filter out any service data that shouldn't be copied to a new draft service, by either including
copyable questions or excluding non-copyable questions.
There is validation at view-level to prevent both `to_copy` and `to_exclude` lists being supplied, so
this function should only receive one or the other. However we want to deprecate use of `to_copy`, so
if both are somehow supplied, we use the `to_exclude` list.
If neither list is provided, then all data fields on the service are included.
:param service: service object with a JSON dict `data` attribute (required)
:param questions_to_exclude: iterable of question IDs that must not be copied
:param questions_to_copy: iterable of question IDs that may be copied (to be deprecated)
:return: JSON dict of service data
"""
if questions_to_exclude:
return {key: value for key, value in service.data.items() if key not in questions_to_exclude}
if questions_to_copy:
return {key: value for key, value in service.data.items() if key in questions_to_copy}
return service.data
|
15cae7f6afed920690c4ce37492a594bb8be18d3
| 430,536 |
def clever_split(line: str) -> list:
"""Get separated (tabs or whitespaces) elements from line.
Parameters
----------
line : str
Returns
-------
elems : list of str
Separated elements.
"""
# split elements by tabs
cols = line.split('\t')
# if no tabs, split by whitespace
if len(cols) <= 1:
cols = line.split(' ')
# strip elements of trailing whitespaces
elems = [c.strip() for c in cols if len(c.strip()) > 0]
return elems
|
2cc0c11764ed0c7f216818ad86356bd2d327f138
| 66,692 |
def oneliner(text):
""" remove \n in text.
"""
return text.replace(u'\n', ' ')
|
ff800a3813c5efab901b4fbfb43bc872e3857fa0
| 482,599 |
import json
def load_dexpreopt_configs(configs):
"""Load dexpreopt.config files and map module names to library names."""
module_to_libname = {}
if configs is None:
configs = []
for config in configs:
with open(config, 'r') as f:
contents = json.load(f)
module_to_libname[contents['Name']] = contents['ProvidesUsesLibrary']
return module_to_libname
|
b3a8763ee182fa7e9da968404369933e494663b5
| 26,746 |
import uuid
def generate_id() -> str:
""" Create a unique ID.
This is passed in each message, and used to match requests
to responses.
"""
return uuid.uuid4().hex
|
eae268d641f0ee6e310ea85d75316bfa327b31b9
| 625,865 |
def errfun_sae(x,y):
"""
Sum of absolute errors
"""
return sum(abs(x-y))
|
15dd69b81a2781e5f815e0db5fdfdf808b9dfb1e
| 641,497 |
def loc2rank(loc, procs):
""" Return the MPI rank using
- loc, the tuple of subdomain location
- procs, the tuple of number of subdomains in each direction
loc2rank is the reverse operation of rank2loc
"""
rank = (loc[0]*procs[1] + loc[1])*procs[2] + loc[2]
return rank
|
3c3b8fe25805abc4000cc0c7cb091b8bfdbdf043
| 376,447 |
import torch
def compute_logits(cluster_centers, data):
"""Computes the logits of being in one cluster, squared Euclidean.
Args:
cluster_centers: [K, D] Cluster center representation.
data: [B, N, D] Data representation.
Returns:
log_prob: [B, N, K] logits.
"""
k = cluster_centers.shape[0]
b = data.shape[0]
cluster_centers = cluster_centers.unsqueeze(dim=0) # [1, K, D]
data = data.contiguous().view(-1, data.shape[-1]).unsqueeze(dim=1) # [N, 1, D]
# neg_dist = -torch.sum(torch.pow(data - cluster_centers, 2), dim=-1) # [N, K]
neg_dist = -torch.mean(torch.pow(data - cluster_centers, 2), dim=-1) # [N, K]
neg_dist = neg_dist.view(b, -1, k)
return neg_dist
|
ec0f7c69654b4e233a0d98582d06f9cf169f2378
| 76,342 |
import functools
def get_nested_attr(obj, attr, *args):
"""Gets the value of a nested attribute from an object.
Args:
obj: an object to retrieve an attribute value from.
attr: a string of the attribute separated by dots.
Returns:
The object attribute value or the given *args if the attr isn't present.
"""
def _getattr(obj, attr):
return getattr(obj, attr, *args)
return functools.reduce(_getattr, [obj] + attr.split('.'))
|
b708898e5b8b12df34768e0e9c7281aae1bbc2db
| 520,377 |
def conv_str_series_data(str_series: str) -> list:
"""
Convert a string of comma separated values into a list of floats
Args:
str_series (str): the string that you want to convert to a list
Returns:
A list of floats
"""
str_list = str_series.strip("[]").split(",")
float_list = [float(x) for x in str_list]
return float_list
|
15191bf4fe98aab10f2f37f63b122df01037eb40
| 472,484 |
def empty_str(value: str) -> bool:
"""Return True if string is empty (whitespace don't count) or None.
"""
return True if value is None else value.strip() == ''
|
23420f8dacb8447f9338cf34a66bb7c21284d6bb
| 586,828 |
def parse_authentication(authentication):
"""Split the given method:password field into its components.
authentication (str): an authentication string as stored in the DB,
for example "plaintext:password".
return (str, str): the method and the payload
raise (ValueError): when the authentication string is not valid.
"""
method, sep, payload = authentication.partition(":")
if sep != ":":
raise ValueError("Authentication string not parsable.")
return method, payload
|
f0bbcf98a3b38cadd40e36cd6045164a85a6e6f9
| 416,801 |
from typing import Pattern
def mnemonic(column: str, size: int, drop: Pattern) -> str:
"""
For a given column find a reasonable mnemonic
Parameters
----------
column: str
The string to find a mnemonic for
size: int
The maximum length of the mnemonic
drop: Pattern
A pattern to remove (e.g. vowels) from the string
"""
extra = len(column) - size
if extra <= 0:
return column.upper()
return drop.sub('', column.upper(), count=extra)[0:size]
|
84c056ae77f4d61d9398be9216b70a824ac601b8
| 213,288 |
def subdivide_stats(data):
"""
If a key contains a ., create a sub-dict with the first part as parent key
"""
ret = {}
for key, value in data.items():
if '.' in key:
parent, subkey = key.split('.', 2)
if parent not in ret:
ret[parent] = {}
ret[parent][subkey] = value
else:
ret[key] = value
return ret
|
65e47db5c75118c1939a8ecdd3ad581a053da893
| 12,625 |
def flatten_entrypoints(ep):
"""Flatten nested entrypoints dicts.
Entry points group names can include dots. But dots in TOML make nested
dictionaries:
[entrypoints.a.b] # {'entrypoints': {'a': {'b': {}}}}
The proper way to avoid this is:
[entrypoints."a.b"] # {'entrypoints': {'a.b': {}}}
But since there isn't a need for arbitrarily nested mappings in entrypoints,
flit allows you to use the former. This flattens the nested dictionaries
from loading pyproject.toml.
"""
def _flatten(d, prefix):
d1 = {}
for k, v in d.items():
if isinstance(v, dict):
for flattened in _flatten(v, prefix+'.'+k):
yield flattened
else:
d1[k] = v
if d1:
yield prefix, d1
res = {}
for k, v in ep.items():
res.update(_flatten(v, k))
return res
|
38bc521181d9473cd4b40424331eac162dc47574
| 518,228 |
from typing import MutableMapping
def reduce_schema(d):
"""
Takes a jsonschema loaded as a dictionary and return a reduced structure
ignoring everything apart from the structure it describes.
"""
r = {}
CONTAINS_KEYS = "properties"
if CONTAINS_KEYS in d:
for k, v in d[CONTAINS_KEYS].items():
if isinstance(v, MutableMapping) and v.get(CONTAINS_KEYS):
r[k] = reduce_schema(v)
else:
r[k] = None
return r
|
2f8448306283bfa26a903689005b27f906e96c03
| 465,143 |
def circle(x, y, radius, canvas, color):
"""Create a circle from the middle coordinates
:param x: coordinated x
:param y: coordinated y
:param radius: circle radius
:param color: circle color
:param canvas: environment
:return: a circle canvas object
"""
return canvas.create_oval(x - radius, y - radius, x + radius, y + radius, fill=color, outline='')
|
b3e3789bb1f7cad2c7c82e2b80f5d406ddda9dd8
| 162,835 |
def get_expected_output_bcf_files_dict(base_out):
"""
:param base_out: Base path structure for log files. For example, if the expected path for
the log is 'work/step.path/log/step.bcf', the argument should be
'work/step.path/log/step'.
:type base_out: str
:return: Returns dictionary with expected path for bcf related files based on the
provided input.
"""
# Define expected
expected = {
"bcf": base_out + ".bcf",
"bcf_md5": base_out + ".bcf.md5",
"csi": base_out + ".bcf.csi",
"csi_md5": base_out + ".bcf.csi.md5",
}
# Return
return expected
|
934120b4b8a86f6c0797d1befefdf9fc7a76d2e1
| 567,471 |
def _testLengthBoundaryValidity(dataLength, tableDirectory):
"""
>>> test = [
... dict(tag="test", offset=44, length=1)
... ]
>>> bool(_testLengthBoundaryValidity(45, test))
False
>>> test = [
... dict(tag="test", offset=44, length=2)
... ]
>>> bool(_testLengthBoundaryValidity(45, test))
True
"""
errors = []
entries = [(entry["offset"], entry) for entry in tableDirectory]
for o, entry in sorted(entries):
offset = entry["offset"]
length = entry["length"]
tag = entry["tag"]
end = offset + length
if end > dataLength:
errors.append("The length of the %s table is not valid." % tag)
return errors
|
e5876302e2fdeb2cb1b708f49777b73183d2a938
| 663,052 |
def prune_graph_nodes(graph, tag):
"""
Filers graph nodes to only nodes that are tagged with the specified tag
:param graph: Original graph to prune
:param tag: Tag for nodes of interest
:return: List of nodes tagged with the specified tag
"""
node_list = []
for node_name in graph.nodes():
try:
if graph.node[node_name]['tag'] == tag:
# if graph.node[node_name]['attr_dict'][TAG_ATTR] == tag:
node_list.append(node_name)
except KeyError:
pass
return node_list
|
9a8b1475b75e52f9e84173431dd2c0940a092365
| 277,945 |
def to_dict_of_list(in_list):
"""
Convert a list of dicts to a dict of lists.
Args:
in_list (list): The list of dicts to be converted.
Returns:
dict: The converted dict of lists.
"""
for i in range(len(in_list) - 1):
if in_list[i].keys() != in_list[i + 1].keys():
raise ValueError('dict keys are not consistent')
out_dict = dict()
for key in in_list[0]:
out_dict[key] = [item[key] for item in in_list]
return out_dict
|
395e458ece84d237887944e5791b479c0a2b5784
| 554,107 |
def to_24hour_format(now_hour, hour):
"""
24時間表記を返す
:param now_hour:現在時刻 (時)
:param hour:時刻 (12時間表記 / 時)
:return: 時刻 (24時間表記 / 時)
"""
# 時刻の下駄
hour_padding = 12 if 11 < now_hour else 0
return hour_padding + (hour + 1) // 5
|
22cb3ddfdda80f4379efcaf07f648763748a42ad
| 388,550 |
def get_package_name(pin, platform=None):
"""Returns the CIPD package name for a pin."""
name = pin.package_base
if pin.platform:
name += platform or '${platform}'
return name
|
c2804ad4fab4bf4c3acbb70398aa3c1ae0343f38
| 526,736 |
def msa_residential_demand(residential_demand):
"""
Residential demand aggregated to the MSA.
"""
df = residential_demand.local
return df.fillna(0).sum(axis=1).to_frame('msa')
|
8db34b1b72314ad5cc42d0f4475b354a522f8675
| 445,223 |
def color_in_list(chip, items):
"""
Function to check whether the same color already exists in a list
:param chip: Item whose color will be checked
:param items: List of elements already in streak
:return: True if color already exists, False otherwise
"""
for item in items:
if item[1] == chip[1]:
return True
return False
|
0b5a467e51f531f4043031088615a30ce8639833
| 269,793 |
def _is_python_file(filename):
"""Check if the input file looks like a Python script
Returns True if the filename ends in ".py" or if the first line
contains "python" and "#!", returns False otherwise.
"""
if filename.endswith('.py'):
return True
with open(filename, 'r') as file_handle:
first_line = file_handle.readline()
return 'python' in first_line and '#!' in first_line
|
a6d99166c6b76c4ae0ad5f5036951986fd5a102b
| 696,912 |
def lower_first(string):
"""Lower the first character of the string."""
return string[0].lower() + string[1:]
|
0cde723bcdf2222ea710dad5f713842ea36a72d3
| 404,236 |
def select_answer(list_of_answers):
"""The player select *one* char out of a list"""
answer = ""
while not answer in list_of_answers:
answer = input(">>>")
return answer
|
03320e5d677d9dc07ea564b60294e098d38763bc
| 97,371 |
from datetime import datetime
def to_time_string(value):
"""
gets the time string representation of input datetime with utc offset.
for example: `23:40:15`
:param datetime | time value: input object to be converted.
:rtype: str
"""
time = value
if isinstance(value, datetime):
time = value.timetz()
return time.isoformat(timespec='seconds')
|
b81ffff8b4ab626e0094bcfeb0bf6916de89d344
| 28,172 |
def is_relevant_asset(asset: dict):
"""
Returns if an asset is relevant for this process. For being relevant the asset name needs to contain "windows" or "linux"
:param asset: The asset information as it is available in the samples directory.
:type asset: dict
:return:
"""
return "linux" in asset["name"] or "win32" in asset["name"]
|
de142fdcc0cb096899d5124a16a2cbd722879e2b
| 570,062 |
def entradaValida(p1, p2, p3, p4, p5, p6, p7, p8, p9):
"""
Recebe os valores das nove posições do tabuleiro e
verifica se os valores são válidos, ou seja, retorna True
se cada variável possui " " ou "x" ou "o" e False, caso contrário.
"""
#Complete o código da função
if p1 == " " or p1 == "x" or p1 == "o":
return True
if p2 == " " or p2 == "x" or p2 == "o":
return True
if p3 == " " or p3 == "x" or p3 == "o":
return True
if p4 == " " or p4 == "x" or p4 == "o":
return True
if p5 == " " or p5 == "x" or p5 == "o":
return True
if p6 == " " or p6 == "x" or p6 == "o":
return True
if p7 == " " or p7 == "x" or p7 == "o":
return True
if p8 == " " or p8 == "x" or p8 == "o":
return True
if p9 == " " or p9 == "x" or p9 == "o":
return True
return False
|
811ff88cfca4e4150b1a42946f2eb71c522b4886
| 180,814 |
import math
def gen_split_slices(total_len, part_len=None, n_parts=None):
"""Generate slices to split a sequence.
Returns a list of slices to split a sequence into smaller pieces.
Args:
total_len (int): Length of the full sequence.
part_len (int, optional): Length of each piece, may be None if
n_parts is specified.
n_parts (int, optional): Number of pieces, ignored if part_len
is specified.
Returns:
(list of slice) Slices to split the sequence.
"""
if part_len is None:
if n_parts is None:
raise ValueError('must specify either part_len or n_parts')
else:
n_parts = math.ceil(total_len / part_len)
return [slice(i * total_len // n_parts, (i+1) * total_len // n_parts)
for i in range(n_parts)]
|
c654e629a8785fd7d4c108f3b76828c25eca6518
| 324,279 |
def get_package_version(package):
"""
Return the version number of a Python package as a list of integers
e.g., 1.7.2 will return [1, 7, 2]
"""
return [int(num) for num in package.__version__.split('.')]
|
682eb4ffdba67d189997ceb629b06cb1ccb2a437
| 47,404 |
def get_theme_path(theme):
"""Return the theme's path, which equals the theme's name."""
return theme
|
a4f151e24bdaf31cdf5e849c84ae5a68b5a75a37
| 424,830 |
def map_patches_to_sources(inverse_mapping, centred_img_patches):
"""
Given the inverse mapping from image to source space, calculate the array
of modal sources.
Parameters
----------
inverse_mapping : numpy array (floats)
The {NUM_MODES x p} matrix transform that maps the image patches to
the desired sources.
centred_img_patches : numpy array (floats)
The {p x NUM_PATCHES} array of all centred vectorised image patches.
Returns
-------
numpy array (floats)
The {NUM_MODES x NUM_PATCHES} array of sources.
"""
return inverse_mapping @ centred_img_patches
|
ed02887b145e29958a5dbfad091a43d1a1e4e44b
| 374,848 |
def channel_from_snippet(resp):
"""
Convert a Youtube api snippet response into a dictionary of channel info.
Contains: name, image, description, channel_id
"""
return {
'name': resp['snippet']['title'],
'image': resp['snippet']['thumbnails']['high']['url'],
'description': resp['snippet']['description'],
'channel_id': resp['snippet']['resourceId']['channelId'],
}
|
36ed93a02b18c4bbc9436477d9efdadf7287c663
| 448,987 |
def dict_to_cvode_stats_file(file_dict: dict, log_path: str) -> bool:
"""
Turns a dictionary into a delphin cvode stats file.
:param file_dict: Dictionary holding the information for the cvode stats file
:param log_path: Path to were the cvode stats file should be written
:return: True
"""
file_obj = open(log_path + '/integrator_cvode_stats.tsv', 'w')
file_obj.write(' Time [s]\t Steps\t RhsEvals\t LinSetups\t NIters\t NConvFails\t NErrFails\t'
' Order\t StepSize [s]\n')
for line_index in range(0, len(file_dict['time'])):
time_string = ' ' * (25 - len(str("{:.10f}".format(file_dict['time'][line_index])))) + \
str("{:.10f}".format(file_dict['time'][line_index]))
steps_string = ' ' * (10 - len(str(file_dict['steps'][line_index]))) + \
str(file_dict['steps'][line_index])
rhs_string = ' ' * (10 - len(str(file_dict['rhs_evaluations'][line_index]))) + \
str(file_dict['rhs_evaluations'][line_index])
lin_string = ' ' * (10 - len(str(file_dict['lin_setups'][line_index]))) + \
str(file_dict['lin_setups'][line_index])
iterations_string = ' ' * (8 - len(str(file_dict['number_iterations'][line_index]))) + \
str(file_dict['number_iterations'][line_index])
conversion_fails_string = ' ' * (11 - len(str(file_dict['number_conversion_fails'][line_index]))) + \
str(file_dict['number_conversion_fails'][line_index])
error_fails_string = ' ' * (11 - len(str(file_dict['number_error_fails'][line_index]))) + \
str(file_dict['number_error_fails'][line_index])
order_string = ' ' * (6 - len(str(file_dict['order'][line_index]))) + \
str(file_dict['order'][line_index])
step_size_string = ' ' * (14 - len(str("{:.6f}".format(file_dict['step_size'][line_index])))) + \
str("{:.6f}".format(file_dict['step_size'][line_index]))
file_obj.write(time_string + '\t' + steps_string + '\t' + rhs_string + '\t' + lin_string + '\t'
+ iterations_string + '\t' + conversion_fails_string + '\t' + error_fails_string + '\t'
+ order_string + '\t' + step_size_string + '\n')
file_obj.close()
return True
|
4b6d92ad610c47eed5b2e593980a74f617ed44f4
| 9,310 |
def serial_line_endings_to_sublime(text, line_endings):
"""
Converts the serial line endings to sublime text line endings
:param text: the text to convert line endings for
:param line_endings: the serial's line endings setting: "CR", "LF", or "CRLF"
:return: the new text
"""
if line_endings == "CR":
return text.replace("\r", "\n")
if line_endings == "CRLF":
return text.replace("\r", "")
return text
|
e8304fffdc94d0e16cdfeedb26708de970fe63fd
| 570,320 |
import torch
def torch_eye(n, m=None, out=None):
"""
Like `torch.eye()`, but works with cuda tensors.
"""
if m is None:
m = n
try:
return torch.eye(n, m, out=out)
except TypeError:
# Only catch errors due to torch.eye() not being available for cuda tensors.
module = torch.Tensor.__module__ if out is None else type(out).__module__
if module != 'torch.cuda':
raise
Tensor = getattr(torch, torch.Tensor.__name__)
cpu_out = Tensor(n, m)
cuda_out = torch.eye(m, n, out=cpu_out).cuda()
return cuda_out if out is None else out.copy_(cuda_out)
|
9ba8ca767ea4bc60dee5ed3b35d4eb82afca609b
| 632,288 |
def expandToDictionary(data, key: str):
"""
This function expand a non dictionary variable in to a dictionary with a key
Eg. a = value -> {"key": value}
"""
if not isinstance(data, dict):
return {key: data}
else:
return data
|
07ea2bd7685a5b649c3dc8c2f37b6807f9c55ac2
| 241,946 |
def _get_mock_key_pair_dict(
) -> dict:
"""Create and return a dict of mock key pairs"""
return {
'KeyPairs': [
{
'KeyPairId': 'mock-key-pair-1',
'KeyFingerprint': 'mock-key-fingerprint-1',
'KeyName': 'mock-key-pair-name-1',
'KeyType': 'mock-key-pair-type-1',
'Tags': [
{
'Key': 'mock-key-1',
'Value': 'mock-value-1'
},
],
},
{
'KeyPairId': 'mock-key-pair-2',
'KeyFingerprint': 'mock-key-fingerprint-2',
'KeyName': 'mock-key-pair-name-2',
'KeyType': 'mock-key-pair-type-2',
'Tags': [
{
'Key': 'mock-key-2',
'Value': 'mock-value-2'
},
],
},
],
}
|
106ac55fbaa08c6b57bb1d8f913bbae59ff7a068
| 387,944 |
def compute_reduced_cost(column, duals):
"""Compute and return the reduced cost of 'column'."""
return (column.objective_coefficient -
sum(duals[index] * coef
for index, coef in zip(column.row_indices,
column.row_coefficients)))
|
14b02864f9a9ca10584b3436f1e33e14ffd90fc9
| 645,684 |
from pathlib import Path
import yaml
import json
def _read_data_file(path):
"""
Read the contents of a data file in JSON, YAML or BibTeX format.
Parameters
----------
path : :class:`pathlib.Path`
The path of the JSON or YAML data file.
Returns
-------
data : dict
The contents of the file as a dictionary.
"""
path = Path(path)
suffix = path.suffix
loader = {".yml": yaml.safe_load, ".yaml": yaml.safe_load, ".json": json.loads}
data = loader[suffix](path.read_text(encoding="utf-8"))
return data
|
823c9976a618e9cfd1301c51a4b28dced44010c4
| 510,121 |
import logging
def new_console_logger(level=logging.WARNING):
"""Creates a new console logging handler for use in logger.
:rtype: logging.StreamHandler
:return: new logging.StreamHandler object
"""
c_logger = logging.StreamHandler()
c_logger.setLevel(level)
c_logger.setFormatter(logging.Formatter("%(levelname)-8s - %(message)s"))
return c_logger
|
9a5ceb915f00a523769ddef02776db0fc9d6448b
| 361,829 |
from datetime import datetime
import calendar
def get_month_firstday_and_lastday(year=None, month=None):
"""
:param year: 年份,默认是本年,可传int或str类型
:param month: 月份,默认是本月,可传int或str类型
:return: firstDay: 当月的第一天,datetime.date类型
lastDay: 当月的最后一天,datetime.date类型
"""
if year:
year = int(year)
else:
year = datetime.today().year
if month:
month = int(month)
else:
month = datetime.today().month
# 获取当月第一天的星期和当月的总天数
firstDayWeekDay, monthRange = calendar.monthrange(year, month)
# 获取当月的第一天
firstDay = datetime(year=year, month=month, day=1)
lastDay = datetime(year=year, month=month, day=monthRange)
return firstDay, lastDay
|
b3aadf8f425995df03cfa37a12a0eb94105497cd
| 138,669 |
def reverse_bytes(hex_string):
"""
This function reverses the order of bytes in the provided string.
Each byte is represented by two characters which are reversed as well.
"""
#print 'reverse_bytes(' + hex_string + ')'
chars = len(hex_string)
if chars > 2:
return reverse_bytes(hex_string[chars/2:]) + reverse_bytes(hex_string[:chars/2])
else:
return hex_string[1] + hex_string[0]
|
46b5a2d8bd799721f6a72ce1c7b2114e3db3e411
| 166,094 |
from typing import Dict
from typing import Any
import yaml
import json
def load_configuration(config_path: str) -> Dict[str, Any]:
"""
Load a configuration file
Parameters
----------
config_path: str
Path to yaml or json configuration file
Returns
-------
dict[str, Any]
Configuration dictionary
"""
data = {}
with open(config_path, "r", encoding="utf8") as f:
if config_path.endswith(".yaml"):
data = yaml.load(f, Loader=yaml.SafeLoader)
elif config_path.endswith(".json"):
data = json.load(f)
if not data:
return {}
return data
|
90b66b7537dcd0d63756de84cc21f9220f8ebe2b
| 607,755 |
from typing import Any
def constantly(x: Any) -> Any:
"""
Return a function that returns ``x`` given any arguments.
"""
def f(*args: Any, **kwargs: Any) -> Any:
return x
return f
|
d9a98852713b12ed70ede95f2ab7ded01b83deb2
| 508,064 |
def readConfigFile(configFile):
"""Reads a config file with no section headers and returns a dictionary of key-value pairs"""
separator = "="
keys = {}
# I named your file conf and stored it
# in the same directory as the script
with open(configFile) as f:
for line in f:
if separator in line:
# Find the name and value by splitting the string
name, value = line.split(separator, 1)
# Assign key value pair to dict
# strip() removes white space from the ends of strings
keys[name.strip()] = value.strip()
return keys
|
8e1a3a7ed85f20b0ab172718ebf2f79355d22534
| 608,102 |
def export_3dpdf(
client,
file_=None,
filename=None,
dirname=None,
height=None,
width=None,
dpi=None,
use_drawing_settings=None,
sheet_range="all",
):
"""Export a model to a 3D PDF file.
Args:
client (obj):
creopyson Client.
`file_` (str, optional):
Model name. Defaults is current active model.
filename (str, optional):
Destination file name. May also contain a path to the file.
Defaults is the model name with the appropriate file extension,
in Creo's working directory.
dirname (str, optional):
Destination directory. Defaults is Creo's current
working directory.
height (float, optional):
PDF image height. Defaults is Creo default export height.
width (float, optional):
PDF image width. Defaults is Creo default export width.
dpi (int, optional):
PDF Image DPI. Default is Creo default export DPI.
use_drawing_settings (boolean, optional):
Whether to use special settings for exporting drawings.
Defaut is False.
sheet_range (string):
Range of drawing sheets to export. Default vale is "all".
Valid values: "all", "current", range of sheet numbers (ex: "1,3-4")
Returns:
dict:
dirname (str): Directory of the output file
filename (str): Name of the output file
"""
data = {"sheet_range": sheet_range}
if file_ is not None:
data["file"] = file_
else:
active_file = client.file_get_active()
if active_file:
data["file"] = active_file["file"]
if filename is not None:
data["filename"] = filename
if dirname is not None:
data["dirname"] = dirname
if height is not None:
data["height"] = height
if width is not None:
data["width"] = width
if dpi is not None:
data["dpi"] = dpi
if use_drawing_settings is not None:
data["use_drawing_settings"] = use_drawing_settings
return client._creoson_post("interface", "export_3dpdf", data)
|
4f6a0b11b7426cc443766f60182210d40d58dee1
| 597,598 |
def remove_job_if_exists(update,context,name):
"""Remove job with given name. Returns whether job was removed."""
current_jobs = context.job_queue.get_jobs_by_name(name)
if not current_jobs:
return False
for job in current_jobs:
job.schedule_removal()
return True
|
a903e39ba8d1e6c4b808a0774835a2aa75159e7a
| 620,911 |
def f_read_raw_mat_length(filename, data_format='f4'):
"""len = f_read_raw_mat_length(filename, data_format='f4')
Read length of data, i.e., number of elements in the data file.
If data is in shape (N, M), then len = N * M
input
-----
filename: str, path to the binary data on the file system
format: str, please use the Python protocal to write format
default: 'f4', float32
output
------
len: int, number of data elements in the data file
"""
f = open(filename,'rb')
tmp = f.seek(0, 2)
bytes_num = f.tell()
f.close()
if data_format == 'f4':
return int(bytes_num / 4)
else:
return bytes_num
|
7abaa2a31733b31e6bd1a5397783515a9502593a
| 294,348 |
def range_squared(n):
"""A function range_squared(n) that takes an non-negative integer value
n and returns the list [0, 1, 4, 9, 16, 25, ..., (n-1)^2]. If n is zero,
the function should return the empty list."""
if n > 0:
return [i ** 2 for i in range(n)]
# return list(map(lambda x: x ** 2, range(n)))
elif n == 0:
return []
else:
return "Error: n must be zero or a positive integer."
|
45ffd826f2b9a4cdbbda3fe4fddb7d42dfab85e2
| 337,265 |
def cmp(a, b): # pragma: no cover
"""
Replacement for built-in function ``cmp`` that was removed in Python 3.
Note: Mainly used for comparison during sorting.
"""
if a is None and b is None:
return 0
elif a is None:
return -1
elif b is None:
return 1
return (a > b) - (a < b)
|
bcb268df89f7a0c4201ac5dc549866d449597a81
| 460,880 |
def irange(*args):
"""
Similar to range but stop is an inclusive upper bound.
"""
if len(args) == 0:
raise TypeError("irange expected at least 1 arguments, got 0")
elif len(args) == 1:
stop = args[0]
start = 0
step = 1
elif len(args) == 2:
start, stop = args
step = 1
elif len(args) == 3:
start, stop, step = args
else:
raise TypeError("irange expected at most 3 arguments, got " + str(len(args)))
if step == 0:
raise ValueError("irange() step argument must not be zero")
stop = stop + 1 if step > 0 else stop - 1
return range(start, stop, step)
|
c25e8b7ab07a645199233f033a1417dac5355ca2
| 603,623 |
def decode_distribution(encoded_distribution):
"""
Decode the cnn json distribution (usually encoded data)
Return a list of float
"""
if isinstance(encoded_distribution, list):
return encoded_distribution
assert isinstance(encoded_distribution, str)
distribution_str_list = encoded_distribution.split(',')
distribution = list()
for data_str in distribution_str_list:
data = float(data_str)
distribution.append(data)
return distribution
|
b18b867bab515a6679ccdf082b61cf4b00cd701a
| 227,243 |
def get_metadata(session, name):
"""
Gets meta data from pypi for the given package.
:param session: requests Session instance
:param name: str, package
:return: dict, meta data
"""
resp = session.get("https://rubygems.org/api/v1/gems/{}.json".format(name))
if resp.status_code == 200:
return resp.json()
return {}
|
e0cce4b74e9c3e17b8f42b9b97fd6a3d48f66780
| 240,496 |
def get_trig_id(ctx) -> str:
"""Pass in dash.callback_context to get the id of the trigger returned"""
return ctx.triggered[0]['prop_id'].split('.')[0]
|
c4d3a8355cf084eef26835227477c291a9104c57
| 175,581 |
def to_numpy(tensors):
"""Converts tf.Tensors to numpy array.
Parameters
----------
tensors : tf.Tensor | dict | list
Returns
-------
arrays : np.array | dict | list
"""
if type(tensors) == list:
return [to_numpy(t) for t in tensors]
if type(tensors) == dict:
return {k: to_numpy(v) for k, v in tensors.items()}
return tensors.numpy()
|
b089cddb399a3ffb43a22059d2ca74bbff87869c
| 150,126 |
def _scale_formatter(tick_value: float, pos: int, factor: float) -> str:
"""
Function for matplotlib.ticker.FuncFormatter that scales the tick values
according to the given `scale` value.
"""
return "{0:g}".format(tick_value*factor)
|
cc225b1a589ec2468d71bc5670d3d769b81c3c2a
| 375,949 |
import torch
def rtril(M, diagonal=0):
"""Takes the lower-triangular of the rightmost 2 dimensions."""
return M*torch.tril(torch.ones(M.shape[-2], M.shape[-1]), diagonal=diagonal)
|
f8538e7fb069e0ccbcc58a22b7f174d3e9e677bf
| 413,250 |
import requests
def urlretrieve(url, dest, timeout=300):
"""
Download a file.
:param url: The url of the source file.
:param dest: destination file path.
"""
with open(dest, 'wb') as f:
r = requests.get(url, allow_redirects=True, timeout=timeout)
if r.status_code == 200:
f.write(r.content)
return 0
else:
return -1
|
f49a51be5ae2a7fadedc1e624c48da25de86b5b1
| 335,106 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.