content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def matmul(mat, rhs):
"""
Computes a matrix multiplication between a matrix (mat) and a right hand side (rhs).
If mat is a tensor, then this is the same as torch.matmul.
This function can work on lazy variables though
Args:
- mat (matrix nxn) - left hand size matrix
- rhs (matrix nxk) - rhs matrix or vector
Returns:
- matrix nxk
"""
return mat.matmul(rhs)
|
e2178df8d1cfd7da189b2549c7d6d7ec72f69e14
| 481,831 |
from typing import Any
from typing import List
from typing import Union
def get_value_by_path(target: Any, path: List[Union[str, int]]) -> Any:
"""
Gets the value at path of dict or list.
:Example:
.. code-block:: pycon
In [0]: target = { 'a': { 'b': { 'c': 3 } } }
Out[0]: {'a': [{'b': {'c': 'AAA'}}]}
In [1]: target = { 'a': [{ 'b': { 'c': 3 } }] }
In [2]: get_value_by_path(target, ["a", 0, "b", "c"])
Out[2]: 3
The behavior of the function is similar to:
https://lodash.com/docs#get
"""
result = target
for segment in path:
if isinstance(result, dict):
result = result[segment]
elif isinstance(result, list):
result = result[int(segment)]
else:
raise Exception(f"Invalid path: {path}")
return result
|
0f8ee689cbcb969c60c4f74dcc5dec9cb4f77b2a
| 199,035 |
def model_name(value):
"""
Return the model verbose name of an object
"""
return value._meta.verbose_name
|
6338a63dc36de91cd991b1838aacd730584434a7
| 148,439 |
def as_dictionary_of_dictionaries(labels, means, cov_diags):
""" Dictionary storing one dictionary of parameters per category. """
assert len(labels) == len(means) == len(cov_diags)
all_params = dict()
for label, mean, cov_diag in zip(labels, means, cov_diags):
category_params = dict()
category_params['mean'] = mean
category_params['cov_diag'] = cov_diag
all_params[label] = category_params
return all_params
|
c355f5ac3d2e8429bcf54e2420cf19c6c5efdd68
| 649,397 |
def _get_modified_counts(issue):
"""Helper to determine the modified line counts of the latest patch set."""
modified_added_count = 0
modified_removed_count = 0
# Count the modified lines in the patchset.
patchsets = list(issue.patchsets)
if patchsets:
for patch in patchsets[-1].patches:
modified_added_count += patch.num_added
modified_removed_count += patch.num_removed
return modified_added_count, modified_removed_count
|
adef22502f7c61fdb772222b133c0d171255b7af
| 230,058 |
from datetime import datetime
import calendar
def dt_to_ts(value):
""" If value is a datetime, convert to timestamp """
if not isinstance(value, datetime):
return value
return calendar.timegm(value.utctimetuple()) + value.microsecond / 1000000.0
|
6eb254d301630444ef9a0cb313cf25512ac21556
| 576,468 |
def sieve_of_eratosphenes(n: int) -> list[int]:
"""
Finds prime numbers <= n using the sieve of Eratosphenes algorithm.
:param n: the upper limit of sorted list of primes starting with 2
:return: sorted list of primes
Integers greater than 2 are considered good input that gives
meaningful results:
>>> sieve_of_eratosphenes(17)
[2, 3, 5, 7, 11, 13, 17]
>>> sieve_of_eratosphenes(16)
[2, 3, 5, 7, 11, 13]
Other integers are considered relatively good input that
results in empty list:
>>> sieve_of_eratosphenes(0)
[]
>>> sieve_of_eratosphenes(-7)
[]
Other types cause TypeError and so are considered bad input:
>>> sieve_of_eratosphenes("m")
Traceback (most recent call last):
...
TypeError: can only concatenate str (not "int") to str
>>> sieve_of_eratosphenes(2.3)
Traceback (most recent call last):
...
TypeError: can't multiply sequence by non-int of type 'float'
"""
sieve = [True] * (n+1)
for i in range(2, n+1):
if sieve[i] and i*i < n:
for k in range(i*i, n+1):
if not k%i:
sieve[k] = False
prime_numbers = []
for i in range(2, n+1):
if sieve[i]:
prime_numbers.append(i)
return prime_numbers
|
4dbfdffe0ff6e360361daccdcd39fb7fb3d09a03
| 702,743 |
def is_valid_name(name):
"""Checks that GitHub user's name is valid"""
return name and len(name) >= 3 and ' ' in name
|
7197c0d420cfcd59eb68337e0933c02f00e9f801
| 638,457 |
import inspect
def get_named_args(func):
"""Get all non ``*args/**kwargs`` arguments for a function"""
s = inspect.signature(func)
return [
n
for n, p in s.parameters.items()
if p.kind in [p.POSITIONAL_OR_KEYWORD, p.POSITIONAL_ONLY, p.KEYWORD_ONLY]
]
|
492d8d8333b472cb0eb7b4573be42e45550175ea
| 322,571 |
def _add_velocity_actuator(joint):
"""Adds a velocity actuator to a joint, returns the new MJCF element."""
# These parameters were adjusted to achieve a grip force of ~25 N and a finger
# closing time of ~1.2 s, as specified in the datasheet for the hand.
gain = 10.
forcerange = (-1., 1.)
ctrlrange = (-5., 5.) # Based on Kinova's URDF.
return joint.root.actuator.add(
'velocity',
joint=joint,
name=joint.name,
kv=gain,
ctrllimited=True,
ctrlrange=ctrlrange,
forcelimited=True,
forcerange=forcerange)
|
ce6dd249233427a1e06bde034bd390e073bee49e
| 416,218 |
import torch
import math
import random
def prepare_data_for_node_classification(datalist, train_ratio=0.3, rnd_labeled_nodes=True):
"""For each graph split the nodes for training and testing. It creates a train_mask
ehere elements equal to 1 are for training.
rnd_labeled_nodes=True means that the nodes that are given labels for training are choosen at random (at
different epochs, the same graph can have different labeled nodes)."""
for graph in datalist:
num_nodes = graph.num_nodes
num_classes = graph.node_y.size(1)
nodes_per_class = {}
for node, y in enumerate(graph.node_y.argmax(1)):
y = y.item()
if y not in nodes_per_class:
nodes_per_class[y] = []
nodes_per_class[y].append(node)
train_mask = torch.zeros((num_nodes, 1))
for y in nodes_per_class.keys():
num_nodes_in_class = len(nodes_per_class[y])
num_train_nodes = math.floor(num_nodes_in_class*train_ratio)
if rnd_labeled_nodes:
train_nodes = random.sample(nodes_per_class[y], num_train_nodes)
else:
train_nodes = nodes_per_class[y][:num_train_nodes]
for node in train_nodes:
train_mask[node] = 1
graph.train_mask = train_mask
return datalist
|
257d8097993d9178f0682d63d158d0e2578d2feb
| 80,619 |
def split_by_indel_size(df, indel_class):
"""Split dataframe by indel size
Args:
df (pandas.DataFrame)
indel_class (str): "s" for 1-nt, "m" for >1-nt indels
Returns:
df (pandas.DataFrame): only contains 1-nt
or >1-nt indels
"""
if indel_class == "s":
return df[df["indel_size"] == 1].reset_index(drop=True)
else:
return df[df["indel_size"] > 1].reset_index(drop=True)
|
ec5a70cef8d8ce5a2c1e48f68c8f6af4524a80a8
| 402,440 |
def div255(x):
"""
Scale clip frames from [0, 255] to [0, 1].
Args:
x (Tensor): A tensor of the clip's RGB frames with shape:
(channel, time, height, width).
Returns:
x (Tensor): Scaled tensor by divide 255.
"""
return x / 255.0
|
4f6258d724ab9f85c3e1268711a5c3f4e5b3d22f
| 520,320 |
def dict_merge(base, top):
"""Recursively merge two dictionaries, with the elements from `top`
taking precedence over elements from `top`.
Returns
-------
out : dict
A new dict, containing the merged records.
"""
out = dict(top)
for key in base:
if key in top:
if isinstance(base[key], dict) and isinstance(top[key], dict):
out[key] = dict_merge(base[key], top[key])
else:
out[key] = base[key]
return out
|
a6c97c1b82b2ae9be9b31f06fc49c323f3c126cc
| 317,649 |
def scenegraph_to_json(sg):
"""
Dump an "SceneGraph" object to a dict that's used for evaluation.
The output will be saved as json.
Args:
sg (SceneGraph):
Returns:
dict: contains predictions for one image.
"""
boxes = sg.pred_boxes.tensor.numpy().tolist()
# for vg evaluation, all boxes should be in XYXY_ABS
scores = sg.scores.numpy().tolist()
classes = sg.pred_classes.numpy().tolist()
rel_scores = sg.rel_scores.numpy().tolist()
rel_inds = sg.rel_inds.numpy().tolist()
result = {
"category_ids": classes,
"bboxes": boxes,
"scores": scores,
"rel_scores": rel_scores,
"rel_inds": rel_inds
}
return result
|
2a39a81dfe6fcc14b8528c08bdad9521f35461db
| 684,120 |
def compute_pascal(n):
"""
Compute the nth row of Pascal’s triangle
Parameters
----------
n : integer
which row too compute
Returns
-------
pascal_n : a list of integers
The nth row of Pascal’s triangle.
"""
pascal_n = [1]
prev = 1
for k in range(1,n+1):
cur = prev * (n+1-k)/k
pascal_n.append(int(cur))
prev = cur
return(pascal_n)
|
54b2d5ca80412d2da4da4e9f09dff25026205d3d
| 29,012 |
import typing
def bytes_escape(bs: bytes, *, quote: typing.Optional[str] = None) -> str:
"""Convert a bytestring to an ASCII string,
with non-ASCII characters hex-escaped.
(We implement our own escaping mechanism here to not depend on Python's str or bytes repr.)
"""
out = []
# The bytestring is decoded as Latin-1 instead of ASCII here so that non-ASCII characters don't cause an error.
# The conditions inside the loop ensure that only ASCII characters are actually output.
for byte, char in zip(bs, bs.decode("latin-1")):
if char in {quote, "\\"}:
out.append(f"\\{char}")
elif char.isprintable() and byte < 0x80:
out.append(char)
else:
out.append(f"\\x{byte:02x}")
return "".join(out)
|
950e85beda5ebb159b465859cdd008fce63aa5ca
| 509,558 |
from typing import Optional
def nround(value: Optional[float], digits: int) -> Optional[float]:
"""
Returns a rounded value, properly honoring ``None`` objects.
:param value: Float value (or None)
:param digits: number of digits
:returns: rounded float value (or None)
"""
return None if value is None else round(value, digits)
|
3a0567fecdeff6cfb222278a2fc70eda368c9711
| 546,891 |
def bitstring2index(bitstring):
"""
Turns a bitstring into an index.
>>> bitstring2index((0, 0, 1, 0, 1, 0, 1, 0))
42
"""
return sum(value * 2 ** i for i, value in enumerate(bitstring[::-1]))
|
6d3a4e85e8610241dfd50b7b57fb68f53a2bf15c
| 226,431 |
def drop_cols(df):
"""Drops unused columns from passed dataframe. The variables that are eliminated are:
- codigo_cierre
- fecha_cierre
- año_cierre
- mes_cierre
- hora_cierre
- latitud
- longitud
- clas_con_f_alarma
- delegacion_cierre
- geopoint
Parameters:
df (dataframe)
"""
dropped_columns = ['codigo_cierre', 'fecha_cierre', 'año_cierre', 'mes_cierre', 'hora_cierre',
'latitud', 'longitud', 'clas_con_f_alarma', 'delegacion_cierre', 'geopoint']
df.drop(dropped_columns, axis='columns', inplace=True)
return df
|
cb514b6c09136960bdda7a061cac77240615f7f6
| 560,329 |
from pathlib import Path
def get_model_version_file(model_version, file_path):
"""Build the path to the expected location of a model_version file.
Parameters
----------
model_version : modmon.schema.db.ModelVersion
Model version object
file_path : str
Path to file (relative to model_version location)
Returns
-------
str
Expected path to metrics file
"""
return Path(model_version.location, file_path)
|
0f2d6a152f334a1bdc6d2b02e4eb1455710e26a1
| 389,926 |
def last_home_loss_road_win(games):
"""
Given a list of games, returns the most recent home loss and road win.
"""
try:
last_home_loss = games.filter(t1_game_type='H', t1_result='L')[0]
except:
last_home_loss = None
try:
last_road_win = games.filter(t1_game_type='A', t1_result='W')[0]
except:
last_road_win = None
return last_home_loss, last_road_win
|
6a18309793aebba0baee79e02e7833d5adf6fc27
| 594,536 |
def split_array(text):
"""Split a string assuming it's an array.
:param text: the text to split
:type text: str
:returns: list of splitted strings
:rtype: list
"""
if not isinstance(text, str):
return text
# for some reason, titles.akas.tsv.gz contains \x02 as a separator
sep = ',' if ',' in text else '\x02'
return text.split(sep)
|
0980125329538bf1fc70fdaf2f2a2eb8cdd4511c
| 196,688 |
def _get_command(path, command_directory):
"""
Args:
path: The pathlib.Path to _compile_command file.
command_directory: The directory commands are run from.
Returns a string to stick in compile_commands.json.
"""
with path.open("r") as f:
contents = f.read().split("\0")
if len(contents) != 2:
# Old/incomplete file or something; silently ignore it.
return None
if contents[1].startswith("external/"):
# Do not include compilation commands for depdendencies
return None
return """{
"directory": "%s",
"command": "%s",
"file": "%s"
}""" % (command_directory, contents[0].replace('"', '\\"'), contents[1])
|
ecf503d2ed406d4cb49088446938619a4a491b71
| 483,265 |
def get_misc_model(test_list, extra_model_data=None):
"""Build a model that will run any missing tests."""
model = {
"is_misc": True,
"excluded_tests": test_list,
}
if extra_model_data:
model.update(extra_model_data)
return model
|
e5c0ed88a0745d6e7c0618afdb319b9e57714291
| 280,293 |
import re
def remove_strings(codelines):
""" Removes strings from the code. """
reg = re.compile("\"[^\"]*\"")
newlines = []
for l in codelines:
l = re.sub("\"[^\"]*\"", "", l)
newlines.append(l)
return newlines
|
bda1fa811eff338fa33842fc586edf8fef6dec52
| 557,097 |
def distance(row, edge):
"""
Suppression function that converts 'distance' into 'strength'
"""
return 1 / row['distance']
|
bdd7084522ae6b41a30a34f9b276755e9f4944bc
| 503,520 |
def to_numpy(tensor):
"""
Convert a tensor, either a Torch or TensorFlow tensor, to a numpy tensor
"""
if 'detach' in dir(tensor):
# It's torch
return tensor.cpu().detach().numpy()
else:
# It's tensorflow
return tensor.numpy()
|
d9c1c5d03298573832cda0ce61ed69b9953fad96
| 323,769 |
def clean_word(word):
"""Get the junk off a word."""
return word.strip().strip(".,'!?\"()*;:-")
|
f1328ec54f346e53a7f1cc5935394d6b3c3d1bac
| 425,384 |
def generate_solution(x: int, n: int) -> int:
"""This is the "naive" way to compute the solution, for testing purposes.
In this one, we actually run through each element.
"""
counter = 0
for i in range(1, n + 1):
for j in range(1, n + 1):
if i * j == x:
counter += 1
return counter
|
fb074da93890f19b3aebce9babf43a9d29c68897
| 695,579 |
import torch
def _grad_spherical_harmonics_l1(xyz, m):
"""Compute the nabla of 1-1 Spherical Harmonics
Args:
xyz : array (Nbatch,Nelec,Nrbf,Ndim) x,y,z, of (Point - Center)
m : second quantum number (-1,0,1)
Returns
\nabla Y0-1 = \sqrt(3 / (4\pi)) ( 1/r^3 * [-yx, x^2+z^2, -yz] ) (m=-1)
\nabla Y00 = \sqrt(3 / (4\pi)) ( 1/r^3 * [-zx, -zy, x^2+y^2] ) (m= 0)
\nabla Y01 = \sqrt(3 / (4\pi)) ( 1/r^3 * [y^2+z^2, -xy, -xz] ) (m=-1)
"""
r = torch.sqrt((xyz**2).sum(3))
r3 = r**3
c = 0.4886025119029199
p = (c / r3).unsqueeze(-1)
if m == -1:
return p * (torch.stack([-xyz[:, :, :, 1] * xyz[:, :, :, 0],
xyz[:, :, :, 0]**2 + xyz[:, :, :, 2]**2,
-xyz[:, :, :, 1] * xyz[:, :, :, 2]],
dim=-1))
if m == 0:
return p * (torch.stack([-xyz[:, :, :, 2] * xyz[:, :, :, 0],
-xyz[:, :, :, 2] * xyz[:, :, :, 1],
xyz[:, :, :, 0]**2 + xyz[:, :, :, 1]**2],
dim=-1))
if m == 1:
return p * (torch.stack([xyz[:, :, :, 1]**2 + xyz[:, :, :, 2]**2,
-xyz[:, :, :, 0] * xyz[:, :, :, 1],
-xyz[:, :, :, 0] * xyz[:, :, :, 2]],
dim=-1))
|
159648d3047f5cad38ab415ac70f012e157fc112
| 163,746 |
def remove_spaces(st):
""" Removes spaces from a string
:param st: (str) input string with spaces
:return: (str) string without any spaces
"""
return st.replace(' ', '')
|
3419571854077e2365c94d96394be0edfbe8912d
| 646,539 |
import json
def json_raw_to_dictionary(json_raw):
"""Helper method to that converts JSON to a dictionary"""
return json.loads(json_raw)
|
ff7842fa0492255b38d8db088ffc5cb8dfdfee8e
| 603,128 |
from typing import Mapping
def check_dict_nested_attrs(item: Mapping, dict_data: Mapping) -> bool:
""" Checks the values from `dict_data` are contained in `item`
>>> d = {'a': 1, 'b': {'c': 2}}
>>> check_dict_nested_attrs(d, {'a': 1})
True
>>> check_dict_nested_attrs(d, {'b': {'c': 2}})
True
>>> check_dict_nested_attrs(d, {'d': []})
False
"""
for key, value in dict_data.items():
if key not in item:
return False
item_value = item[key]
if isinstance(item_value, Mapping):
if not check_dict_nested_attrs(item_value, value):
return False
elif item_value != value:
return False
return True
|
08ed8dbc405e236b95e33e10e9c342e15b6363c9
| 27,132 |
def bounds_elementwise(lst):
"""Given a non-empty list, returns (mins, maxes) each of which is the same
length as the list items.
>>> bounds_elementwise([[0,6,0], [5,0,7]])
([0,0,0], [5,6,7])
"""
indices = list(range(len(lst[0])))
mins = [min(el[i] for el in lst) for i in indices]
maxes = [max(el[i] for el in lst) for i in indices]
return (mins, maxes)
|
5fa4fbe75db310d971005c88fc6d04058d3cd998
| 25,108 |
def join_fields(fields):
"""
Joins the provided fields with a comma and returns the result
:param list[str] fields:
:return: a string with fields joined by comma
:rtype: str
"""
return ",".join(fields)
|
bdbb23192b1fb008e53fba0198b93be46253276a
| 197,570 |
import json
def format_json(content, sort_keys=False):
"""
Format a given dictionary to a json formatted string.
"""
json_string = json.dumps(
content,
sort_keys=sort_keys,
indent=2,
separators=(',', ': '))
return json_string
|
0d7500eafccf4bb5bf61c9f3b51fef16b42d46e4
| 392,631 |
def CalculateNewBackgroundPosition(m):
"""Fixes horizontal background-position percentages.
This function should be used as an argument to re.sub since it needs to
perform replacement specific calculations.
Args:
m: A match object.
Returns:
A string with the horizontal background position percentage fixed.
BG_HORIZONTAL_PERCENTAGE_RE.sub(FixBackgroundPosition,
'background-position: 75% 50%')
will return 'background-position: 25% 50%'.
"""
# The flipped value is the offset from 100%
new_x = str(100-int(m.group(4)))
# Since m.group(1) may very well be None type and we need a string..
if m.group(1):
position_string = m.group(1)
else:
position_string = ''
return 'background%s%s%s%s%%%s' % (position_string, m.group(2), m.group(3),
new_x, m.group(5))
|
c68e184d2b9864d1128e9fccf7d0c249276f6938
| 195,913 |
from typing import List
def find_substring_by_pattern(
strings: List[str], starts_with: str, ends_before: str
) -> str:
"""
search for a first occurrence of a given pattern in a string list
>>> some_strings = ["one", "two", "three"]
>>> find_substring_by_pattern(some_strings, "t", "o")
'tw'
>>> find_substring_by_pattern(some_strings, "four", "five")
Traceback (most recent call last):
...
ValueError: pattern four.*five not found
:param strings: a list of strings where the pattern is searched for
:param starts_with: the first letters of a pattern
:param ends_before: a substring which marks the beginning of something different
:returns: a pattern which starts with ``starts_with`` and ends before ``ends_before``
"""
for package_name in strings:
starting_index = package_name.find(starts_with)
if starting_index >= 0:
ending_index = package_name.find(ends_before)
return package_name[starting_index:ending_index]
raise ValueError(f"pattern {starts_with}.*{ends_before} not found")
|
4bc0abe6fcdbf81350b575dd9834b9c646fda81e
| 15,948 |
def truncate(s, length):
"""Truncate a string to a specific length
The result string is never longer than ``length``.
Appends '..' if truncation occurred.
"""
return (s[:length - 2] + '..') if len(s) > length else s
|
a94a1dd852749a3d4f96fa3a58db32d50a882074
| 39,462 |
def recursive_replace_val_str(obj, string, new_string, callback_on_replaced=None):
"""Recursively replace value strings in a nested dict/list `obj`.
Replaces `string` value with `new_string`.
If `callback_on_replaced` is not None, then call it on a replaced full string.
"""
if isinstance(obj, list):
obj = [
recursive_replace_val_str(x, string, new_string, callback_on_replaced)
for x in obj
]
elif isinstance(obj, dict):
for k in obj.keys():
obj[k] = recursive_replace_val_str(
obj[k], string, new_string, callback_on_replaced
)
elif isinstance(obj, str):
if string in obj:
obj = obj.replace(string, new_string)
if callback_on_replaced:
callback_on_replaced(obj)
return obj
|
530d9ff4937c3e94fddd64b7f277e3182b8116ba
| 551,866 |
def find_missing_timestamps(timestamps):
"""Find missing value(s) in a sequence of timestamps.
This function also takes into consideration the scenario when timestamp 0
is missing from the timestamps argument.
Args:
timestamps (list): A list of timestamps (in picoseconds).
Returns:
An ascendingly sorted list of missing timestamp values (if any).
"""
if timestamps is None or len(timestamps) == 0:
return None
min_correct_timestamp = timestamps[0] if timestamps[0] == 0 else 0
max_correct_timestamp = timestamps[-1]
correct_time_values_in_ps = (
set(range(min_correct_timestamp,
max_correct_timestamp,
100))
)
missing_timestamps = correct_time_values_in_ps.difference(timestamps)
return sorted(missing_timestamps)
|
870dea20116adad0ac89ad4e1b5b569d75cdeda0
| 159,183 |
def set_num_parts(df, max_num_parts):
"""Set number of partitions.
:param max_num_parts maximum number of partitions
"""
if df.rdd.getNumPartitions() > max_num_parts:
df = df.repartition(max_num_parts)
return df
|
7c38bb8a6d532cd44536e3ca1715bca42df32cd4
| 520,666 |
def get_object(context, key):
""" Get object by key from enabled depots """
for depot in context.depots["object"].values():
try:
value = depot.get_object(key)
if value is not None:
return value
except: # pylint: disable=W0702
pass
return None
|
991bd366505f5454c2ec5196c8ff5dbc816dd14b
| 542,284 |
from typing import Any
def if_none(value: Any, default: Any):
"""Return default if value is None."""
return value if value is not None else default
|
dfdc45a0c77832c8203cd9104af45b5f4beee334
| 291,101 |
def unique(seq, key=None, return_as=None):
"""Unique the seq and keep the order.
Instead of the slow way:
`lambda seq: (x for index, x in enumerate(seq) if seq.index(x)==index)`
:param seq: raw sequence.
:param return_as: generator for default, or list / set / str...
>>> from torequests.utils import unique
>>> a = [1,2,3,4,2,3,4]
>>> unique(a)
<generator object unique.<locals>.<genexpr> at 0x05720EA0>
>>> unique(a, str)
'1234'
>>> unique(a, list)
[1, 2, 3, 4]
"""
seen = set()
add = seen.add
if key:
generator = (x for x in seq if key(x) not in seen and not add(key(x)))
else:
generator = (x for x in seq if x not in seen and not add(x))
if return_as:
if return_as == str:
return "".join(map(str, generator))
else:
return return_as(generator)
else:
# python2 not support yield from
return generator
|
c434bf9e0ce2b268b9aabdf8f55c82b817b59278
| 549,291 |
from typing import Tuple
from typing import Any
import math
def _calc_dist(p1: Tuple[Any, Any], p2: Tuple[Any, Any]) -> float:
"""
Calculate distance between two points
"""
return math.sqrt(((p1[0] - p2[0]) ** 2) + ((p1[1] - p2[1]) ** 2))
|
28de5d89e4ffd9f8957bbe2102c3fe24baa45a79
| 489,272 |
def best_and_worst_hour(percentages):
"""
Args:
percentages: output of compute_percentage
Return: list of strings, the first element should be the best hour,
the second (and last) element should be the worst hour. Hour are
represented by string with format %H:%M
e.g. ["18:00", "20:00"]
"""
#position [0] returns: profit = 0, and [1] returns time
hora = 1
# Calculate the best and worst hour:
bestHour = max(zip(percentages.values(), percentages.keys()))
worstHour = min(zip(percentages.values(), percentages.keys()))
return [bestHour[hora], worstHour[hora]]
|
6424ffda25c9d6deb9b8f54e2268a85ea36163d7
| 464,644 |
from typing import OrderedDict
def _groups_fail_table(groups):
"""Returns a dict associating each element to the groups it can fail.
This function is used both in ``plot_elements_in_group`` and
``find_logical_saboteurs``.
Parameters
----------
groups
Ordered dict of the form {group_name: [elements in groups]}.
Returns
-------
fail_table
A dict {element_name: list[True False False ...]} where list[i] is True
if the element is part of the i-th group in the provided ordered
dictionary ``groups``.
"""
groups = list(groups.values())
all_elements = []
for group in groups:
for element in group:
if element not in all_elements:
all_elements.append(element)
return OrderedDict(
[
(element, [(element in group) for group in groups])
for element in all_elements
]
)
|
2fda833cc84198186442208c1deb366b0fe7cb80
| 259,397 |
def yaml_diagnostic(name='${diag_name}',
message='${message}',
file_path='/tidy/file.c',
file_offset=1,
replacements=(),
notes=()):
"""Creates a diagnostic serializable as YAML with reasonable defaults."""
result = {
'DiagnosticName': name,
'DiagnosticMessage': {
'Message': message,
'FilePath': file_path,
'FileOffset': file_offset,
},
}
if replacements:
result['DiagnosticMessage']['Replacements'] = [{
'FilePath': x.file_path,
'Offset': x.offset,
'Length': x.length,
'ReplacementText': x.text,
} for x in replacements]
if notes:
result['Notes'] = [{
'Message': x.message,
'FilePath': x.file_path,
'FileOffset': x.file_offset,
} for x in notes]
return result
|
9a4764a9d8ef107c77d29bbec54c6c8d1d7e0f20
| 341,957 |
def rename(target, keys):
"""Returns a dict containing only the key/value pairs from keys.
The keys from target will be looked up in keys, and the corresponding
value from keys will be used instead. If a key is not found, it is skipped.
Args:
target: the dictionary to filter
keys: the fields to filter
"""
result = {}
for key, value in target.iteritems():
if key in keys:
new_key = keys[key]
result[new_key] = value
return result
|
61cd8950bf029778449e7fdede370debcb6ace82
| 519,896 |
import torch
def dist(input, other, *args, **kwargs):
"""
Returns the p-norm of (``input`` - ``other``)
Examples::
>>> import torch
>>> import treetensor.torch as ttorch
>>> t1 = torch.randn(5)
>>> t1
tensor([-0.6566, 1.2243, 1.5018, -0.1492, 0.8947])
>>> t2 = torch.randn(5)
>>> t2
tensor([0.5898, 0.6839, 0.0388, 0.4649, 0.7964])
>>> ttorch.dist(t1, t2)
tensor(2.0911)
>>> tt1 = ttorch.randn({'a': (5, ), 'b': {'x': (6, )}})
>>> tt1
<Tensor 0x7f95f68495f8>
├── a --> tensor([-0.5491, 1.5006, -0.0483, 1.2282, -1.4837])
└── b --> <Tensor 0x7f95f68494e0>
└── x --> tensor([-1.8414, 1.2913, 0.0943, 0.3473, 1.2717, 0.6013])
>>> tt2 = ttorch.randn({'a': (5, ), 'b': {'x': (6, )}})
>>> tt2
<Tensor 0x7f95f68ef2b0>
├── a --> tensor([ 0.1389, -0.7804, -1.3048, -1.1066, 1.3225])
└── b --> <Tensor 0x7f95f6849dd8>
└── x --> tensor([ 1.4873, 0.2218, -0.1063, -0.8726, -0.6756, 0.4805])
>>> ttorch.dist(tt1, tt2)
<Tensor 0x7f95f6849358>
├── a --> tensor(4.5366)
└── b --> <Tensor 0x7f95f68494a8>
└── x --> tensor(4.1904)
"""
return torch.dist(input, other, *args, **kwargs)
|
44b94cb0a2f1efe450e12ee25025d0fc98cb4570
| 513,901 |
def get_obj_attr(obj, attr):
"""
Allows us to access property by variable value inside our templates.
Example: `data={'monday': True}`, `day='monday'`, then we can do: `{{ data|get_obj_attr:day }}`
Parameters
----------
obj
attr
Returns
-------
Attribute of obj
"""
return getattr(obj, attr)
|
825c93651218ea3d7e328215f0292e7f12bf41ff
| 140,361 |
from typing import Counter
def wordle_judge(input_word: str, answer_word: str)-> int:
"""
Judge input word based on the wordle rule
We assume input_word and answer_word are of the same length (but no check is conducted)
Judge results are defined as a sequence of {0, 1, 2}, where
2: exact, 1: partial, 0: none
Return value is the base-10 integer value that represents this result interpreted as an integer of base 3.
e.g. 22001 --> 2 * 3^4 + 2 * 3*3 + 0 * 3^2 + 0 * 3^2 + 1 * 3^0 = 181
"""
exactmatch = [a==b for a, b in zip(input_word, answer_word)]
lettercount = Counter(b for b, m in zip(answer_word, exactmatch) if not m)
partialmatch = [False] * len(input_word)
for i, (a, m) in enumerate(zip(input_word, exactmatch)):
if m: continue
if lettercount.get(a, 0) > 0:
lettercount[a] -= 1
partialmatch[i] = True
out = 0
power = 1
for x, y in zip(reversed(exactmatch), reversed(partialmatch)):
if x:
out += power*2
elif y:
out += power
power *= 3
return out
|
ebf545f44fe34425d938a4ab09a3418810c244f8
| 687,506 |
import re
def normalize_name(name, separator="_"):
"""Normalizes a name by replacing all non-alphanumeric characters with underscores."""
return re.sub("[^A-Za-z0-9_]+", separator, name)
|
fa186c1601657d960ba6630ab508883228b40452
| 640,429 |
def sanitizeAMMName(name: str):
"""
Sanitize the callsites for AMM dataset.
"""
if "::" in name:
name = name.split("::")[-1]
else:
name = name
return name
|
c3ec846377506dbb7091ee4822e23813a8a4beae
| 453,144 |
def html_encode(unicode_data, encoding='utf-8'):
"""Encode HTML"""
return unicode_data.encode(encoding, 'html_replace')
|
4f210ce780e1d0e3123bfacf129a2cbd5c25f65b
| 91,002 |
def sort_double_char_labels(labels):
"""Sort double char labels based on the order of repeated, lower and other labels"""
repeated_char_labels = [label for label in labels if label[0] == label[1]]
lower_char_labels = [label for label in labels
if label[0].islower() and label[1].islower()
and label not in repeated_char_labels]
other_labels = [label for label in labels
if label not in repeated_char_labels and label not in lower_char_labels]
labels = repeated_char_labels + lower_char_labels + other_labels
return labels
|
979bd0de303706e27a12544f0b201484e8b4f7cb
| 93,216 |
def is_misc(_item):
"""item is report, thesis or document
:param _item: Zotero library item
:type _item: dict
:returns: Bool
"""
return _item["data"]["itemType"] in ["thesis", "report", "document"]
|
2b0232a658717769ae34e06d006831efb20a791d
| 603,048 |
def format_time(stamp):
"""
formats time to seconds
:param stamp: rospy.time
:return: time i seconds
"""
return stamp.secs + stamp.nsecs * (10 ** -9)
|
a70504de93f9bb2987fe8c3030de6fd29f1866cb
| 544,675 |
def _get_match_fraction(aligned_segment):
"""Get the fraction of a read matching the reference"""
matching_bases = aligned_segment.cigartuples[0][1]
return float(matching_bases)/aligned_segment.query_length
|
235deb526d5f33662f5f05c36d3a3b755079296e
| 103,187 |
def is_left_bound(x):
"""
Was left bound reached?
:param x: x coordinate.
:return: True - bound was reached, False - otherwise.
"""
return x <= 0
|
6c23d733c943b78e94a3a14de61b595cc6b7d00b
| 169,579 |
import re
def contains_reserved_char(word: str):
"""
The following reserved chars are not permitted at all:
< (less than)
> (greater than)
: (colon)
" (double quote)
/ (forward slash)
\\ (single backslash (escaped here))
| (vertical bar or pipe)
? (question mark)
* (asterisk)
"""
# single backslash, vertical bar, question mark and asterisk are escaped
return re.match(r'\S*(<+|>+|:+|"+|/+|\\+|\|+|\?+|\*+)', word) is not None
|
a22ea99ede7eeb0507522147188ca81031cce2ca
| 300,867 |
def get_product_images(product):
"""Return list of product images that will be placed in product gallery."""
return list(product.images.all())
|
64108e6ba906f9fcafd16af172c2af9f34d2eb20
| 655,021 |
from typing import List
import textwrap
def generate_build_file_contents(name: str, dependencies: List[str]) -> str:
"""Generate a BUILD file for an unzipped Wheel
Args:
name: the target name of the py_library
dependencies: a list of Bazel labels pointing to dependencies of the library
Returns:
A complete BUILD file as a string
"""
return textwrap.dedent(
"""\
package(default_visibility = ["//visibility:public"])
load("@rules_python//python:defs.bzl", "py_library")
py_library(
name = "{name}",
srcs = glob(["**/*.py"]),
data = glob(["**/*"], exclude=["**/*.py", "**/* *", "BUILD", "WORKSPACE"]),
# This makes this directory a top-level in the python import
# search path for anything that depends on this.
imports = ["."],
deps = [{dependencies}],
)
""".format(
name=name, dependencies=",".join(dependencies)
)
)
|
6714a8e214eb4d89614702643f5d900d864cbe53
| 632,825 |
import functools
import operator
def _compute_product_0(xs):
"""Uses built-in Python tools to compute the product of the list."""
if not xs:
return 0
return functools.reduce(operator.mul, xs)
|
215c5f428b9b4ba5bef72b2b78e8d01084079c50
| 539,490 |
def _get_reduce_dims(op):
"""Returns the reduction dimensions for grouping weights of various ops."""
type_to_dims = {'Conv2D': (0, 1, 2), 'Conv2DBackpropInput': (0, 1, 3)}
try:
return type_to_dims[op.type]
except KeyError:
raise ValueError('Reduce dims are unknown for op type %s' % op.type)
|
e08e2c699971f855091bd3991a86dde3e3610f4a
| 350,082 |
def get_distance_squared(x1: float, y1: float, x2: float, y2: float) -> float:
"""
it returns the distance squared between two points
:param x1: the x position of the first object
:param y1: the y position of the first object
:param x2: the x position of the second object
:param y2: the y position of the second object
:type x1: float
:type y1: float
:type x2: float
:type y2: float
:return: float
"""
return (x1 - x2) ** 2 + (y1 - y2) ** 2
|
542277b67b1d467434791a329619fc70c2845ca0
| 375,890 |
import collections
def _split_by_exec_group(testcases):
"""
Split testcases into those with an execution group and those without
one.
"""
serial_cases = []
parallel_cases = collections.OrderedDict()
for testcase in testcases:
exec_group = getattr(testcase, "execution_group", None)
if exec_group:
if exec_group in parallel_cases:
parallel_cases[exec_group].append(testcase)
else:
parallel_cases[exec_group] = [testcase]
else:
serial_cases.append(testcase)
return serial_cases, parallel_cases
|
caaed4d4487828f6b79cc5b3a4fe85a79c83c5a6
| 560,962 |
def average_of_factors(n):
"""
n (int): number
Returns the average of the positive divisors of n
"""
# Initialize the sum
total = 0
# Initialize the number of factors
count = 0
for i in range(1, n+1):
# Check if i is a divisor of n
if n % i == 0:
total += i
count += 1
average = total/count
return average
|
622f5793685c03ec0b367c23313327264a79b9b2
| 642,078 |
def df_variant_id(row):
"""Get variant ID from pyvcf in DataFrame"""
if row['ID'] != '.':
return row['ID']
else:
return row['CHROM'] + ':' + str(row['POS'])
|
460868e501b5e4683fc88d80cee363b5778d7623
| 669,788 |
def render_output(out: list):
"""Pretty's `create_seating_chart` output
Args:
out (list): Output of `create_seating_chart`
Returns:
str: Prettified output for presentation to user
"""
return "\n\r".join([", ".join(i) for i in out])
|
20fc9ed04d656c90298ae76041a94ec3f1dab8b5
| 211,927 |
def align_skeleton(skeleton, code):
"""
Aligns the given skeleton with the given code, minimizing the edit distance between
the two. Both skeleton and code are assumed to be valid one-line strings of code.
>>> align_skeleton(skeleton="", code="")
''
>>> align_skeleton(skeleton="", code="i")
'+[i]'
>>> align_skeleton(skeleton="i", code="")
'-[i]'
>>> align_skeleton(skeleton="i", code="i")
'i'
>>> align_skeleton(skeleton="i", code="j")
'+[j]-[i]'
>>> align_skeleton(skeleton="x=5", code="x=6")
'x=+[6]-[5]'
>>> align_skeleton(skeleton="return x", code="return x+1")
'returnx+[+]+[1]'
>>> align_skeleton(skeleton="while x<y", code="for x<y")
'+[f]+[o]+[r]-[w]-[h]-[i]-[l]-[e]x<y'
>>> align_skeleton(skeleton="def f(x):", code="def g(x):")
'def+[g]-[f](x):'
"""
skeleton, code = skeleton.replace(" ", ""), code.replace(" ", "")
def helper_align(skeleton_idx, code_idx):
"""
Aligns the given skeletal segment with the code.
Returns (match, cost)
match: the sequence of corrections as a string
cost: the cost of the corrections, in edits
"""
if skeleton_idx == len(skeleton) and code_idx == len(code):
return "", 0
if skeleton_idx < len(skeleton) and code_idx == len(code):
edits = "".join(["-[" + c + "]" for c in skeleton[skeleton_idx:]])
return edits, len(skeleton) - skeleton_idx
if skeleton_idx == len(skeleton) and code_idx < len(code):
edits = "".join(["+[" + c + "]" for c in code[code_idx:]])
return edits, len(code) - code_idx
possibilities = []
skel_char, code_char = skeleton[skeleton_idx], code[code_idx]
# Match
if skel_char == code_char:
edits, cost_ = helper_align(skeleton_idx + 1, code_idx + 1)
possibilities.append((skel_char + edits, cost_))
# Insert
edits, cost_ = helper_align(skeleton_idx, code_idx + 1)
prefix = "+[" + code_char + "]"
possibilities.append((prefix + edits, cost_ + 1))
# Delete
edits, cost_ = helper_align(skeleton_idx + 1, code_idx)
prefix = "-[" + skel_char + "]"
possibilities.append((prefix + edits, cost_ + 1))
return min(possibilities, key=lambda x: x[1])
result, cost = helper_align(0, 0)
return result
|
799294dfde023276ba1fe159eacad4b0973beb49
| 577,241 |
def x_count(board):
"""
count how many 'x'-es are on the board
"""
return len([ch for ch in board if ch == 'x'])
|
64c544215bdfdfb43963cd73e91be75f4f98fe4e
| 460,001 |
def wrap_seq_for_applescript(seq):
"""Wrap a Python sequence in braces and quotes for use in AppleScript"""
quoted = [f'"{item}"' for item in seq]
joined = ', '.join(quoted)
wrapped = '{' + joined + '}'
return wrapped
|
61e38158a7a64bb69efa3b8c78e98324f5a7a5d1
| 155,312 |
def fvs(pv, i, n):
""" This function is for the future value of money
over a period of time using simple interest.
pv = Initial Investment (1000)
i = interest rate as decimal (.0675)
n = the number of periods (20)
Example: fv(1000, .0675, 20)
"""
return pv * i * n
|
84b4866f8a89a92634da1e842609512d8e3b0be2
| 185,186 |
import random
def random_string(length, letters="abcdefghijklmnopqrstuvwxyz"):
"""
Returns a random string of length `length` from a set of letters.
"""
return "".join([random.choice(letters) for _ in range(length)])
|
05791734997e44159fda61fd62fb83ec2c9cc138
| 220,555 |
import time
def retry(count=1, delay=0, retry_on=Exception):
"""
Decorator which tries to run specified fuction if the previous
run ended by given exception. Retry count and delays can be also
specified.
"""
if count < 0 or delay < 0:
raise ValueError('Count and delay has to be positive number.')
def decorator(func):
def wrapper(*args, **kwargs):
tried = 0
while tried <= count:
try:
return func(*args, **kwargs)
except retry_on:
if tried >= count:
raise
if delay:
time.sleep(delay)
tried += 1
wrapper.__name__ = func.__name__
return wrapper
return decorator
|
d0047841f62d4bc4903d6ef54e28c9588d0e5987
| 545,982 |
def make_ffmpeg_section_args(
filename,
start,
length,
*,
before_options=(),
options=(),
):
"""Returns a list of arguments to FFmpeg
It will take the required amount of audio starting from the specified start
time and convert them into PCM 16-bit stereo audio to be piped to stdout.
The before_options argument will be passed after `-ss` and before `-i`, and
the options argument will be passed after `-t` and before `pipe:1`.
The returned args are of this form:
-ss {start}
-t {length}
{before_options}
-i {filename}
-f s16le
-ar 48000
-ac 2
-loglevel warning
{options}
pipe:1
"""
if start is None:
raise ValueError("start must be a float")
if isinstance(before_options, str) or isinstance(options, str):
# Strings are naughty. Force user to split them beforehand
raise ValueError("FFmpeg options should be lists, not strings")
return [
"-ss", str(start),
"-t", str(length),
*(before_options or ()),
"-i", filename,
"-f", "s16le",
"-ar", "48000",
"-ac", "2",
"-loglevel", "warning",
*(options or ()),
"pipe:1",
]
|
4599368c2b44a51da1ea1c2935305a4423ae581d
| 662,184 |
def BFS(graph, s, t, parent):
"""
Populates parent with nodes to visit and returns true if there are nodes left to visit
Args:
graph: an array of arrays of integers where graph[a][b] = c is the max flow, c, between a and b.
s: Source of the graph
t: Sink or "end" of the graph
parent: Array holding the nodes to visit
"""
# Start with none of the nodes visited
visited = [False] * len(graph)
# Begin queue at source. Will hold all nodes yet to visit
queue = []
queue.append(s)
# "Visited" aka will visit source node
visited[s] = True
# While there are still nodes in queue
while queue:
# Current searching node
u = queue.pop(0)
# Check each possible connection
for ind in range(len(graph[u])):
# If that connection hasn't been visited and is recieving source
if visited[ind] is False and graph[u][ind] > 0:
# Add the connection to the queue of ones to search
queue.append(ind)
# Set it to being visited
visited[ind] = True
# Add the search to the parent
parent[ind] = u
return True if visited[t] else False
|
db01bf4893d29e7840e7a96738d8aefbd145f865
| 101,002 |
def get_attached_instance(self):
"""
Returns the Instance object the volume is mounted on.
:param boto.ec2.volume.Volume self:
Current volume
:return:
boto.ec2.instance.Instance if the volume is attached to an instance and the instance is found. None otherwise.
:rtype: boto.ec2.instance.Instance
"""
if self.attachment_state() == 'attached':
return self.connection.get_only_instances(self.attach_data.instance_id)[0]
else:
print("{} volume isn't attached to an instance".format(self))
return None
|
28fdb5cbc50a7aa071cacc07ad34e98ee744fc38
| 515,154 |
def sort_by_inclusion(array: list) -> list:
"""
Сортировка простым включением.
Суть: массив делится на две части - отсортированную и неотсортированную.
На каждом шаге берется очередной элемент из неотсортированной части и "включается" в отсортированную часть массива.
Максимальная временная сложность: О(n^2)
Средняя временная сложность: О(n^2)
Минимальная временная сложность: О(n)
Пространственная сложность: О(1)
(*) Алгоритм НЕ устойчивой сортировки.
:param array: исходный массив
:return array: упорядоченный исходный массив
"""
n = len(array)
for i in range(n - 1):
# сохраняем текущий элемент
temp = array[i + 1]
# сдвигаем элементы большие чем текущий
j = i
while array[j] > temp and j >= 0:
array[j + 1] = array[j]
j -= 1
# вставляем текущий элемент
array[j + 1] = temp
return array
|
296a222d0a24b3fc85d1b6da6aec3e42358dc912
| 645,754 |
def get(row, delimiter, indices):
"""Extract key and value from row.
>>> get('a,b,c', ',', (0, 1))
(('a', 'b'), ('c',))
>>> get('a,b,c', ',', (0, 2))
(('a', 'c'), ('b',))
"""
row = row.rstrip().split(delimiter)
key = tuple(row[k] for k in indices)
val = tuple(v for i, v in enumerate(row) if i not in indices)
return key, val
|
96a55b94612d35423123ce0842cff32b184f1d08
| 147,496 |
import functools
def union_of_non_none_sets(sets):
"""
Helper function, takes a list of [set or None] and returns the union of all
non-None elements.
"""
return functools.reduce(lambda x, y: x.union(y), filter(lambda z: z is not\
None, sets), set())
|
666a71b8ed2e36f5060b900f3cd1140d8cd36f80
| 568,302 |
def get_primary_key_params(obj):
"""
generate a dict from a mapped object suitable for formatting a primary key logline
"""
params = {}
for key in obj.__table__.primary_key.columns.keys():
params[key] = getattr(obj, key)
return params
|
aad247b31925389bca21ef35fc6416c286587eee
| 696,243 |
from typing import Any
from typing import Type
def raise_exception_if_invalid_type(
parameter_name: str,
parameter_value: Any,
expected_type: Type,
) -> None:
"""Raises a TypeError if the `parameter_value` given is not of the type `expected_type`; otherwise returns None"""
if not isinstance(parameter_value, expected_type):
raise TypeError(f"Expected `{parameter_name}` to be of type `{expected_type}`, but got type `{type(parameter_value)}`")
return None
|
00932fd5f9da063ed0a8ee232d8fa13121837730
| 591,106 |
def b_delta(rewards,states,alpha):
"""
Implements the Resorla-Wagner (delta) learning rule.
V_intial is 0. Note: Null (0 or '0') states are silently skipped.
Returns two dictionaries containing value and RPE timecourses,
for each state.
"""
# Init
s_names = set(states)
V_dict = {}
RPE_dict = {}
for s in s_names:
V_dict[s] = [0.]
RPE_dict[s] = []
for r,s in zip(rewards,states):
## Skip terminal states
if (s == 0) | (s == '0'):
continue
V = V_dict[s][-1]
## the Delta rule:
RPE = r - V
V_new = V + alpha * RPE
## Store and shift V_new to
## V for next iter
V_dict[s].append(V_new)
## Store RPE
RPE_dict[s].append(RPE)
return V_dict, RPE_dict
|
ca8025307de097cdcc629141e944a0b91bcaf4bd
| 683,529 |
def update(input_ch, answer, dashed):
"""
This function update the progress when users make a right guess (string manipulation)
:param input_ch: str, an alphabet users enter in this round
:param answer: str, the final answer
:param dashed: str, the dashed answer
:return decrypted: str, the updated progress
"""
# Create an empty string
decrypted = ''
for i in range(len(answer)):
# Find the position of character users guess right and update it
if answer[i] == input_ch:
decrypted += input_ch
else:
# Remain the part users already solved, and fill the unsolved part with dash sign
if dashed[i] != '-':
decrypted += dashed[i]
else:
decrypted += '-'
return decrypted
|
5e2528fff524d6a4082b04998c9cda68380531b3
| 32,976 |
def SplitListByGrouping(list, x):
"""
Receive a list of items.
If the length is longer than x, then split the list into several lists,
each with a maximum of x elements.
This is then returned as a 2D array.
Args
list: list of items in any format or mixed.
e.g. ['ABC', 23590.34, 23]
If a single string is inputted, then the string is split
e.g. 'a235235' -> ['a23', '523', '5']
x: maximum length to be allowed for any single list.
e.g. 100
Returns:
outputList: list of items, where each item is a list of maximum
length x.
"""
outputList = []
index = 0
while index < len(list):
item = list[index : (index + x)]
outputList.append(item)
index += x
return outputList
|
87866fe3a1e62ec0421080e20b6880335d84f18c
| 73,098 |
def median(x):
"""Find the median of a sample by sorting the sample and then returning the middle element."""
x = sorted(x) # Sort the sample
n = len(x)
middle = n // 2
if n % 2 == 0:
# If there's an even number of elements, the median is an average of the two middle values
return 0.5 * (x[middle - 1] + x[middle])
else:
# If there's an odd number of elements, the median is the middle element
return x[middle]
|
ddad017c23b5b8da540046505e1a79c289065954
| 248,477 |
def uppercase_initial(string):
"""
Return a capitalized string.
:param string: Input string
:type string: str
:return: Capitalized input string
:rtype: str
>>> uppercase_initial("disableApiTermination")
"DisableApiTermination"
"""
capital = string[0].upper()
return capital + string[1:]
|
6c7f82e76343cce7ef266e435b623ab62defab97
| 421,863 |
def get_point(values, pct):
"""
Pass in array values and return the point at the specified top percent
:param values: array: float
:param pct: float, top percent
:return: float
"""
assert 0 < pct < 1, "percentage should be lower than 1"
values = sorted(values)
return values[-int(len(values)*pct)]
|
11474d804e0845284a864a5cb8de23299999a5e7
| 12,351 |
def spec_with_external_docs() -> str:
"""Helper for creating a specification object with externalDocs."""
_spec = """
openapi: 3.0.3
info:
title: Swagger Petstore
version: 1.0.0
paths: {}
externalDocs:
description: Find more info here
url: https://example.com
"""
return _spec
|
fe425d3ee3185b3449c67b456c03abf401d39d7d
| 343,509 |
import struct
def unpack_linkmsg(data):
"""For *LINK RTNETLINK messages, unpack the body
Discards a number of uninteresting parts.
Returns if type, flags and remainder of message
"""
if_family, _, if_type, index, flags, change = struct.unpack("=BBHiII",
data[:16])
# family == AF_UNSPEC. _ is a pad word. change is not used by kernels yet.
return if_type, flags, data[16:]
|
7d84da34b3cb0fac1c03e757254436650455d74b
| 617,064 |
def train_valid_test_split(df, train_proportion):
"""Splits the dataframe into train/valid/test.
Train will consist of `train_proportion` many of the rows, valid and test
split the rest evenly.
"""
train_size = int(train_proportion * len(df))
valid_size = (len(df) - train_size) // 2
train = df[:train_size]
valid = df[train_size:train_size + valid_size]
test = df[train_size + valid_size:]
return train, valid, test
|
a6cec5bec2fa18a3a7d766ef5619d95a9dddf426
| 315,142 |
import math
def _is_close(a, b, alpha=0.01):
""" Check if two blobs are close to one another
:param a: first blob. This is larger than b.
:param b: second blob. This is smaller than a.
:param alpha: The amount of overlap allowed between blobs
:returns: if blobs are close
"""
if alpha < 0 or alpha > 1:
raise ValueError("Value of alpha must be between 0 and 1.")
ay, ax, ar = a
by, bx, br = b
d = math.sqrt((ax - bx)**2 + (ay - by)**2)
return d <= ar - br*alpha
|
44b960303d5612895728bb939a0be28dd063f5b1
| 596,397 |
def get_lower_bound(floors, loc):
"""
Computes a lower bound for the number of moves required to move all chips
and generators to the top.
The optimal strategy is to move to the bottom layer (taking one item to
power the elevator), then move all items up to the next floor (move two
items up then one item down until two remain then move both up together).
This process repeats until everything is on the top floor. This lower bound
doesn't take into account other compatibility conditions such as valid
combinations of items in elevators / on floors.
"""
def add_min_moves(count):
# number of moves required to move `count` items up to the next floor
if count <= 2:
# if 2 items or fewer, can do it in a single move
return 1
# otherwise we require two moves per item (take two up, move one back
# down) except the last two which require only one move
return 2 * (count - 2) + 1
# initialise lower bound
lower_bound = 0
# count the number of items on each floor
counts = [len(floor) for floor in floors]
# find out which is the lowest floor with items
first_non_empty = [count > 0 for count in counts].index(True)
if loc < first_non_empty:
# if we start below the first floor with items, we don't have anything
# to power the elevator!
raise ValueError(
"You need an item on the current floor to power the elevator"
)
elif loc > first_non_empty:
# we move down to the lowest non-empty floor, taking one item with us
lower_bound += loc - first_non_empty
counts[loc] -= 1
counts[first_non_empty] += 1
cumulative_count = 0
for count in counts[:-1]:
# for each floor except the last, we move all items to the next floor
cumulative_count += count
lower_bound += add_min_moves(cumulative_count)
return lower_bound
|
1ce7c5e58727d14172a9c74e4b8e72db836ce255
| 242,345 |
def get_next_counts(file):
"""
read next line in file, extract counts from line
:param file: given file, already opened
:return: chromosome, position and counts
"""
new_line = file.readline()
line = new_line.decode()
line = line.strip('\n').split('\t')
if len(line) == 11:
chrom = line[0]
pos = int(line[1])
counts = [int(line[10]), int(line[9]), int(line[8]), int(line[7])]
return chrom, pos, counts
else:
# end of file
return -1, -1, []
|
c7c597451a4c24397ee596a0f796892a67922187
| 158,332 |
import textwrap
def indent(lines, spaces=4):
"""Indent `lines` by `spaces` spaces.
Parameters
----------
lines : Union[str, List[str]]
A string or list of strings to indent
spaces : int
The number of spaces to indent `lines`
Returns
-------
indented_lines : str
"""
if isinstance(lines, str):
text = [lines]
text = '\n'.join(lines)
return textwrap.indent(text, ' ' * spaces)
|
46e7ad188b634a2899fcd8c97ad47e48e6609060
| 481,144 |
def choose_ncv(k):
"""
Choose number of lanczos vectors based on target number
of singular/eigen values and vectors to compute, k.
"""
return max(2 * k + 1, 20)
|
e6fdf5a39979dacfda8ee897f8bc274e0574923d
| 560,128 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.