content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
from typing import OrderedDict
def read_config(config_file_path):
""" Function read a SU2 configuration file
Function 'read_config' return a dictionary of the data found in the SU2
configuration file.
Args:
config_file_path (str): SU2 configuration file path
Returns:
data_dict (dict): Dictionary of the data from the SU2 configuration file
"""
data_dict = OrderedDict()
with open(config_file_path, 'r') as f:
for line in f:
if line.startswith('%') or '=' not in line:
continue
key, value = line.split('=')
if '(' in value:
new_value = value.split('(')[1].split(')')[0]
value_list = new_value.split(',')
strip_value_list = [item.strip() for item in value_list]
data_dict[key.strip()] = strip_value_list
else:
data_dict[key.strip()] = value.strip()
return data_dict
|
312e423faf60f4947cf4b57d75c5df50304c0501
| 414,549 |
def build_endpoint_rule_name(endpoint, method):
"""Build policy rule name for endpoint."""
return ('%(endpoint)s:%(method)s' %
{'endpoint': endpoint, 'method': method.lower()})
|
6b564dacdc70804544c3f1ce3f5a1fbe33c390a2
| 582,549 |
def to_bytes(str):
"""Convert a text string to a byte string"""
return str.encode('utf-8')
|
78457eb656a8a2ad82c993f19765663dfdd0bdf3
| 138,365 |
def filter_sessions_by_room(sessions, room):
"""only keep sessions within the room <room>
Args:
sessions: list of tuples
room: str
Returns: filtered sessions as list of tuples
"""
return [
[session[0].split(":")[0], session[1], session[2]]
for session in sessions if session[0].endswith(room)
]
|
2d53460ac7e4786652885009f5b6ccc212d21c5b
| 305,809 |
def find_ngrams(input_list: list, n: int) -> list:
"""
Return a list of n_grams from a list
Args:
input_list (list): list from which n_grams are extracted
n (int): n gram length
Returns:
list: n-gram list
"""
if n == 1:
return input_list
else:
return list(zip(*[input_list[i:] for i in range(n)]))
|
851475b6ae19daed9c2b94fcf84d58822ccd96d2
| 517,567 |
def filter_out_dict_keys(adict, deny):
"""Return a similar dict, but not containing the explicitly denied keys
Arguments:
adict (dict): Simple python dict data struct
deny (list): Explicits denied keys
"""
return {k: v for k, v in adict.items() if k not in deny}
|
a377c35f4eaedf0ed3b85eeaedbd45f7af0e8ec7
| 19,580 |
def _bulk_identity_factory(key_columns):
"""Return a function that accepts a dict mapping and returns its identity
corresponding its key values mapped by `key_columns`.
"""
return lambda mapping: tuple(mapping.get(col.key) for col in key_columns)
|
29d60f29f95eb5e7f2ef3ecf28e2657ac0974924
| 617,609 |
def get_navigation(argv):
"""
return with_navigation flag from arg list
"""
if len(argv) > 3:
return bool(argv[3])
return False
|
734a9ee44cc0864089f14482c7f3080336be6fe3
| 235,885 |
def generate_neighbours(image):
"""
Generate all neighbours of all pixels in the image
:param image:
:return:
"""
neighbour_dict = dict()
for x in range(image.shape[0]):
for y in range(image.shape[1]):
neighbour_dict[str((x,y))] = list(filter(lambda pos: 0 <= pos[0] < image.shape[0] and 0 <= pos[1] < image.shape[1],
[(x-1, y), (x+1, y), (x, y-1), (x, y+1)]))
return neighbour_dict
|
e484a62624f0775ac90beac344bda48303f3a486
| 568,347 |
import yaml
def get_yaml_from_topology_string(topology):
"""Transform a topology string into a dictionary of the same format used in
the infrared provision.yml file.
:param topology: Topology string in the format node: amount
:type topology: str
:returns: yaml representation of a provision.yml file
:rtype: str
"""
provision = {'provision': {'topology': {}}}
if not topology:
return yaml.dump(provision)
topology_dict = {}
for component in topology.split(","):
name, amount = component.split(":")
topology_dict[name+".yml"] = int(amount)
provision['provision']['topology']['nodes'] = topology_dict
return yaml.dump(provision)
|
2a8313af9fd97c463e34c73b7aea2c87c5d05c1c
| 347,513 |
def readFPs(filepath):
"""Reads a list of fingerprints from a file"""
try:
myfile = open(filepath, "r")
except:
raise IOError("file does not exist:", filepath)
else:
fps = []
for line in myfile:
if line[0] != "#": # ignore comments
line = line.rstrip().split()
fps.append(line[0])
return fps
|
96d483360c411a27a3b570875f61344ef4dae573
| 706,883 |
def PyLong_FromSsize_t(space, val):
"""Return a new PyLongObject object from a C Py_ssize_t, or
NULL on failure.
"""
return space.newlong(val)
|
ff5eecf8335d8cd2c96c8b996cab110075aaabd8
| 506,406 |
def factors(target):
"""Returns the factors of target"""
_factors = []
i = 1
while i <= target :
if target % i == 0:
_factors.append(i)
i+=1
return _factors
|
fc0d27f011238ddba12a5c286949a326c80aa5cb
| 312,449 |
def lightness_glasser1958(Y, **kwargs):
"""
Returns the *Lightness* :math:`L^*` of given *luminance* :math:`Y` using
*Glasser et al. (1958)* method.
Parameters
----------
Y : numeric
*luminance* :math:`Y`.
\*\*kwargs : \*\*, optional
Unused parameter provided for signature compatibility with other
*Lightness* computation objects.
Returns
-------
numeric
*Lightness* :math:`L^*`.
Notes
-----
- Input *luminance* :math:`Y` is in domain [0, 100].
- Output *Lightness* :math:`L^*` is in domain [0, 100].
References
----------
.. [1] http://en.wikipedia.org/wiki/Lightness
(Last accessed 13 April 2014)
Examples
--------
>>> lightness_glasser1958(10.08) # doctest: +ELLIPSIS
36.2505626...
"""
L_star = 25.29 * (Y ** (1 / 3)) - 18.38
return L_star
|
f1af67296158c0b6c7589f887df51f17ac700daf
| 644,751 |
import base64
def Base64EncodeProto(msg):
""" Encodes the proto as a base64 string which is safe to pass around on command line. """
encoded_string = base64.b64encode(msg.SerializeToString())
return encoded_string
|
a22ebaa0d1e0020e8d0fcf10c9728232083a5949
| 416,762 |
def calculate_color(
vertex_id: int, current_color: int, maxima: bool, messages: list, superstep: int
) -> dict:
"""UDF that calculates the color of the nodes. Based on Local Maxima First algorithm
:param vertex_id: The id of the node/vertex
:param current_color: The current color of the vertex
:param maxima: Flag that indicates if the node is maxima
:param messages: List that contains the neighbor ids that send message
:param superstep: The superstep number
:return: Dictionary that contains the new color and the status of maxima
"""
# Return if you have already been colored!
if current_color != -1:
return {"id": id, "new_color": current_color, "new_maxima": True}
# Local Maxima first interal procedure
for message in messages:
if vertex_id < message:
maxima = False
break
return (
{"id": id, "new_color": superstep, "new_maxima": maxima}
if maxima
else {"id": id, "new_color": current_color, "new_maxima": True}
)
|
6e2cd053309a05f8fc6aa489248cb4ce30d418b5
| 215,769 |
def get_bse(da, da_peak_times):
"""
Takes an xarray DataArray containing veg_index values and calculates the vegetation
value base (bse) for each timeseries per-pixel. The base is calculated as the mean
value of two minimum values; the min of the slope to the left of peak of season, and
the min of the slope to the right of the peak of season. Users must provide an existing
peak of season (pos) data array, which can either be the max of the timeseries, or the
middle of season (mos) values.
Parameters
----------
da: xarray DataArray
A two-dimensional or multi-dimensional DataArray containing an array of veg_index
values.
da_peak_times: xarray DataArray
An xarray DataArray type with an x and y dimension (no time). Each pixel must be
the time (day of year) value calculated at either at peak of season (pos) or middle
of season (mos) prior.
Returns
-------
da_bse_values : xarray DataArray
An xarray DataArray type with an x and y dimension (no time). Each pixel is the
base (bse) veg_index value detected at across the timeseries at each pixel.
"""
# notify user
print('Beginning calculation of base (bse) values (times not possible).')
# get vos values (min val in each pixel timeseries)
print('> Calculating base (bse) values.')
# split timeseries into left and right slopes via provided peak/middle values
slope_l = da.where(da['time.dayofyear'] <= da_peak_times).min('time')
slope_r = da.where(da['time.dayofyear'] >= da_peak_times).min('time')
# get per pixel mean of both left and right slope min values
da_bse_values = (slope_l + slope_r) / 2
# convert type
da_bse_values = da_bse_values.astype('float32')
# rename
da_bse_values = da_bse_values.rename('bse_values')
# notify user
print('> Success!\n')
return da_bse_values
|
3edaf6156bd9fdae15c3bf845eb3deb293489cfb
| 703,210 |
def get_class_name(cls):
"""Get the class full path name."""
return "{}.{}".format(cls.__module__, cls.__name__)
|
6dfdf76a71928507bc4cd0e19a881b0d34bee908
| 129,763 |
from typing import Union
from typing import Sequence
def format_as_iter(vals: Union[int, Sequence[int]], iters_per_epoch: int, time_scale: str):
"""Format data to be at iteration time scale.
If values are negative, they correspond to the opposite time scale.
For example if `time_scale="epoch"` and `val=-1`, `val` corresponds to
1 iteration.
Args:
vals (`int(s)`): Values to format.
iters_per_epoch (int): Number of iterations per epoch.
time_scale (str): Time scale of current values.
Returns:
int: Time (positive int) formatted in iteration format
"""
assert time_scale in ["epoch", "iter"]
single_value = not isinstance(vals, Sequence)
if single_value:
vals = [vals]
epoch_convention = (time_scale == "epoch" and all(x >= 0 for x in vals)) or (
time_scale == "iter" and all(x <= 0 for x in vals)
)
if epoch_convention:
vals = type(vals)([iters_per_epoch * abs(x) for x in vals])
else:
vals = type(vals)([abs(x) for x in vals])
if single_value:
return vals[0]
else:
return vals
|
f9971ad6227b497834e4667f101a56c49b71507e
| 34,216 |
def special_load_rules(branch):
"""
Detect if the branch requires special conversion rules.
"""
try:
return "__data_type__" in branch
except TypeError:
return False
|
3c5737fca3538df947f9d85c616ee5750b4edc0f
| 583,485 |
def velocity(Q, S):
"""
:param Q: Volume flow for thermodynamic conditions in pipe, m3/s
:param S: Сross-sectional area of a pipe, m2
:return: Velocity of the natural gas, m/s
"""
return Q/S
|
92f362601623ed264df2af2892d467285284689e
| 280,819 |
from typing import Any
def is_hashable(obj: Any) -> bool:
"""Determine if the given object is hashable.
Example:
>>> from collectionish.utils import is_hashable
>>>
>>> is_hashable([1, 2, 3])
False
>>> is_hashable('boop')
True
"""
try:
hash(obj)
return True
except TypeError:
return False
|
a69d1c045c033fcd4d989f0359e47867eb17833a
| 229,751 |
from typing import Dict
def get_all_sites(api) -> Dict[str, str]:
"""Returns all the StackExchange sites as a dict, api_site_parameter -> name"""
# hacky way to get everything..
res = api.fetch('sites')
return {s['api_site_parameter']: s['name'] for s in res['items']}
|
e5de50fe9e8752e412834c59fbe791c051cb594a
| 174,513 |
def remove_duplicate_values(array_like, tol=0.0):
"""
Removes duplicate values from list (when tol=0.0) or remove approximately duplicate
values if tol!=0.0.
"""
unique_values = [array_like[0]]
for element in array_like:
element_is_duplicate = False
for uval in unique_values:
if abs(uval - element) <= tol:
element_is_duplicate = True
if not element_is_duplicate:
unique_values.append(element)
return unique_values
|
afdad5db2aa00858aa9bcd29e1b64b744b2fb963
| 21,932 |
def is_string(value) -> bool:
"""
Is the value a string
"""
return isinstance(value, str)
|
e10e2c05d277313832500220929391d9cda1e84a
| 313,358 |
from datetime import datetime
def unixtime_to_isotime(unixtime, microseconds):
"""
Converts a unix timestamp to a readable string timestamp
:param unixtime:
:param microseconds: If True microseconds will be visible
:return:
"""
return datetime.fromtimestamp(unixtime).strftime('%Y-%m-%dT%H:%M:%S' + microseconds * '.%f')
|
35a157fe503f1903a3a900a2ccc7b9f16ad5f478
| 282,887 |
from typing import List
def pattern_index(text: str, pattern: str) -> List[int]:
"""Return the indeces (1-based) of a pattern within text
Arguments:
text {str} -- text to search for pattern
pattern {str} -- pattern to search for in text
Returns:
int -- index location of pattern in text
Example:
>>> pattern_index("ACAACTATGCATACTATCGGGAACTATCCT", "TAT")
[6, 15, 25]
"""
indeces = []
pattern_size = len(pattern)
for i in range(len(text) - pattern_size + 1):
if text[i:i+pattern_size] == pattern:
indeces.append(i+1)
return indeces
|
60c7204818b00f301b07d1e4a9ffcd62173b6e3f
| 281,178 |
from typing import Tuple
from typing import Union
from typing import Collection
from typing import Any
def insert_into_tuple(tup: Tuple, pos: Union[int, Collection[int]], val: Any) -> Tuple[int, ...]:
"""
insert_into_tuple(tup: Tuple, pos: Union[int, Collection[int]],
val: Any) ->
Tuple[int, ...]:
Insert values into a tuple.
Parameters
----------
tup
the tuple into which values are to be inserted
pos
The positions into which values are to be inserted
val
The values corresponding to the positions in `pos`
Returns
-------
A copy of `tup` with values inserted.
Raises
------
ValueError
If length of `pos` is not equal to length of `val`
Examples
--------
>>> tup = (0, 1, 2, 3)
>>> pos = (5, 1)
>>> val = (9, 8)
>>> insert_into_tuple(tup, pos, val)
(0, 8, 1, 2, 3, 9)
>>> insert_into_tuple(tup, (), ())
(0, 1, 2, 3)
"""
tl = list(tup)
if isinstance(pos, int):
tl.insert(pos, val)
else:
if len(pos) != len(val):
raise ValueError("pos and val must be of the same length")
if len(pos) == 0:
return tup
# sort pos so from low to high; sort val correspondingly
stl = list(zip(*sorted(zip(pos, val))))
for p, v in zip(stl[0], stl[1]):
tl.insert(p, v)
return tuple(tl)
|
d536101bc20ceb6bc240c6e1cb7d30843827e251
| 271,634 |
def replace(line_val, seq):
"""
Replace special characters
:param line_val: line as string
:param seq: sequence number
:return: changed value
"""
# replace TAB to ','
rtn = line_val.replace('\t', ',')
# remove line break
rtn = rtn.replace('\r\n', '')
rtn = rtn.replace('\n', '')
rtn = rtn.replace('NULL', '0')
# verify if there is a 'NULL' or 'ZZ' row
_tmp_lst = rtn.split(',')
for _tmp in _tmp_lst:
_tmp = _tmp.strip().upper()
if 'ZZ' == _tmp:
rtn = None
break
if rtn is not None:
_tmp_lst.append(str(seq))
rtn = ','.join(_tmp_lst)
rtn = rtn + '\n'
return rtn
|
100e2bc08f58e1ef9dc81db88a1df569309bb2ec
| 317,090 |
def linear_skew(phenotypes, selection_gradient):
"""Transforms the phenotype data to match the given selection gradient and stores them as gpm.data.phenotypes.
Parameters
----------
selection_gradient : float, int. (default=1)
The selection gradient defines the slope of the phenotype-fitness function.
Returns
-------
norm_fitness : list.
List of normalized fitnesses
"""
### USE NUMPY SYNTAX TO SPEED UP. INPUT SHOULD BE NUMPY ARRAY ANYWAY ###
b = 1/selection_gradient - 1
fitness = [ph_ + b for ph_ in phenotypes]
max_fit = max(fitness)
# Normalize to 1
norm_fitness = [fit / max_fit for fit in fitness]
return norm_fitness
|
d3bb72e9b3acbf7501f3d31b98631bf67e36e4b1
| 601,121 |
def documentedEvenOdd(num):
"""
Returns the string "even", "odd", or "UNKNOWN".
This would be a more verbose description of
what this function might do and could drone
one for quite a while
Args:
num (int): The number to be tested as even or odd
Returns:
str: "even" if the number is even, "odd" if the number is odd or "UNKNOWN"
Examples:
evenOdd(32)
evenOdd(13)
"""
if num % 2 == 0:
return "even"
elif num % 2 == 1:
return "odd"
else:
return "UNKNOWN"
|
b995693ccf65079b12c7eef4be59b0c13b198a36
| 428,710 |
import logging
def _checker(value_list, source, data, flag):
"""
Checks if values in the list are in data (Syntax warnings or errors).
:param list value_list: List of values to check
:param str source: Name of source that's being checked
:param dict data: Data being checked
:param str flag: What to do if value not found ("warnings" | "errors")
:return: Number of hits (warnings/errors)
:rtype: int
"""
num_hits = 0
for value in value_list:
if value not in data:
if flag == "warnings":
logging.warning("Missing %s in %s", value, source)
elif flag == "errors":
logging.error("Missing %s in %s", value, source)
else:
logging.error("Invalid flag for _checker: %s", flag)
num_hits += 1
if num_hits > 0:
logging.info("Total number of %s in %s: %d", flag, source, num_hits)
return num_hits
|
99498f0127b074e12e19348c54fa16356be0835b
| 330,734 |
def RGBtoHSV(r, g, b):
"""Convert RGB values to HSV
Algorithm is taken from https://www.cs.rit.edu/~ncs/color/t_convert.html
"""
# If we were given black, return black
if r == 0 and g == 0 and b == 0:
return 0,0,0
# We need RGB from 0-1, not 0-255
r /= 255
g /= 255
b /= 255
min_rgb = min(r, g, b)
max_rgb = max(r, g, b)
delta = max_rgb - min_rgb
v = max_rgb
s = delta / max_rgb
if delta == 0:
return 0,s,v
elif r == max_rgb:
# Between yellow and magenta
h = (g - b) / delta
elif g == max_rgb:
# Between cyan and yellow
h = 2 + (b - r) / delta
else:
# Between magenta and cyan
h = 4 + (r - g) / delta
h *= 60 # Degrees
if h < 0:
h += 360
return h,s,v
|
412f27fb2d72208a4cd56e6ec53053684fc7cf12
| 474,666 |
def contains(dictionary, key):
"""Check if key exists in dictionary."""
return key in dictionary
|
23262a9e96ccc283a7357464790c44779e80313e
| 210,615 |
def GetGuestPolicyRelativePath(parent, guest_policy):
"""Return the relative path of an osconfig guest policy."""
return '/'.join([parent, 'guestPolicies', guest_policy])
|
20a3ce383921230b276d70fc44021496ab7fa959
| 582,997 |
def to_time_sec(time_str):
"""
Tries to convert `time_str` to a valid time non negative floating point number.
Args:
time_str (string): String representing non negative float - time
in seconds.
Returns:
float: Time as non negative floating point number.
Raises:
ValueError: If `time_str` could not be converted to float or is less
than 0.
"""
try:
time_float = float(time_str)
except ValueError:
raise ValueError("argument must represent a floating point number")
if time_float < 0:
raise ValueError("argument must be a non-negative floating point number")
return time_float
|
651af52101efea040fc7cf831547572a9f0474fd
| 481,849 |
from pathlib import Path
from typing import List
def remove_unused_files(directory: Path, module_name: str, need_to_remove_cli: bool) -> None:
"""Remove unused files.
Args:
directory: path to the project directory
module_name: project module name
need_to_remove_cli: flag for removing CLI related files
"""
files_to_delete: List[Path] = []
def _cli_specific_files() -> List[Path]:
return [directory / module_name / "__main__.py"]
if need_to_remove_cli:
files_to_delete.extend(_cli_specific_files())
for path in files_to_delete:
path.unlink()
|
1ce15a23a06a20b7f8be6fc583699289c7a76251
| 607,148 |
def is_post(request):
"""Return ``True`` if the method of the request is ``POST``.
"""
return request.method.upper() == 'POST'
|
a9fc74a866157c54916a1d00c0a0fd5eb890e3a1
| 162,939 |
from typing import List
def split_badge_list(badges: str, separator: str) -> List[str]:
"""
Splits a string of badges into a list, removing all empty badges.
"""
if badges is None:
return []
return [badge for badge in badges.split(separator) if badge]
|
6dc53d45cc8390422e5a511e39475ae969bf37c9
| 11,516 |
from boto.s3.connection import S3Connection
from boto.exception import NoAuthHandlerFound
def S3ConnectionWithAnon(access, secret, anon=True):
"""
Connect to S3 with automatic handling for anonymous access
Parameters
----------
access : str
AWS access key
secret : str
AWS secret access key
anon : boolean, optional, default = True
Whether to make an anonymous connection if credentials fail to authenticate
"""
try:
conn = S3Connection(aws_access_key_id=access, aws_secret_access_key=secret)
return conn
except NoAuthHandlerFound:
if anon:
conn = S3Connection(anon=True)
return conn
else:
raise
|
3e640cfae9d580fe58d7f44588e2ffe7de9eb269
| 609,576 |
def get_classes(y) -> int:
"""
Get the total number of classes.
Args:
y : The labels list of the data.
Returns:
int: Number of total classes
"""
return int(y.shape[1])
|
f1f518cca3e5f7e43f2f93513be17283bcb0f443
| 79,881 |
import string
def apply_object_attributes_to_template(template, value_object):
"""Generate a string from the template by applying values from the given object.
If the template provided is not a template (not have any placeholders), this will not have any effect and template
will be returned unchanged.
If value_object is None, this will not have any effect.
Arguments:
template -- A string that may or may not be templated.
If templated, the placeholders will be populated with values from the attributes of the
value_object.
value_object -- Any object that supports the __dict__ method. Most classes have a __dict__ method that return a
mapping of all the attributes and the associated values.
Returns:
string -- This will be the template, with the values from value_object applied.
"""
# Parse the template and extract the field names.
# We'll use the field names to explicitly look-up attributes in the value_object.
# The reason for this is that it works for @property attributes as well as normal attributes.
field_names = [field_name for _, field_name, _, _ in string.Formatter().parse(template) if field_name is not None]
template_values = {}
for field_name in field_names:
try:
template_values[field_name] = getattr(value_object, field_name)
except AttributeError as e:
raise AttributeError(('Unable to apply object to template. Could not look-up attribute \'{}\' in the '
'object \'{}\'. Error: {}').format(field_name, str(value_object), str(e)))
return template.format(**template_values)
|
266085845a4e4283d9ffa897b4b0b7d2f8669001
| 13,019 |
def didGen64(vk64u, method="dad"):
"""
didGen accepts a url-file safe base64 key in the form of a string and returns a DID.
:param vk64u: base64 url-file safe verifier/public key from EdDSA (Ed25519) key
:param method: W3C did method string. Defaults to "dad".
:return: W3C DID string
"""
if vk64u is None:
return None
return "did:{0}:{1}".format(method, vk64u)
|
260a9f997050399b0ec1e75033835031840e68cc
| 565,501 |
def space_row(left, right, filler=' ', total_width=-1):
"""space the data in a row with optional filling
Arguments
---------
left : str, to be aligned left
right : str, to be aligned right
filler : str, default ' '.
must be of length 1
total_width : int, width of line.
if negative number is specified,
then that number of spaces is used between the left and right text
Returns
-------
str
"""
left = str(left)
right = str(right)
filler = str(filler)[:1]
if total_width < 0:
spacing = - total_width
else:
spacing = total_width - len(left) - len(right)
return left + filler * spacing + right
|
64c96ca83ab4c5fceec63c5aa4743ce398f9a48d
| 121,158 |
import time
def get_timestamp(timestamp_format="%Y%m%d_%H%M%S", utc_time=False):
"""
Get a string representing the current UTC time in format: YYYYMMDD_HHMMSS
The format can be changed if needed.
"""
if utc_time:
time_tuple = time.gmtime()
else:
time_tuple = time.localtime()
return time.strftime(timestamp_format, time_tuple)
|
39e3122a71dafbe1b70f82e35f8036fb90d8859b
| 432,814 |
def safe_divide(x: float, y: float) -> float:
"""This returns zero if the denominator is zero
"""
if y == 0.0:
return 0.0
return x / y
|
dd438cbba16f739157b21a7bdd0e8b34cf7d0c71
| 576,274 |
from typing import Mapping
def is_mappy(x):
"""
Return True if `x` is "mappy", i.e. a map-like object.
"Mappy" is defined as any instance of `collections.Mapping`:
>>> is_mappy({'a': 'b'})
True
>>> from collections import defaultdict
>>> is_mappy(defaultdict(list))
True
>>> is_mappy('a regular string')
False
>>> is_mappy(['a', 'b'])
False
>>> is_listy(iter({'a': 'b'}))
False
Note:
Iterables and generators fail the "mappy" test.
Args:
x (any value): The object to test.
Returns:
bool: True if `x` is "mappy", False otherwise.
"""
return isinstance(x, Mapping)
|
1feccf81fe737a64ff9df6e3c74df09a4839c898
| 257,225 |
def _andparam(params):
"""
string join parameter list with &
"""
return "&".join(params)
|
ca7cedf4dd1169dd83f83a97f707f2e43eeaa8f7
| 64,408 |
def evaluate_final(restore, classifier, eval_sets, batch_size):
"""
Function to get percentage accuracy of the model, evaluated on a set of chosen datasets.
restore: a function to restore a stored checkpoint
classifier: the model's classfier, it should return genres, logit values, and cost for a given minibatch of the evaluation dataset
eval_set: the chosen evaluation set, for eg. the dev-set
batch_size: the size of minibatches.
"""
restore(best=True)
percentages = []
length_results = []
for eval_set in eval_sets:
bylength_prem = {}
bylength_hyp = {}
genres, hypotheses, cost = classifier(eval_set)
correct = 0
cost = cost / batch_size
full_batch = int(len(eval_set) / batch_size) * batch_size
for i in range(full_batch):
hypothesis = hypotheses[i]
length_1 = len(eval_set[i]['sentence1'].split())
length_2 = len(eval_set[i]['sentence2'].split())
if length_1 not in bylength_prem.keys():
bylength_prem[length_1] = [0,0]
if length_2 not in bylength_hyp.keys():
bylength_hyp[length_2] = [0,0]
bylength_prem[length_1][1] += 1
bylength_hyp[length_2][1] += 1
if hypothesis == eval_set[i]['label']:
correct += 1
bylength_prem[length_1][0] += 1
bylength_hyp[length_2][0] += 1
percentages.append(correct / float(len(eval_set)))
length_results.append((bylength_prem, bylength_hyp))
return percentages, length_results
|
288d2f3780c65dd068a819a1b9ade4b6075c4f9c
| 100,872 |
def cqp(c):
"""Complex quadratic polynomial, function used for Mandelbrot fractal"""
return lambda z: z**2 + c
|
e1209088e3dee290b2623a44498a55df023c57b6
| 380,643 |
def configure(simulator, co_simulation, nb_neurons=10000):
"""
configure NEST before the simulation
modify example of https://simulator.simulator.readthedocs.io/en/stable/_downloads/482ad6e1da8dc084323e0a9fe6b2c7d1/brunel_alpha_simulator.py
:param simulator: nest simulator
:param co_simulation: boolean for checking if the co-simulation is active or not
:param nb_neurons: number of neurons
:return:
"""
# create the neurons and the devices
neuron_params = {"C_m": 250.0, "tau_m": 20.0, "tau_syn_ex": 0.5, "tau_syn_in": 0.5,
"t_ref": 2.0, "E_L": 0.0, "V_reset": 0.0, "V_m": 0.0, "V_th": 20.0}
nodes_ex = simulator.Create("iaf_psc_alpha", nb_neurons, params=neuron_params)
nodes_in = simulator.Create("iaf_psc_alpha", 25, params=neuron_params)
noise = simulator.Create("poisson_generator", params={"rate": 8894.503857360944})
espikes = simulator.Create("spike_recorder")
ispikes = simulator.Create("spike_recorder")
espikes.set(label="brunel-py-ex", record_to="ascii")
ispikes.set(label="brunel-py-in", record_to="ascii")
# create the connection
simulator.CopyModel("static_synapse", "excitatory", {"weight": 20.68015524367846, "delay": 1.5})
simulator.CopyModel("static_synapse", "inhibitory", {"weight": -103.4007762183923, "delay": 1.5})
simulator.Connect(noise, nodes_ex, syn_spec="excitatory")
simulator.Connect(noise, nodes_in, syn_spec="excitatory")
simulator.Connect(nodes_ex[:50], espikes, syn_spec="excitatory")
simulator.Connect(nodes_in[:25], ispikes, syn_spec="excitatory")
conn_params_ex = {'rule': 'fixed_indegree', 'indegree': 10}
conn_params_in = {'rule': 'fixed_indegree', 'indegree': 2}
simulator.Connect(nodes_ex, nodes_ex + nodes_in, conn_params_ex, "excitatory")
simulator.Connect(nodes_in, nodes_ex + nodes_in, conn_params_in, "inhibitory")
# Cosimulation devices
if co_simulation:
input_to_simulator = simulator.Create("spike_generator", nb_neurons,
params={'stimulus_source': 'mpi',
'label': '/../transformation/spike_generator'})
output_from_simulator = simulator.Create("spike_recorder",
params={"record_to": "mpi",
'label': '/../transformation/spike_detector'})
simulator.Connect(input_to_simulator, nodes_ex, {'rule': 'one_to_one'},
{"weight": 20.68015524367846, "delay": 0.1})
simulator.Connect(nodes_ex, output_from_simulator, {'rule': 'all_to_all'},
{"weight": 1.0, "delay": 0.1})
return espikes, input_to_simulator, output_from_simulator
else:
return espikes, None, None
|
09f701fccd1ba36500bd5f4a8198f47edd1b0a00
| 575,590 |
def change_to_id(obj):
"""Change key named 'uuid' to 'id'
Zun returns objects with a field called 'uuid' many of Horizons
directives however expect objects to have a field called 'id'.
"""
obj['id'] = obj.pop('uuid')
return obj
|
aad9c05e5359d6ca5788413d02454f22e2d7d3be
| 259,400 |
def create_lexicon(word_tags):
"""
Create a lexicon in the right format for nltk.CFG.fromString() from
a list with tuples with words and their tag.
"""
# dictionary to filter the double tags
word_dict = {}
for word, tag in word_tags:
if tag not in word_dict:
word_dict[tag] = {word}
else:
word_dict[tag].add(word)
# PRO is the tag for 's, but the 's is not removed on nouns.
word_dict['NN'] = [x.replace('\'s', '') for x in word_dict['NN']]
word_dict['JJ'] = [x.replace('\'s', '') for x in word_dict['JJ']]
del word_dict[',']
word_dict['PRP'].update(word_dict['PRP$'])
del word_dict['PRP$']
word_dict['POS'] = ['"s']
# convert the dictionary to the right NLTK format
lexicon = ''
for key, val in word_dict.items():
lexicon += key + ' -> '
# add ' ' around every word
val = [f'\'{v}\'' for v in val]
# the words are seperated by a pipe
lexicon += ' | '.join(val) + '\n'
return lexicon
|
3a91671d559f5924ec9326520db6e11a1672fee4
| 707,263 |
def get_max_val(_dict: dict):
""" Returns the largest value of the dict of format {int: List[int]}"""
return max(item for val in _dict.values() for item in val)
|
f317b8a6533a6a65fd524fdc3ae0a61dfd554b3a
| 286,367 |
def rect2math(r):
"""Convert rectangles to mathematical coordinates."""
return (r.x0,r.y0,r.x1,r.y1)
|
9eefb2dc1c5a6e783ead82cc9ba88e361a498ab4
| 601,785 |
def get_mask_from_lengths(memory, memory_lengths):
"""Get mask tensor from list of length
Args:
memory: (batch, max_time, dim)
memory_lengths: array like
"""
mask = memory.data.new(memory.size(0), memory.size(1)).byte().zero_()
for idx, l in enumerate(memory_lengths):
mask[idx][:l] = 1
return ~mask
|
129feda0dabdc5d3b264e82b4fb417723baba31c
| 676,154 |
def get_feature_channels_per_level(base_feature_channels, max_feature_channels, num_levels, decoder_min_channels=None):
"""Get the number of output channels for each of the encoder and decoder blocks.
Args:
base_feature_channels (int): number of the output channels of the first block in the encoder part.
Number of the output channels of the encoder blocks is given by the geometric progression: `base_feature_channels` ** `k` (`k`: level of the encoder block).
max_feature_channels (int): max output channels of the encoder/decoder blocks.
num_levels (int): number of the levels (= blocks) in the encoder/decoder part.
decoder_min_channels (int, optional): min output channels of the decoder blocks. Defaults to None.
Returns:
tuple[list[int]]: encoder output channels and decoder output channels.
"""
# output channels of the encoder blocks
encoder_feature_channels = [min(max_feature_channels, base_feature_channels * (2**i)) for i in range(num_levels)]
# output channels of the decoder blocks
decoder_feature_channels = list(reversed(encoder_feature_channels))[1:]
if decoder_min_channels is not None:
for i in range(len(decoder_feature_channels)):
decoder_feature_channels[i] = max(decoder_min_channels, decoder_feature_channels[i])
return encoder_feature_channels, decoder_feature_channels
|
f4c216d419b7006510bb19493a3be4a49484f9dc
| 246,867 |
def _get_segmentation_strategy(segmentation):
"""Get the baci string for a geometry pair strategy."""
if segmentation:
return 'segmentation'
else:
return 'gauss_point_projection_without_boundary_segmentation'
|
267a10a7237b2d42f1988ad9e35eddc7febbe789
| 645,748 |
def _parse_input(obj, arg):
"""
Returns obj[arg] if arg is string, otherwise returns arg.
"""
return obj[arg] if isinstance(arg, str) else arg
|
e6b0b61d8a910b5ab1e60c6c0ad3f73a374647a5
| 465,666 |
def score_survey(star_list,field_list,overlap_bonus):
"""
Given the stars you want and a set of fields, scores the stars, sums it up.
Parameters
----------
star_list : list
list of Star objects
field_list : list
list of Field objects
overlap_bonus
Returns
-------
score : float
Sum of the scores of all of the stars
"""
score = 0.0
for star in star_list:
star.reset()
star.count_fields_star_in(field_list)
score += star.score_star(overlap_bonus = overlap_bonus)
return score
|
1f258ceb59048e9130dd2fa341fe6fd67dd69421
| 159,838 |
import re
def parse_sequence_idx_from_pattern(patt):
"""Extracts the (first) numeric sequence index from the given pattern.
Args:
patt: a pattern like "/path/to/frames/frame-%05d.jpg"
Returns:
the numeric sequence string like "%05d", or None if no sequence was
found
"""
m = re.search("%[0-9]*d", patt)
return m.group() if m else None
|
576e9ed2f4c6769008f91bb4f2b8f18f547cf690
| 259,249 |
def comma_separated_int(s):
"""
Used as the 'dtype' argument to TextFileParser.add_field(), to parse integer fields
which appear in text files with comma separators.
"""
s = s.replace(',','')
return int(s)
|
1eecd58efadf780d37915b733b0b613147dc425f
| 621,942 |
import pathlib
def try_relative(path):
"""Try making `path` relative to current directory, otherwise make it an absolute path"""
try:
here = pathlib.Path.cwd()
return pathlib.Path(path).relative_to(here)
except ValueError:
return pathlib.Path(path).resolve()
|
ab40fa091253f599af1bd20695ab80b6d8580ef8
| 544,627 |
import re
import socket
def get_hostname() -> str:
"""
Get the stripped down version of the host name to be used for
sudmodel_dir, ckpt names, scoping.
Names had '.' and '-' in them which I want for scoping/file suffix.
keeps only letters, numbers, _.
"""
return re.sub('\W+', '', socket.gethostname())
|
d83acd728afcf8a23a5102fef1978a4d8f598448
| 433,495 |
def number_normalization(value, fromvalue, tovalue):
"""数値を範囲内の値に正規化する。
value: 正規化対象の数値。
fromvalue: 範囲の最小値。
tovalue: 範囲の最大値+1。
"""
if 0 == tovalue:
return value
if tovalue <= value or value < fromvalue:
value -= (value // tovalue) * tovalue
if value < fromvalue:
value += tovalue
return value
|
912c515991246204ebc4d5eae8ffedb1c6d5823b
| 10,891 |
import pprint
def fmt_repr(obj):
"""
Return pretty printed string representation of an object.
"""
items = {k: v for k, v in list(obj.__dict__.items())}
return "<%s: {%s}>" % (obj.__class__.__name__, pprint.pformat(items, width=1))
|
c2b32f393263f3e85f517e816414bd7136a804a5
| 181,584 |
def string_vector(v):
"""Convert [3] array to string"""
return '[%5.3f,%5.3f,%5.3f]' % (v[0], v[1], v[2])
|
8a10262fe5c7e83987b097cb4bb29b2801fcff38
| 197,380 |
from typing import Dict
from typing import Any
def get_update_response_item(response) -> Dict[str, Any]:
"""
Deserializes the response of Update operation and deserialized DynamoDB objects
:param response: The response of Update operation
:return: A deserialized DynamoDB object
"""
return response.get('Attributes')
|
56b2143b136e008faa0f617746b083dbbadcb5d1
| 543,443 |
import typing
def format_commit_sha(commit: str, repo: typing.Dict[str, typing.Any]) -> str:
"""
Format a GitHub commit SHA into a Markdown message.
"""
return f"[{commit[:7]}]({repo['html_url']}/commit/{commit})"
|
6524863411d72f69969518c21970f6e7f57f14fb
| 465,503 |
def read_file(file):
"""Reads en entire file and returns file bytes."""
BUFFER_SIZE = 16384 # 16 kilo bytes
b = b""
with open(file, "rb") as f:
while True:
# read 16K bytes from the file
bytes_read = f.read(BUFFER_SIZE)
if bytes_read:
# if there is bytes, append them
b += bytes_read
else:
# if not, nothing to do here, break out of the loop
break
return b
|
293fe86c524f3f46945b8c1a0c37a148c300f9f1
| 174,380 |
def doc_metadata(doc):
"""Create a metadata dict from a MetatabDoc, for Document conversion"""
r = doc['Root'].as_dict()
r.update(doc['Contacts'].as_dict())
r['author'] = r.get('author', r.get('creator', r.get('wrangler')))
return r
|
b88c7158d143c51b7da4ef8d516d084234381e9c
| 513,188 |
def rgb2gray(img):
"""Convert a RGB image to gray scale."""
if len(img.shape) == 2:
grayimg = img[:, :]
elif img.shape[-1] >= 3:
grayimg = 0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2]
else:
grayimg = img[:, :, 0]
return grayimg
|
be42500e4c8c5bc78c8e34b9e228a89c816c7510
| 443,693 |
def first_role_id_in_roles(roles):
""" Return the first role ID found in list of roles."""
for role in roles:
if not isinstance(role, dict):
continue
role_id = role.get('role')
if not role_id:
continue
return str(role_id).strip()
|
a5756270ac9f6c2e0e53af13001c6aa430608e26
| 353,329 |
from typing import Union
from pathlib import Path
from typing import List
from typing import Dict
import json
def readJSONLFile(file_name: Union[str, Path]) -> List[Dict]:
"""
Read a '.jsonl' file and create a list of dicts
Args:
file_name: `Union[str,Path]`
The file to open
Returns:
The list of dictionaries read from the 'file_name'
"""
lines = (
open(file_name, 'r', encoding='utf-8').readlines() if isinstance(file_name, str) else
file_name.read_text('utf-8').splitlines(False)
)
return [json.loads(line) for line in lines]
|
8e33fad766a255578179828dc76ec793c02f90b9
| 1,818 |
from typing import Sequence
def my_dot(v0: Sequence[float], v1: Sequence[float]) -> float:
"""
Perform mathematical dot product between two same-length vectors. IE component-wise multiply, then sum.
:param v0: any number of floats
:param v1: same number of floats
:return: single float
"""
dot = 0.0
for (a, b) in zip(v0, v1):
dot += a * b
return dot
|
6a4742cbd47395de69ee88f5fe0baf696993b644
| 577,835 |
def order_keys(keys, orders):
"""Get ordered keys.
:param keys: keys to be sorted.
:type keys: list of str
:param orders: the order of the keys. '.' is all other keys not in order.
:type orders: list of str.
:returns: keys as list sorted by orders.
:raises: TypeError if keys or orders is not list.
"""
if not isinstance(keys, list):
raise TypeError('keys %s type should be list' % keys)
if not isinstance(orders, list):
raise TypeError('orders ^s type should be list' % orders)
found_dot = False
pres = []
posts = []
for order in orders:
if order == '.':
found_dot = True
else:
if found_dot:
posts.append(order)
else:
pres.append(order)
return ([pre for pre in pres if pre in keys] +
[key for key in keys if key not in orders] +
[post for post in posts if post in keys])
|
8f865f07ebd5538f5a289ffaaed0e705bf3c0b7c
| 415,968 |
def update_qTable(q_table, state, action, reward, next_state_value, gamma_discount = 0.9, alpha = 0.5):
"""
Update the q_table based on observed rewards and maximum next state value
Sutton's Book pseudocode: Q(S, A) <- Q(S, A) + [alpha * (reward + (gamma * maxValue(Q(S', A'))) - Q(S, A) ]
Args:
q_table -- type(np.array) Determines state value
state -- type(int) state value between [0,47]
action -- type(int) action value [0:3] -> [UP, LEFT, RIGHT, DOWN]
reward -- type(int) reward in the corresponding state
next_state_value -- type(float) maximum state value at next state
gamma_discount -- type(float) discount factor determines importance of future rewards
alpha -- type(float) controls learning convergence
Returns:
q_table -- type(np.array) Determines state value
"""
update_q_value = q_table[action, state] + alpha * (reward + (gamma_discount * next_state_value) - q_table[action, state])
q_table[action, state] = update_q_value
return q_table
|
f267851a520c95259f363d89842ed7e50e5ddf30
| 80,171 |
def conv_output_shape(dimension_size, filter_size, padding, stride):
"""
Computes convolution's output shape.
Parameters
----------
dimension_size : int
Size of the dimension. Typically it's image's
weight or height.
filter_size : int
Size of the convolution filter.
padding : {``valid``, ``full``, ``half``} or int
Type or size of the zero-padding.
stride : int
Stride size.
Returns
-------
int
Dimension size after applying convolution
operation with specified configurations.
"""
if dimension_size is None:
return None
if not isinstance(stride, int):
raise ValueError("Stride needs to be an integer, got {} (value {!r})"
"".format(type(stride), stride))
if not isinstance(filter_size, int):
raise ValueError("Filter size needs to be an integer, got {} "
"(value {!r})".format(type(filter_size),
filter_size))
if padding == 'valid':
output_size = dimension_size - filter_size + 1
elif padding == 'half':
output_size = dimension_size + 2 * (filter_size // 2) - filter_size + 1
elif padding == 'full':
output_size = dimension_size + filter_size - 1
elif isinstance(padding, int):
output_size = dimension_size + 2 * padding - filter_size + 1
else:
raise ValueError("`{!r}` is unknown convolution's border mode value"
"".format(padding))
return (output_size + stride - 1) // stride
|
8923a3bbc315d38fbbf6a770d7b59db6f14670c3
| 160,922 |
def expand_test_result_df(df_test):
"""Adds columns to a DataFrame with test results
Args:
df_test DataFrame as produced by trainer.ModelTrainer, i.e. with columns
'tp', 'fp', 'fn', 'correct', 'total_examples' and 'examples_above_threshold'
Returns:
the input DataFrame with additional columns for 'precision', 'recall',
'acc'uracy, 'f1' measure and 'coverage' percentage.
"""
#print('type of df_test', str(type(df_test)))
#print('keys in df_test', df_test.keys())
df = df_test
epsilon = 0.00001 # avoid division by zero
df['precision'] = df['tp'] / (df['tp'] + df['fp'] + epsilon)
df['recall'] = df['tp'] / (df['tp'] + df['fn'] + epsilon)
df['acc'] = df['correct'] / df['examples_above_threshold']
df['f1'] = 2*df['tp'] / (2*df['tp'] + df['fp'] + df['fn'] + epsilon)
df['coverage'] = df['examples_above_threshold']/ (df['total_examples'] + epsilon)
return df
|
dea64054f8fb372d9777b6bdc9b0064843bbd459
| 17,673 |
def NOT(logical_expression):
"""
Returns the opposite of a logical value: `NOT(True)` returns `False`; `NOT(False)` returns
`True`. Same as `not logical_expression`.
>>> NOT(123)
False
>>> NOT(0)
True
"""
return not logical_expression
|
83ae11eb225b274ded4173df0ea202ccb4248f4a
| 146,084 |
import math
def determine_padding(filter_shape, output_shape="same"):
"""Method which calculates the padding based on the specified output shape
and the shape of the filters."""
if output_shape == "valid":
return (0, 0), (0, 0)
elif output_shape == "same":
filter_height, filter_width = filter_shape
# output_height = (height + pad_h - filter_height) / stride + 1
pad_h1 = int(math.floor((filter_height - 1)/2))
pad_h2 = int(math.ceil((filter_height - 1)/2))
pad_w1 = int(math.floor((filter_width - 1)/2))
pad_w2 = int(math.ceil((filter_width - 1)/2))
return (pad_h1, pad_h2), (pad_w1, pad_w2)
|
12ef1c8d624f0dfd161c8723736610fa86c9ce1d
| 681,154 |
def align_structures(reference_traj, target_traj):
"""
Given a reference trajectory, this function performs a structural alignment for a second input trajectory, with respect to the reference.
:param reference_traj: The trajectory to use as a reference for alignment.
:type reference_traj: `MDTraj() trajectory <http://mdtraj.org/1.6.2/api/generated/mdtraj.Trajectory.html>`_
:param target_traj: The trajectory to align with the reference.
:type target_traj: `MDTraj() trajectory <http://mdtraj.org/1.6.2/api/generated/mdtraj.Trajectory.html>`_
:returns:
- aligned_target_traj ( `MDTraj() trajectory <http://mdtraj.org/1.6.2/api/generated/mdtraj.Trajectory.html>`_ ) - The coordinates for the aligned trajectory.
"""
aligned_target_traj = target_traj.superpose(reference_traj)
return aligned_target_traj
|
ba23ee847deb2ac54cbc3c8d973ce02e0c7f7db2
| 591,548 |
def get_cleanup_step(project, build):
"""Returns the step for cleaning up after doing |build| of |project|."""
return {
'name': project.image,
'args': [
'bash',
'-c',
'rm -r ' + build.out,
],
}
|
d3eb71a936fe482627c13b73a442eaf776061def
| 409,163 |
import json
def fake_data_set_data(fake_data_set):
"""Fake suggest api data set data.
Uses fake_data_set file fixture to generate the data.
"""
with open(fake_data_set) as f:
return json.load(f)
|
729daaa2fcbc46baddcc9048125df87b93834b5c
| 389,929 |
def find_ns_subelements(element, subelement_name, ns_dict):
"""
retuns list of subelements with given name in any given namespace
Arguments:
- element (ElementTee.Element): main element to search in
- subelement_name (string): searched name of element
- ns_dict: dict of prefixes and corresponding full namespaces
Hint:
To search for parent element, add "/.." in the end.
Example:
fund_ns_subelements(root, "my_element/../..", ns_dict)
will return list of grandparents of elements "my_element"
"""
subelements = []
# Search term explanation:
# .//* read from right to left means:
# all elements (*) in any level (//) in top-level element (.)
# If you want to search nodes with some attribute:
# .//*[@attr='something'] means:
# nodes with attribute attr='something' located anywhere (.//*)
# Our case: elements with namespace (in {}) and name, anywhere:
# .//{namespace}name
# We are looking for given element in any namespace.
# In newer Python versions you can use *
# and the solution would be one-liner:
# return element.findall(f".//{{*}}{subelement_name}")
# Below code should be compatible with older versions
for prefix in ns_dict:
ns = ns_dict[prefix]
match = f".//{{{ns}}}{subelement_name}"
found = element.findall(match)
for subelement in found:
subelements.append(subelement)
return subelements
|
1bbd87025ba9cac503b4ceb7523485a9b33d5637
| 669,739 |
def number_with_precision(number, precision=3):
"""
Formats a ``number`` with a level of ``precision``.
Example::
>>> number_with_precision(111.2345)
111.235
"""
formstr = '%01.' + str(precision) + 'f'
return formstr % number
|
b6b457d8ea0b69dc80d3c336f1232207d6aa357b
| 373,310 |
import requests
def my_requests_request(method, url, **kwargs):
"""
:param method: method for the new :class:`Request` object.
:param url: URL for the new :class:`Request` object.
:param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`.
:param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
:param json: (optional) json data to send in the body of the :class:`Request`.
:param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`.
:param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`.
:param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': file-tuple}``) for multipart encoding upload.
``file-tuple`` can be a 2-tuple ``('filename', fileobj)``, 3-tuple ``('filename', fileobj, 'content_type')``
or a 4-tuple ``('filename', fileobj, 'content_type', custom_headers)``, where ``'content-type'`` is a string
defining the content type of the given file and ``custom_headers`` a dict-like object containing additional headers
to add for the file.
:param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
:param timeout: (optional) How long to wait for the server to send data
before giving up, as a float, or a :ref:`(connect timeout, read
timeout) <timeouts>` tuple.
:type timeout: float or tuple
:param allow_redirects: (optional) Boolean. Enable/disable GET/OPTIONS/POST/PUT/PATCH/DELETE/HEAD redirection.
:type allow_redirects: bool
:param proxies: (optional) Dictionary mapping protocol to the URL of the proxy.
:param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``.
:param stream: (optional) if ``False``, the response content will be immediately downloaded.
:param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.
:return: :class:`Response <Response>` object
:rtype: requests.Response
"""
return requests.request(method=method, url=url, timeout=10, **kwargs)
|
8f86acea82c6cc8677f2a53ebcd30e4d0722c49d
| 122,415 |
def flatten_lists(*lists):
"""Flatten several lists into one list.
Examples
--------
>>> flatten_lists([0, 1, 2], [3, 4, 5])
[0, 1, 2, 3, 4, 5]
Parameters
----------
lists : an arbitrary number of iterable collections
The type of the collections is not limited to lists,
they can also be sets, tuples, etc.
Returns
-------
flat_list : a flattened list
"""
return [x for sublist in lists for x in sublist]
|
23c25da8ac99c440543efdd52a7a98f2f378bd8b
| 117,086 |
def convert_to_oneline(multiline: str) -> str:
"""Converts a multiline Sleep command to a single line.
Args:
multiline (str): The multiline Sleep command.
Returns:
str: A single-lined version of the same Sleep command.
"""
# Format wrapper so it sends as one-line
oneline = multiline.replace('\n', '')
# Replace 4 spaces with nothing (if tabbed but using spaces as tabs)
nospaces = oneline.replace(' ', '')
# Replace tabs with nothing
notabs = nospaces.replace('\t', '')
return notabs
|
edf833ff0920673bbab1cff2122f66b22bac08cc
| 95,782 |
def filter_on_TCRB(df):
"""
Only take sequences that have a resolved TCRB gene for V and J.
"""
return df[df['v_gene'].str.contains('^TCRB') & df['j_gene'].str.contains('^TCRB')]
|
1fb6c8bddff58f178085b00db52589e14bd9fae1
| 359,423 |
def get_shap_values(model_manager, direct_id, target=None):
"""Get the SHAP values of features.
Args:
model_manager: ModelManager, an object containing all prediction models
direct_id: the identifier of the patient's related entry in the target entity
(e.g., the admission id).
target: the identifier of the prediction target
Returns:
A dict mapping prediction target to features' SHAP values for this prediction.
"""
shap_values = model_manager.explain(id=direct_id, target=target)
if target is None:
return {target: sv.loc[0].to_dict() for target, sv in shap_values.items()}
else:
return shap_values.loc[0].to_dict()
|
201ecc08c87262f7dd3aa34f7b2164b6489de405
| 631,890 |
def o_to_matsubara_idx_b(o):
"""
Convert index in "o" convension to bosonic Matsubara index
Parameters
----------
o 2*n
Returns n
-------
"""
assert o%2 == 0
return int(o/2)
|
347313ac016033360910d94e19c7d3ef8bc3f7e3
| 16,408 |
from datetime import datetime
import uuid
def _get_file_name() -> str:
"""
Create a random file name.
Returns:
str:
Randomised file name.
"""
return f'{datetime.now().strftime("%d-%m-%Y_%I-%M-%S_%p")}_{str(uuid.uuid4())[:8]}.avro'
|
3fb18df2c9b6326037b4aa3d9576ef7f8b87209b
| 579,606 |
def Pack(flatten, nmap_list):
"""Packs the list of tensors according to `.NestedMap` in `nmap_list`.
`Pack` is loosely the inverse of `Flatten`.
Args:
flatten: A list of tensors.
nmap_list: A list of `.NestedMap`.
Returns:
A list of `.NestedMap`, say ret is the returned list. We have
1. len(ret) == len(nmap_list);
2. recursively, ret[i] has the same keys as nmap_list[i];
3. Flatten(ret) == flatten;
"""
if not isinstance(flatten, (list, tuple)):
flatten = [flatten]
ret = []
for x in nmap_list:
# x needs num values from the head of flatten.
num = len(x.Flatten())
ret += [x.Pack(flatten[:num])]
flatten = flatten[num:]
assert not flatten, ('flatten does not match nmap_list.')
return ret
|
4c0caff454f269dc91715d4dbd8a9a35fafabf86
| 642,994 |
import re
def _escape(line):
"""
Escape the syntax-breaking characters.
"""
line = line.replace('[', r'\[').replace(']', r'\]')
line = re.sub('\'', '', line) # ' is unescapable afaik
return line
|
8b43b7ddf42af68866eb81fdf91036d28489f897
| 664,561 |
from datetime import datetime
def convert_date_to_timestamp(date_to_convert):
"""
This function is useful to convert date (YYYYmmdd) to timestamp
Args:
date_to_convert (str): date (YYYYmmdd) to be converted in timestamp
Returns:
(timestamp): date_to_convert converted in timestamp
"""
return int(datetime.strptime(date_to_convert, '%Y%m%d').timestamp())
|
a43add163f3c303246ac92ad043cbff452e7cc6b
| 572,849 |
def passthrough_properties(field_name, *property_names):
"""
This function is designed to be used as a class decorator that takes the name of an attribute that
different properties of the class pass through to. For example, if we have a self.foo object,
and our property 'bar' would return self.foo.bar, then we'd set 'foo' as the field_name,
and 'bar' would go in the property_names list.
Args:
field_name: The name of the attribute of the object we pass property calls through to.
*property_names: List of property names that we do the pass-through to.
Returns:
A function that acts as a decorator for the class which attaches the properties to it.
"""
def wrapped(cls):
"""Wrapper around a class decorated with the properties"""
for name in property_names:
def generate_property(prop_name):
"""Helper function to generate the getter/setter functions for each property"""
def get_func(self):
"""Getter function for the property"""
parent = getattr(self, field_name)
return getattr(parent, prop_name)
def set_func(self, value):
"""Setter function for the property"""
parent = getattr(self, field_name)
setattr(parent, prop_name, value)
setattr(cls, prop_name, property(get_func, set_func))
generate_property(name)
return cls
return wrapped
|
9771ff06c5645d48283d76757d48ad7989f69f9f
| 494,029 |
import itertools
def all_pairs(seq):
"""Produce all pairs from seq, but not (a, a)"""
return itertools.combinations(seq, 2)
|
b26676d21660f6aa1052d832e7f6bc3b7014befa
| 478,664 |
def capwords(s, sep=None):
"""capwords(s [,sep]) -> string
Split the argument into words using split, capitalize each
word using capitalize, and join the capitalized words using
join. If the optional second argument sep is absent or None,
runs of whitespace characters are replaced by a single space
and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.
"""
return (sep or ' ').join(x.capitalize() for x in s.split(sep))
|
5fe61ed2da2ea011e8f989c2b40a84a90cb1addc
| 580,957 |
def _is_nth_child_of_kind(stack, allowed_nums, kind):
"""
Checks if the stack contains a cursor which is of the given kind and the
stack also has a child of this element which number is in the allowed_nums
list.
:param stack: The stack holding a tuple holding the parent cursors
and the child number.
:param allowed_nums: List/iterator of child numbers allowed.
:param kind: The kind of the parent element.
:return: Number of matches.
"""
is_kind_child = False
count = 0
for elem, child_num in stack:
if is_kind_child and child_num in allowed_nums:
count += 1
if elem.kind == kind:
is_kind_child = True
else:
is_kind_child = False
return count
|
b03d28f7a0dde19d8bb585186944ceb5a3a9da7a
| 93,021 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.