content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def version_to_tuple(v):
"""Converts a version string into a tuple."""
return tuple(map(int, v.split('.')))
|
0864249d835c27f6e0a0bf6cd289e310836150ce
| 438,684 |
def initials(string, sep = ".", sepAtEnd = True):
"""Returns the initials of a string"""
splitString = string.split(" ")
theInitialList = [i[:1].capitalize() for i in splitString]
return sep.join(theInitialList)+sep*sepAtEnd
|
dbbd4547563db0d8f1036eb1355e74d72e0c2796
| 334,054 |
def estimate_euler_constant_factorial(number_of_elements=1000):
"""Estimation of euler's constant using its taylor series."""
euler_constant = 1
factorial = 1.
for number in range(1, number_of_elements):
factorial *= number
euler_constant += 1. / factorial
return euler_constant
|
44226b67bd021b7ab0eb2ae06db69dd902a4e6c2
| 236,921 |
def handle_invalid_usage_exception(error):
"""
Handles global exception fired from this namespace.
:param error: exception fired.
:return: payload, status code tuple.
"""
return {'message': error.message}, 400
|
c412e6705ed5f4237ecdc4ca0d723e938fe1ffdf
| 145,120 |
def findDuplicatesFilenames(data, sheet):
"""Finds duplicated articles in sample table and returns list with their associated docx filenames"""
duplicated = data.duplicated(subset=['http'])
duplicated_list = duplicated.values.tolist()
row_ctr= 0
filenames_to_delete = []
for row in duplicated_list:
row_ctr +=1
if row :
filename= sheet.cell(row=row_ctr+1, column=10).value
filename_to_push = str(filename)+ '.docx'
filenames_to_delete.append(filename_to_push)
print(f"Filenames to delete are {filenames_to_delete}")
return filenames_to_delete;
|
4b17d07c4c0daf328179af99cf67ba880927f7ca
| 295,373 |
def nofirst(l):
"""
Returns a collection without its first element.
Examples
--------
>>> nofirst([0, 1, 2])
[1, 2]
>>> nofirst([])
[]
"""
return l[1:]
|
adf86fe85f8173be173ee94479dac1ceb7a38813
| 662,704 |
def get_bounding_box_size(images):
"""Compute bounding box size given list of images."""
height = max(image.shape[0] for image in images)
width = max(image.shape[1] for image in images)
return height, width
|
0ca510a082c92e12cb775dabf16af455f11c0e65
| 250,682 |
import torch
def db_to_amplitude(x, ref=1.0):
"""
Decibel-to-amplitude conversion (exponential mapping with base=10)
Args:
x (Tensor): Input in decibel to be converted
ref (float): Amplitude value that is equivalent to 0 decibel
Returns:
(Tensor): same size of x, after conversion
"""
power_spec = torch.pow(10.0, x / 10.0 + torch.log10(torch.tensor(ref,
device=x.device,
requires_grad=False,
dtype=x.dtype)))
return power_spec.pow(0.5)
|
9fd14bb5eecf39d7bad15175f9a6969beebee543
| 540,912 |
def percent_pos_to_step_num(percent_pos, max_steps):
""" Calculate step number from percentage position. Note that 100% means fully up."""
return round((1 - percent_pos) * max_steps)
|
32bc641a55c0d07970e33b7e604852c24db4f4d0
| 396,258 |
def setList(value):
"""
Sets a list to empty if None.
"""
if value is None:
return []
else:
return value
|
e06225398022cc6e795d13123c2a9c7159ef7871
| 184,624 |
def _has_eval_results_call(cls):
"""Return True if cls has a __call__ decorated with @eval_results
"""
return getattr(getattr(cls, '__call__', None), '_eval_results', False)
|
3466ff2594f58d2ee9405e57cdb77bafbf3b9529
| 676,368 |
def read_bytes(filename, offset, number):
"""
Reads specific bytes of a binary file.
:param filename: path to file
:type filename: string
:param offset: start reading at offset
:type offset: integer
:param number: number of bytes
:type number: integer
:return: byte string
"""
with open(filename, "rb") as f:
f.seek(offset)
byte_string = f.read(number)
f.close()
return byte_string
|
c04c7659211f7bfee3d88b27cd014cea303b13c4
| 675,408 |
from typing import Tuple
def compute_character_attack_speed(
frames_per_animation: int,
base_animation_length: int,
speed_coefficient: float = 1.0,
engine_tick_rate: int = 60) -> Tuple[float, float]:
"""Computes the minimum and maximum character_attack_speed for a certain ability to reach the specified frames
per animation breakpoint.
Args:
frames_per_animation: breakpoint to calculate attack speed values for
base_animation_length: animation length of ability
speed_coefficient: speed-up scalar of ability
engine_tick_rate: server tick rate
Returns:
Tuple[int, int]: min attack speed to reach frames_per_animation breakpoint and max attack speed to leave
frames_per_animation breakpoint.
"""
_coeff = (base_animation_length - 1) * engine_tick_rate / (speed_coefficient * base_animation_length)
min_aps = _coeff / frames_per_animation
max_aps = _coeff / (frames_per_animation - 1)
return min_aps, max_aps
|
ab1ca81bd89ca5f4ff0e2068a4df51e09140274a
| 51,784 |
def cam_name_to_id(name):
"""Convert the camera name to camera ID"""
if name == "clairton1":
return 0
elif name == "braddock1":
return 1
elif name == "westmifflin1":
return 2
else:
return None
|
15beb275dc156bd82fa86ee962c2cfef37202027
| 248,788 |
def any_tagged_cell(nb, tag):
"""Whether the notebook contains at least one cell tagged ``tag``?
Parameters
----------
nb : nbformat.NotebookNode
The notebook to introspect
tag : str
The tag to look for
Returns
-------
bool
Whether the notebook contains a cell tagged ``tag``?
"""
return any([tag in cell.metadata.tags for cell in nb.cells])
|
a5645aae183de4dda5bc4610091dbee5e890d0b0
| 583,006 |
def polygon_list_to_dict(polygon):
"""
Returns a dictionary with the list of points of a polygon.
Parameters
----------
polygon : `list`
A list with the XYZ coordinates of the vertices of a polygon.
Returns
-------
polygon_dict : `dict`
A dictionary of with the points of a polygon.
"""
return {'points': polygon}
|
1b99fcd75346f67f5c6029185267db066cde0a51
| 343,367 |
def eeCollection(mission):
"""
Earth Engine image collection name from satellite mission name
"""
switch = {
'Sentinel2':'COPERNICUS/S2',
'Landsat8':'LANDSAT/LC08/C01/T1_TOA',
'Landsat7':'LANDSAT/LE05/C01/T1_TOA',
'Landsat5':'LANDSAT/LT05/C01/T1_TOA',
'Landsat4':'LANDSAT/LT04/C01/T1_TOA'
}
return switch[mission]
|
f49feb311645ce7827db3f252ff3dd19eda22244
| 273,392 |
async def clap(text, args):
""" Puts clap emojis between words. """
if args != []:
clap_str = args[0]
else:
clap_str = "👏"
words = text.split(" ")
clappy_text = f" {clap_str} ".join(words)
return clappy_text
|
09865461e658213a2f048b89757b75b2a37c0602
| 705,785 |
def count(values):
"""
Returns a dict of counts for each value in the iterable.
"""
counts = dict()
for v in values:
if v not in counts:
counts[v] = 0
counts[v] += 1
return counts
|
0e4febef6dbfefb2e04b103f177af3dd3d3bfc59
| 114,786 |
def replace_del_alt(var):
"""
Issues occur with deletions hear the ends of the genome.
Currently - is used to represent an entire string of bases
being deleted. Here we replace the ALT with "N" the length
of REF.
"""
ref_length = len(var.REF)
if var.ALT[0] == '-':
fixed_alt = 'N' * ref_length
var.ALT[0] = fixed_alt
return var
else:
return var
|
f3d081a8dd12b8ca81bd8d5a8aca6bf6dbccc839
| 696,459 |
def get_channels_first_permutation(spatial):
"""Returns a permutation to make a (N, ..., C) array into (N, C, ...)."""
return [0, spatial + 1] + list(range(1, spatial + 1))
|
4ff047e50ce2c300b872f3e95d799991b27c4e69
| 590,905 |
def prepare_data(logs: dict):
"""Function to prepare the data according to the type of message.
Args:
logs: Dictionary containing the metrics and loss values.
Returns:
string in the same format as logs.
"""
val = [f"{key} : {value}" for key, value in logs.items()]
text = "\n".join(val)
return text
|
7eae9094ccb301c4cb0836f804ba527ca4e2b5c3
| 411,793 |
def sanitize(name: str):
""" Normalize the given string by removing chars that are potentially problematic for the LP solver """
return name.replace("-", "__")
|
63d024b6820098b46d3b5457f338511c60e65898
| 119,077 |
def drop_command(message, command):
"""
Given a message text, drops the command prefix from the string.
"""
return message[len(command) + 1:]
|
6e8488e9b57be3ba61d5e53111dcd876e82313a1
| 204,677 |
def format_chores(chores):
"""
Formats the chores to properly utilize the Oxford comma
:param list chores: list of chores
"""
if len(chores) == 1:
return f'{chores[0]}'
elif len(chores) == 2:
return f'{chores[0]} and {chores[1]}'
else:
chores[-1] = 'and ' + chores[-1]
return f"{', '.join(chores)}"
|
38b7115520867e2545f7be7364e6147ca12dc8e1
| 30,085 |
def create_dates_list(state_dates, dates_string, key, start_capital):
"""
Create a dict used to update x_axis values and string.
:param state_dates: boolean, show or not dates on axis
:param dates_string: list of dates plotted
:param key: string, type of graph
:param start_capital: float
"""
# keys are idx of trade and values are date string
if state_dates == 2:
xaxis_dict = dict(enumerate(dates_string))
# keys and values are idx of trades
else:
xaxis_dict = {i: i for i in range(len(dates_string))}
if key == "Growth" and start_capital == 0.0:
xaxis_dict = {} # don"t set string if no data
return xaxis_dict
|
f153ed3b403682f7dc9b451a547f9608fe1a7bf5
| 416,535 |
def simple_check(author, channel):
"""
A predicate used in the wait_for() function, to ensure the user input can only come
from the user who activated the command, and in the same channel.
:param author: Author object
:param channel: Channel object
:return: Check function
"""
def check(message):
return message.author == author and message.channel == channel
return check
|
484cf46a71621f3e0f41574e26a0974ddaa187cb
| 401,410 |
import aiohttp
async def cleanup_file(slack_api_token, file):
"""Deletes a file from Slack."""
headers = {"Authorization": "Bearer {}".format(slack_api_token)}
data = {"file": file["id"]}
async with aiohttp.ClientSession() as session:
async with session.post('https://slack.com/api/files.delete', headers=headers, data=data) as resp:
if resp.status == 200:
return True
return False
|
420f20700e0eda242adf826451c8f45c20e91c87
| 155,882 |
import re
def filter_urls(url_to_check) -> bool:
"""
Filters the URLs collected so that only those from http://www.bbc.co.uk and https://www.bbc.co.uk
are kept. To remove the remaining non useful URLs we assume every valid BBC article has a 8 digit
string in its URI and discard those which do not.
@Returns bool True if URL is valid.
"""
searchobj = re.search(r'[0-9]{8}', url_to_check)
if ('http://www.bbc.co.uk' or 'https://www.bbc.co.uk' in url_to_check) and (searchobj is not None):
# print(f'URL added to list is : {url_to_check} ')
return True
else:
# print('URL is not added to the list, it may be outside BBC.co.uk news or not an news article')
return False
|
3d749f2a35566666fe7071d79b1787ea93273c72
| 306,681 |
def input_details(interpreter, key):
"""Gets a model's input details by specified key.
Args:
interpreter: The ``tf.lite.Interpreter`` holding the model.
key (int): The index position of an input tensor.
Returns:
The input details.
"""
return interpreter.get_input_details()[0][key]
|
e99acb200a460efb137f955bc800c226c8924173
| 295,610 |
def get_monitor_name(domain_name: str) -> str:
"""
Encapsulate the RUM monitors naming convention.
:param domain_name: the domain name for which a RUM
monitor is to be created.
:return: a Rams' compliant RUM monitor name
"""
return domain_name + "_RUM"
|
e31e24aa884c7b251c56d6c5d781ac1915c4167d
| 654,267 |
def format_correct(row):
"""
This function help determine if users enter the boggle board in a correct format.
:param row: string, Entered row of letters
:return: Boolean, return True if the entered row is in correct format
"""
if len(row) != 7:
return False
else:
for i in range(len(row)):
if i % 2 == 0:
if not row[i].isalpha():
return False
elif i % 2 == 1:
if row[i] != " ":
return False
return True
|
f5a70d8295de0a6ee71466a5fb40949aeedf7a59
| 238,781 |
def get_ng_build_env(env: str) -> str:
""" Translate the env string for angular that uses a more verbose string. """
return "production" if env == "prod" else ""
|
6aaa2b5b1d56b57c7afb24b6dd9f986682f09e49
| 509,577 |
def getDatasetId(chunk_id):
""" Get dataset id given a chunk id
"""
n = chunk_id.find('-') + 1
if n <= 0:
raise ValueError("Unexpected chunk id")
obj_uuid = chunk_id[n:(36+n)]
dset_id = "d-" + obj_uuid
return dset_id
|
c0b0b3f3cd655e336589defeb272085ac9dd2b89
| 335,682 |
def format_data_frame_row(row, format_message_string):
"""Return a formatted data frame using a format string."""
return format_message_string.format(**row)
|
cb59a7fbe6039a53a1d89033842dc0273eb7bf26
| 482,627 |
def is_control_char(c):
"""Return True if 'c' is a control character.
c is considered a control character if
it is outside of the extended ASCII set or
has a code below 32 with some exclusions.
An ASCII compatible character set is assumed.
"""
charcode = 0
# The following assignment
# should make this module compatible with
# at least Python 2.7 (tested on 2.7.9).
try:
charcode = ord(c)
except TypeError:
charcode = c
excludes = ("\t", "\r", "\n")
if charcode in [ord(char) for char in excludes]:
return False
return (charcode < 32 or
charcode > 255)
|
aedd5edad7e54d6eccee25f81332bd3ad17108c5
| 86,766 |
def cut_dataframe(df_entire, start_date, end_date, date_column="date"):
"""Cuts a dataframe to a desired date range
:param df_entire: The dataframe to cut
:type df_entire: pandas.core.frame.DataFrame
:param start_date: Start date of the dataframe entries
:type start_date: str
:param end_date: End date of the dataframe entries
:type end_date: str
:param date_column: Column name of the timestamp/date column, defaults to "date"
:type date_column: str, optional
:return: Returns the dataframe with entries only between inclusive boundaries of the mentioned dates
:rtype: pandas.core.frame.DataFrame
"""
mask = (df_entire[date_column] > start_date) & (df_entire[date_column] <= end_date)
return df_entire.loc[mask]
|
677c6a2a50e7fc268782ce7eff2437b5b7a069b6
| 173,809 |
import math
def Echotan(number):
"""
Tan of a number
"""
return math.tan(number)
|
cfdd4370cebc8fc444168df00804a71d691b62f2
| 389,547 |
def get_track(es_obj):
"""returns the track from the elasticsearch object"""
es_ds = es_obj.get('_source', {})
# iterate through ds
track_met_options = ['track_number', 'track', 'trackNumber', 'track_Number']
for tkey in track_met_options:
track = es_ds.get(tkey, False)
if track:
return track
# if that doesn't work try metadata
es_met = es_ds.get('metadata', {})
for tkey in track_met_options:
track = es_met.get(tkey, False)
if track:
return track
raise Exception('unable to find track for: {}'.format(es_obj.get('_id', '')))
|
57ee61968ab0ed9f27a49df624883c867382753a
| 273,026 |
import re
def remove_tags(text):
"""Remove html tags from a string"""
clean = re.compile('<.*?>')
return re.sub(clean, '', text)
|
b5bb38c10c99ec7979b0d740717e60f87cfccb9d
| 668,808 |
def get_portals(entries):
"""Create mapping of portal entrances from entries."""
portals = {}
for portal_name, locations in entries.items():
if len(locations) == 2:
(location1, level_change1), (location2, level_change2) = locations
portals[location1] = location2, level_change2
portals[location2] = location1, level_change1
return portals
|
022f3ac297573bff15f1b780b3a0c006e2d614df
| 321,466 |
import requests
import json
import pytz
def get_timezone(auth, base_url):
"""
Gets the account information which includes the timezone, and returns this timezone as a pytz.timezone object.
"""
r = requests.get(url=base_url + 'account.json', auth=auth)
if r.status_code is not 200:
raise requests.exceptions.HTTPError('Invalid Authentication')
data = json.loads(r.content.decode('utf-8'))
return pytz.timezone(data['time_zone'])
|
a1897f3746734697223a3b2b2ed4add6a6974384
| 494,966 |
from pathlib import Path
from typing import List
def get_dir_list(path: Path) -> List[str]:
"""
Return directory list
"""
dir_list = []
paths = Path(path).glob("**/*")
for p in paths:
if p.is_dir():
dir_list.append(str(p))
return dir_list
|
ae0bf021aba74f3ab601479c0dd91530f047374d
| 430,118 |
def get_xpath_text_list(root, xpath, child_xpath):
"""
Returns text values of child_xpath in order they occur
"""
elem = root.find(xpath)
if elem is None:
return []
else:
return [child.text for child in elem.findall(child_xpath)]
|
5681cba81c4ba8e75031e24f4d42bc914d822e77
| 181,855 |
def get_int_mask(ip):
"""get mask from ip/mask info
Args:
ip (str): ip with mask
Returns:
str: mask
"""
return ip.split("/")[-1]
|
7fb95397353da1db60c3cf28d090f80f7a0dc254
| 194,230 |
def calc_tare_torque(rpm):
"""Returns tare torque array given RPM array."""
return 0.00104768276035*rpm - 0.848866229797
|
777ab650de79df9da877fb1ce514c719a4438b66
| 489,631 |
from pathlib import Path
from typing import Dict
from typing import Any
def xmlparam(fn: Path) -> Dict[str, Any]:
"""
reads necessary camera parameters into dict
* kinetic rate (1/frame rate) seconds
* resolution pixels
* binning pixels
Parameters
----------
fn : pathlib.Path
filename of XML file corresponding to .DMCdata file
Returns
-------
params : dict
camera parameters of interest
"""
tree = ET.parse(fn) # type: ignore
root = tree.getroot()
children = root.getchildren()
data = children[1]
params: Dict[str, Any] = {}
diter = data.iter()
for el in diter:
txt = el.text
if txt == "Binning (H x V)":
txt = next(diter).text
params["binning"] = int(txt)
elif txt == "ROI H Pixels":
txt = next(diter).text
params["horizpixels"] = int(txt)
elif txt == "ROI V Pixels":
txt = next(diter).text
params["vertpixels"] = int(txt)
elif txt == "Freq":
txt = next(diter).text
params["pulsefreq"] = float(txt)
params["kineticrate"] = 1 / params["pulsefreq"]
return params
|
739f0795ceac427f3b84f223998ad0122ff97802
| 270,459 |
import glob
def files_list(folder, suffix='.png'):
"""
Returns a list of all the images within this directory.
"""
return glob.glob(folder + '/*' + suffix)
|
b71e4aa45f4f7728cf8f6698b1a8312105cca0ae
| 423,741 |
def extract_name_path(file_path):
"""String formatting to update the prefix of the ERA5 store location to Azure"""
tgt = "az://cmip6/ERA5/" + file_path.split("/zarr/")[1].replace("/data", "")
return tgt
|
2cdb74776356e3556d38a4d7d7dda8f8202da2e2
| 517,198 |
def get_next_available_key(iterable, key, midfix="", suffix="", is_underscore=True, start_from_null=False):
"""Get the next available key that does not collide with the keys in the dictionary."""
if start_from_null and key + suffix not in iterable:
return key + suffix
else:
i = 0
underscore = "_" if is_underscore else ""
while "{}{}{}{}{}".format(key, underscore, midfix, i, suffix) in iterable:
i += 1
new_key = "{}{}{}{}{}".format(key, underscore, midfix, i, suffix)
return new_key
|
4918d85fb3708357bbadc988fae4e5a12ba3aa7c
| 584,755 |
import requests
def lacrosse_get_locations(token):
"""
Query La Crosse server to return a list of user's locations
:param token: Current, valid token for user session -- see `lacrosse_login`
"""
url = "https://lax-gateway.appspot.com/" \
"_ah/api/lacrosseClient/v1.1/active-user/locations"
headers = {"Authorization": "Bearer " + token}
r = requests.get(url, headers=headers)
if r.status_code < 200 or r.status_code >= 300:
raise ConnectionError("failed to get locations ()".
format(r.status_code))
body = r.json()
return body.get('items')
|
d3bdc778449ac9d75d36015ddfb07e266efc1e17
| 311,130 |
def is_function_call(data: str) -> bool:
""" Returns true if predicate is probably a function call. """
return all(bracket in data for bracket in ('(', ')'))
|
135f575074660304bdaabc7b18f502b666014092
| 435,388 |
def _basename(key):
"""
Return the base name of a key name.
a.b.c.1 -> a.b.c
a.b.c -> a.b
"""
return '.'.join(key.split('.')[:-1])
|
c6054cc9cd7fddda829f647ff7243a6125431b0a
| 154,617 |
def get_parent_context(liveaction_db):
"""
Returns context of the parent execution.
:return: If found the parent context else None.
:rtype: dict
"""
context = getattr(liveaction_db, 'context', None)
if not context:
return None
return context.get('parent', None)
|
f15b0143f8b20b1aeacfa00e39f69045d95e17e0
| 291,562 |
import re
def natural_sort(l):
"""A more natural sorting algorithm
Parameters
----------
l : list
List of strings in need of sorting
Examples
--------
>>> l = ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
>>> sorted(l)
['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']
>>> natural_sort(l)
['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']
References
----------
[1] https://stackoverflow.com/a/4836734/5285918
"""
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(l, key=alphanum_key)
|
4e1843081ee2876da9f9ba0ff5b7ffa2016f692b
| 482,383 |
def Heun_ndt(f_S, Si, dt, T, **kwargs):
""" Solve dS/dt = f_S(S, t), S(t=t_i)=Si, at t=T with n steps (n=T/dt), using the explicit Heun's method
Parameters
----------
f_S : function
State function for given model sub-domain (canopy, unsaturated zone, saturated zone)
Si : float
State at time t=t_i
dt : float or int
Time step [days]
T : float or int
Time period [days]
kwargs : dict
*kwargs* are used to specify the additional parameters used by the the state function (f_S)
Returns
-------
dS : float
Integrated state at t=ndt with n=T/dt
"""
n = int(T / dt)
dS = Si
for _ in range(n):
K1 = f_S(dS, **kwargs)
K2 = f_S((K1 * dt) + dS, **kwargs)
dS = dS + (0.5 * dt * (K1 + K2))
return dS
|
00803453f89a20318d66ca159784ad03068c38c7
| 313,732 |
import torch
def hard_sigmoid(tensor: torch.Tensor, inplace: bool = False) -> torch.Tensor:
"""
Applies HardSigmoid function element-wise.
See :class:`torchlayers.activations.HardSigmoid` for more details.
Arguments:
tensor :
Tensor activated element-wise
inplace :
Whether operation should be performed `in-place`. Default: `False`
Returns:
torch.Tensor:
"""
return torch.nn.functional.hardtanh(tensor, min_val=0, inplace=inplace)
|
5f4d87749ddca014076f46e0af6e9b3c4308ddf7
| 10,621 |
def remove_minutes(time):
"""Sets the minutes, seconds, and microseconds to zero."""
return time.replace(minute=0, second=0, microsecond=0)
|
97ee54765b36d30fac179e8ff9a42c8eadcac169
| 485,924 |
def solve_matrix(matrix, right_hand_side):
"""
Performs back substitution on an N x N boolean matrix in RREF form to determine the
solution to each equation represented by its rows (noting that the equations are
of the form [X · S] % 2 = 0). For Simon's Algorithm, this gives you the secret
string S that's hidden in the original function being evaluated.
Parameters:
matrix (list[list[bool]]): The matrix representing the equations to solve. It must be
N x N and already in RREF form.
right_hand_side (list[bool]): A vector representing the right-hand-side of the
equations held in the matrix. These are the "solutions" to each equation.
Returns:
The solution to the matrix, in this case the secret string S.
Remarks:
For a good, visual example of how this process works, take a look at this math
StackExchange post:
https://math.stackexchange.com/a/45348
"""
secret_string = [False] * len(matrix)
# Start at the bottom row and work our way up to the top
for row_index in range(len(matrix) - 1, -1, -1):
row = matrix[row_index]
right_hand_side_value = right_hand_side[row_index] # Solution for this equation
# Walk through the values of the row (these correspond to the variables for each
# row beneath it, which have already been solved at this point since we're going
# bottom up); if this row has a 1 for that variable, XOR the solution value with
# whatever that row's value ended up being.
for column_index in range(row_index + 1, len(row)):
if row[column_index]:
right_hand_side_value ^= secret_string[column_index]
# Once the terms have been calculated, assign the solution value at this row's
# index to the result of the equation.
secret_string[row_index] = right_hand_side_value
return secret_string
|
94f65178d5c5bb78f0f2d5f2eb1753e1e3391864
| 425,903 |
def clone_lvol_bdev(client, snapshot_name, clone_name):
"""Create a logical volume based on a snapshot.
Args:
snapshot_name: snapshot to clone
clone_name: name of logical volume to create
Returns:
Name of created logical volume clone.
"""
params = {
'snapshot_name': snapshot_name,
'clone_name': clone_name
}
return client.call('clone_lvol_bdev', params)
|
aac63d9e391295e85f5c2a27e55e083e2bf16c49
| 135,836 |
from typing import List
def pad_tokens(tokens: List[List[int]], pad_value: int = 0) -> List[List[int]]:
"""pad a batch of tokens to fixed maximum lengh using `pad_value`.
Args:
tokens: list of list of tokens of varying lengths.
pad_value: padding value. Defaults to 0.
Example:
>>> from hearth.text.utils import pad_tokens
>>>
>>> tokens = [[1, 2], [1, 2, 3], [1]]
>>> pad_tokens(tokens)
[[1, 2, 0], [1, 2, 3], [1, 0, 0]]
"""
maxlen = max(map(len, tokens))
return [seq + [pad_value] * (maxlen - len(seq)) for seq in tokens]
|
fe4d4954236063943d8c4131f654518f38751908
| 624,128 |
def maxL(*it):
"""
Calculate maximum length of provided items.
Parameters
----------
*it : objects
Items of various lengths. Only lengths
of iterables are returned.
Returns
-------
Length of longest object (int).
"""
m = set()
for i in it:
try:
m.add(len(i))
except TypeError:
pass
if len(m) > 0:
return max(m)
else:
return 1
|
da8ef145097f03a02dea113ab0c0164b334cc35a
| 95,670 |
from functools import reduce
from operator import add
def mean(L):
"""return the average of a list"""
return reduce(add, L)/len(L)
|
910049658aea7998751af6a58d07addfcbe4f99a
| 432,007 |
import math
def _inner_log_logistic_sigmoid(x):
"""Log of the logistic sigmoid function log(1 / (1 + e ** -x))"""
if x > 0:
return -math.log(1. + math.exp(-x))
else:
return x - math.log(1. + math.exp(x))
|
af0afc3e82f3509ed1d298bb2a58a108007c66f7
| 538,812 |
def unpack_ushort(data: bytes) -> int:
"""Unpacks unsigned short number from bytes.
Keyword arguments:
data -- bytes to unpack number from
"""
return int.from_bytes(data, byteorder="little", signed=False)
|
a7440c7b6389e45d7f205aded2afc1ad0b8a37b9
| 68,826 |
import torch
def unpack_bits(t):
"""t is a tensor of packed bits. Unpack in the first dim"""
n = t.shape[0]
unpacked = torch.zeros(8*n, *t.shape[1:]).to(t.device)
for i in range(8):
unpacked[i*n:(i+1)*n] = (t >> i) & 1
return unpacked
|
040c6de141483d20acf5d2162f8502d2fa32110a
| 417,947 |
def Multiply(u, s):
"""
Returns vector multiplied by scalar.
"""
def __multiply(x):
return x * s
return map(__multiply, u)
|
56b16dfd8d83e46bc4f31b15ec2730d90991f4b9
| 408,424 |
def is_in_group(user, group_name):
"""Take a user and a group name, and returns `True` if the user is in that group."""
return user.groups.filter(name=group_name).exists()
|
797853cd5000cb1404545e3f20d38703c7a058dd
| 19,209 |
def _get_layer_lrs(learning_rate, layer_decay, n_layers=2):
"""Have lower learning rates for layers closer to the input."""
key_to_depths = {}
key_to_depths["layer_0/"] = 0
key_to_depths["layer_1/"] = 4
print(key_to_depths)
return {
key: learning_rate * (layer_decay ** (n_layers + 2 - depth))
for key, depth in key_to_depths.items()
}
|
511f5acd0d89e7e5fd53d1d2c744ab485bf3bb76
| 413,785 |
import ast
def create_ast_function_call_with_numeric_values(func_name: str, **kwargs):
"""
Creates an ast call for function name with passed numeric keyword arguments.
:Notes:
Will not work if a non-numeric keyword value is passed.
:Examples:
>>> import astor
>>> value = create_ast_function_call_with_numeric_values('ModelInputs', n_phones=100, price_scrap=200)
>>> astor.to_source(value)
'ModelInputs(n_phones=100, price_scrap=200)\n'
"""
ast_keywords = [
ast.keyword(
arg=kwarg_name,
value=ast.Num(kwarg_value)
)
for kwarg_name, kwarg_value in kwargs.items()
]
call = ast.Call(
func=ast.Name(func_name),
args=[],
keywords=ast_keywords
)
return call
|
37dcc3468d294106cd4443803a6ddc79cf5c01d3
| 120,443 |
def chebyshev_distance(pos1: tuple, pos2: tuple):
"""
Compute Chebyshev distance between two points
:param pos1: Coordinate of first point
:param pos2: Coordinate of second point
:return: Chebyshev distance between two points
"""
distance = 0
for ind in range(len(pos1)):
distance = max(distance, abs(pos1[ind] - pos2[ind]))
return distance
|
3595a7f72b4fc9d73785785f9dd8760609d2ea74
| 474,272 |
from typing import List
import re
def substitute_inputs(text: str, placeholders: List[str],
inputs: List[str]) -> str:
"""Substitute the inputs for the placeholders in the text"""
for placeholder, replacement in zip(placeholders, inputs):
text = re.sub(placeholder, replacement, text, 1)
return text
|
9ce3408f836eca7cdf8f0d27276081d43677f0fb
| 446,377 |
from typing import Union
from typing import Callable
import torch
def get_reduction(method: Union[Callable[[torch.Tensor], torch.Tensor], str]) \
-> Callable[[torch.Tensor], torch.Tensor]:
"""Get reduction method with the given method
Args:
method Union[Callable[[torch.Tensor], torch.Tensor], str]: method of reduction.
Raises:
AssertionError: when method is not found.
TypeError: when type of method is not allowed.
Returns:
Callable[torch.Tensor], torch.Tensor]: Method of reduction.
"""
if isinstance(method, str):
reduction_method = getattr(torch, method, None)
if reduction_method is None:
raise AssertionError(f"{method} not found.")
elif callable(method):
reduction_method = method
else:
raise TypeError(f"{type(method).__name__} not allowed.")
return reduction_method
|
7c5477d9e15e8b716881c45fcfaf56a6c625f00c
| 439,255 |
def get_dict(dictionary='../data/dictionary.txt', length=100):
"""
Takes a string referencing the location of a text file
Optionally takes the length of the letters we're finding a word for
Reads that file line by line into a set, removing whitespace
"""
with open(dictionary, 'r') as f:
words = set()
for line in f:
if len(line) <= length:
words.add(line.strip())
return words
|
6b24a736315bbb85817d7de1ba88dbe2f7b1c16f
| 124,636 |
def in_order_path(tsp):
"""Return the tour [1,2,...,n,1] where n is the dimension of the TSP"""
dim = tsp["DIMENSION"]
return list(range(1, dim + 1))
|
43f5be498cb23b9717bb55476b0317412cd63bec
| 458,787 |
def split_timecode(time_code):
""" Takes a timecode string and returns the hours, minutes and seconds. Does not simplify timecode.
:param time_code: String of format "HH:MM:SS.S" ex. "01:23:45.6"
:return: HH (float), MM (float), SS (float)
"""
hh, mm, ss = time_code.split(':')
hh = float(hh)
mm = float(mm)
ss = float(ss)
return hh, mm, ss
|
c3b24d6c8ea08bf1bfc4da81b17eb1207b7304e6
| 530,104 |
def get_assignment_details(app_detail_result):
"""
Method to fetch smart group ids, names and push mode where the app has been deployed
:param app_detail_result: json returned from the app details api
:return: list of smart group ids, list of smart group names and push mode
"""
assignments = app_detail_result['Assignments']
sg_ids = [groups['SmartGroupId'] for groups in assignments]
sg_names = [groups['SmartGroupName'] for groups in assignments]
push_mode = [groups['PushMode'] for groups in assignments]
return sg_ids, sg_names, push_mode
|
ff344d09826e0d5de27a9ed573ceb763ee330eea
| 84,747 |
def _get_return_value_type_name_from_line(line_str: str) -> str:
"""
Get the type name of return value from the target line string.
Parameters
----------
line_str : str
Target line string.
Returns
----------
return_value_type_name : str
Type name of return value.
"""
colon_exists: bool = ':' in line_str
if not colon_exists:
return_value_type_name: str = line_str.split(':')[0]
else:
return_value_type_name = line_str.split(':')[1]
return_value_type_name = return_value_type_name.strip()
return return_value_type_name
|
1327647128176e9168509d660769634da088c3a1
| 59,723 |
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# Because of the sliding window approach taken to scoring documents, a
# single token can appear in multiple documents. E.g.
# Doc: the man went to the store and bought a gallon of milk
# Span A: the man went to the
# Span B: to the store and bought
# Span C: and bought a gallon of
# ...
#
# Now the word 'bought' will have two scores from spans B and C. We only
# want to consider the score with "maximum context", which we define as
# the *minimum* of its left and right context (the *sum* of left and
# right context will always be the same, of course).
#
# In the example the maximum context for 'bought' would be span C since
# it has 1 left context and 3 right context, while span B has 4 left context
# and 0 right context.
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context,
num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
|
aa2ce42d893a7273184047ed0aff3c0d8f9bd189
| 622,979 |
import hashlib
def hash_sha1(input):
"""A hash function based hashlib.sha1
Args:
input: the data to generate integer-based hash value (need to be encoded with UTF-8)
Returns:
int: an integer-based hasah values
"""
if (isinstance(input, bytes) == False):
raise TypeError("The input data must be encoded with UTF-8")
return int(hashlib.sha1(input).hexdigest()[0:8], 16)
|
8855b5cb63cc68f96579307c70b94fd0cbc39b7e
| 486,729 |
def seti(registers, a, b, c):
"""(set immediate) stores value A into register C. (Input B is ignored.)"""
registers[c] = a
return registers
|
e2f833315382d48a5aaa903e558304472894e60b
| 550,479 |
def gen(x):
"""
Return the generator of ``x``.
EXAMPLES::
sage: R.<x> = QQ[]; R
Univariate Polynomial Ring in x over Rational Field
sage: gen(R)
x
sage: gen(GF(7))
1
sage: A = AbelianGroup(1, [23])
sage: gen(A)
f
"""
return x.gen()
|
b829b698625c3dc4b266f59ca80cf7941466ef3f
| 115,685 |
def run_algo(op_list):
"""Execute all operations in a given list (multiply all matrices to each other)."""
ops = op_list[::-1] # reverse the list; after all, it's matrix mult.
result = ops[0]
for op in ops[1:]:
result = result * op
return result
|
d7954d938162885b704bf479f63dcc6741e8e65d
| 664,157 |
import torch
def eval_metrics(preds: torch.Tensor, labels: torch.Tensor) -> dict:
"""Calculate metrics: precision, recall, f1, accuracy"""
tp = ((preds == 1) & (labels == 1)).cpu().sum().item()
fp = ((preds == 1) & (labels == 0)).cpu().sum().item()
fn = ((preds == 0) & (labels == 1)).cpu().sum().item()
tn = ((preds == 0) & (labels == 0)).cpu().sum().item()
precision = tp / (tp + fp) if (tp + fp) else 0.0
recall = tp / (tp + fn) if (tp + fn) else 0.0
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) else 0.0
acc = (tp + tn) / (tp + fp + fn + tn) if (tp + fp + fn + tn) else 0.0
return {"precision": precision, "recall": recall, "f1": f1, "acc": acc}
|
dc0c641dba387f77f5c2af67835953d2602fc10a
| 71,307 |
def read_code_blocks_from_md(md_path):
"""
Read ```python annotated code blocks from a markdown file.
Args:
md_path (str): Path to the markdown fle
Returns:
py_blocks ([str]): The blocks of python code.
"""
with open(md_path, "r") as f:
full_md = f.read()
md_py_splits = full_md.split("```python")[1:]
py_blocks = [split.split("```")[0] for split in md_py_splits]
return py_blocks
|
ca920f74e9326cf5f3635fbb6ebe125b6d97a349
| 709,376 |
def EmptiedFilesCheck(input_api, output_api): # pragma: no cover
"""Warns if a CL empties a file.
This is not handled properly by apply_patch from depot_tools: the
file would not exist at all on trybot checkouts.
"""
empty_files = []
infra_root = input_api.PresubmitLocalPath()
for filename in input_api.AffectedTextFiles():
fullname = input_api.os_path.join(infra_root, filename.LocalPath())
if not input_api.os_stat(fullname).st_size:
empty_files.append(filename.LocalPath())
if empty_files:
return [output_api.PresubmitPromptWarning(
'Empty files found in the CL. This can cause trouble on trybots\n'
+ 'if your change depends on the existence of those files:\n%s'
% '\n'.join(empty_files)
)]
return []
|
e9e61ee61f5d0deaa503f4c23843c24b32ffbd88
| 433,131 |
from typing import Sequence
from typing import Callable
def argmax_f(s: Sequence, f: Callable) -> int:
"""
Take the argmax (i.e. the index) based on the maximum of a particular
function.
Parameters
----------
s : Sequence
The sequence to find the argmax of.
f : Callable
The function to apply to the elements
Returns
-------
int
The index produced by the argmax.
"""
return max(enumerate([f(d) for d in s]),
key=lambda x: x[1])[0]
|
b6b1027586b1e6e21faabe98a4218b5601069af3
| 319,055 |
import torch
def jaccard_score(outputs, labels, smooth=1e-5):
"""Compute the Jaccard/IoU score. If a division by zero occurs,
returns a score of 0.
Args:
outputs (Tensor): The model's predictions
labels (Tensor): The target labels (aka ground truth predictions)
smooth (float/int): A smoothness factor
Returns:
Jaccard score (Tensor)
"""
outputs, labels = outputs.float(), labels.float()
intersect = torch.dot(outputs.contiguous().view(-1),
labels.contiguous().view(-1))
union = torch.add(torch.sum(outputs), torch.sum(labels))
jaccard = (intersect + smooth) / (union + smooth)
return jaccard if not torch.isnan(jaccard) else torch.Tensor([0.0])
|
d296ed0037ed45fe85d6e0edc5754f7642189c69
| 489,979 |
def find_best_model(checkpoint, history):
"""
Finds the best model saved by the checkpoint.
:param checkpoint: the checkpoint
:type checkpoint: ModelCheckpoint
:param history: a dictionary with the metrics and their values for
each epoch.
:type history: dict[str, np.ndarray]
:return: the path of the best model
:rtype: str or None
"""
if checkpoint.save_best_only:
return checkpoint.filepath
period = checkpoint.period
monitor = checkpoint.monitor
best = checkpoint.best
monitor_op = checkpoint.monitor_op
values = history.get(monitor, None)
if values is None:
return None
best_epoch = 0
for i in range(len(values)):
if monitor_op(values[i], best):
best = values[i]
best_epoch = i
return checkpoint.filepath.format(epoch=(best_epoch + 1) * period)
|
cbe31a874b7f1e404b38b36fd99884b8fdc2e8de
| 529,658 |
def rolling_window(iterable, size):
"""
:param iterable: the iterable over which to make windows
:param size: length of desired windows
:returns: an iterable containing rolling windows
"""
iter_length = len(iterable)
return [iterable[x : x + size] for x in range(iter_length - size + 1)]
|
c8ffbb7aeb0e738a755b885eda87729e769c8f51
| 156,419 |
def min_max_prod(minimums, maximums):
"""
returns the smallest and largest products achievable by interweaving maximums and minimums
>>> min_max_prod((3,6,0,1,6),(-4,3,-5,-4,0))
(-2880, 2160)
"""
assert len(maximums) == len(minimums)
ret_min, ret_max = 1, 1
for op_min, op_max in zip(minimums, maximums):
cands = (op_min * ret_min, op_min * ret_max, op_max * ret_min, op_max * ret_max)
ret_min = min(cands)
ret_max = max(cands)
return ret_min, ret_max
|
8d218147c8663d943a030189f7d63cfa3e1eead9
| 406,910 |
def prop_has_many_entries(prop_ent):
"""
Check if a Wikidata entry has multiple values for a given property
"""
try:
prop_ent[1]
return True
except IndexError:
return False
|
0e701d14e3f7732ed303b22cd052f3b789f5a6d7
| 108,219 |
import json
def block_schema_version_to_dict(block_schema_version):
"""Serializes block schema version to dict.
Args:
block_schema_version
(:class:`b2share.modules.schemas.api:BlockSchemaVersion`):
block schema version that will be serialized.
Returns:
dict: serialized BlockSchemaVersion.
"""
return dict(
id=block_schema_version.block_schema.id,
version=block_schema_version.version,
json_schema=json.loads(block_schema_version.json_schema),
)
|
c096ad19403c90100f7f6c8ba48bf4961e211144
| 505,623 |
def get_no_control_guides(df, guide_base_score):
"""Get guides that are not paired with controls
Parameters
----------
df: DataFrame
DataFrame with the column anchor_gene
guide_base_score: DataFrame
Guide scores when paired with controls
Returns
-------
list
Guides without control pairs
"""
starting_guides = set(df.anchor_guide.to_list())
base_score_guides = set(guide_base_score.anchor_guide.to_list())
no_control_guides = list(starting_guides - base_score_guides)
return no_control_guides
|
598e9d3c45bf7d391dcb8c81c475ad66c71a73a9
| 572,681 |
import re
def _BinaryExistsInSudoersFiles(path, sudoers_file_contents):
"""Returns True if the binary in |path| features in the sudoers file.
"""
for line in sudoers_file_contents.splitlines():
if re.match(r'\s*\(.+\) NOPASSWD: %s(\s\S+)*$' % re.escape(path), line):
return True
return False
|
6c42105469b3068137d3b29377b17fc5987379e2
| 458,957 |
import copy
def subtract_from_all(xs, num):
"""
Helper function to subtract num from all values in x dictionary,
without modifying the x dictionary.
"""
new = copy.deepcopy(xs)
for k in new:
new[k] -= num
return new
|
2d1f83c55d3f9c4ec01505a684d87a682333af58
| 171,352 |
def readUntilNull(f):
"""Reads data from the current position to the next null byte."""
byte = ''
s = ''
while byte != '\0':
s += byte
byte = f.read(1)
return s
|
a98905610a45fbae2a46d56a153c14d15a78e800
| 240,297 |
def get_cached_strict_matching_stickers(context):
"""A simple helper function to get all unique file_id's of strict matching stickers."""
query_id = context.inline_query_id
cache = context.tg_context.bot_data[query_id]
return cache["strict_unique"]
|
a89fb1bc78fb36e0fd5dcf88b0e713ec9384143f
| 553,821 |
from typing import List
def less_than(list_: List[float], n: int) -> float:
"""
Get number of symbols in `list_` which have a value less than `n`.
Parameters
----------
list_ : List[float]
n : int
Returns
-------
float :
Number of elements of the list_ which are strictly less than n.
"""
return float(len([1 for el in list_ if el < n]))
|
24fd1c694372e65eeb277e03e2f749f5209fa358
| 278,131 |
def get_test_case_code(path):
"""Get test case content as a string
provided the full path to the python file.
"""
code = ''
with open(path) as ff:
code = ff.read()
return code
|
a9e1232d836c4ff03a2312efdf96a363752ec133
| 542,650 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.