content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import torch
def unscaled_sign(x):
"""
This is the standard sign compression. It has been experimented to give worse test accuracies than the scaled
counter part.
:param x: torch Tensor
:return: sign(tensor)
"""
return torch.sign(x)
|
738dafd410314bc6b07d20ad8ce931c59b0309fc
| 333,043 |
def _prepare_body_remove_subports(subports):
"""Prepare body for PUT /v2.0/trunks/TRUNK_ID/remove_subports."""
return {'sub_ports': [{'port_id': sp['port_id']} for sp in subports]}
|
7427a77553efef92d82218f87060a1a4d5c3375c
| 103,098 |
def default_list_format(index: int, in_str: object) -> str:
"""
Makes the first character in the given string uppercase
Also shows the position of the item in the list (1-based)
:param index: The index of the item (0-based)
:type index: int
:param in_str: The string to format
:type in_str: object
:returns: The given string numbered and with the first character in uppercase
:rtype: str
"""
raw_str = str(in_str)
return (str(index + 1) + '. ') + (raw_str[0].upper() + raw_str[1:])
|
35c63b62c3a73f280466c17649c364913246c46e
| 530,345 |
def default_window(win_id):
"""return default config for one window"""
win = {}
win['win_id'] = win_id
win['mfact'] = 0.55
win['nmaster'] = 1
win['layout'] = 'horizontal'
win['zoomed'] = False
win['num_panes'] = 1
win['last_master_pane_id'] = None
win['last_non_master_pane_id'] = None
return win
|
37c3a4753a8d2590676937e9355fb405ddc70dd9
| 659,903 |
async def fetch(session, url):
"""Fetch the url."""
async with session.get(url) as response:
return await response.text(encoding='utf-8')
|
9c3d901ccd59808461534139502d2498451bf302
| 473,349 |
import importlib.util
def is_core_installed(package_name: str):
"""
Check to see if the Pyntel4004 core is installed
Parameters
----------
package_name: str, mandatory
Name of the Pyntel4004 core package
Returns
-------
True - if the core package is installed
False - if not
Raises
------
N/A
Notes
-----
N/A
"""
spec = importlib.util.find_spec(package_name)
if spec is None:
return False
else:
return True
|
5e5241e545a91fda026c608ade5ef0baa837e2b9
| 433,687 |
def score_tup(t):
"""
Score an ngram tuple returned from a database ngram table. A higher scoring
term is more deserving of inclusion in the resulting acrostic
:param t: (Term string, initials string, Corpus count, Used count)
:return: Fitness score for this term
"""
term = t[0]
inits = t[1]
pop = t[2]
used = t[3]
raw = (len(term)*pop/(10*used*used*used))**(len(inits))
if "#" in term:
score = 2*raw
else:
score = raw
return max(score, 1)
|
eea34dbf2d6a7dec37dc95cde289560a77c72f7e
| 14,163 |
import yaml
def load_yaml(filename):
"""Load a yaml file.
Args:
filename (str): Filename.
Returns:
dict: Dictionary.
"""
try:
with open(filename, "r") as f:
config = yaml.load(f, yaml.SafeLoader)
return config
except FileNotFoundError: # for file not found
raise
except Exception as e: # for other exceptions
raise IOError("load {0} error!".format(filename))
|
702ff5ca3321c7ec2ffc3d09363b6c4e22092837
| 43,353 |
def add_mention(user_mention: str, response: str) -> str:
"""Return response mentioning the person who mentioned you.
Args:
user_mention (str): Slack mention.
response (str): response message.
Returns:
str: response message with added mention.
"""
response_template = "{mention} " + response
return response_template.format(mention=user_mention)
|
9696043aa14e04a0de4d87724d2bd5a750ea3ccb
| 521,593 |
import math
def length(v):
"""Length of vector"""
return math.sqrt(v.dot(v))
|
f52f755772f8b5c106d49a9bee334eabe91a19c4
| 398,570 |
from typing import Iterable
def concatenate_lists(*list_of_lists: Iterable) -> list:
"""Combines the Iterables provided as arguments into one list.
Examples
--------
Normal usage::
concatenate_lists([1, 2], [3, 4], [5])
# returns [1, 2, 3, 4, 5]
"""
return [item for lst in list_of_lists for item in lst]
|
e630fd31888753814e3f486c02b0fc1e67f269ef
| 15,041 |
def is_iterable(obj):
"""
Returns True if an object is iterable and False if it is not.
This function makes the assumtion that any iterable object can be
cast as an iterator using the build-in function `iter`. This might
not be the case, but works within the context of PySCeSToolbox.
Parameters
----------
obj : object
Any object that might or might not be iterable.
Returns
-------
bool
A boolean indicating if `ob` is iterable.
"""
try:
iter(obj)
return True
except TypeError:
return False
|
ee3fc37285761f174d0bf56d0cd9a755f8ee90b4
| 189,978 |
def _skip_object(obj_type, options):
"""Check to see if we skip this object type
obj_type[in] Type of object for the --skip_* option
(e.g. "tables", "data", "views", etc.)
options[in] Option dictionary containing the --skip_* options
Returns (bool) True - skip the object, False - do not skip
"""
obj = obj_type.upper()
if obj == "TABLE":
return options.get("skip_tables", False)
elif obj == "VIEW":
return options.get("skip_views", False)
elif obj == "TRIGGER":
return options.get("skip_triggers", False)
elif obj == "PROCEDURE":
return options.get("skip_procs", False)
elif obj == "FUNCTION":
return options.get("skip_funcs", False)
elif obj == "EVENT":
return options.get("skip_events", False)
elif obj == "GRANT":
return options.get("skip_grants", False)
elif obj == "CREATE_DB":
return options.get("skip_create", False)
elif obj == "DATA":
return options.get("skip_data", False)
elif obj == "BLOB":
return options.get("skip_blobs", False)
else:
return False
|
83f949ef8d8fc5b8bdf61f003f0fcec12ba4e42a
| 277,809 |
import math
def calculateGridPositionFromRangeBearing(easting, northing, distance, bearing):
"""given an east, north, range and bearing, compute a new coordinate on the grid"""
point = (easting, northing)
angle = 90 - bearing
bearing = math.radians(bearing)
angle = math.radians(angle)
# polar coordinates
dist_x = distance * math.cos(angle)
dist_y = distance * math.sin(angle)
xfinal = point[0] + dist_x
yfinal = point[1] + dist_y
# direction cosines
cosa = math.cos(angle)
cosb = math.cos(bearing)
xfinal = point[0] + (distance * cosa)
yfinal = point[1] + (distance * cosb)
return [xfinal, yfinal]
|
080289d6d2e8c7cf8deccf6759c3584f82fa59da
| 443,873 |
def is_odd(val):
"""
Confirms if a value if odd.
:param val: Value to be tested.
:type val: int, float
:return: True if the number is odd, otherwise false.
:rtype: bool
Examples:
--------------------------
.. code-block:: python
>>> even_numbers = list(filter(is_odd, range(20)))
>>> print(even_numbers)
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
>>> print(is_odd(10))
False
>>> print(is_odd(-3))
True
>>> print([value for value in range(20) if is_odd(value)])
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
>>> print([is_odd(value) for value in range(4)])
[False, True, False, True]
"""
return (val % 2) != 0
|
b5379333fcf80460bb3d1317d325c3eacc2c10c2
| 563,574 |
def Split_Info(info):
"""Splits necessary information out from the info vcf column
Parameters
----------
info : Series
Info column from a vcf as a series
Returns
-------
dict
A dict of necessary fields and their values from the vcf
"""
fields = ['QD=', 'MQ=', 'MQRankSum=', 'FS=', 'ReadPosRankSum=', 'SOR=']
# split out all necessary fields from info columns
parts = dict(part.split('=') for part in info.split(';') if any(field in part for field in fields))
return parts
|
e58d2dad51d34a7644a7d5bf307449194aec9ca3
| 695,362 |
async def demo_handler_with_validation(request, *args):
"""
Test of docstring2
And here is the description2
"""
return ""
|
f47bd125a38d76cdc2e340999386fcaea2933536
| 351,390 |
def is_same_website(base, url):
""" Checks if the URL is on the same website """
if url.startswith('http'):
return url.startswith(base)
else:
return True
|
d5d23ab5febb7ca6b8517fb1d23f08cb48df5a18
| 420,734 |
def readfile(filename: str) -> str:
"""Read a whole file into a string and return it."""
with open(filename) as file:
return file.read()
|
f187fefd32938ab698f20b4473c61f412aac2d54
| 582,634 |
import torch
def flipfb(tensor):
"""
Flips a given tensor along the third dimension (front to back)
Parameters
----------
tensor
a tensor at least three-dimensional
Returns
-------
Tensor
the flipped tensor
"""
return torch.flip(tensor, dims=[2])
|
b29f0838c5ffcd2d3bde985d7c3a4531d2f508f1
| 589,158 |
def removeMacChars(macAddress):
""" Return MAC Address with symbols (:,-) removed and characters compacted. eg: 11:22:33:AA:BB:CC -> 112233AABBCC """
if '-' in macAddress:
return macAddress.replace('-', '')
elif ':' in macAddress:
return macAddress.replace(':', '')
else:
return macAddress
|
8973a5ab0ff746daf8df50cffa878435307a5b35
| 232,148 |
import warnings
def get_link_to_assembly(species_list):
"""
Get the path for assembly download from NCBI
Select the most up-to-date Complete Genome of the each organisms
and returns the FTP path for that one.
-----------------------------------------------------------------
Argument:
species_list--list of dictionary obtained from
get_entries_for_species function
Return:
link_assembly: str, FTP path to the genome assembly page of the
selected model:
e.g ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/010/448/615/GCA_010448615.1_ASM1044861v1
"""
genomes = []
link_assembly = ''
for i in species_list:
if i['status'] == 'Complete Genome' and i['assembly'] not in ('', '-'):
genomes.append(i)
date_list = []
if len(genomes) != 0:
for i in genomes:
if len(genomes) == 1:
link_assembly += i['assembly']
elif len(genomes) >1:
date_list.append(i['date'])
else:
# consider eliminating the options below: if there is no
# genomic information, there isn't any cds_from_genomic file
warnings.warn('There is no complete genome for this species')
if len(date_list) != 0:
latest = max(date_list)
for i in species_list:
if i['date'] == latest:
link_assembly += i['assembly']
break # to pick the first match in case more than one entry have the same date
return link_assembly
|
50c086d714786c67335715f4005ecd3eb1338e55
| 16,640 |
def ansible_stdout_to_str(ansible_stdout):
"""
The stdout of Ansible host is essentially a list of unicode characters.
This function converts it to a string.
Args:
ansible_stdout: stdout of Ansible
Returns:
Return a string
"""
result = ""
for x in ansible_stdout:
result += x.encode('UTF8')
return result
|
d74e95981d2f3ba6c896103b0bffb8372ada5f08
| 340,482 |
def determine_axes(f, *vars):
"""
Determine the axes along which the FT should be performed.
"""
if len(vars) != len(f.shape):
raise TypeError('The number of variables has to match the dimension of '
'`f`. Use `None` for axis with respect to which no '
'transform should be performed.')
return [i for i, var in enumerate(vars) if var is not None]
|
324605cebf0550824eacb048e6ea6e94d5c293a6
| 58,033 |
def jd_to_sec(jd):
"""jd to seconds since J2000"""
return (jd - 2451545.0) * 86400.0
|
d827597aae833f4648fb4c12d571f1fb2dd9bae5
| 138,914 |
def to12hrs(militarytime, pad=False):
"""Convert simple military time string to AM/PM format
Example:
input: 2130
output: 9:30 pm
"""
hours = int(militarytime[0:2])
minutes = int(militarytime[2:])
meridiem = ''
formater = '%d:%02d %s'
if hours > 12:
hours = hours - 12
meridiem = 'pm'
elif hours < 12:
meridiem = 'am'
if pad:
formater = '%02d:%02d %s'
return formater % (hours, minutes, meridiem)
|
80993faf85adde8616324427be93db210054b31a
| 575,580 |
def area_squa(l):
"""Calculates the area of a square with given side length l.
:Input: Side length of the square l (float, >=0)
:Returns: Area of the square A (float)."""
if l < 0:
raise ValueError("The side length must be >= 0.")
A = l**2
return A
|
11f0c93ca7f276c1ad2fb06c7959f802d0788282
| 80,523 |
def hello_user(name=""):
"""Returns a greeting message with the user name.
This is an example of a parameterized function with a default value.
If no name is provided the function returns **"Hello Everyone!"** by default.
Args:
name (str): The user name typed in the Console.
Returns:
str: The greeting message.
"""
return f"Hello { name or 'Everyone' }!"
|
11a06ea5aad7d5649e862deac6ee5ef5a1f2cb31
| 514,239 |
def pattern_const32(context, tree):
""" Small 64 bit constants as a constant """
return tree.value
|
dfe05b0beec449842841ca799c545a5121f90c6e
| 214,236 |
from typing import Dict
from typing import Any
def _format_order_item(item: Dict[str, Any]) -> str:
"""Return ORDER BY item with sort direction."""
if "sort" in item:
return f"{item['value']} {item['sort'].lower()}"
return f"{item['value']}"
|
33dec9d1e783ffaed53d868b29a000148e9a3b16
| 387,037 |
def polyeval(a, x):
"""
p(x) = polyeval(a, x)
= a[0] + a[1]x + a[2]x^2 +...+ a[n-1]x^{n-1} + a[n]x^n
= a[0] + x(a[1] + x(a[2] +...+ x(a[n-1] + a[n]x)...)
"""
p = 0
a.reverse()
for coef in a:
p = p*x + coef
a.reverse()
return p
|
2e6f476db0dd02d30d2275bb5d4156ac877e95f4
| 417,704 |
import six
def clear_dict_empty_lists(to_clear_dict):
"""
Removes entries from a nested dictionary which are empty lists.
param to_clear_dict dict: python dictionary which should be 'compressed'
return new_dict dict: compressed python dict version of to_clear_dict
Hints: recursive
"""
new_dict = {}
if not to_clear_dict:
return new_dict
if not isinstance(to_clear_dict, dict):
return to_clear_dict
for key, value in six.iteritems(to_clear_dict):
if value:
new_value = clear_dict_empty_lists(value)
if new_value:
new_dict[key] = new_value
return new_dict
|
4f2e7461fab27487dcd493e4af886d4ca7332b26
| 641,014 |
def units(self, label="", lenfact="", massfact="", timefact="",
tempfact="", toffset="", chargefact="", forcefact="",
heatfact="", **kwargs):
"""Annotates the database with the system of units used.
APDL Command: /UNITS
Parameters
----------
label
Label to denote the system of units used in this job:
USER - User-defined system (default).
SI - International system (m, kg, s, K).
MKS - MKS system (m, kg, s, °C).
uMKS - μMKS system (μm, kg, s, °C).
CGS - CGS system (cm, g, s, °C).
MPA - MPA system (mm, Mg, s, °C).
BFT - U. S. Customary system using feet (ft, slug, s, °F).
BIN - U. S. Customary system using inches (in, lbf*s2/in, s, °F).
Notes
-----
Allows the user to set a marker in the database indicating the system
of units used. The setting may be reviewed with the /STATUS command at
the Begin level. The units label and conversion factors on this
command are for user convenience only and have no effect on the
analysis or data. That is, /UNITS will not convert database items from
one system to another (e.g., from U. S. Customary to SI, etc.). The
units setting will be written to the file of IGES data [IGESOUT or
CDWRITE], which can then be read by many programs that read IGES files.
The user must still use consistent units for the results to be valid.
If you choose the MKS system of units, the EPZRO option for the EMUNIT
command is set to 8.85 e-12 F/m. (EPZRO specifies alternate free-space
permittivity.)
For micro-electromechanical systems (MEMS), where dimensions are on the
order of microns, see the conversion factors in System of Units in the
Coupled-Field Analysis Guide.
If you use the ANSYS ADAMS Interface to export model information to the
ADAMS program, the /UNITS command is required to ensure the correct
transfer of data between ANSYS and ADAMS. You may choose a predefined
unit system label (Label = SI, CGS, etc.) or you can select the user-
defined system option (Label = USER) and input the appropriate
conversion factors (LENFACT, MASSFACT, TIMEFACT, and FORCEFACT). The
conversion factors will be written to the ADAMS input file Jobname.MNF
in order to correctly generate the load. For more information, see
Export to ADAMS in the Substructuring Analysis Guide.
All differences between the base solution units used by the ANSYS and
CFX solvers will be noted in the ANSYS output file. Unit conversions
are automatically applied to all loads transferred unless Label = USER.
Unit conversions are not applied to any of the loads transferred
between the ANSYS and CFX solvers if they use a user-defined unit
system.
This command is valid in any processor.
"""
command = "/UNITS,%s,%s,%s,%s,%s,%s,%s,%s,%s" % (str(label), str(lenfact), str(massfact), str(
timefact), str(tempfact), str(toffset), str(chargefact), str(forcefact), str(heatfact))
return self.run(command, **kwargs)
|
a7f98325ab1d192dc4903e417a3813f17d515824
| 446,530 |
def _should_ignore(class_reference, property_name):
"""Check if a property should be ignored."""
if not hasattr(class_reference, "__deserialize_ignore_map__"):
return False
return class_reference.__deserialize_ignore_map__.get(property_name, False)
|
91868a403427779da1f803ae08e273f04e30f8e4
| 638,875 |
import csv
def read_project_list(filename):
"""
Read the list into a dict. First row is header.
"""
dset_reader = csv.DictReader(open(filename))
project_list = []
for line in dset_reader:
project_list.append(line)
return project_list
|
95c381022e63ae15e38d9e8106e006552539ec25
| 456,869 |
def _get_num_reads(ngs_alignment):
""" Returns the number of reads in the template of an NCBI/NGS alignment
Args:
ngs_alignment (ngs.Alignment): aligned read
Returns:
int: the number of reads in the template
"""
if ngs_alignment.hasMate():
return(2)
else:
return(1)
|
93a3e9076a758c0e0943b8d6b9426e9de463b52f
| 636,015 |
def GetExtent(ds):
""" Return list of corner coordinates from a gdal Dataset """
xmin, xpixel, _, ymax, _, ypixel = ds.GetGeoTransform()
width, height = ds.RasterXSize, ds.RasterYSize
xmax = xmin + width * xpixel
ymin = ymax + height * ypixel
return (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)
|
5dfcb2074b2fd5efb4019cf403bd026296079efc
| 673,564 |
import math
def interval95(acc:float, n_data:int) -> float:
"""
Calculates the confidence interval 95% on a given number of samples.
Args:
acc (float): The accuracy.
n_data (int): The number of samples.
Returns:
float: The confidence interval.
"""
bound = 1.96 * math.sqrt((acc*(1-acc)) / n_data)
return bound
|
bf1c3dcd1ab40a5597c78c824b2a621593d5f7ae
| 302,471 |
def is_int_like(val):
"""Check if a value looks like an int."""
try:
return str(int(val)) == str(val)
except Exception:
return False
|
d06f096b3324fdf2189c5ec3b8027e4ec422520d
| 571,232 |
def _format_error(error: list) -> dict:
"""
Convert the error type list to a dict.
Args:
error (list): a two element list with the error type and description
Returns:
dict: explicit names for the list elements
"""
return {'error_type': error[0], 'description': error[1]}
|
842dd6b456ac25e90c79f720ea59794188001234
| 681,095 |
def invcdf_uniform(val: float, lb: float, ub: float) -> float:
"""Returns the inverse CDF lookup of a uniform distribution. Is constant
time to call.
Args:
val: Value between 0 and 1 to calculate the inverse cdf of.
lb: lower bound of the uniform distribution
ub: upper bound of the uniform distribution
Returns:
Inverse CDF of a uniform distribution for the provided value.
Examples:
>>> invcdf_uniform(1, 5, 10)
10
>>> invcdf_uniform(0, 5, 10)
5
>>> invcdf_uniform(0.5, 5, 10)
7.5
"""
if val < 0:
return -float("inf")
elif val > 1:
return float("inf")
else:
return val * (ub - lb) + lb
|
a113171c9d4ced58d06e41c1289e5e30200b8d09
| 641,209 |
def _parse_vw_output(text):
"""Get dict of useful fields from Vowpal Wabbit's output.
Currently returns field 'average_loss', which is a lower bound on mean
per-word log-perplexity (i.e. same as the value LdaModel.bound() returns).
"""
data = {}
for line in text.splitlines():
if line.startswith('average loss'):
data['average_loss'] = float(line.split('=')[1])
break
return data
|
9b1a625884636190cb3186cbbbea722ff3882715
| 489,570 |
def sanitize(value):
"""Makes sure filenames are valid by replacing illegal characters
:param value: string
"""
return value.replace('/', '_')
|
94f72e2bf1d1cf08dde9ae6c192ed1b68a875900
| 52,478 |
def normalize_Import(node):
""" Return a list of strings of Python 'import' statements, one import on
each line.
"""
statements = []
children = node.getChildren()
for name, asname in children[0]:
line = 'import %s' % (name)
if asname is not None:
line += ' as %s' % asname
line += '\n'
statements.append(line)
return statements
|
f2757deca48f2aeda90da2b667984190d9e3416d
| 144,579 |
def normalize_cpu_arch(arch_specifier: str) -> str:
"""Normalize the string used for the CPU kernel architecture.
Different systems will report the CPU architecture differently and many software
downloads will expect one or the other formats. This function allows us to have a
single location for being able to map back and forth.
:param arch_specifier: The CPU architecture string returned from commands such as
`uname -p`
:type arch_specifier: str
:returns: The common specifier used for the given architecture.
:rtype: str
"""
return {"amd64": "amd64", "x86_64": "amd64", "i386": "386", "i686": "386"}[
arch_specifier
]
|
9d71af9efd9d0925954e0df2af8ed1760d319dd1
| 407,778 |
def fit_model(model, X, y):
"""Fit model
Args:
model (sklearn obj):
X (pd dataframe): X, shape (n_obs, n_predictors)
y (series): y, shape (n_obs, 1)
Returns:
fitted sklearn model
"""
return model.fit(X, y)
|
3f662f0f6c1898a11a6451312c34d49f49b8488b
| 548,133 |
def get_clean_text(html):
"""
Removes extra blank spaces and nbsp from html text.
"""
return " ".join(html.text_content().split())
|
df0f789ddbbaee51ea807465bf7e286b2a2a4096
| 76,375 |
import math
def to_clock(time_secs):
"""
Converts match time in seconds to a clock time in the format: m:ss.
Args:
time_secs: Number of seconds (float).
Returns:
Clock time in format: m:ss (str).
"""
mins = math.floor(time_secs / 60)
secs = str(math.floor(time_secs) % 60)
secs_left_pad = "0{}".format(secs) if len(secs) == 1 else secs
time_clock = "{}:{}".format(mins, secs_left_pad)
return time_clock
|
803c57913e8301cbad1ee2ba5515ce78ed47c250
| 562,393 |
def Find_IPV6_In_Text(text):
"""Find and return all IPv6 addresses in the given string.
:param text: string to search.
:type text: str
:return: IPv6 addresses found in string.
:rtype: list of str
"""
ipv6 = []
for word in text.split():
if (word.count(':') >= 2) and (word.count('/') == 1):
ipv6.append(word)
return ipv6
|
73c1b5a151b809aa9cb3f79d67d933db87a7cdfa
| 486,591 |
def _encode_features(features: dict) -> str:
"""Encodes features from a dictionary/JSON to CONLLU format."""
return '|'.join(map(lambda kv: f'{kv[0]}={kv[1]}', features.items()))
|
a9cea4cdf7a0b46c66d981c3389cc6c8821bf399
| 498,950 |
def is_weekend(time):
"""
datetime -> bool
입력한 날짜가 토요일 또는 일요일인지를 반환
"""
return time.dayofweek in [5, 6]
|
7553ea63622668a7d356c0a55334f4e897440f82
| 532,672 |
def _totuple(size, dim):
"""
Converts size to tuple.
"""
if not isinstance(size, tuple):
if dim == 2:
size = (size, size)
elif dim == 3:
size = (size, size, size)
return size
|
2f6c514838bed8508d9cac951796c5e00bf65ef3
| 570,356 |
import math
def exponential_growth(p, r, t):
"""
Models exponential growth over discrete generations.
:param p: initial population
:param r: growth rate
:param t: number of generations
:type p: numeric
:type t: numeric
:type r: numeric
:returns: population size at time t
:rtype: numeric
"""
return p * math.exp(r * t)
|
faff6f818ff60e7f1567320c2da8d1633e5a315e
| 191,859 |
def clean_sentence(sentence: str):
"""
Clean OpenIE sentences by replacing the bracket shortcuts back to valid brackets
:param sentence: a sentence
:return: cleaned sentence
"""
s = sentence.replace('-LRB- ', '(')
s = s.replace('-LSB- ', '(')
s = s.replace(' -RRB-', ')')
s = s.replace(' -RSB-', ')')
return s
|
e6800c757d6a485d1b386ff1ecc055a1e191614d
| 56,578 |
import curses
def create_hline_window(y_start, x_start, length):
"""Create a window with a single hline and return prepared window."""
line = curses.newwin(
1,
length+1,
y_start,
x_start,
)
line.hline(0,0,"#", length)
line.noutrefresh()
return line
|
809eb5fd0182c2678b427133a5363867d00bcdf7
| 295,045 |
def __getitem__(self, key):
"""Gets the item of the dictionary according to the specified key.
Parameters
----------
self : ee.Dictionary
Dictionary to get the items from.
key : str
Key used to get the specified item. It gets the value of the specified key.
Returns
-------
ee.Element
Selected value.
Examples
--------
>>> import ee, eemont
>>> ee.Authenticate()
>>> ee.Initialize()
>>> eeDict = ee.Dictionary({"a":1,"b":2,"h":4})
>>> eeDict["a"].getInfo()
1
>>> eeDict["h"].getInfo()
4
"""
return self.get(key)
|
181e6f59066d1fbe2b8ddcdf7bfd63c528d1459d
| 384,009 |
from typing import cast
import toml
def open_toml(fname: str) -> dict:
"""Toml opening function"""
with open(fname) as f:
return cast(dict, toml.load(f))
|
8e4acd43871402c69794a1bba7b560ed9ce0b211
| 236,471 |
import copy
def correct_Q(action, state, reward, old_Q, next_Q):
"""
Produce a corrected Q(s,a) estimate according to:
Q(s,a) = R + gamma*Q(s+1,a+1)
"""
gamma = 0.5 # weights importance of future reward
new_Q = copy.copy(old_Q)
new_Q[action] = reward + gamma*next_Q[action] # action indexes are 0,1,2, corresponding to position in Q-function
return new_Q
|
10cf7bedb4d8bdd67b63eb9bc199ca60b9fd119e
| 63,607 |
def replicate_z_samples(t, n_z_samples):
"""Replicates a tensor `n_z_samples` times on a new first dim."""
return t.unsqueeze(0).expand(n_z_samples, *t.shape)
|
9285dddb7029e05382a46613ce4cf0d3b7244393
| 686,005 |
import json
def parseZones(s):
"""
Takes a json string for Zones item type, returns answers.
:param s: the json structure with responses
:return: answer string
"""
try:
RespDict = json.loads(s)
return RespDict['Response']
except:
return None
|
95bcc30aa29bb1f3f4e4b2032121a15a2cee7b38
| 537,857 |
def get_derived_unit(registry, key):
"""Get the unit of a physcial quantity in a provided unit system.
Parameters
----------
registry: dict (str: unit)
mapping 'length', 'mass', 'time', 'current', 'temperature',
'luminous_intensity', 'amount'. If registry is ``None`` the
function returns 1.0 unconditionally.
key: str
one of the registry keys or one of: 'diffusivity', 'electricalmobility',
'permittivity', 'charge', 'energy', 'concentration', 'density',
'radiolytic_yield'.
Examples
--------
>>> m, s = default_units.meter, default_units.second
>>> get_derived_unit(SI_base_registry, 'diffusivity') == m**2/s
True
"""
if registry is None:
return 1.0
derived = {
"diffusivity": registry["length"] ** 2 / registry["time"],
"electrical_mobility": (
registry["current"] * registry["time"] ** 2 / registry["mass"]
),
"permittivity": (
registry["current"] ** 2
* registry["time"] ** 4
/ (registry["length"] ** 3 * registry["mass"])
),
"charge": registry["current"] * registry["time"],
"energy": registry["mass"] * registry["length"] ** 2 / registry["time"] ** 2,
"concentration": registry["amount"] / registry["length"] ** 3,
"density": registry["mass"] / registry["length"] ** 3,
}
derived["diffusion"] = derived["diffusivity"] # 'diffusion' is deprecated
derived["radiolytic_yield"] = registry["amount"] / derived["energy"]
derived["doserate"] = derived["energy"] / registry["mass"] / registry["time"]
derived["linear_energy_transfer"] = derived["energy"] / registry["length"]
try:
return derived[key]
except KeyError:
return registry[key]
|
14e6db8b4fb304a5c270450fceb01f56edbe68e2
| 280,894 |
from typing import List
def is_hat_shaped(learning_rates: List[float]):
"""
Check if the list of learning rates is "hat" shaped, i.e.,
increases then decreases
"""
# sufficient conditions:
# has both an increasing and decreasing segment
# decrease segment occurs after increasing segment
# once start decreasing, can't increase again
has_increasing_segment = False
has_decreasing_segment = False
for k in range(1, len(learning_rates)):
delta = learning_rates[k] - learning_rates[k - 1]
if delta > 1e-8:
has_increasing_segment = True
if has_decreasing_segment:
# can't increase again after hitting the max
return False
elif delta < -1e-8:
if not has_increasing_segment:
# can't decrease without have an increasing segment
return False
has_decreasing_segment = True
else:
# no change
pass
return has_increasing_segment and has_decreasing_segment
|
5da66f5a367ccc75c82972d89dc5a92e875c409d
| 649,511 |
def ispandigital0(m, n):
"""return (True, s) if m is pandigital in base n and (False, False) otherwise where s is true iff m has a zero digit"""
s = set()
z = False
while m > 0:
m, b = divmod(m, n)
if b in s:
return False, False
if b == 0:
z = True
s.add(b)
return True, z
|
6df42bd55a930cf36f11088ea26b1c78c952d69c
| 366,465 |
def get_formatted_authors(result, characters_remaining):
"""
Args:
result: (dict) entry to get authors from
characters_remaining: (int) number of characters remaining in line
Returns:
(str), (int): Formatted author list and number of remaining characters in line
"""
authors_obj = result.get('authors', [])
if authors_obj is None:
authors_obj = []
full_author_list = []
for author in authors_obj:
if "name" in author:
full_author_list.append(author["name"])
elif "Name" in author:
full_author_list.append(author["Name"])
num_authors = len(full_author_list)
reduced_author_list = []
while len(full_author_list) > 0:
author = full_author_list.pop(0)
if characters_remaining > len(author):
reduced_author_list.append(author)
characters_remaining -= len(author) + 2
authors = ", ".join(reduced_author_list)
if len(reduced_author_list) < num_authors:
authors += "..."
return authors, characters_remaining
|
7fb5ca5aed81e54ef60dd7fec80ff9859ec7f263
| 399,859 |
import torch
def _signed_area(path: torch.Tensor) -> torch.Tensor:
"""
Calculates the signed area / Lévy area of a 2D path. If the path is closed,
i.e. ends where it starts, this is the integral of the winding number over
the whole plane. If not, consider a closed path made by adding a straight
line from the end to the start; the signed area is the integral of the
winding number (also over the plane) with respect to that closed path.
If this number is positive, it indicates in some sense that the path
turns anticlockwise more than clockwise, and vice versa.
Args:
path: N x 2 tensor of points.
Returns:
signed area, shape ()
"""
# This calculation is a sum of areas of triangles of the form
# (path[0], path[i], path[i+1]), where each triangle is half a
# parallelogram.
x, y = (path[1:] - path[:1]).unbind(1)
return (y[1:] * x[:-1] - x[1:] * y[:-1]).sum() * 0.5
|
47716d51f981613add08d04ed8d01d5794c89fd6
| 638,701 |
import inspect
def find_people(person_module):
"""
Returns the functions prefixed with `get` from a module.
"""
functions = inspect.getmembers(person_module, predicate=inspect.isfunction)
people_functions = filter(lambda x: x[0].startswith('get'), functions)
persons = []
for _, function in people_functions:
person = function()
persons.append(person)
return persons
|
c3b957051fc75acc5bd208a36d2882164e8564cd
| 81,954 |
def pad_pkcs5(data, block_size):
"""
Returns the data padded using PKCS5.
For a block size B and data with N bytes in the last block, PKCS5
pads the data with B-N bytes of the value B-N.
:param data: Data to be padded.
:type data: :class:`str`
:param block_size: Size of the block.
:type block_size: :class:`int`
:return: :class:`str` -- PKCS5 padded string.
"""
pad = block_size - len(data) % block_size
return data + pad * chr(pad)
|
5b28ef53a2fba394741a040509b5f82b2d947021
| 95,702 |
import math
def find_roots_quadratic(a: float, b: float, c: float) -> set:
"""Return a set containing the solutions to the equation ax^2 + bx + c = 0.
Each solution is a float.
You may ASSUME that:
- a != 0
- (b * b) - (4 * a * c) >= 0
>>> find_roots_quadratic(1, -15, 56) == {8.0, 7.0}
True
>>> find_roots_quadratic(1, -10, 21) == {3.0, 7.0}
True
>>> find_roots_quadratic(1, 8, 15) == {-3.0, -5.0}
True
>>> # Have to use isclose to compare floats
>>> all([math.isclose(sol, -0.739, abs_tol=0.001) or math.isclose(sol, 1.739, abs_tol=0.001) for sol in find_roots_quadratic(7, -7, -9)])
True
Hint: use the quadratic formula.
"""
assert a != 0
assert (b * b) - (4 * a * c) >= 0
part = math.sqrt(b * b - 4 * a * c)
return {(-b - part) / (2 * a), (-b + part) / (2 * a)}
|
664f3ec213200ac2ed3a1cc4f8001da4331938bc
| 703,918 |
import torch
def quat_mul(q1: torch.Tensor, q2: torch.Tensor):
"""Computes qout = q1 * q2, where * is the Hamilton product between the two
quaternions. Note that the Hamiltonian product is not commutative.
Args:
q1: Quaternions of shape ([*, ], 4)
q2: Quaternions of shape ([*, ], 4)
Returns:
qout = q1*q2.
"""
assert q1.shape[-1] == 4 and q2.shape[-1] == 4
qout = torch.stack([
q1[..., 0] * q2[..., 0] - q1[..., 1] * q2[..., 1] - q1[..., 2] * q2[..., 2] - q1[..., 3] * q2[..., 3],
q1[..., 0] * q2[..., 1] + q1[..., 1] * q2[..., 0] + q1[..., 2] * q2[..., 3] - q1[..., 3] * q2[..., 2],
q1[..., 0] * q2[..., 2] - q1[..., 1] * q2[..., 3] + q1[..., 2] * q2[..., 0] + q1[..., 3] * q2[..., 1],
q1[..., 0] * q2[..., 3] + q1[..., 1] * q2[..., 2] - q1[..., 2] * q2[..., 1] + q1[..., 3] * q2[..., 0]
], dim=-1)
return qout
|
5b52307cfd3a11479dc31c1a4e68683558edd7bf
| 376,153 |
import torch
def collate_fn(data):
""" Creates mini-batch from x, ivec, jvec tensors
We should build custom collate_fn, as the ivec, and jvec have varying lengths. These should be appended
in row form
Args:
data: list of tuples contianing (x, ivec, jvec)
Returns:
x: one hot encoded vectors stacked vertically
ivec: long vector
jvec: long vector
"""
x, m, ivec, jvec, demo = zip(*data)
m = torch.stack(m, dim=1)
x = torch.stack(x, dim=1)
ivec = torch.cat(ivec, dim=0)
jvec = torch.cat(jvec, dim=0)
demo = torch.stack(demo, dim=1)
return x, m, ivec, jvec, demo
|
06c25feda297aba9d000e1ffb1e2f648887ae89a
| 670,605 |
async def get_n(aiter, n=0):
"""
Get n items.
"""
r = []
count = 0
async for _ in aiter:
r.append(_)
count += 1
if count >= n and n != 0:
break
return r
|
b1a7f409ccf1588ffd855c3bede90a903f93af04
| 277,596 |
def norm_img(img):
"""
Normalizes an image to between 0 and 1
:param img: image to normalize
:return: nomralized image
"""
return (img - img.min())/(img.max() - img.min())
|
1783bab8f27116084d8b9deca7aa219c6743f4a2
| 310,983 |
def to_timestamp(ts: int) -> str:
"""returns a [(h*):mm:]ss timestamp string from `ts: int`"""
if ts == 0:
return "0"
_mm = ts // 60
hh = _mm // 60
mm = _mm - hh * 60
ss = ts % 60
return ":".join(
[str(u).rjust(2, "0") for u in (hh, mm) if u != 0] + [str(ss).rjust(2, "0")]
).lstrip("0")
|
98996cdbca762013bc88ddc5ba04e237484c233d
| 287,134 |
import unicodedata
import re
def preprocess(rule: str) -> str:
"""
Internal function for pre-processing of rules.
@param rule: The rule to be preprocessed.
@return: The cleaned, preprocessed rule.
"""
# 1. Normalize to NFD, as per maniphono
rule = unicodedata.normalize("NFD", rule)
# 2. Replace multiple spaces with single ones, and remove leading/trailing spaces
rule = re.sub(r"\s+", " ", rule.strip())
return rule
|
649840f609b08fe42ce0fb50016eed0997aa6c03
| 509,627 |
def merge_repository_changeset_revisions(repository_list):
"""
Each installed changeset revision of a tool is listed individually.
Merge revisions of the same tool into a list.
"""
repositories = {}
repo_key_template = "{tool_shed_url}|{name}|{owner}|{tool_panel_section_id}|{tool_panel_section_label}"
for repo in repository_list:
repo_key = repo_key_template.format(**repo)
if repo_key in repositories:
repositories[repo_key].extend(repo['revisions'])
else:
repositories[repo_key] = repo['revisions']
new_repository_list = []
for repo_key, changeset_revisions in repositories.items():
changeset_revisions = list(set(changeset_revisions))
tool_shed_url, name, owner, tool_panel_section_id, tool_panel_section_label = repo_key.split('|')
new_repository_list.append(
{'tool_shed_url': tool_shed_url,
'name': name,
'owner': owner,
'tool_panel_section_id': tool_panel_section_id,
'tool_panel_section_label': tool_panel_section_label,
'revisions': changeset_revisions}
)
return new_repository_list
|
03694a2f32d4eba4fb5cdfed17cdbe918daeaf48
| 137,641 |
def to_dict(qresults, key_function=lambda rec: rec.id):
"""Turns a QueryResult iterator or list into a dictionary.
- qresults - Iterable returning QueryResult objects.
- key_function - Optional callback function which when given a
QueryResult object should return a unique key for the
dictionary.
This function enables access of QueryResult objects from a single search
output file using its identifier.
>>> from Bio import SearchIO
>>> qresults = SearchIO.parse('Blast/wnts.xml', 'blast-xml')
>>> search_dict = SearchIO.to_dict(qresults)
>>> sorted(search_dict)
['gi|156630997:105-1160', ..., 'gi|371502086:108-1205', 'gi|53729353:216-1313']
>>> search_dict['gi|156630997:105-1160']
QueryResult(id='gi|156630997:105-1160', 5 hits)
By default, the dictionary key is the QueryResult's string ID. This may be
changed by supplying a callback function that returns the desired identifier.
Here is an example using a function that removes the 'gi|' part in the
beginning of the QueryResult ID.
>>> from Bio import SearchIO
>>> qresults = SearchIO.parse('Blast/wnts.xml', 'blast-xml')
>>> key_func = lambda qresult: qresult.id.split('|')[1]
>>> search_dict = SearchIO.to_dict(qresults, key_func)
>>> sorted(search_dict)
['156630997:105-1160', ..., '371502086:108-1205', '53729353:216-1313']
>>> search_dict['156630997:105-1160']
QueryResult(id='gi|156630997:105-1160', 5 hits)
Note that the callback function does not change the QueryResult's ID value.
It only changes the key value used to retrieve the associated QueryResult.
As this function loads all QueryResult objects into memory, it may be
unsuitable for dealing with files containing many queries. In that case, it
is recommended that you use either `index` or `index_db`.
"""
qdict = {}
for qresult in qresults:
key = key_function(qresult)
if key in qdict:
raise ValueError("Duplicate key %r" % key)
qdict[key] = qresult
return qdict
|
71cde6a3e4ee5dad3a0761f6424d42d2e8f70ab0
| 340,668 |
def get_spaceweather_imagefile_name(if_path, if_date, if_filename, \
if_extension, verbose):
"""Returns a complete image filename string tailored to the spaceweather
site by concatenating the input image filename (if) strings that define the
path, date, filename root, and the filename extension
If verbose is truthy, then print the returned image filename string
"""
sw_imagefile = if_path + if_date + "_" + if_filename + if_extension
if verbose:
print("Input image file full path: \n{}\n".format(sw_imagefile))
return sw_imagefile
|
208b3b1410e0534dd77d588b557220d6b732d833
| 272,326 |
def convert_old_description(old_description: str) -> str:
"""
Format old course descriptions.
Parameters
----------
old_description:
input course description
Returns
-------
description:
formatted description closer to the new parser
"""
if old_description[:10] == "Cancelled.":
old_description = old_description[10:]
old_description = old_description.replace(""", '"')
return old_description
|
73a4091726d01e51356b999d3a5cbd2ff7e9fabf
| 216,433 |
def pad_str(s: str, pad: str = '0', length: int = 10) -> str:
"""
Prepends a string to a desired length
@pad - the charater to prepend the string with
@length - the total length desired
"""
while len(s) < length:
s = pad + s
return s
|
273c77d7b76f4db8a3bc6d43e2d558b1df00c1be
| 309,286 |
from pathlib import Path
def default_dataset_location(dataset_name: str) -> Path:
"""
Return the default location of a dataset.
This currently returns "~/.avalanche/data/<dataset_name>" but in the future
an environment variable bay be introduced to change the root path.
:param dataset_name: The name of the dataset. Consider using a string that
can be used to name a directory in most filesystems!
:return: The default path for the dataset.
"""
return Path.home() / f".avalanche/data/{dataset_name}"
|
296a5022d7e4f1542265937c104a883b1f075abc
| 644,373 |
def is_number(val):
"""Check if a value is a number by attempting to cast to ``float``.
Args:
val: Value to check.
Returns:
True if the value was successfully cast to ``float``; False otherwise.
"""
try:
float(val)
return True
except (ValueError, TypeError):
return False
|
89728d3d199c3ef5885529da5a2d13dd94fa590f
| 11,329 |
def is_image(file_path):
"""
Checks if the specified file is an image
:param file_path: Path to the candidate file
:return: Whether or not the file is an image
"""
return any(file_path.endswith(extension) for extension in [".png", ".jpg", ".jpeg"])
|
c793affc6ddedff7b0cf741f18e5cae2c42d5458
| 202,620 |
def prepare_index_response_data(response):
"""Function for serializing response from index request
and other objects, which are pydantic objects"""
return response.json()
|
0dfd51c27457cf61a339b2c7a1832957bcf9ea48
| 563,561 |
def dimshuffle(value, ndim, axes):
"""
Shuffle dimension based on the specified number of
dimensions and axes.
Parameters
----------
value : Theano variable
ndim : int
axes : tuple, list
Returns
-------
Theano variable
"""
pattern = ['x'] * ndim
for i, axis in enumerate(axes):
pattern[axis] = i
return value.dimshuffle(pattern)
|
30ba0acc7ff19b3b2a10e77324f2820a6754f307
| 178,092 |
import torch
def sample_flexible(positive, negative, batch_size, pos_percent):
"""
Sample positives up to pos_percent, if positive num is not enough,
sample more negatives to make it up to a batch_size
"""
expected_pos_num = int(batch_size * pos_percent)
if positive.numel() > expected_pos_num:
shuffle_pos = torch.randperm(positive.numel(), device=positive.device)[:expected_pos_num]
positive = positive[shuffle_pos]
expected_neg_num = batch_size - positive.numel()
if negative.numel() > expected_neg_num:
shuffle_neg = torch.randperm(negative.numel(), device=negative.device)[:expected_neg_num]
negative = negative[shuffle_neg]
return positive, negative
|
c65492fe8667c05ded90e13cfd38356b61307eea
| 141,402 |
def convert_to_float(float_value):
"""Try to convert to float, otherwise returns 0."""
try:
return float(float_value)
except ValueError:
return 0
|
0858adefee7d7438801be4b9c3b0dbe4128b75c9
| 239,297 |
import re
def cigarToLen(cigar):
"""
Calculate sequence length from CIGAR string
"""
# Split "cigar" on capital letters
span = re.split('[A-Z]', cigar)
ops = re.split('[0-9]+', cigar)
len = 0
del(span[-1])
del(ops[0])
for i, span in enumerate(span):
if ops[i] in ["M", "I", "S"]:
len += int(span)
return len
|
fa7c2b0633a349cc3295519bffcff9965c6ae704
| 45,466 |
import colorsys
def hsl_to_rgb(hsl):
"""Convert hsl colorspace values to RGB."""
# Convert hsl to 0-1 ranges.
h = hsl[0] / 359.
s = hsl[1] / 100.
l = hsl[2] / 100.
hsl = (h, s, l)
# returns numbers between 0 and 1
tmp = colorsys.hls_to_rgb(h, s, l)
# convert to 0 to 255
r = int(round(tmp[0] * 255))
g = int(round(tmp[1] * 255))
b = int(round(tmp[2] * 255))
return (r, g, b)
|
4417ce8468e71b7139b57fe270809c7030b2c3df
| 707,151 |
def convert_frac(ratio):
""" Converts ratio strings into float, e.g. 1.0/2.0 -> 0.5 """
try:
return float(ratio)
except ValueError:
num, denom = ratio.split('/')
return float(num) / float(denom)
|
5503f0335a9371d4fb008b005fc0b268a86209e8
| 684,333 |
def calc_theta_int_inc(theta_int_ini, delta_theta_int_inc):
"""
Eq. (1) in [prEN 15316-2:2014]
:param theta_int_ini: temperature [C]
:type theta_int_ini: double
:param delta_theta_int_inc: temperature [C]
:type delta_theta_int_inc: double
:return: sum of temperatures [C]
:rtype: double
"""
return theta_int_ini + delta_theta_int_inc
|
35ee8827750bb4e74b534c9577d216bc0dc79150
| 655,261 |
def _generateSpecial_VectorOpts_orientFlip(
overlayList, displayCtx, source, longArg):
"""Generates the ``VectorOpts.orientFlip`` option. """
flip = source.overlay.isNeurological() != source.orientFlip
if flip: return [longArg]
else: return []
|
dc1e8c2f45380e1e3ebb0cb0e61d01dd637760e0
| 375,658 |
def dependency_extracting(list_gate_qubits, count_program_qubit: int):
"""Extract dependency relations between the gates.
If two gates g_1 and g_2 both acts on a qubit *and there is no gate
between g_1 and g_2 that act on this qubit*, we then say that
g2 depends on g1, which means that (1,2) will be in dependency list.
Args:
list_gate_qubits: a list of gates in OLSQ IR
count_program_qubit: the number of logical/program qubit
Returns:
list_dependency: a list of dependency between the gates
"""
list_dependency = []
list_last_gate = [-1 for i in range(count_program_qubit)]
# list_last_gate records the latest gate that acts on each qubit.
# When we sweep through all the gates, this list is updated and the
# dependencies induced by the update is noted.
for i, qubits in enumerate(list_gate_qubits):
if list_last_gate[qubits[0]] >= 0:
list_dependency.append((list_last_gate[qubits[0]], i))
list_last_gate[qubits[0]] = i
if len(qubits) == 2:
if list_last_gate[qubits[1]] >= 0:
list_dependency.append((list_last_gate[qubits[1]], i))
list_last_gate[qubits[1]] = i
return tuple(list_dependency)
|
8e0cc44fec8c1b767868c9af24b7354f5842c981
| 609,341 |
def lon_to_180(ds):
"""This is a function for converting longitude from (0, 360) to (-180, 180)
ref: https://gis.stackexchange.com/questions/201789/verifying-formula-that-will-convert-longitude-0-360-to-180-to-180/201793
Parameters
----------
ds : xarray.Dataset
a dataset with the longitude ranging from 0 to 360
Returns
-------
xarray.Dataset
a dataset with the longitude ranging from -180 to 180
"""
ds=ds.assign_coords(lon=(((ds.lon + 180) % 360) - 180))
ds=ds.reindex(lon=sorted(ds.lon))
return ds
|
e1ced9ac016aee469832bf928edd7482a8e9f0d3
| 435,818 |
def response_map(fetch_map):
"""Create an expected FETCH response map from the given request map.
Most of the keys returned in a FETCH response are unmodified from the
request. The exceptions are BODY.PEEK and BODY partial range. A BODY.PEEK
request is answered without the .PEEK suffix. A partial range (e.g.
BODY[]<0.1000>) has the octet count (1000) removed, since that information
is provided in the literal size (and may be different if the data was
truncated).
"""
if not isinstance(fetch_map, dict):
fetch_map = dict((v, v) for v in fetch_map)
rmap = {}
for k, v in fetch_map.items():
for name in ('BODY', 'BINARY'):
if k.startswith(name):
k = k.replace(name + '.PEEK', name, 1)
if k.endswith('>'):
k = k.rsplit('.', 1)[0] + '>'
rmap[k] = v
return rmap
|
42d992662e5bba62046c2fc1a50f0f8275798ef8
| 3,107 |
import re
def _get_file_index(filename):
""" Extract the numbered index in filename for sorting """
mobj = re.match(r'.+\-(?P<idx>[0-9]+)\.[a-z]+', filename)
if mobj:
return int(mobj.group('idx'))
return -1
|
e9d694eb1f0b776469f510833cf6b70168c1cec3
| 263,171 |
def job_config(job):
"""Extract config dictionary from GraphQL result"""
return {x["key"]: x["value"] for x in job["config"]}
|
d9500a460c661b4714f0f4b744b4ee1a2c58701d
| 106,157 |
def _price_dish(dish):
"""
Computes the final price for ordering the given dish, taking into account the requested
quantity and options.
Args:
dish (dict): KB entry for a dish, augmented with quantity and options information.
Returns:
float: Total price for ordering the requested quantity of this dish with options included.
"""
total_price = dish['price']
if 'options' in dish:
total_price += sum([option.get('price', 0) for option in dish['options']])
return total_price * dish['quantity']
|
1ab29262540a8f875d60efa087ff9bf179bd74f5
| 681,404 |
from random import choice
def temp_password(length=10,
allowed_chars=("abcdefghjkpqrstuvwxyz"
"3456789ACDEFGHJKLMNPQRSTUVWXY")):
"""
Generates a temporary password with the given length and given
allowed_chars.
"""
return ''.join([choice(allowed_chars) for i in range(length)])
|
d6f6d0635342c77c3fddf330fdb084704e535b53
| 267,391 |
import shutil
def check_disk_usage(disk, min_absolute, min_percent):
"""Returns True if there is enough free disk space, false otherwise."""
du = shutil.disk_usage(disk)
# Calculate the percentage of free space
percent_free = 100 * du.free / du.total
# Calculate how many free gigabytes
gigabytes_free = du.free / 2**30
if percent_free < min_percent or gigabytes_free < min_absolute:
return False
return True
|
77ec190ec09b8cdb41e5096e2780ace08ee87ab4
| 162,028 |
def get_class(obj, lower=False):
"""Return object class as string"""
c = obj.__class__.__name__
return c.lower() if lower else c
|
208853e1bd5c12cdb082ab668d784a687ab5bcbd
| 203,783 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.