content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_index_from_tensor_name(tensor_name):
"""
Get the index of the tensor of a certain op.
Args:
tensor_name (str): The tensor name
Returns:
int: The index of the tensor
"""
return int(tensor_name.split(':')[1])
|
dc429ca35a2e35e536298b4a355acbdc8076f41e
| 587,633 |
def merge_key(record):
"""
Sort records by all fields that records_match will use to check for duplicates, in sequence,
so that all identical records according to records_match will be adjacent
"""
chr2 = record.info['CHR2'] if 'CHR2' in record.info else None
end2 = record.info['END2'] if 'END2' in record.info else None
return (record.pos, record.stop, record.info['SVTYPE'], record.info['SVLEN'], chr2, end2, record.info['STRANDS'], record.id)
|
4ad5ffca7bfa00b41e932280caa0d9a58773b6a1
| 281,254 |
def select_keys(d, keys):
"""
>>> d = {'foo': 52, 'bar': 12, 'baz': 98}
>>> select_keys(d, ['foo'])
{'foo': 52}
"""
return {k:d[k] for k in keys}
|
2bfb7e39328e89a7111a00b72818a0ceeb260916
| 533,103 |
def msb(n):
"""Given an integer >= 0, return the most significant bit position."""
assert n < 2**32
c = 0
while n > 0:
n >>= 1
c += 1
return c
|
3f651aa1268af5614530897c01effd109761f589
| 435,413 |
import math
def tp2xy(tp, r):
"""Converts TP angles into XY cartesian coordinates, where arm lengths
associated with angles theta and phi are respectively r[1] and r[2].
INPUTS: tp ... [theta,phi], unit degrees
r ... [central arm length, eccentric arm length]
OUTPUT: xy ... [x,y]
"""
t = math.radians(tp[0])
t_plus_p = t + math.radians(tp[1])
x = r[0] * math.cos(t) + r[1] * math.cos(t_plus_p)
y = r[0] * math.sin(t) + r[1] * math.sin(t_plus_p)
return x, y
|
8bc27bad8d6916891f535bc1e290226f05d21bea
| 356,638 |
import re
def convert_c_source_to_bytes(input_cc_file):
"""Converts C++ source file to bytes (immutable).
Args:
input_cc_file: A .cc file to process.
Returns:
A bytearray corresponding to the input cc file array.
"""
pattern = re.compile(r'(((0x[0-9a-fA-F]+),?)+)')
model_bytearray = bytearray()
with open(input_cc_file) as file_handle:
for line in file_handle:
values_match = pattern.search(line)
if values_match is None:
continue
list_text = values_match.group(1)
values_text = filter(None, list_text.split(','))
values = [int(x, base=16) for x in values_text]
model_bytearray.extend(values)
return bytes(model_bytearray)
|
f60832e365ea33a4b1dc4c2566ac675ed56aa131
| 334,794 |
def line_number(filename, string_to_match):
"""Helper function to return the line number of the first matched string."""
with open(filename, 'r') as f:
for i, line in enumerate(f):
if line.find(string_to_match) != -1:
# Found our match.
return i+1
raise Exception("Unable to find '%s' within file %s" % (string_to_match, filename))
|
8be5cae464da1b65d4d14b6dc2c78299be77650c
| 483,023 |
import hashlib
def checksum(filename):
"""Get file checksum.
Keyword arguments:
filename -- input filename
:param filename: str
:return md5sum: str
"""
data = open(filename, "rb")
md5sum = hashlib.md5()
# Loop over chunks of the file so we don't read it all into memory
for chunk in iter(lambda: data.read(4096), b""):
# Update the checksum with each chunk
md5sum.update(chunk)
return md5sum.hexdigest()
|
845fc8709cfc3232987580d1900ecc11b2ce8473
| 525,777 |
import resource
def memory_fitness(threshold=2e9, maximum=3e9):
"""
Returns a penalty for using too much memory. Add this to your fitness
function. This measures the current processes maximum resident set (maxrss)
which is the all time peak memory usage for the calling process.
Argument threshold is where the this penalty begins.
Argument maximum is where this penalty becomes an error (ValueError).
Returns in the range [0, 1] where 0 is no penalty and 1 is the maximum
memory usage. Linear ramp from threshold to maximum.
"""
rsc = resource.getrusage(resource.RUSAGE_SELF)
size = rsc.ru_maxrss * 1024
fit = (size - threshold) / (maximum - threshold)
if fit > 1 and False:
# Don't raise an exception because this is measured after collecting all
# of the data. If there was a way to raise a OS exception when it tried
# to allocate the memory...
raise ValueError("Individual exceded memory limit (size %d bytes, maximum %d)."%(size, maximum))
return max(0, fit)
|
136e87a625cbc667a2cbfefe1ad9fe85d6348d4f
| 281,060 |
def number_of_constituents(bc_class):
"""
Calculates the number of constituents
Args:
bc_class: The ADH simulation class that holds all simulation information
Returns:
The number of transport constituents
"""
num_trn = 0
cn = bc_class.constituent_properties
if cn.salinity:
num_trn += 1
if cn.temperature:
num_trn += 1
if cn.vorticity:
num_trn += 1
if not cn.general_constituents.empty:
num_trn += len(cn.general_constituents.index)
if not cn.sand.empty:
num_trn += len(cn.sand.index)
if not cn.clay.empty:
num_trn += len(cn.clay.index)
return num_trn
|
b290bc6ef6f4b02889dcc82d91120f44bff5f650
| 15,646 |
import collections
def scale_cluster_zero(filenames, clustering, size_multiplier=4):
"""
Scales cluster zero to a multiple of the second largest class
Parameters
----------
filenames : list of str
list of strings containing file names of images
clustering : list of int
list of integers giving the cluster assignment of each image in filenames
size_multiplier : int, default=4
Determines how to scale cluster 0. Cluster 0 will have, at maximum, as many images as
size_multiplier times the size of the second largest cluster.
Returns
-------
scaled_filenames : list of str
scaled_clustering : list of str
"""
scaled_filenames = []
scaled_clustering = []
cluster_sizes = collections.Counter(clustering)
size_of_class_0_prior = cluster_sizes.most_common(2)[0][1]
second_largest_cluster_size = cluster_sizes.most_common(2)[1][1]
size_of_class_zero = size_multiplier * second_largest_cluster_size
print("Reducing size of class 0 from {} to {} based on second largest cluster (size {})".format(
size_of_class_0_prior, size_of_class_zero, second_largest_cluster_size
))
admitted = 0
for fn, cluster in zip(filenames, clustering):
if cluster == 0:
if admitted >= size_of_class_zero:
continue
else:
admitted += 1
scaled_filenames.append(fn)
scaled_clustering.append(cluster)
else:
scaled_filenames.append(fn)
scaled_clustering.append(cluster)
return scaled_filenames, scaled_clustering
|
89e4a9b78e99ae4c0fb3a9d4147bc633979c48b7
| 152,773 |
def remove_repeated_asn(path):
""" remove repeated ASN in the give path
Args:
path (list of ASN): ASN can be int for str if IXP hop
Returns:
list of ASN
"""
removed = []
for idx, hop in enumerate(path):
if idx == 0:
removed.append(hop)
elif hop != path[idx-1]:
removed.append(hop)
return removed
|
3c9900a3c2cdb3236926a87e9404aa027a9afaa8
| 67,470 |
def parse_req(spec: str) -> str:
""" Parse package name==version out of requirments file"""
if ";" in spec:
# remove restriction
spec, _ = [x.strip() for x in spec.split(";", 1)]
if "#" in spec:
# remove comment
spec = spec.strip().split("#")[0]
if "\\" in spec:
# remove line breaks
spec = spec.strip().split("\\")[0]
if "--hash=" in spec:
# remove line breaks
spec = spec.strip().split("--hash=")[0]
return spec
|
2aa838a7e0182fa600c8500db4bd00a964d072bc
| 98,489 |
def remover_sp_str_load(list_parameters):
""" Remove the sp and the brackets of the elements of the list """
i = 0
length = len(list_parameters)
while i < length:
list_parameters[i] = list_parameters[i].replace("[", "").replace("]", "").replace("sp", "")
i += 1
list_parameters.remove("")
if len(list_parameters) == 1:
list_parameters.append("#0")
return [list_parameters[0], list_parameters[1]]
|
98f090585395b4f105f262f93671d2b4c3dd3d34
| 289,205 |
def get_nonzero_either_mask(vector_a, vector_b):
"""Returns a numpy array of boolean values indicating where values in two
vectors are both greater than zero.
Parameters
----------
vector_a : numpy.ndarray
Array of counts or RPKM
vector_b : numpy.ndarray
Array of counts or RPKM
Returns
-------
numpy.ndarray
Boolean array that is `True` where both `vector_a` and `vector_b`
have values greater than zero, and `False` elsewhere.
"""
return (vector_a > 0) & (vector_b > 0)
|
82f7433bcbcfcfc799b46083b112a9a7abcab918
| 30,642 |
def cal_support(freq, n_rows):
"""
Calculate support
Parameters
----------
freq : int
frequation of data.
for example :
32
n_rows : int
rows of data.
for example :
100
Returns
-------
support.
for example :
= 32 / 100
= 0.32
"""
if n_rows == 0:
raise ValueError("The rows supposed not to be zero")
support = freq / n_rows
return round(support, 3)
|
a767b3dab71e83418759abfe6243f28308b051e7
| 380,888 |
from datetime import datetime
from dateutil import tz
def datetime_to_isoformat(dt: datetime) -> str:
"""
Convert a datetime to and iso8601 date string.
:param dt: datetime object
:return: iso8601 date string
"""
if dt.tzinfo is None:
dt = dt.replace(tzinfo=tz.tzutc())
return dt.isoformat()
|
54cada59974202e0a9d71ddfb5a04e8a69ab1816
| 380,398 |
import hashlib
def sha256(text):
"""Returns SHA256 of the string `text`."""
return hashlib.sha256(text.encode("utf8")).hexdigest()
|
2609c5338e59bb34017898ca28e8e60966b7402f
| 601,631 |
def load_txt_file_as_string(path_txt_file: str) -> str:
"""This function loads a txt file and returns its content as a string.
Args:
path_txt_file (str): path to txt file
Returns:
content (str): content of txt file
"""
file = open(path_txt_file)
content = file.read()
file.close()
return content
|
1de33e180fc10eca051f16dc6f03af1e6ec7193c
| 426,970 |
import functools
def strip_string(original_func):
"""
Strip white space from a function's argument to float before the function
operates on it, like:
Examples
--------
>>> @strip_string
... def kcmpnm_to_chan(kcmpnm):
... return kcmpnm[:6]
>>> kclmpnm_to_chan(' my_too_long_component ')
'my_too'
"""
@functools.wraps(original_func)
def converter(hdr):
return original_func(int(hdr))
return converter
|
2509b7a3300a82a604246272d8a42702c0d921d2
| 519,510 |
from typing import Any
from typing import Optional
def get_nonempty_str(arg: Any) -> Optional[str]:
"""Either get the non-empty string from the given arg or None if it is not a non-empty string."""
if isinstance(arg, str):
if len(arg) > 0:
return str(arg)
return None
|
7f9069059febcd5695166320d21937528424d8bc
| 385,445 |
def clean_consecutive_duplicates(
move_data, subset=None, keep="first", inplace=False
):
"""
Removes consecutives duplicate rows of the Dataframe, optionally only
certaind columns can be consider.
Parameters
----------
move_data : dataframe
The input trajectory data
subset : Array of Strings, optional(None by default)
Specifies Column label or sequence of labels, considered for identifying duplicates.
By default all columns are used.
keep : String. Optional(first by default)
Determine wich duplicate will be removed.
if keep is set as first, all the duplicates except for the first occurrence will be droped. Otherwise,
all duplicates except for the last occurrence will be droped.
inplace : boolean, optional(False by default)
if set to true the original dataframe will be altered, the duplicates will be droped in place,
otherwise a copy will be returned.
Returns
-------
move_data : dataframe or None
The filtered trajectories points without consecutive duplicates.
"""
if keep == "first":
n = 1
else:
n = -1
if subset is None:
filter_ = (move_data.shift(n) != move_data).any(axis=1)
else:
filter_ = (move_data[subset].shift(n) != move_data[subset]).any(axis=1)
return move_data.drop(index=move_data[~filter_].index, inplace=inplace)
|
7f1d4258810c7c5bc117d2b5b2d098abffd4b613
| 101,414 |
def convert_acl_to_iam_policy(acl):
"""Converts the legacy ACL format to an IAM Policy proto."""
owners = acl.get('owners', [])
readers = acl.get('readers', [])
if acl.get('all_users_can_read', False):
readers.append('allUsers')
writers = acl.get('writers', [])
bindings = []
if owners:
bindings.append({'role': 'roles/owner', 'members': owners})
if readers:
bindings.append({'role': 'roles/viewer', 'members': readers})
if writers:
bindings.append({'role': 'roles/editor', 'members': writers})
return {'bindings': bindings}
|
990cdb6a51a696cf2b7825af94cf4265b2229be9
| 706,748 |
def _get_bit(byte, ii):
"""Return the bit value at index `ii` of `byte`.
Bit index is 0 = MSB, 7 = LSB
"""
return (byte >> (7 - ii)) & 1
|
65de3c1f4e0fce19d05113b4cb13629b591c1f0d
| 606,149 |
def TrimBeginningAndEndingSlashes(path):
"""Trims beginning and ending slashes
:Parameters:
- `path`: str
:Returns:
str, path with beginning and ending slashes trimmed
"""
if path.startswith('/'):
# Returns substring starting from index 1 to end of the string
path = path[1:]
if path.endswith('/'):
# Returns substring starting from beginning to last but one char in the string
path = path[:-1]
return path
|
05bf230ca5123c0d0e6cc7b1eb96fe144c0a3b41
| 432,248 |
from typing import List
from typing import Dict
def to_dict(args: List[Dict]) -> Dict:
"""Convert a list of serialized key-value pairs into a dictionary that maps
the keys to their values.
Parameters
----------
args: list
List of dictionary serializations for key-value pairs.
Returns
-------
dict
"""
return {a['key']: a['value'] for a in args}
|
41de2fd7c53b1dbd808c429b79ab22238ba66940
| 298,874 |
def rigidity_bending_plate(height, e_modulus, poisson):
"""
Calculates the bending rigidity of a plate.
"""
return e_modulus * (height ** 3) / (12 * (1 - poisson ** 2))
|
69ec71931742c30544ef96ea5be9cd515ae55292
| 419,467 |
import math
def get_bearing(start_point, end_point):
"""
Calculates the bearing between two points.
Parameters
----------
start_point: geopy.Point
end_point: geopy.Point
Returns
-------
point: int
Bearing in degrees between the start and end points.
"""
start_lat = math.radians(start_point.latitude)
start_lng = math.radians(start_point.longitude)
end_lat = math.radians(end_point.latitude)
end_lng = math.radians(end_point.longitude)
d_lng = end_lng - start_lng
if abs(d_lng) > math.pi:
if d_lng > 0.0:
d_lng = -(2.0 * math.pi - d_lng)
else:
d_lng = (2.0 * math.pi + d_lng)
tan_start = math.tan(start_lat / 2.0 + math.pi / 4.0)
tan_end = math.tan(end_lat / 2.0 + math.pi / 4.0)
d_phi = math.log(tan_end / tan_start)
bearing = (math.degrees(math.atan2(d_lng, d_phi)) + 360.0) % 360.0
return bearing
|
186150a64f3448a9cd42e35851997d33c7d0758d
| 141,051 |
def _fmt_msg(msg):
"""Format the message for final display.
Parameters
----------
msg : str
The message to show to the user to provide additional context.
returns
-------
fmtd : str
The formatted message to put into the error message.
"""
if not msg:
return ''
return msg + '\n'
|
896fca1d342d966fa31ed7966eda76471e2c8f7f
| 468,173 |
def mavlink_latlon(degrees):
"""Converts a MAVLink packet lat/lon degree format to decimal degrees."""
return float(degrees) / 1e7
|
20d883e45f99cca3c99eeb9d7c5fae96db03fd5a
| 13,436 |
def parse_events(props):
"""
Pull out the dashEvents from the Component props
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
list
List of Dash event strings
"""
if 'dashEvents' in props and props['dashEvents']['type']['name'] == 'enum':
events = [v['value'] for v in props['dashEvents']['type']['value']]
else:
events = []
return events
|
f5cfb1b7feaa8833fecff47be2a3e9ba8128df54
| 628,797 |
def verifywin(item1, item2):
"""
-> Check who won.
:param item1: machine
:param item2: player
:return: 'Loss' if item1 win or 'Win' if item2 win
"""
if item1 == 'tesoura' and item2 == 'papel':
return 'Loss'
elif item1 == 'papel' and item2 == 'pedra':
return 'Loss'
elif item1 == 'pedra' and item2 == 'tesoura':
return 'Loss'
elif item2 == 'tesoura' and item1 == 'papel':
return 'Win'
elif item2 == 'papel' and item1 == 'pedra':
return 'Win'
elif item2 == 'pedra' and item1 == 'tesoura':
return 'Win'
else:
return 'Draw'
|
ba0e5119fde0c8f836f69e9ed67bbcb43f9e95f3
| 281,639 |
def extract_impression_id(line, assert_first_line=False):
"""
Extracts the impression_id from a line
"""
if type(line) == bytes:
line = line.decode()
return line[:line.index("|")].strip()
|
09f67f24e4e517c1ac66df5cc1fb8d7d359ad3c9
| 42,806 |
def scrape_col(soup, tag, extended = False):
"""Return list of column headers
Args:
soup (BeautifulSoup): Navigable BeautifulSoup obj
tag (str): tag you are wishing to locate
Returns:
list: list of column headers
"""
col_labels = []
for col in soup.thead.find_all(tag):
col_labels.append(col.text)
if extended == True:
return col_labels[1:]
else:
return ['Year'] + col_labels[1:]
|
8681d648c1db7b64b1c7d9bc9beef4e611bdd122
| 310,265 |
def find_conflicts(name):
"""
Return conflicts corresponding to input parameter name.
Parameters
---------
name : string
Parameter name.
Returns
-------
conflicts : tuple
Conflicting parameter names.
"""
# dict that defines input parameters that conflict with each other
conflicts = [('h', 'H0'),
('T_cmb', 'Omega_g', 'omega_g', 'Omega0_g'),
('Omega_b', 'omega_b', 'Omega0_b'),
# ('Omega_fld', 'Omega0_fld'),
# ('Omega_Lambda', 'Omega0_Lambda'),
('N_ur', 'Omega_ur', 'omega_ur', 'Omega0_ur', 'N_eff'),
('Omega_cdm', 'omega_cdm', 'Omega0_cdm', 'Omega_c', 'omega_c', 'Omega_m', 'omega_m', 'Omega0_m'),
('m_ncdm', 'Omega_ncdm', 'omega_ncdm', 'Omega0_ncdm'),
('A_s', 'ln10^{10}A_s', 'sigma8'),
('tau_reio', 'z_reio')]
for conf in conflicts:
if name in conf:
return conf
return ()
|
966531cc2bd549c1ec2ee1af0895ea6c99f7ef39
| 444,688 |
def compare_changes(obj, **kwargs):
"""
Compare two dicts returning only keys that exist in the first dict and are
different in the second one
"""
changes = {}
for k, v in obj.items():
if k in kwargs:
if v != kwargs[k]:
changes[k] = kwargs[k]
return changes
|
ad88dc60cc3c93d0da15531bf0ef11e7610b1d66
| 51,022 |
def _traverse(graph, node, visited=[]):
"""Returns list of all direct/indirect adjacent nodes for a given node"""
nodes = []
if node in visited:
return nodes
visited.append(node)
nodes.append(node)
for adjacent in graph[node]:
nodes.extend(_traverse(graph, adjacent))
return nodes
|
9c10a58c96e69627fe2a6e4bfcb1fb3c9e750781
| 586,410 |
def _aggregate(query, func, by=None):
"""
Wrap a query in an aggregation clause.
Use this convenience function if the aggregation parameters are coming from
user input so that they can be validated.
Args:
query (str): Query string to wrap.
func (str): Aggregation function of choice. Valid choices are 'avg'/'mean',
'min', 'max', 'sum'.
by (list of str): Optional list of variables by which to perform the
aggregation.
Returns:
str: New query string.
"""
if func == "mean":
func = "avg"
if func not in ["avg", "min", "max", "sum"]:
raise ValueError("Unsupported aggregation function %r" % func)
query = "{func}({query})".format(func=func, query=query)
if by:
query += " by({by_variables})".format(by_variables=", ".join(by))
return query
|
e26aa715fadc5a58f5f87cee297fc3e6500120e1
| 12,568 |
def _format_params(cols, fields, where, crs, precision):
"""
Transform parameters into a query input for ESRIs feature service:
The feature service allows users to query & edit feature geoms & attributes
A breakdown of the ESRIs feature service:
https://developers.arcgis.com/rest/services-reference/enterprise/feature-service.htm
Parameters
----------
cols: str or list (default: 'all')
str list of columns or attributes to include
fields: list
list of fields supported by the boundary
where : str
sql like statement to filter geometries and attributes
crs : int (default: British National Grid)
epsg codes to transform and extract geometries
precision: int
number of digits past the decimal point are to be used
Returns
-------
dict:
dictionary containing query inputs for ESRIs feature service
"""
if isinstance(cols, str):
cols = cols.lower()
if cols == "all":
cols = "*"
if isinstance(cols, list):
cols = [col.lower() for col in cols]
if all(elem in fields for elem in cols) is not True:
raise ValueError(f"Only {fields} are supported for geometry type")
cols = ", ".join(cols)
return {
"outFields": f"{cols}",
"where": f"{where}",
"outSR": crs,
"f": "geojson",
"geometryPrecision": f"{precision}",
}
|
4c71004e49d2c79630a2e2dbb38d53a651ce748c
| 199,725 |
def get_brief_description(description):
"""Get brief description from paragraphs of command description."""
if description:
return description[0]
else:
return 'No description available.'
|
eb41a9dc6dd6145defb81f73f63b604312020f6d
| 688,845 |
def _get_tags() -> list[str]:
"""Return test tags.
:return: Tag list.
"""
return ["Test Tag 1", "Test Tag 2"]
|
79f04b17da4e3df3c2a2572980bdc0ca18d4f796
| 49,704 |
def _create_titled_dataset(root, key, title, data, comp_kw=None):
"""Helper to create a titled dataset in h5py"""
comp_kw = {} if comp_kw is None else comp_kw
out = root.create_dataset(key, data=data, **comp_kw)
out.attrs['TITLE'] = title
return out
|
6820d866ad7873f9077e9dbebfdf0f1fff0f6adb
| 549,773 |
from typing import SupportsAbs
from typing import List
import math
def permissive_range(start: float, stop: float, step: SupportsAbs[float]
) -> List[float]:
"""
Returns a range (as a list of values) with floating point steps.
Always starts at start and moves toward stop, regardless of the
sign of step.
Args:
start: The starting value of the range.
stop: The end value of the range.
step: Spacing between the values.
"""
signed_step = abs(step) * (1 if stop > start else -1)
# take off a tiny bit for rounding errors
step_count = math.ceil((stop - start) / signed_step - 1e-10)
return [start + i * signed_step for i in range(step_count)]
|
fb42aec19281bee289b5af68a4d3f5938ae01260
| 549,282 |
def base36_encode(integer, width=None):
"""
Encodes integer as a string in base 36, prepending 0's until string is of
length equal to width.
Parameters
----------
integer : int
width : int, optional
Returns
-------
str
"""
digit_set = "0123456789abcdefghijklmnopqrstuvwxyz"
digits = []
while (integer != 0):
integer, i = divmod(integer, 36)
digits.append(digit_set[i])
if (width is not None):
while (len(digits) < width):
digits.append("0")
digits.reverse()
return "".join(digits)
|
1f6a54078807becfdfb354518ff507423a7ca7c5
| 331,150 |
def analyze_text(spacy_doc):
"""Lemmatize, get word frequencies and part-of-speech tags
Parameters:
spacy_doc (spacy nlp object): output from spacy_analyze
Returns:
dictionary: {'lemma': {'orig': list, 'pos': string, 'count': int}}
"""
worddict = {}
for word in spacy_doc:
key = word.lemma_.lower()
# filter out non-alphabetic words
if word.is_alpha:
# store word counts and tokens
if key in worddict:
orig = worddict[key].get('orig')
if key == word.text.lower():
worddict[key]['count'] += 1
elif orig:
if word.text.lower() not in orig:
worddict[key]['orig'].append(word.text.lower())
worddict[key]['count'] += 1
else:
worddict[key]['count'] += 1
else:
worddict[key]['orig'] = [word.text.lower()]
worddict[key]['count'] += 1
elif key == word.text.lower():
worddict[key] = {'pos': word.pos_, 'count': 1}
else:
worddict[key] = {
'orig': [word.text.lower()],
'pos': word.pos_,
'count': 1
}
return worddict
|
27d6a3065fcde845b5b72625555d0546df2fa321
| 403,755 |
def cubic_ease_in_ease_out(t, b, c, d):
"""
Accelerate until halfway, then decelerate.
"""
t /= d/2
if t < 1:
return c / 2 * t * t * t + b
t -= 2
return c/2 * (t * t * t + 2) + b
|
fdad310108a3a2962cba38ceddb7600af045f644
| 296,268 |
def FromProperty(prop):
"""Get a default value from a property.
Args:
prop: properties._Property, The property to fetch.
Returns:
A niladic function that fetches the property.
"""
def DefaultFunc():
return prop.Get(required=True)
return DefaultFunc
|
5de5730077f92dfc477a968999e5a462446126fe
| 213,152 |
def itemReadPredicted(W, A, R, t):
"""Weight predicted at time t.
Weight predicted by given weight vector W at time t given
arrival and removal matrices A and R.
Args:
W: R^N weight vector where N is the number of ItemReads.
A: R^{TxN} arrival matrix where A[t][i] is whether
ItemRead i arrived at time t.
R: R^{TxN} removal matrix where R[t][i] is whether
ItemRead i was removed at time t.
t: time.
Returns:
Predicted weight.
"""
return sum([w*(a-r) for (w, a, r) in zip(W, A[t], R[t]) if a-r and w!=None])
|
422f204df3ca10e10fa36adb5033c4221da60c57
| 374,742 |
def check_system_query_status(data):
"""Check if any server crashed.
Args:
data (dict): dictionary of system query data obtained from
DmgCommand.system_query()
Returns:
bool: True if no server crashed, False otherwise.
"""
failed_states = ("Unknown", "Evicted", "Errored", "Unresponsive")
failed_rank_list = []
# Check the state of each rank.
for rank in data:
rank_info = [
"{}: {}".format(key, data[rank][key])
for key in sorted(data[rank].keys())
]
print("Rank {} info:\n {}".format(rank, "\n ".join(rank_info)))
if "state" in data[rank] and data[rank]["state"] in failed_states:
failed_rank_list.append(rank)
# Display the details of any failed ranks
if failed_rank_list:
for rank in failed_rank_list:
print(
"Rank {} failed with state '{}'".format(
rank, data[rank]["state"]))
# Return True if no ranks failed
return not bool(failed_rank_list)
|
d72bce114d4692519b0834589b15689a9084d568
| 145,889 |
def get_child_parents(edges):
"""Puts each non-parent node together with its parents
Parameters
----------
edges : list
A list of tuples corresponding to the Bayesian network structure as described in the input file
Returns
-------
child_parents
A dictionary with non-parent nodes as keys and their parents as values
"""
child_parents = {}
for e in edges:
if e[1] in child_parents.keys():
child_parents[e[1]].append(e[0])
else:
child_parents[e[1]] = [e[0]]
return child_parents
|
4b01a264ee1e2498c37f1fa0695f9430c207f04d
| 16,750 |
def get_name(in_file):
"""
:param in_file: Path to file to convert
:return: The inferred sample name, defined by file name shorn of any file extensions
"""
return in_file.split('/')[-1].split('.')[0]
|
30cea5b772a230b9c635f6dfbb32362480be2422
| 76,975 |
def get_labels_for_ids(labels, ids, ids_are_one_indexed=False):
"""Get the human-readable labels for given ids.
Args:
labels: dict, string-ID to label mapping from ImageNet.
ids: list of ints, IDs to return labels for.
ids_are_one_indexed: whether to increment passed IDs by 1 to account for
the background category. See ArgParser `--ids_are_one_indexed`
for details.
Returns:
list of category labels
"""
return [labels[str(x + int(ids_are_one_indexed))] for x in ids]
|
bc39fe8e7ccaac9ba2abc8a5a2e2fa0a779c82bf
| 43,282 |
def convert_mpas_fgco2(mpas_fgco2):
"""Convert native MPAS CO2 flux (mmol m-3 m s-1) to (molC m-2 yr-1)
Args:
mpas_fgco2 (xarray object): Dataset or DataArray containing native MPAS-O
CO2 flux output.
Returns:
conv_fgco2 (xarray object): MPAS-O CO2 flux in mol/m2/yr.
"""
# The -1 term ensures that negative is uptake of CO2 by the ocean.
# MPAS defaults to gregorian noleap calendar (thus, 365).
conv_fgco2 = mpas_fgco2 * -1 * (60 * 60 * 24 * 365) * (1 / 10 ** 3)
return conv_fgco2
|
37b685b6697344d3120abb8a5a55f5e2b44c83f2
| 195,191 |
def analyze_segmentation(seg_result):
"""
Parameters
----------
seg_result: the result of the segmentation is a list of tuples
each tuple contains:
* label in 'speech', 'music', 'noEnergy'
* start time of the segment
* end time of the segment
Returns
-------
count_speech: integer representing the number of segments
labeled as 'speech'
"""
count_speech = 0
for segment in seg_result:
if segment[0] == 'speech':
count_speech += 1
return count_speech
|
1f560eafa1a39ab05fbd3ef741128110e9ab61de
| 498,872 |
from typing import Callable
def preprocess_inceptionv1() -> Callable:
"""Returns preprocessing function to prepare input for original Tensorflow's InceptionV1 model.
InceptionV1 takes in values from [-117, 138] so the preprocessing function takes in values from 0-1
and maps them to [-117, 138]
See https://github.com/tensorflow/lucid/blob/master/lucid/modelzoo/other_models/InceptionV1.py#L56 for details.
Thanks to ProGamerGov for this!
:return: Preprocessing function
:rtype: Callable
"""
return lambda x: x * 255 - 117
|
d0b97de736b4ec1428e28c8b77e68c906ca12f66
| 262,661 |
def _replace_tempate_text(template, replacements):
"""
replace substrings in a given template based on a dictionary of
replacements.
"""
output = template
for src, target in replacements.items():
output = output.replace(src, target)
return output
|
2daed848095495412090cef297d0ab34125cc749
| 459,410 |
def clean_sheet_value(value):
"""
Takes a spreadsheet cell value and returns a cleaned version
Args:
value (str): A raw spreadsheet cell value
Returns:
str or None: A string with whitespace stripped, or None if the resulting value was an empty string
"""
stripped = value.strip()
return None if stripped == "" else stripped
|
ff6b2da6f0ce3d718e71b43794e0a224e7f7b072
| 646,464 |
def valid_phage_titer(titer, o):
"""
Decides wether or not a phage titer is valid and, if not decides why.
Args:
titer(float): Titer to decide on.
o (Options): Options object for lookup
Returns(int):
-1 if the phage titer was lower than mincp at some transfer point
0 if the phage titer was valid the whole time
1 if the phage titer was higher than maxcp at some transfer point
"""
gen = 1
while o.min_cp < titer[(gen * (o.tsteps + 1)) - 1] < o.max_cp:
if gen == o.epochs:
return gen, 0
gen += 1
if o.min_cp > titer[(gen * (o.tsteps + 1)) - 1]:
tendency = -1
else:
tendency = 1
return gen, tendency
|
d995917d5e0abcee4e10bc8209f8c3fee4ad2e2b
| 70,286 |
def span2toks(span, document):
"""
:param span: span array representing [start, end]
:param document: list of tokens from which to extract span tokens
:return: tokens from document indicated by span indices
"""
return document[span[0]:span[1] + 1]
|
a46570c5275ec9c987e999beabc967e284b62b1a
| 648,918 |
import copy
def stringify_values(dictionary):
"""
Given a dictionary convert all values into the string representation of
the value. useful for dicts that only allow string values (like os.environ)
:param dictionary: the dictionary to convert
:return: a copy of the dictionary where all values are now string.
:rtype: dict
"""
dict_copy = copy.deepcopy(dictionary)
for key, value in dict_copy.items():
if isinstance(value, dict):
dict_copy[key] = stringify_values(value)
else:
dict_copy[key] = str(value)
return dict_copy
|
c7a231c1bb127f673ab58a8ea63146ea7568add0
| 598,703 |
from typing import List
from typing import Set
def get_elements(li: List[int]) -> Set:
"""Extracts all the unique elements from a list of numbers.
doctests:
>>> get_elements([1, 2, 3, 1, 2, 3, 5, 4, 7, 7])
{1, 2, 3, 4, 5, 7}
>>> get_elements([2, 2, 2, 3, 1])
{1, 2, 3}
"""
x = set()
for i in li:
if i in x:
pass
else:
x.add(i)
return x
|
f9514ed32d553649e79a952ac1c8c5e68db5cf94
| 524,093 |
def _mult_diag_matrix(D, mtx, on_right=False):
""" Multiply diagonal matrix D to mtx
Args:
D (N ndarray) - diagonal matrix
mtx (ndarray) - matrix to multiply
on_right (bool) - whether to return D * mtx (False) or mtx * D (True)
"""
if not on_right:
return (D*mtx.T).T
else:
return D*mtx
|
f2d30e8cbb2ef7b842d3daa922185bc3758a5094
| 630,430 |
def restore_scale(expr, mean, std):
"""
Makes each gene j have mean_j and std_j
:param expr: matrix of gene expressions. Shape=(nb_samples, nb_genes)
:param mean: vector of gene means. Shape=(nb_genes,)
:param std: vector of gene stds. Shape=(nb_genes,)
:return: Rescaled gene expressions
"""
return expr * std + mean
|
58175da2d8b3543d1eac6e70f04d91f2cb10f542
| 505,305 |
def validate_doubles(password):
""" It contains at least one letter that appears twice in a row """
for i in range(len(password) - 1):
if password[i] == password[i + 1]:
return True
return False
|
a7c955449060b363aee63a1ff6f52036294485c8
| 559,864 |
def _filter_kwargs(prefix, kwargs):
"""Return new kwargs matching a prefix, or empty dict if no matches."""
tmp_kwargs = {}
for kwarg, value in kwargs.items():
if prefix in kwarg:
kwarg = kwarg.lstrip(prefix)
kwarg = kwarg.lstrip('_')
tmp_kwargs[kwarg] = value
return tmp_kwargs
|
5ff205dd7f8e0d7eed69cb244090fcf6d391dae6
| 173,807 |
def make_sequential(documents, answers):
"""
Transform an answer-based dataset (i.e. with a list of
documents and a list of keyphrases) to a sequential, ner-like
dataset, i.e. where the answer set for each document is composed
by the lists of the documents' tokens marked as non-keyphrase (0),
beginning of keyphrase (1) and inside-keyphrase (2).
For example, for the tokens
"I am a python developer since today."
If the keyphrases are "python developer" and "today"" the answer
set for these tokens is
"[0 0 0 1 2 0 1]"
:param documents: the list of documents
:param answers: the list of keyphrases
:return: the new answer set
"""
seq_answers = {}
for key, document in documents.items():
doc_answers_set = answers[key]
# Sort by length of the keyphrase. We process shorter KPs first so
# that if they are contained by a longer KP we'll simply overwrite
# the shorter one with the longer one
doc_answers_set.sort(key=lambda a: len(a))
# This field will contain the answer.
# We initialize it as a list of zeros and we will fill it
# with 1s and 2s later
doc_answers_seq = [0] * len(document)
for answer in doc_answers_set:
# Find where the first word the KP appears
appearances = [i for i, word in enumerate(document) if word == answer[0]]
for idx in appearances:
is_kp = True
# Check if the KP matches also from its second word on
for i in range(1, len(answer)):
if (i + idx) < len(document):
is_kp = answer[i] == document[i + idx]
else:
# We reached the end of the document
is_kp = False
# If we found an actual KP, mark the tokens in the output list.
if is_kp:
doc_answers_seq[idx] = 1
for i in range(1, len(answer)):
doc_answers_seq[idx + i] = 2
# for
# for
seq_answers[key] = doc_answers_seq
return seq_answers
|
6e7f2f502f1389cdc68e644128befd1568feecf1
| 267,780 |
def find_stem(stratified_string: str):
"""
find the stem of the compartment name as the text leading up to the first occurrence of the joining string
should run slightly faster than using find_name_components
"""
return stratified_string.split("X")[0]
|
867d01d2b8650ed6943bb507eba3977004dd31a4
| 52,209 |
import string
def remove_punctuation(input_string):
"""
Function to remove punctuation once we know it is a question
Function taken from A3
Inputs:
string
Outputs:
string
"""
out_string = ''
for i in input_string:
if i not in string.punctuation:
out_string += i
return out_string
|
733125e98483d992726617fd296eefb885c89055
| 202,239 |
def build_html_page(title, body):
"""
Build the simple tag skeleton for a title and body.
"""
return """<html>
<head>
<title>%s</title>
<link rel = "stylesheet" type = "text/css" href = "jsdoc.css" />
</head>
<body>
%s
</body>
</html>""" % (title, body)
|
c7884ce84405d8d3df2350060c366cffff3e47fe
| 489,722 |
def country_code(xml_el, namespaces):
"""Find the country code for this element"""
if xml_el.get("class"):
return xml_el.get("class").split()[-1]
elif xml_el.find("svg:path", namespaces) is not None:
return country_code(xml_el.find("svg:path", namespaces), namespaces)
else:
return country_code(xml_el.find("svg:g", namespaces), namespaces)
|
3239389a381aa64dd5b8ad1ba66d6a88fb90292e
| 224,202 |
def pop(lines):
"""
Pop from the top of list, this has the (desired) side-effect of removing the first line from the list.
:param lines: the list of extracted text fields, one per line
:return: the next line
"""
return lines.pop(0)
|
fc08660c0ffe34b55beb220db5b73b02e6291611
| 337,470 |
from operator import add
def avg(S1,S2):
""" Average of 2 scalars
<div class=jython>
AVG (S1, S2) = ( S1 + S2 ) / 2
</div>
"""
return add(S1,S2)/2
|
2d912e2a1e77147f821c4500ab5e7543e44aedb8
| 220,422 |
def join_regex(regexes):
"""Combine a list of regexes into one that matches any of them."""
if len(regexes) > 1:
return "(" + ")|(".join(regexes) + ")"
elif regexes:
return regexes[0]
else:
return ""
|
616a4b51a64244e14b6029a91026f65a20077f06
| 693,578 |
def m_p_s_to_km_p_hr(m_p_s):
"""Convert to km/hr."""
return m_p_s * 3.6
|
478e3931dcab3301079b0fbc692124c3c3c93557
| 669,651 |
def get_user_info(account_name, account_key):
"""Returns an Azure Blob Storage User with .display_name and .id, or None
"""
if not (account_name and account_key):
return None
return {'display_name': account_name, 'id': account_name}
|
3711c97a97a0c61b75ef8d6396207d06c3f81465
| 154,201 |
def axis_for_letter(letter):
"""Returns 0, 1 or 2 for 'K', 'J', or 'I'; as required for axis arguments in FineCoarse methods."""
assert isinstance(letter, str) and len(letter) == 1
u = letter.upper()
return 'KJI'.index(u)
|
32184d42cd5ebef7cedf79767a173633a7d32672
| 136,634 |
def pretty_solution(solution):
"""
Purpose: Modify the solution to that it is represented as a mostly legible
string.
Input: Solution as a list of boolean values.
Return: Solution represented as a string
"""
pretty = ""
ith_literal = 1
ten_per_line = 0
for literal in solution:
pretty = pretty + "L" + str(ith_literal) + ": " + str(literal) + " "
ith_literal = ith_literal + 1
ten_per_line = ten_per_line + 1
if ten_per_line > 10:
ten_per_line = 0
pretty = pretty + "\n"
return pretty
|
00ce094781120171e42fcbb0b82ba817ace557d8
| 548,259 |
def convert_title_to_snake_case(key):
"""Converts title-cased key to snake-cased key."""
return '_'.join(w.lower() for w in key.split(' '))
|
c6b7181e7769883d0cf8a54d3ce9f933c29c308b
| 351,919 |
from typing import List
import torch
from typing import Tuple
def scale_coords(
img_size: List[int], coords: torch.Tensor, img0_size: Tuple[int, int]
) -> torch.Tensor:
"""Rescales bounding box coordinates (x1, y1, x2, y2) from `img_size` to
`img0_size`.
Args:
img_size (List[int]): Model input size (w x h).
coords (torch.Tensor): Bounding box coordinates.
img0_size (Tuple[int, int]): Size of original video frame (h x w).
Returns:
(torch.Tensor): Bounding boxes with resized coordinates.
"""
# gain = old / new
gain = min(float(img_size[0]) / img0_size[1], float(img_size[1]) / img0_size[0])
pad_x = (img_size[0] - img0_size[1] * gain) / 2 # width padding
pad_y = (img_size[1] - img0_size[0] * gain) / 2 # height padding
coords[:, [0, 2]] -= pad_x
coords[:, [1, 3]] -= pad_y
coords[:, :4] /= gain
coords[:, :4] = torch.clamp(coords[:, :4], min=0)
return coords
|
8d2a1925874aedbe02f23c77e7e58131626ee88e
| 333,188 |
import six
def trim(docstring):
"""
Remove the tabs to spaces, and remove the extra spaces / tabs that are in
front of the text in docstrings.
Implementation taken from http://www.python.org/dev/peps/pep-0257/
"""
if not docstring:
return ''
# Convert tabs to spaces (following the normal Python rules)
# and split into a list of lines:
lines = six.u(docstring).expandtabs().splitlines()
lines = [line.strip() for line in lines]
res = six.u('\n').join(lines)
return res
|
ae1eaf3b2a81082291382e161a88d46c661e399a
| 230,261 |
def check_submission(sub):
"""
Checks that the submission meets all the requirements.
1. No more than 22 Boxes per frame.
2. Only one label prediction per video/frame
3. No duplicate boxes per frame.
4. Boxes must be within video area:
- `top` and `left` must each be >= 0
- The sum of `left` and `width` must be <= 1280
- The sum of `top` and `height` must be must be <= 720
Args:
sub : submission dataframe.
Returns:
True -> Passed the tests
False -> Failed the test
"""
# Maximum of 22 boxes per frame.
max_box_per_frame = sub.groupby(["video_frame"])["label"].count().max()
if max_box_per_frame > 22:
print("Has more than 22 boxes in a single frame")
return False
# Only one label allowed per frame.
has_duplicate_labels = sub[["video_frame", "label"]].duplicated().any()
if has_duplicate_labels:
print("Has duplicate labels")
return False
# Check for unique boxes
has_duplicate_boxes = sub[["video_frame", "left", "width", "top", "height"]].duplicated().any()
if has_duplicate_boxes:
print("Has duplicate boxes")
return False
if sub['left'].min() < 0:
print('left column has values less than 0')
return False
if sub['top'].min() < 0:
print('top column has values less than 0')
return False
if (sub['left'] + sub['width']).max() > 1280:
print('left+width columns has values greater than 1280')
return False
if (sub['top'] + sub['height']).max() > 720:
print('top+height columns has values greater than 720')
return False
return True
|
28ee721b0da5abfb13183d26cabf5687eeb94f5b
| 590,263 |
def str_to_c_string(string):
"""Converts a Python bytes to a C++ string literal.
>>> str_to_c_string(b'abc\x8c')
'"abc\\\\x8c"'
"""
return repr(string).replace("'", '"').removeprefix('b')
|
5316e61282d3ce3a807764588904529291453a37
| 18,222 |
def search_node_from_coord(x, y, nodes):
"""Get node's number from coordinates"""
return int(nodes.loc[(nodes['x'] == x) & (nodes['y'] == y)]['n'])
|
e61bb8351bbad871254a29fc0586da3a0fda0b24
| 653,213 |
def create_filepath(ds, root_path="."):
"""
Generate a filepath when given an xarray dataset
"""
varname = [x for x in ds.data_vars][0]
start = ds.generalVerticalLayer.data[0]
end = ds.generalVerticalLayer.data[-1]
filepath = f"{root_path}/{varname}_{start}_{end}.nc"
return filepath
|
17afd9907c6758b792fafdc0d61c1e41a707be1a
| 615,750 |
def cross(A, B):
"""
Cross product of elements in A and elements in B.
:param A:
:param B:
:return:
"""
return [s + t for s in A for t in B]
|
1601cd69410a7cc6f6b847dc7796b2e330f21e72
| 554,741 |
def compute_ks_for_conv2d(w_in: int, w_out: int, padding: int=1) -> int:
"""Compute the kernel size to use with conv2d when we want
the output tensor has smaller spatial dimensions, ie.
w_out < w_in.
We assume the filter has stride=1.
Computation is based on the formula
w_out = floor(w_in - k + 2p) + 1
We get only positive integer for k only if:
w_out - w_in < 2p-1
"""
assert w_out - w_in < 2*padding-1, "No valid kernel size is possible"
c = w_out - w_in - 2*padding -1
return -c
|
277781ab8b98cf402ad7083126c4c9ec21201868
| 89,308 |
import requests
def is_private(username):
"""
Check if user is private
:param username:
:return: bool
"""
r = requests.get(f"https://www.instagram.com/{username}/?__a=1")
private_status = r.json()['graphql']['user']['is_private']
return private_status
|
93265f746a021f8d6afd2f5d64c7c7ee9e9a3de7
| 73,354 |
def which_db_version(cursor):
"""
Return version of DB schema as string.
Return '5', if iOS 5.
Return '6', if iOS 6 or iOS 7.
"""
query = "select count(*) from sqlite_master where name = 'handle'"
cursor.execute(query)
count = cursor.fetchone()[0]
if count == 1:
db_version = '6'
else:
db_version = '5'
return db_version
|
07b1dbcea3fb4bf65bba5c578257440d39b6784c
| 1,400 |
import torch
def voxel_grid_coords(grid_shape):
"""
Find normalized voxel coords corresponding to grid cells
These computations are based on pytorch3d.ops.cubify
https://pytorch3d.readthedocs.io/en/stable/_modules/pytorch3d/ops/cubify.html#cubify
Inputs:
- grid_shape: 3D integer array like containing (D, W, H)
Returns:
- FloatTensor of shape (D, W, H, 3)
xyz (HWD) normalized coordinates for each cell
"""
assert(len(grid_shape) == 3)
zyx_grid = torch.meshgrid([torch.arange(grid_shape[i]) for i in range(3)])
zyx_grid = torch.stack(zyx_grid, dim=0)
grid_shape_expanded = torch.tensor(grid_shape) \
.view(3, 1, 1, 1).expand(-1, *grid_shape) \
.float()
# map to [-1, 1]^3 range from [0, N-1)^3
zyx_grid = zyx_grid * 2.0 / (grid_shape_expanded - 1.0) - 1.0
zz, yy, xx = torch.unbind(zyx_grid, dim=0)
points = torch.stack([xx, yy, zz], dim=-1)
return points
|
446149a3d6290ab774c137eca77d7e1f5c3525c2
| 285,613 |
import math
def evaluate_almost_equal(metrics, results, abs_tol=None, rel_tol=None):
"""
Evaluate for each given metric if values in results are almost equal
Parameters
----------
metrics: List[str], metrics names
results: dict, results to be evaluated
abs_tol: float, absolute error tolerance
rel_tol: float, relative difference tolerance
Returns
-------
bool, return True if all metrics in results are almost equal
"""
# return False if empty
if len(metrics) == 0:
return False
eval_summary = {}
for i, metric in enumerate(metrics):
v_eval = [res[i] for res in results.values()]
first_v = v_eval[0]
if abs_tol is not None and rel_tol is not None:
eval_summary[metric] = all(math.isclose(v, first_v, abs_tol=abs_tol, rel_tol=rel_tol) for v in v_eval)
elif abs_tol is not None:
eval_summary[metric] = all(math.isclose(v, first_v, abs_tol=abs_tol) for v in v_eval)
elif rel_tol is not None:
eval_summary[metric] = all(math.isclose(v, first_v, rel_tol=rel_tol) for v in v_eval)
else:
eval_summary[metric] = all(math.isclose(v, first_v) for v in v_eval)
return eval_summary
|
9d6745d9e6f15d68285cb227f830a83bccf6e2f0
| 587,765 |
def filter_pre_post_table(
combi_table,
focus_countries,
reg_var="coordinator_country",
focus_var="project_lq",
volume_var="project_total",
):
"""Filters an activity table to focus on particular variables and countries"""
combined_table_focus = combi_table.loc[
combi_table[reg_var].isin(focus_countries)
].query(f"variable=='{focus_var}'")
size_lookup = combi_table.query(f"variable=='{volume_var}'")[
[reg_var, "cluster_covid", "value"]
].rename(columns={"value": "volume"})
combined_table_focus = combined_table_focus.merge(
size_lookup, on=[reg_var, "cluster_covid"]
)
return combined_table_focus
|
b8f128e4ed15902fc5ba8794bfc1f86c6d178fc7
| 587,229 |
import socket
def uds_reachable(uds_path, return_sock=False):
""" Check if the unix domain socket at path `uds_path` is reachable.
Parameters
----------
uds_path : str
return_sock: bool, optional (default is False)
Return the socket.
Returns
-------
bool, socket
If the socket is reachable, the socket if `return_sock` else None
Remember to close the socket!
"""
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
try:
sock.connect(uds_path)
except (ConnectionRefusedError, FileNotFoundError):
return False, None
finally:
if not return_sock:
sock.shutdown(socket.SHUT_RDWR)
sock.close()
return True, sock if return_sock else None
|
4c79a301dc4dfea5a3741325fe5abfc373d4c5e1
| 648,193 |
def get_initial_readme_info(readme_path):
"""
Get the initial lines of a readme, ignoring the list of contributions generated previously
:param readme_path: the path of the readme
:return: the initial lines of a the readme as string separated by '\n'
"""
with open(readme_path) as f:
base_readme = ''
lines = f.read().splitlines()
for l in lines:
line = l.strip()
if (line == '## List of contributions'):
break
base_readme += line + '\n'
return base_readme + '## List of contributions'
|
214bc8cd11134a96941528a093a1208acc4bb92a
| 349,596 |
def MapLines(f, s):
"""Apply a function across each line in a flat string.
Args:
f: A string transform function for a line.
s: A string consisting of potentially multiple lines.
Returns:
A flat string with f applied to each line.
"""
return '\n'.join(f(line) for line in s.split('\n'))
|
ece6243dda8128c2640f14c938e54123b899eebc
| 518,234 |
def break_string_sequence_to_words(seq):
"""
Breaks a sequence containing multi-word strings into a set containing individual words.
:param seq: The sequence containing multi-word strings
:return: A set containing all the individual words
>>> break_string_sequence_to_words(['hello world', 'foo bar', 'hello', 'red']) \
== set({'hello', 'world', 'foo', 'bar', 'red'})
True
"""
return {word for string in seq for word in string.split()}
|
52046b3b81a1e8864a4fd238a1df31fcf681b284
| 104,724 |
def validate_ip(ip: str) -> bool:
"""
Validate an IP
:param ip: String to check if it's an IP.
:type ip: str
:return: True if ip param it's an IP, false otherwise.
:rtype: bool
"""
a = ip.rsplit(":", 1)[0].split(".")
if len(a) != 4:
return False
for x in a:
if not x.isdigit():
return False
i = int(x)
if i < 0 or i > 255:
return False
return True
|
05083d2e53e4c951489c60a888d1322eb3204638
| 495,493 |
def _make_name(*args, sep="_"):
""" Combine elements of `args` into a new string
"""
_args = (arg for arg in args if arg != "")
return sep.join(_args)
|
8786015997dc7656cd2957080088ab4fe76f3e9f
| 147,851 |
def initialized(machine):
"""
Check to see if the given machine is initialized.
:param machine: Machine to check to see if default attributes are set
:return: `True` if the machine has its attributes set, `False` otherwise
"""
return all(hasattr(machine, attr) for attr in ('state', 'transition', 'transition_event'))
|
a625827f7c53102a98521042a050e682df69b13e
| 664,995 |
def remove_duplicates(mylist):
"""
Removes duplicate values from a list
"""
return list(set(mylist))
|
2a99ce44825e69e4108ae8d69d34243fef2c97da
| 414,285 |
def get_public_endpoint_url_by_name(body_response, endpoint_name, region_name):
"""
Get the public endpoint for service in a region by service NAME
:param body_response: Keystone response (/token)
:param endpoint_name: Service name
:param region_name: Name of the region
:return: Public URL or None if not found
"""
service_list = body_response['access']['serviceCatalog']
public_url = None
for service in service_list:
if service['name'] == endpoint_name:
for endpoint in service['endpoints']:
if endpoint['region'] == region_name:
public_url = endpoint['publicURL']
return public_url
|
5fb7dcb91132b8d6dfabc9b5b9ec2b0f66e18fc7
| 570,202 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.