content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import calendar
def month_name(month_number):
"""
Returns the full name of a month based on the integer order.
Straight from http://stackoverflow.com/a/7385976/122291
"""
return calendar.month_name[month_number]
|
6ac9eccd669a4991fbd1bdf795afc746adab8db7
| 398,253 |
def has_gaps(gaps):
"""Returns True if gaps dictionary has gaps in it.
Parameters
----------
gaps: dictionary
Dictionary of Channel:gaps arrays
"""
for channel in gaps:
if len(gaps[channel]):
return True
return False
|
b24e9403b90fee7f29ab3f12ded95d4d13b20df6
| 440,610 |
def strip_unexecutable(lines):
"""Remove all code that we can't execute"""
valid = []
for l in lines:
if l.startswith("get_ipython"):
continue
valid.append(l)
return valid
|
f52fcf9c4afd0262f39bbe51d13860e5826606fb
| 65,476 |
def update_dictionary(default_dict, overwrite_dict=None, allow_unknown_keys=True):
"""Adds default key-value pairs to items in ``overwrite_dict``.
Merges the items in ``default_dict`` and ``overwrite_dict``,
preferring ``overwrite_dict`` if there are conflicts.
Parameters
----------
default_dict: `dict`
Dictionary of default values.
overwrite_dict: `dict` or None, optional, default None
User-provided dictionary that overrides the defaults.
allow_unknown_keys: `bool`, optional, default True
If false, raises an error if ``overwrite_dict`` contains a key that is
not in ``default_dict``.
Raises
------
ValueError
if ``allow_unknown_keys`` is False and ``overwrite_dict``
has keys that are not in ``default_dict``.
Returns
-------
updated_dict : `dict`
Updated dictionary.
Returns ``overwrite_dicts``, with default values added
based on ``default_dict``.
"""
if overwrite_dict is None:
overwrite_dict = {}
if not allow_unknown_keys:
extra_keys = overwrite_dict.keys() - default_dict.keys()
if extra_keys:
raise ValueError(f"Unexpected key(s) found: {extra_keys}. "
f"The valid keys are: {default_dict.keys()}")
return dict(default_dict, **overwrite_dict)
|
503934d42362ea2b7ff7732bb9f752de45140898
| 35,974 |
def conventional_naming(st: str, is_package=True) -> str:
"""If st is not a package name then conventional_naming
treats it as a project name.
Parameters
----------
st : str
Underscores are allowed. No spaces are allowed.
is_package : bool, optional
Considered project if not package, by default True
Returns
-------
str
String with underscores removed.
"""
res = ''.join(st.split("_")).lower()
if is_package:
return res
else:
return res.capitalize()
|
a753fa2339b130db8c3d8ee2ba8e9437fe103221
| 315,185 |
import pathlib
def lstat(path: str):
"""Gets stat of path `path` (handles links)
e.g
j.sals.fs.lstat("/home/rafy/testing_link") -> os.stat_result(st_mode=41471, st_ino=7081257, st_dev=2049, st_nlink=1, st_uid=1000, st_gid=1000, st_size=16, st_atime=1586445737, st_mtime=1586445734, st_ctime=1586445734)
Args:
path (str): path to get its stat
Returns:
stat_result: returns stat struct.
"""
return pathlib.Path(path).lstat()
|
321752f5b64d08619f79494671744359343ee67a
| 249,571 |
def translate_aws_action_groups(groups):
"""
Problem - AWS provides the following five groups:
- Permissions
- ReadWrite
- ListOnly
- ReadOnly
- Tagging
The meaning of these groups was not immediately obvious to me.
Permissions: ability to modify (create/update/remove) permissions.
ReadWrite: Indicates a data-plane operation.
ReadOnly: Always used with ReadWrite. Indicates a read-only data-plane operation.
ListOnly: Always used with [ReadWrite, ReadOnly]. Indicates an action which
lists resources, which is a subcategory of read-only data-plane operations.
Tagging: Always used with ReadWrite. Indicates a permission that can mutate tags.
So an action with ReadWrite, but without ReadOnly, is a mutating data-plane operation.
An action with Permission never has any other groups.
This method will take the AWS categories and translate them to one of the following:
- List
- Read
- Tagging
- ReadWrite
- Permissions
"""
if "Permissions" in groups:
return "Permissions"
if "ListOnly" in groups:
return "List"
if "ReadOnly" in groups:
return "Read"
if "Tagging" in groups:
return "Tagging"
if "ReadWrite" in groups:
return "Write"
return "Unknown"
|
25d54f886f40f4ccd890bf142905a39f730a3ca5
| 247,890 |
def GenerateSwitchStatement(codepoint_list, var_name, num_indent, return_type):
"""Generates a switch-case statement for given arguments.
This method generates a switch-case statement, which checks if the value of
the given 'var_name' variable is in 'codepoint_list'
and returns 'return_type' if contained.
The generated code would be something like:
switch (var_name) {
case 0xXXXX:
case 0xXXXX:
:
case 0xXXXX:
return RETURN_TYPE;
}
Args:
codepoint_list: a sorted list of code points.
var_name: a variable name to be checked.
num_indent: the indent depth.
return_type: a return category type which should be returned if
'var_name' is in the 'codepoint_list'
Returns: a list of lines of the generated switch-case statement.
"""
lines = [' ' * num_indent + ('switch (%s) {\n' % var_name)]
for codepoint in codepoint_list:
lines.append(' ' * (num_indent + 2) + 'case 0x%08X:\n' % codepoint)
lines.extend([' ' * (num_indent + 4) + ('return %s;\n' % return_type),
' ' * num_indent + '}\n'])
return lines
|
f1c013b81d5df95724a0486cad869e1dfcd6208c
| 358,282 |
def process_row( row, value_col ):
"""
Looks at a processed CSV row returning the date, time and
then value of the specified column.
"""
date_time = row[3].split('T')
# [:5] so that we just get hh:mm
return (date_time[0], date_time[1][:5], row[value_col])
|
6e3397e8a10e975dc998a0894e130262d879a79f
| 521,566 |
def gfile(self, size="", **kwargs):
"""Specifies the pixel resolution on Z-buffered graphics files.
APDL Command: /GFILE
Parameters
----------
size
Pixel resolution. Defaults to a pixel resolution of 800. Valid
values are from 256 to 2400.
Notes
-----
Defines the pixel resolution on subsequently written graphics files
(Jobname.GRPH) for software Z-buffered displays [/TYPE]. Lowering the
pixel resolution produces a "fuzzier" image; increasing the resolution
produces a "sharper" image but takes a little longer.
This command is valid in any processor.
"""
command = f"/GFILE,{size}"
return self.run(command, **kwargs)
|
4ca1c2f7f7ef30bd3678f39d43eb18edf6faed83
| 363,265 |
from typing import Any
def is_number(obj: Any) -> bool:
"""
Test if the JSON object is a JSON number
Args:
obj: object to test the type of
Returns:
`True` if ``obj`` is a json number, `False` otherwise
"""
return type(obj) in (int, float)
|
c12bd8d0ed0cbb4d6281adf6ccfbd1bc13b0b617
| 530,220 |
def split(df, target):
"""Split off target col to make X and y"""
if not isinstance(target, list):
target = [target]
return df.drop(columns=target), df[target].values.ravel()
|
1d0c03c5a4dfd5ced9f609e9f39368a7848755b1
| 608,614 |
def week_cal(cal: str, current_day: int) -> str:
"""Function used to transform a HTML month calendar into a week calendar.
Args:
`cal`(str): the html calendar to transform.
`current_day`(int): the current day to select the current week.
Returns:
`str`: the calendar transformed.
"""
lines = cal.splitlines()
w = "" # string to store the line of the desired week
for line in lines: # check each lines for the current day
if line.__contains__(f">{current_day}<"):
w = line
## build the week calendar ##
new_cal = lines[0] + "\n" + lines[1] + "\n" + lines[2] + "\n" + w + "\n" + lines[-1]
return new_cal
|
11cad36d9c92e38f10152b2c97039a9d5d16c344
| 670,052 |
def plot_identifier(name, plot_id):
"""Return file,plot_id identifier."""
prefix, number = name.split("_")
return "{}-{}".format(number, plot_id)
|
26d86dba9a222ad648a42119aff37ccad939e05c
| 534,075 |
import torch
def precreate_targ_mask_encoding(nintervals):
"""Precreate 1 + 2*nintervals different target/mask encodings
(depending whether item is a boundary, or whether each interval is
censored or not).
"""
nencodes = 1 + nintervals * 2
targ_tensor = torch.zeros(nencodes, nintervals)
mask_tensor = torch.zeros(nencodes, nintervals)
# For bounds, leave both all-zeros
# Next uncensored then censored ones:
offset = 1
for idx in range(nintervals):
# Mark point where item suffered hazard:
targ_tensor[idx + offset][idx] = 1
# Include up to and incl. this one in the loss:
mask_tensor[idx + offset][:idx+1] = 1
offset = 1 + nintervals
for idx in range(nintervals):
# No hazard seen, but include survival points (leave target
# values as zero) via the mask:
mask_tensor[idx + offset][:idx] = 1
return targ_tensor, mask_tensor
|
e92f660c9070b262af93eff075660c04ed5d2d9e
| 448,103 |
def file_contains(path, text):
"""Does the file at path contain text?"""
with open(path) as stream:
for line in stream:
if text in line:
return True
return False
|
74a12505d40bfc317efb0f650fa36f63d7847c36
| 201,777 |
def energy_balance_rule(mod, p, h):
"""
**Constraint Name**: DR_Energy_Balance_Constraint
**Enforced Over**: DR_OPR_HRZS
The sum of all shifted load up is equal to the sum of all shifted load
down within an horizon, i.e. there are no energy losses or gains.
"""
return sum(mod.DR_Shift_Up_MW[p, tmp]
for tmp in mod.TMPS_BY_BLN_TYPE_HRZ[
mod.balancing_type_project[p], h]) \
== sum(mod.DR_Shift_Down_MW[p, tmp]
for tmp in mod.TMPS_BY_BLN_TYPE_HRZ[
mod.balancing_type_project[p], h])
|
a3812eb1c38145576483c3013bd61a16e3b61df8
| 495,072 |
import binascii
def unhexlify(blob):
"""
Takes a hexlified script and turns it back into a string of Python code.
"""
lines = blob.split('\n')[1:]
output = []
for line in lines:
# Discard the address, length etc. and reverse the hexlification
output.append(binascii.unhexlify(line[9:-2]))
# Check the header is correct ("MP<size>")
if (output[0][0:2].decode('utf-8') != u'MP'):
return ''
# Strip off header
output[0] = output[0][4:]
# and strip any null bytes from the end
output[-1] = output[-1].strip(b'\x00')
script = b''.join(output)
try:
result = script.decode('utf-8')
return result
except UnicodeDecodeError:
# Return an empty string because in certain rare circumstances (where
# the source hex doesn't include any embedded Python code) this
# function may be passed in "raw" bytes from MicroPython.
return ''
|
074edf1359f404e9de14da1cccf3952812ca7cb7
| 653,476 |
def null_count(df) -> int:
"""
Get the total number of nulls in a dataframe
:param df: the pandas DataFrame to inspect
:returns: The total number of nulls as an int
"""
return df.isna().sum().sum()
|
fb8837feed4848a7fdd9bb91d4e8412681888b9b
| 205,874 |
import re
def extract_request(message, slack_id):
"""Extract request from the message.
Keywoard arguments:
message -- user's message
slack_id -- bot slack id
"""
request = message.replace("{} ".format(slack_id), "").strip()
request = re.sub(" +", " ", request)
return request
|
e7f0b22dd45f32d33094f80b6e47a6b1ce60ab65
| 108,300 |
from typing import Any
from typing import List
def ensure_list(item: Any) -> List:
"""Ensure string is converted to a Path.
Args:
item (Any): Anything.
Returns:
The item inside a list if it is not already a list.
"""
if not isinstance(item, list):
item = [item]
return item
|
c7895c87121f0265080cac42ab9b3ca1c23cca23
| 637,593 |
def getOrElseUpdate(dictionary, key, opr):
"""If given key is already in the dictionary, returns associated value.
Otherwise compute the value with opr, update the dictionary and return it.
None dictionary are ignored.
>>> d = dict()
>>> getOrElseUpdate(d, 1, lambda _: _ + 1)
2
>>> print(d)
{1: 2}
@type dictionary: dictionary of A => B
@param dictionary: the dictionary
@type key: A
@param key: the key
@type opr: function of A => B
@param opr: the function to compute new value from keys
@rtype: B
@return: the value associated with the key
"""
if dictionary is None:
return opr(key)
else:
if key not in dictionary:
dictionary[key] = opr(key)
return dictionary[key]
|
95454d7ca34d6ae243fda4e70338cf3d7584b827
| 705,915 |
def where_am_i(cmd_line, word_before_cursor):
"""
Tells the autocomplete which word it is completing. It requires a little extra care
because we want to differentiate when a space is pressed.
:param cmd_line: the list of command line words
:param word_before_cursor: word_before_cursor parsed from the document
:return: the position of the word we are on.
"""
if len(cmd_line) == 1 and cmd_line[0] == '':
return 0
elif word_before_cursor == '':
return len(cmd_line) + 1
else:
return len(cmd_line)
|
132fcdac296d0ff941d26ef1ea860b60e504187e
| 316,968 |
def sorensen(s1,s2) -> float:
"""
Sorensen similarity.
Parameters
----------
s1 : first set.
s2 : second set.
Returns
-------
similarity coefficient (0<=x<=1).
"""
return 2*len(s1&s2)/(len(s1)+len(s2))
|
a5670b1a9da6cdc3b1f5488016033c9e68c0de37
| 452,650 |
def count_sdf_mols(file_path):
"""
This function returns the number of molecules in an sdf-file.
Parameters
----------
file_path : str
Full path to sdf file.
Returns
-------
counter : int
Number of molecules.
"""
print('Counting molecules in {}...'.format(file_path))
counter = 0
with open(file_path, 'r', errors='backslashreplace') as sdf_file:
for line in sdf_file:
if '$$$$' in line:
counter += 1
return counter
|
15915b892aa8149b6ca230bb20d21e7f7c18af5f
| 151,568 |
def create_nine_digit_product(num):
""" Create a nine digit string resulting from the concatenation of
the product from num and multipliers (1, 2, 3,).... Return 0 if string
cannot be length 9.
"""
result = ''
counter = 1
while len(result) < 9:
result += str(num * counter)
counter += 1
if len(result) > 9:
result = 0
return result
|
9c6765349edfa7e03dc8d2ffe7bf6a45155f3ad0
| 13,566 |
def get_mission_area(label):
""" Search a PDS4 label for a Mission_Area.
Parameters
----------
label : Label or ElementTree Element
Full label for a PDS4 product with-in which to look for a mission area.
Returns
-------
Label, ElementTree Element or None
Found Mission_Area section with same return type as *label*, or None if not found.
"""
return label.find('*/Mission_Area')
|
aec04ef2fb93824fe5bbebff50123fc7d923e80a
| 343,682 |
def get_layer_info(layer):
""" Extracts information that makes up the layer, as well as its weights and bias. """
hyperparameters = dict()
parameters = dict()
# Convolutional layer
if str(layer).split('(')[0] == 'Conv2d':
hyperparameters['in_channels'] = layer.in_channels
hyperparameters['out_channels'] = layer.out_channels
hyperparameters['kernel_size'] = layer.kernel_size
hyperparameters['stride'] = layer.stride
hyperparameters['padding'] = layer.padding
if layer.bias is not None:
hyperparameters['bias'] = True
parameters['bias'] = layer.bias.clone()
else:
hyperparameters['bias'] = False
parameters['bias'] = None
parameters['weight'] = layer.weight.clone()
# Batch normalization layer
elif str(layer).split('(')[0] == 'BatchNorm2d':
hyperparameters['num_features'] = layer.num_features
hyperparameters['eps'] = layer.eps
hyperparameters['momentum'] = layer.momentum
hyperparameters['affine'] = layer.affine
hyperparameters['track_running_stats'] = layer.track_running_stats
parameters['bias'] = layer.bias.clone()
parameters['weight'] = layer.weight.clone()
return hyperparameters, parameters
|
43673409542a9540e7d764960808137c39caf213
| 320,389 |
def labels_name(labels):
"""Returns a comma-separate list of label names
Args: labels: list of label objects.
Returns: string with comma-separated labels names.
"""
if type(labels) is list:
return ','.join([ l['name'] for l in labels ])
else:
return labels['name']
|
35ad15d47056eea6343cc9267a50ff673680f9a6
| 108,467 |
from typing import Counter
import re
def build_wordlist(input_file):
"""Build a wordlist Counter from lines of the corpus file"""
wordlist = Counter()
for line in input_file:
words = re.findall(r'\w+', line)
wordlist.update(words)
return wordlist
|
575a6fb872750dc83ac8b6f8b66f4b779962b71d
| 31,720 |
def get_instrument(program):
"""Return the instrument inferred from the program number."""
if 0 <= program < 8:
return "Piano"
if 24 <= program < 32:
return "Guitar"
if 32 <= program < 40:
return "Bass"
if 40 <= program < 46 or 48 <= program < 52:
return "Strings"
if 56 <= program < 64:
return "Brass"
return None
|
4e2cceb3b09b6e255241976e492659e9addb77d8
| 441,638 |
def groupms_byenergy(microstates, ticks):
"""
This function takes in a list of microstates and a list of energy numbers (N values), divide the microstates into N
bands by using the energy number as lower boundaries. The list of energy will be sorted from small to large.
"""
N = len(ticks)
ticks.sort()
ticks.append(1.0e100) # add a big number as the rightest-most boundary
resulted_bands = [[] for i in range(N)]
for ms in microstates:
it = -1
for itick in range(N):
if ticks[itick] <= ms.E < ticks[itick+1]:
it = itick
break
if it >= 0:
resulted_bands[it].append(ms)
return resulted_bands
|
39c84e02f36946d2cff77b2ecb66794205be28a7
| 51,824 |
def get_snapshot_name(publish_name, dist, temporary=False):
"""
Returns a aptly snapshot name
Args:
dist (str): The distribution to be used (stable, unstable)
temporary (bool): use tempporary extension
"""
return "{}-{}{}".format(publish_name, dist, "-tmp" if temporary else "")
|
bbc365677dfcd96aba59224bdb575f63d59c7253
| 282,444 |
def counter(listy):
"""
Input: A list of numbers.
Output: The number of entries in the list, interation.
"""
counter = 0
for i in listy:
counter += 1
return counter
|
ded974e0a9d1201342b34c877eaf1c5182be8e7b
| 225,954 |
from typing import Dict
from typing import List
from typing import Tuple
def _is_explanation_equal(dict1: Dict[str, List[Tuple[str, float]]],
dict2: Dict[str, List[Tuple[str, float]]]) -> bool:
"""
Tests if the two dictionaries of a given structure are equal.
The both of the input parameters must be a dictionary with string keys and
list values. The latter is composed of 2-tuples of strings and floats.
The keys in the dictionary and the tuples must match exactly, while the
floats only need to be approximately equal. The ordering of the tuples in
the list does not need to be the same.
Parameters
----------
dict1 : Dictionary[string, List[Tuple[string, float]]]
The first dictionary to be compared.
dict2 : Dictionary[string, List[Tuple[string, float]]]
The second dictionary to be compared.
Returns
-------
equal : boolean
``True`` if the dictionaries are the same, ``False`` otherwise.
"""
if set(dict1.keys()) == set(dict2.keys()):
equal = True
for key in dict1:
val1 = sorted(dict1[key])
val2 = sorted(dict2[key])
if len(val1) != len(val2):
equal = False
break
for i in range(len(val1)):
if val1[i][0] != val2[i][0]:
equal = False
break
if abs(val1[i][1] - val2[i][1]) > 1e-1:
equal = False
break
if not equal:
break
else:
equal = False
return equal
|
92fedbf80441db270934017a67c7f5b88702381b
| 125,954 |
import asyncio
async def stop_exposure_after(command, delay: float):
"""Waits ``delay`` before closing the shutter."""
command.info(text="dark exposing . . .")
await asyncio.sleep(delay)
return True
|
c2674802bc059c3862de4aff22270677a091962c
| 138,213 |
def set_intersection(*sets):
"""Return the intersection of all the given sets.
As of Python 2.6 you can write ``set.intersection(*sets)``.
Examples
========
>>> from sympy.core.compatibility import set_intersection
>>> set_intersection(set([1, 2]), set([2, 3]))
set([2])
>>> set_intersection()
set()
"""
if not sets:
return set()
rv = sets[0]
for s in sets:
rv &= s
return rv
|
0e8639af9a00d0d57e0855bbdfd19a32c8f5786b
| 684,758 |
import math
def squared_loss(y, y_hat):
"""
squared loss function
:param y: :type numpy vector: label
:param y_hat: :type numpy vector: observation
:return: :type float: loss
"""
loss = 0
for i in range(len(y)):
loss += math.pow(sum(y[i] - y_hat[i]), 2)/2
return float(loss)
|
494451125be0f525091203dd52bd82b57960351e
| 214,574 |
def compute_center(detections):
"""Compute the center for each detection.
Args:
detections: A matrix of shape N * 4, recording the pixel coordinate of
each detection bounding box (inclusive).
Returns:
center: A matrix of shape N I 2, representing the (x, y) coordinate
for each input bounding box center.
"""
center = detections[:, [0, 1]] + detections[:, [2, 3]]
center /= 2.
return center
|
794b64de7ef7b1327bb0bb90982ac8d67c0a0fea
| 27,484 |
import hashlib
def checksum(filename, hash_factory=hashlib.md5, chunk_num_blocks=128):
"""
Read file and produce md5 hash of contents as string.
:param filename: file name
:param hash_factory: factory for producing hash
:param chunk_num_blocks: number of blocks, factor of 128
:return: str md5 hash of file contents
"""
h = hash_factory()
with open(filename,'rb') as f:
for chunk in iter(lambda: f.read(chunk_num_blocks*h.block_size), b''):
h.update(chunk)
return h.hexdigest()
|
522ff4289b185a550daffb068206589b9676a671
| 154,139 |
def _default_metric_compare_fn(last_metrics, new_metrics):
"""Compare two metrics
Args:
last_metrics: previous metrics. A comparable object.
new_metrics: new metrics. A comparable object.
Returns:
True if new_metrics is equal to or better than the last_metrics.
False, otherwise.
"""
if last_metrics is None:
return True
if new_metrics is None:
return False
try:
better = not (last_metrics > new_metrics)
return better
except TypeError:
raise TypeError(
'Metrics are not comparable: {} vs {}'.format(
type(last_metrics).__name__, type(new_metrics).__name__
)
)
except Exception:
# unknown error
raise
return False
|
e1609199a372a6fc2392f4c0021f9461a73ac55e
| 199,758 |
def selection_sort(li):
""" [list of int] => [list of int]
Selection sort: finds the minimum value, swaps it with the
value in the first position, and repeats these steps for
the remainder of the list.
"""
sorted_list = li
# iterate as many times as the list is long
for i in range(len(sorted_list)):
# initial minimum is just the first value of the unsorted list
min_index = i
# find the minimum in the unsorted list
for j in range(i, len(sorted_list)):
# if current is less than current min set new minimum
if sorted_list[j] < sorted_list[min_index]:
min_index = j
# swap the minimum and start of unsorted list
sorted_list[i], sorted_list[min_index] = sorted_list[min_index], sorted_list[i]
return sorted_list
|
38422c7f5a6c89a24a1dadfe89fa96bdfde7b02b
| 357,625 |
def _clock_to_mjd( clock_seconds ):
"""
Helper function which converts clock time in seconds to MJD in days
"""
# Modified Julian date of the "zero epoch" of the system clock (1/1/70)
MJD_ZEROPOINT = 40587.0
# Number of seconds per day.
SECONDS_PER_DAY = 86400.0
mjd_days = MJD_ZEROPOINT + (clock_seconds/SECONDS_PER_DAY)
return mjd_days
|
0859818bb6a2a0e5b4a549236944ed8894625a6d
| 493,975 |
from typing import Tuple
from pathlib import Path
def check_path_params(paths: Tuple) -> bool:
"""Checks if all paths in 'paths' exist."""
for path in paths:
if not Path(path).is_dir():
print(f"Path does not exist: {path}")
return False
return True
|
cdca8da458452c07045af6e3291c228a7630c452
| 424,874 |
import re
def _image_name_from_url(url):
""" Create a nice image name from the url. """
find = r'https?://|[^\w]'
replace = '_'
return re.sub(find, replace, url).strip('_')
|
47d064c2387d52e76554416db23861e4c00f4c1b
| 592,513 |
def write_clusters(filehandle, clusters, max_clusters=None, min_size=1, header=None, rename=True):
"""Writes clusters to an open filehandle.
Inputs:
filehandle: An open filehandle that can be written to
clusters: An iterator generated by function `clusters` or a dict
max_clusters: Stop printing after this many clusters [None]
min_size: Don't output clusters smaller than N contigs
header: Commented one-line header to add
rename: Rename clusters to "cluster_1", "cluster_2" etc.
Outputs:
clusternumber: Number of clusters written
ncontigs: Number of contigs written
"""
if not hasattr(filehandle, "writable") or not filehandle.writable():
raise ValueError("Filehandle must be a writable file")
# Special case to allows dicts even though they are not iterators of
# clustername, {cluster}
if isinstance(clusters, dict):
clusters = clusters.items()
if max_clusters is not None and max_clusters < 1:
raise ValueError("max_clusters must None or at least 1, not {}".format(max_clusters))
if header is not None and len(header) > 0:
if "\n" in header:
raise ValueError("Header cannot contain newline")
if header[0] != "#":
header = "# " + header
print(header, file=filehandle)
clusternumber = 0
ncontigs = 0
for clustername, contigs in clusters:
if len(contigs) < min_size:
continue
if rename:
clustername = "cluster_" + str(clusternumber + 1)
for contig in contigs:
print(clustername, contig, sep="\t", file=filehandle)
filehandle.flush()
clusternumber += 1
ncontigs += len(contigs)
if clusternumber == max_clusters:
break
return clusternumber, ncontigs
|
2a93908fd0a91d7c04304fdf100e27a1089c2ae2
| 359,861 |
def _compute_position(input, index):
"""Compute line/column position given an index in a string."""
line = 1
col = 1
eol = None # last end of line character
for c in input[:index]:
if c == '\n' or c == '\r':
if eol is None or eol == c:
eol = c
line += 1
col = 1
else:
# ignore second of '\n\r' and '\r\n' sequences
eol = None
else:
col += 1
return (line, col)
|
f08217651d11ed09c1e100368aa8cc869c37e386
| 697,713 |
def flatten_beam_dim(x):
"""Flattens the first two dimensions of a non-scalar array."""
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:])
|
4480ef5421407030f5cf217883600dbd4e63e196
| 687,558 |
def close(conn):
"""This closes the database connection.
"""
try:
conn.close()
except:
pass
return True
|
28cc152a60e2bdb4321f1e0fb310d31c3575d46f
| 451,050 |
import requests
def check_product_existence(p_id):
"""
Função para verificar a existencia do produto na API externa do LuizaLabs
:param p_id: id único do produto
:return: bool: True caso exista, se não False
"""
url = "http://challenge-api.luizalabs.com/api/product/{}"
response = requests.get(url.format(p_id))
if response.status_code == 200:
return True
return False
|
7fe23d26ac44f9f6056dabc4391ff358ed23323f
| 326,735 |
def translate_bbox(bbox, y_offset=0, x_offset=0):
"""Translate bounding boxes: (0, 0) to (y_{offset}, x_{offset}).
bbox (~numpy.ndarray): see before
y_offset (int or float): The offset along y axis.
x_offset (int or float): The offset along x axis.
Return : ~numpy.ndarray:
"""
out_bbox = bbox.copy()
out_bbox[:, :2] += (y_offset, x_offset)
out_bbox[:, 2:] += (y_offset, x_offset)
return out_bbox
|
cf917cfa6beee40bf6dd02a520e8afb39e0e3359
| 400,706 |
def sequence_delta(previous_sequence, next_sequence):
""" Check the number of items between two sequence numbers. """
if previous_sequence is None:
return 0
delta = next_sequence - (previous_sequence + 1)
return delta & 0xFFFFFFFF
|
8580c26d583c0a816de2d3dfc470274f010c347f
| 7,623 |
from typing import List
def add_line_continuation_characters(command_tokens: List[str]) -> List[str]:
"""
Add a \\ to the end of each command token that precedes an argument token (starting with -)
"""
command_tokens = list(command_tokens) # make a copy
for i, token in enumerate(command_tokens):
if i > 0 and token.startswith('-'):
command_tokens[i-1] += ' \\'
return command_tokens
|
9bc9575c53431f889dfa08c00c1a138c6cc1ddaa
| 256,303 |
def horner (x, ai) :
"""Value of polynomial `a0 + a1 * x + a2 * x**2 + ... an * x ** n` for `x`.
>>> horner (3, (-1, 2, -6, 2))
5
>>> horner (-3, [8, -1, 0, 13, 4])
-16
"""
ia = reversed (ai)
result = next (ia)
for a in ia :
result *= x
result += a
return result
|
770dea6ffbc2459745af650b7b72f5722b8fd6cb
| 566,411 |
def remove_padding(data):
"""Remove the padding of the plain text (it assumes there is padding)"""
pad_len = ord(data[-1])
return data[:-pad_len]
|
7d8530451ee292e1561b1dc66fbea1668c72dbc2
| 320,220 |
def parse_keyids(key):
"""Return parsed keyid string(s) or tuple of."""
if isinstance(key, str):
return key
elif isinstance(key, (tuple, list)):
return tuple(parse_keyids(keyid) for keyid in key)
return getattr(key, "keyid")
|
3ac2a2d2561d4f0778b5e79b847da930803797e5
| 434,756 |
def rm_eol(line, /):
"""Return line with end of line removed"""
return line.rstrip("\n\r")
|
5ae8b3c88473e619a666a7dec755ebbaf3a34948
| 498,985 |
from pathlib import Path
def corpus_file(path):
"""
Get a data file from a standard location. Check a few possible locations until the file is
found.
"""
my_location = Path(__file__).parent
root_location = my_location.parent
nfs_location = Path('/nfs/mg-cache/language_id/corpus')
paths_to_try = [root_location / 'corpus', nfs_location]
for location in paths_to_try:
path_to_try = location / path
if path_to_try.exists():
return str(path_to_try)
raise FileNotFoundError(f"Can't find {path!r} in any of {paths_to_try!r}")
|
1672d59b8cbb3af2c246cfcac89d73a1aae1536b
| 333,299 |
def imgtype2ext(typ):
"""Converts an image type given by imghdr.what() to a file extension."""
if typ == 'jpeg':
return 'jpg'
if typ is None:
raise Exception('Cannot detect image type')
return typ
|
c75de1ec236a9bd33b2906618dd357c5e6bbaac8
| 489,826 |
def filter_not_empty_values(value):
"""Returns a list of non empty values or None"""
if not value:
return None
data = [x for x in value if x]
if not data:
return None
return data
|
c4f927b3faeb201a70c99654a404011083d3658d
| 608,602 |
from typing import Tuple
def format_addr(addr: Tuple[str, int]) -> str:
"""
Format an address from a (host, port) tuple
:param addr: the address tuple to format
:return: a string representing address as "host:port"
"""
return ":".join(map(str, addr))
|
9aa8dc27d0cadbc32c46d330262f52f1a0de8318
| 444,728 |
def pkcs7_pad(data, block_size=16):
"""Calculate and append pkcs7 padding. Block size can be defined dynamically."""
last_block = data[block_size*(len(data)/block_size):]
if not last_block:
return data + chr(block_size)*block_size
rem = block_size - len(last_block)
return data + chr(rem)*rem
|
199ab83c2a29370a2c965203d45c069098670b3c
| 359,263 |
def time_to_secs(t):
"""Convert a datetime.time object to seconds"""
return t.hour*3600 + t.minute*60 + t.second
|
37b12e42b6841c6ce3c9a45ab90c0e33257ae2b1
| 641,395 |
def _return_arg(__arg: ..., /) -> ...:
"""Return the singular positional argument unchanged."""
return __arg
|
b4f8b9b8a7b7d344f15c99fdeaf71f938dca5892
| 628,689 |
def split_line(line, min_line_length=30, max_line_length=100):
"""
This is designed to work with prettified output from Beautiful Soup which indents with a single space.
:param line: The line to split
:param min_line_length: The minimum desired line length
:param max_line_length: The maximum desired line length
:return: A list of lines
"""
if len(line) <= max_line_length:
# No need to split!
return [line]
# First work out the indentation on the beginning of the line
indent = 0
while line[indent] == ' ' and indent < len(line):
indent += 1
# Try to split the line
# Start looking for a space at character max_line_length working backwards
i = max_line_length
split_point = None
while i > min_line_length:
if line[i] == ' ':
split_point = i
break
i -= 1
if split_point is None:
# We didn't find a split point - search beyond the end of the line
i = max_line_length + 1
while i < len(line):
if line[i] == ' ':
split_point = i
break
i += 1
if split_point is None:
# There is nowhere to split the line!
return [line]
else:
# Split it!
line1 = line[:split_point]
line2 = ' ' * indent + line[split_point + 1:]
return [line1] + split_line(line2, min_line_length, max_line_length)
|
09cb5385b2d433579ad825652ccbb27862271cf8
| 587,346 |
import json
def get_workcell_io_json() -> str:
"""Return a test workcell_io.json."""
workcell_io = {
"Proto": ("ChoKBnZhY3V1bRoCdXIoAjoKEghzdGFuZGFyZAodCgdibG93b2ZmGgJ1cigC"
"OgwSCHN0YW5kYXJkIAEKSwoNdmFjb2ZmLWJsb3dvbhoCdXIoAjABOhgKCnZh"
"Y3V1bS1vZmYSCHN0YW5kYXJkGAE6GAoKYmxvd29mZi1vbhIIc3RhbmRhcmQg"
"AQolCg92YWN1dW0tcHJlc3N1cmUaAnVyKAE6DBIIc3RhbmRhcmQgAwogCgx2"
"YWN1dW0tZ2F1Z2UaAnVyKAM6ChIIc3RhbmRhcmQSCHN0YW5kYXJkEgxjb25m"
"aWd1cmFibGUSBHRvb2waDgoIc3RhbmRhcmQQASAHGg4KCHN0YW5kYXJkEAIg"
"BxoSCgxjb25maWd1cmFibGUQASAHGhIKDGNvbmZpZ3VyYWJsZRACIAcaDgoI"
"c3RhbmRhcmQQAyABGg4KCHN0YW5kYXJkEAQgARoKCgR0b29sEAEgARoKCgR0"
"b29sEAIgARoKCgR0b29sEAMgASIhChp2YWN1dW0tZ2F1Z2UtbWluLXRocmVz"
"aG9sZB0AAPpEIhwKFXF1YWxpdHktbWluLXRocmVzaG9sZB0zMzM/IiIKG3Nl"
"bnNvci1oZWFsdGgtbWluLXRocmVzaG9sZB0zMzM/"),
"created": "2020-08-27T22:50:32.513053Z",
"createdBy": "Z2qqLaQ3WVckV8IClWGwuEWOckD2"
}
return json.dumps(workcell_io)
|
31e385fc0927dde3e215534533a583d0381c9a8b
| 516,827 |
def protein_sp_cterm(protein, drange):
"""
Return protein sequence with SP placed at end
"""
sp_start, sp_end = drange.split("-")
return protein[int(sp_end):] + protein[:int(sp_end)]
|
1af28db6378f38adb1b0818f193f0dd85f47d381
| 279,977 |
def segments_intersect(s1, s2):
"""
Return *True* if *s1* and *s2* intersect.
*s1* and *s2* are defined as::
s1: (x1, y1), (x2, y2)
s2: (x3, y3), (x4, y4)
"""
(x1, y1), (x2, y2) = s1
(x3, y3), (x4, y4) = s2
den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1))
n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3))
n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3))
if den == 0:
# lines parallel
return False
u1 = n1/den
u2 = n2/den
return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0
|
66a2149f3f09eb584728853e006e74db6a56698e
| 491,155 |
import re
def clean_review(text: str):
"""
Removes a set of special characters from the review text for the sake of dependency parsing.
Parameters:
text (str): Review text.
Returns:
str: Cleaned review text.
"""
return re.sub(r'[$%+^&@#*]+', r'', text)
|
85324af96a937312a5af6b40ce27a07189d1b103
| 408,311 |
def probability_string(probability: float) -> str:
"""
Converts a probability to a string.
"""
return f"{probability:.2f}".replace("0.", "0,").replace("0,0", "0,0")
|
2489fb558837663c0ceed80a4d3171b8243eaa69
| 105,398 |
def get_all_indexes_of(value, iterable):
"""
Return all indexes for a value.
"""
# Convert the given object to a list.
iterable = list(iterable)
index_list = []
# Get each index and store them in the list of indexes.
for index in range(len(iterable)):
if value in iterable[index]: index_list.append(index)
# Return the list of indexes.
return index_list
|
48223b2a7c5a2cbf417eba25ed33204913be9f83
| 276,508 |
def parse_float(a):
""" Converts to a float value; raise TypeError. """
try:
res = float(a)
return res
except:
msg = 'Cannot convert value to a float.\nValue: %s' % a.__repr__()
raise TypeError(msg)
|
08b8a8010385c8f48d3db239d54b401599245fc4
| 587,250 |
def walk(f, d, num_steps):
"""Assumes: f a Field, d a Drunk in f, and num_steps an int >= 0.
Moves d num_steps times; returns the distance between the
final location and the location at the start of the walk."""
start = f.get_loc(d)
for s in range(num_steps):
f.move_drunk(d)
return start.dist_from(f.get_loc(d))
|
51555593f73ad4b543ba768b6a77169627223b37
| 437,837 |
import re
def get_tagged_functions_in_file(filename):
"""Given a filename, return a set of the target function names tagged with
@coverage in that file."""
token_regex = r"^.*@coverage(( (\w+))+).*$"
token_pattern = re.compile(token_regex, re.IGNORECASE)
cov_functions = set()
line = ""
with open(filename, "r") as f:
while True:
line = f.readline()
if not line:
break
match = re.match(token_pattern, line)
if match:
loc = match.group(1).strip().split()
for i in loc:
cov_functions.add(i)
return cov_functions
|
4f8964cae341d7e3e2317ee44690104ca0dfcd16
| 232,921 |
def strip_preparer(value):
"""Colander preparer that trims whitespace around argument *value*."""
if isinstance(value, str):
return value.strip()
else:
return value
|
e6e1f0f3db717fde54256414e1c6ff2fd3eaca6f
| 545,571 |
from typing import Dict
from typing import Any
def _find_host_port(ports: Dict[str, Any], container_port: int) -> str:
"""Find host port from container port mappings.
`ports` is a nested dictionary of the following structure:
{'8500/tcp': [{'HostIp': '0.0.0.0', 'HostPort': '32769'}],
'8501/tcp': [{'HostIp': '0.0.0.0', 'HostPort': '32768'}]}
Args:
ports: Dictionary of docker container port mapping.
container_port: Corresponding container port you're looking for.
Returns:
A found host port.
Raises:
ValueError: No corresponding host port was found.
"""
mappings = ports.get('{}/tcp'.format(container_port))
if mappings:
return mappings[0].get('HostPort')
else:
raise ValueError(
'No HostPort found for ContainerPort={} (all port mappings: {})'
.format(container_port, ports))
|
516db707bf0474842c3732b34a522dcc725a1213
| 100,776 |
def get_policies(key, service_account):
"""Returns Machine Provider policies governing the given instance.
Args:
key: ndb.Key for a models.Instance entity.
service_account: Name of the service account the instance will use to
talk to Machine Provider.
"""
return {
'backend_attributes': {
'key': 'key',
'value': key.urlsafe(),
},
'machine_service_account': service_account,
'on_reclamation': 'DELETE',
}
|
95ecfdaedc80e148dcde466581fbcdf8727dd166
| 281,007 |
import re
def validate_cron_string(cron_string, error_on_invalid=False):
"""
Validate that a string is a Unix cron string.
"""
# Note: This is also a Temporal function, but I'm trying to avoid making Temporal a dependency of BTU.
crontab_time_format_regex = re.compile(
r"{0}\s+{1}\s+{2}\s+{3}\s+{4}".format(
r"(?P<minute>\*(\/[0-5]?\d)?|[0-5]?\d)",
r"(?P<hour>\*|[01]?\d|2[0-3])",
r"(?P<day>\*|0?[1-9]|[12]\d|3[01])",
r"(?P<month>\*|0?[1-9]|1[012])",
r"(?P<day_of_week>\*|[0-6](\-[0-6])?)") # end of str.format()
) # end of re.compile()
if crontab_time_format_regex.match(cron_string) is None:
if error_on_invalid:
raise Exception(f"String '{cron_string}' is not a valid Unix cron string.")
return False
return True
|
4cc4594bfc2fd2743f20fa9662a4083497d5e1fc
| 43,399 |
def child_elem_as_str(elem,qname):
"""Returns the content of the child element as str."""
child = elem.find_child_element(qname)
if child:
return str(child.schema_actual_value)
return None
|
5d8555ccef1a2222b6e7b67e18e6a5a5b2392810
| 495,713 |
def uint64_tag(name, value):
"""Create a DMAP tag with uint64 data."""
return name.encode('utf-8') + \
b'\x00\x00\x00\x08' + \
value.to_bytes(8, byteorder='big')
|
dc5ea3d37f9864f318b48e179f201388614d7c33
| 94,803 |
from typing import Callable
import re
def remove_link_ids() -> Callable[[str], str]:
"""Create function to remove link ids from rendered hyperlinks."""
def _remove_link_ids(render: str) -> str:
"""Remove link ids from rendered hyperlinks."""
re_link_ids = re.compile(r"id=[\d\.\-]*?;")
subsituted_render = re_link_ids.sub("id=0;", render)
return subsituted_render
return _remove_link_ids
|
cbddaca54c205d54f8c2e1baba504c14d31e7676
| 677,000 |
import torch
def calc_output_to_cum_min_cov(
cross_covariance: torch.Tensor,
prob_is_min: torch.Tensor,
) -> torch.Tensor:
"""
Given two sets of jointly Gaussian random variables [Y_1, ..., Y_d] and [Z_1, ..., Z_m],
calculate the approximate covariance between min(Y_1, ..., Y_d) and [Z_1, ..., Z_m].
Args:
cross_covariance: Covariance between Gaussian variables [Y_1, ..., Y_d] and [Z_1, ..., Z_m]
of shape [batch_dim..., d, m]
prob_is_min: (approximate) probability that each of [Y_1, ..., Y_d] is the
minimum. Shape [batch_dim..., d]
Returns:
torch.Tensor: Approximate covariance between min(Y_1, ..., Y_d) and [Z_1, ..., Z_m].
Shape [batch_dim..., m]
"""
return (cross_covariance * prob_is_min[..., None]).sum(dim=-2)
|
affd8180523e4dcc475caeeb03c0635819eec88c
| 371,563 |
def _2DprintInxRow(inxRow, lSpacesIndR):
"""
Function prints one index of a row of a 2D array
Input:
- 1 **inxCol** (*int*) Index of the row to be printed
- 2 **lSpacesIndR** (*list*) A list with spaces which should be added
to indices of rows
Output:
- 1 **strArray** (*string*) The string with printed requested index of
a row
"""
# Print index of the row
strRowInx = ('%d:') % inxRow
# Pick up a correct space which is added before the index
strSpaceBefore = lSpacesIndR[len(strRowInx) - 1]
# Connect the above together
strArray = strSpaceBefore + strRowInx
strArray = strArray + ' '
return strArray
|
f108007a9fcb25a6aa32e22297a654d6d262e247
| 39,312 |
def _split_tag_path_pattern(tag_path_pattern):
"""
Returns a list of tag patterns and the prefix for a given tag path pattern.
Args:
tag_path_pattern (str)
"""
if tag_path_pattern.startswith('+/') or tag_path_pattern.startswith('*/'):
prefix = tag_path_pattern[:2]
tag_path_pattern = tag_path_pattern[2:]
else:
prefix = ''
return tag_path_pattern.split('.'), prefix
|
39252b07ce2c63bcb7c75a6a48dc7cab5b311c83
| 327,174 |
from typing import List
def define_foot_vertices(robot: str) -> List:
"""Define the robot-specific positions of the feet vertices in the foot frame."""
if robot != "iCubV2_5":
raise Exception("Feet vertices positions only defined for iCubV2_5.")
# For iCubV2_5, the feet vertices are not symmetrically placed wrt the foot frame origin.
# The foot frame has z pointing down, x pointing forward and y pointing right.
# Origin of the box which represents the foot (in the foot frame)
box_origin = [0.03, 0.005, 0.014]
# Size of the box which represents the foot
box_size = [0.16, 0.072, 0.001]
# Define front-left (FL), front-right (FR), back-left (BL) and back-right (BR) vertices in the foot frame
FL_vertex_pos = [box_origin[0] + box_size[0]/2, box_origin[1] - box_size[1]/2, box_origin[2]]
FR_vertex_pos = [box_origin[0] + box_size[0]/2, box_origin[1] + box_size[1]/2, box_origin[2]]
BL_vertex_pos = [box_origin[0] - box_size[0]/2, box_origin[1] - box_size[1]/2, box_origin[2]]
BR_vertex_pos = [box_origin[0] - box_size[0]/2, box_origin[1] + box_size[1]/2, box_origin[2]]
# Vertices positions in the foot (F) frame
F_vertices_pos = [FL_vertex_pos, FR_vertex_pos, BL_vertex_pos, BR_vertex_pos]
return F_vertices_pos
|
b03971a978e15539f0e84dd0e672c7d2c4200026
| 277,860 |
def _get_exception_key(exc_info):
""" Returns unique string key for exception.
Key is filename + lineno of exception raise.
"""
exc_tb = exc_info[2]
if exc_tb is None:
return repr(exc_info[1])
return "{}:{}".format(exc_tb.tb_frame.f_code.co_filename,
exc_tb.tb_lineno)
|
3d6423946b2512440569523889e189f0718ef866
| 494,050 |
def nodot(item):
"""Can be used to ignore hidden files, starting with the . character."""
return item[0] != '.'
|
f0b053ae024016454e457ef183e540b354d25463
| 482,793 |
def _get_element_subnodes(tree_element):
"""
Get all of the sublements of the tree_element with a 'node' tag
:param tree_element: Element object from the ElementTree package
:return: From ElementTree documentation: "Returns a list of all matching
elements in document order."
"""
return tree_element.findall('node')
|
6b304151f86a398e9bc24f9705795ef67453fbf3
| 500,710 |
import difflib
def lines_diff(lines1, lines2):
"""Show difference between lines."""
is_diff = False
diffs = list()
for line in difflib.ndiff(lines1, lines2):
if not is_diff and line[0] in ('+', '-'):
is_diff = True
diffs.append(line)
return is_diff, diffs
|
50916d46871980fadfd854dc698481a4b0f35834
| 1,150 |
def if_none(value, default):
"""
Returns value or default if value is None.
"""
if (value is None): return default
return value
|
7c7e83c2c633ae809a2b1a75a6e16fc7fee3eb21
| 47,377 |
import torch
def compute_accuracy(logits, labels, mask):
"""Compute the accuracy"""
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
|
a7ee234837024598fc95fa9c54c55802ea411577
| 701,770 |
def encode_data(data):
"""
Helper that converts :class:`str` or :class:`bytes` to :class:`bytes`.
:class:`str` are encoded with UTF-8.
"""
# Expect str or bytes, return bytes.
if isinstance(data, str):
return data.encode('utf-8')
elif isinstance(data, bytes):
return data
else:
raise TypeError("data must be bytes or str")
|
3cd54389719439e8f18cf02b110af07799c946b5
| 707,158 |
import json
def load_params(file):
"""
Load the train config parameters.
Args:
file (str): path to config file
Returns:
out (dict): config dictionary
"""
with open(file, "r") as f:
out = json.load(f)
return out
|
d108ea11759299b70eec65eea976466fd164e5f6
| 541,677 |
def is_response(event):
"""Check whether an event is a response indicating a message was successfully sent"""
return 'reply_to' in event and 'ok' in event and event['ok']
|
6906e8364862f6ed88faa2f2f249db8901df4a51
| 61,593 |
def basic_python_loop(n):
"""Runs a simple native python loop which is memory light and involves no data input or output
Args:
n (int): count of number of loops
"""
mydict = {}
for i in range(n):
mydict[i % 10] = i
return None
|
73d2762e487fc47dbea397e22e1a7ae0db79a2d6
| 467,528 |
def plural_of (noun) :
"""Returns the plural from of the (english) `noun`.
>>> print (plural_of ("house"))
houses
>>> print (plural_of ("address"))
addresses
>>> print (plural_of ("enemy"))
enemies
"""
result = noun
if result.endswith ("s") :
result += "es"
elif result.endswith ("y") :
result = result [:-1] + "ies"
else :
result += "s"
return result
|
9bd1a0dc16d06245df8c42de3a8ce76717dff812
| 205,353 |
import glob
def filebrowser(ext='', directory=''):
"""
returns files with an extension
"""
return [f for f in glob.glob(f"{directory}**/*{ext}", recursive=True)]
|
cb7cc8935c68bd003286e55fb5d5f5dcd6d37c52
| 345,525 |
def d_hyd(width, height):
"""Calculates hydraulic diameter for rectangular profiles"""
return 4 * (width * height) / (2 * (width + height))
|
ceaeb1344b3183b907fcc38c8e1b617889a1381d
| 369,629 |
def calc_centroid(bolts):
"""Calculate the centroid of the bolt group.
Args:
bolts (data struct): list of the bolt data structure
Returns:
x_centroid (float): x-coordinate of bolt group centroid
y_centroid (float): y-coordinate of bolt group centroid
This coordinate pair is returned as a tuple, as follows:
(x_centroid, y_centroid)
"""
sum_x = 0.0
sum_y = 0.0
num_bolts = len(bolts)
for bolt in bolts:
x = bolt[1][0]
y = bolt[1][1]
sum_x = sum_x + x
sum_y = sum_y + y
x_centroid = sum_x/num_bolts
y_centroid = sum_y/num_bolts
return x_centroid, y_centroid
|
006c9a9c8105cf332f338817d7aab281853b081f
| 310,055 |
import torch
def make_pad_mask(lengths: torch.Tensor, le : bool = True) -> torch.Tensor:
"""Make mask tensor containing indices of padded part.
See description of make_non_pad_mask.
Args:
lengths (torch.Tensor): Batch of lengths (B,).
Returns:
torch.Tensor: Mask tensor containing indices of padded part.
Examples:
>>> lengths = [5, 3, 2]
>>> make_pad_mask(lengths)
# masks = [[0, 0, 0, 0 ,0],
# [0, 0, 0, 1, 1],
# [0, 0, 1, 1, 1]]
masks = [[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]]
"""
batch_size = int(lengths.size(0))
max_len = int(lengths.max().item())
seq_range = torch.arange(0,
max_len,
dtype=torch.int64,
device=lengths.device)
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_length_expand = lengths.unsqueeze(-1)
# mask = seq_range_expand >= seq_length_expand
# fix: torch.float32 -> torch.int32
if le:
mask = (seq_range_expand < seq_length_expand).type(torch.int32)
else:
mask = (seq_range_expand >= seq_length_expand).type(torch.int32)
# print(mask)
return mask
|
43b32a4dc7b1053ad80a8d6c47ea39d1835d5a71
| 32,886 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.