content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import torch def generate_measure(n_batch, n_sample, n_dim): """ Generate a batch of probability measures in R^d sampled over the unit square :param n_batch: Number of batches :param n_sample: Number of sampling points in R^d :param n_dim: Dimension of the feature space :return: A (Nbatch, Nsample, Ndim) torch.Tensor """ m = torch.distributions.exponential.Exponential(1.0) a = m.sample(torch.Size([n_batch, n_sample])) a = a / a.sum(dim=1)[:, None] m = torch.distributions.uniform.Uniform(0.0, 1.0) x = m.sample(torch.Size([n_batch, n_sample, n_dim])) return a, x
86edea6ac97052a928c854d803a80910beab2881
192,069
def married_type(mdata): """return whether there are modulators or durations (need only check first non-empty element, as consistency is required) return a bit mask: return 0 : simple times return 1 : has amplitude modulators return 2 : has duration modulators return 3 : has both """ rv = 0 for lind in range(len(mdata)): line = mdata[lind] if len(line) > 0: ttok = line[0] if len(ttok[1]) > 0: rv |= 1 # has amp mods if ttok[2] > 0: rv |= 2 # has dur mods break return rv
6d128e13797f934527fe070c3832f5f4ddba066d
449,449
from typing import Optional from typing import Dict def get_env_variables( edgedb_host: str, edgedb_password: str, edgedb_tls_ca: str, github_application_id: str, oauth_application_id: str, oauth_application_secret: str, server_url: str, application_secret: str, organization_name: str, organization_display_name: Optional[str], ) -> Dict[str, str]: """ Returns a dictionary of all environmental variables handled by the web service. """ return { "EDGEDB_HOST": edgedb_host or "127.0.0.1", "EDGEDB_USER": "edgedb", "EDGEDB_PASSWORD": edgedb_password, "EDGEDB_TLS_CA": edgedb_tls_ca, "GITHUB_RSA_PRIVATE_KEY": "private-key.pem", "GITHUB_APPLICATION_ID": github_application_id, "GITHUB_OAUTH_APPLICATION_ID": oauth_application_id, "GITHUB_OAUTH_APPLICATION_SECRET": oauth_application_secret, "SERVER_URL": server_url, "SECRET": application_secret, "ORGANIZATION_NAME": organization_name, "ORGANIZATION_DISPLAY_NAME": organization_display_name or "edgedb", }
2e985d32005982a36ead32938b63511d85b004d8
361,493
from typing import Counter def local_prf(pred_list, ref_list): """ Compute local precision recall and f1-score, given only one prediction list and one reference list """ common = Counter(pred_list) & Counter(ref_list) num_same = sum(common.values()) if num_same == 0: return 0, 0, 0 p = 1.0 * num_same / len(pred_list) r = 1.0 * num_same / len(ref_list) f1 = (2 * p * r) / (p + r) return p, r, f1
0f7eb5ff0df4288765ffc16cddf798eb96e68951
358,781
def actions_by_behavior(actions): """ Gather a dictionary grouping the actions by behavior (not SubBehaviors). The actions in each list are still sorted by order of their execution in the script. @param actions (list) of Action objects @return (dict) where the keys are behaviors and the values are lists of actions """ split = {} for action in actions: for behavior in action.behaviors: if behavior.name not in split: split[behavior.name] = [] split[behavior.name].append(action) return split
ebf97a5837a8d7de735207c5df5e19af2438510a
697,839
import hashlib def get16ByteUUID(uuid): """ Return a 16 byte has of the UUID, used when smaller unique ID is required. """ return hashlib.md5(uuid).hexdigest()[:16]
1e27479b2ac7c3c7aaaf5b30916265753e86b780
569,628
import math def make_jc_matrix(t, a=1.): """ Returns Juke Cantor transition matrix t -- time span a -- mutation rate (sub/site/time) """ eat = math.exp(-4*a/3.*t) r = .25 * (1 + 3*eat) s = .25 * (1 - eat) return [[r, s, s, s], [s, r, s, s], [s, s, r, s], [s, s, s, r]]
12f0c30732db909930201ba7ff26c78c38ea4f4a
672,772
def _capture_callback(x): """Validate the passed options for capturing output.""" if x in [None, "None", "none"]: x = None elif x in ["fd", "no", "sys", "tee-sys"]: pass else: raise ValueError("'capture' can only be one of ['fd', 'no', 'sys', 'tee-sys'].") return x
79a905c5793fabe43475ecc8a46c162f01060250
683,372
def get_degree_cols(df): """ Take in a pandas DataFrame, and return a list of columns that are in that DataFrame AND should be between 0 - 360 degrees. """ vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon', 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon', 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec', 'geographic_precision', 'bed_dip_direction'] relevant_cols = list(set(vals).intersection(df.columns)) return relevant_cols
17dce72df59b186f3f864aefdc2eedf88d381127
66,934
def formToDict(form, exclude=()): """ Returns a dictionary from the given form/ProtoRPC Message """ return {field.name: getattr(form, field.name) for field in form.all_fields() if field.name not in exclude}
87a1957d6259e1adc427e4fcd05032c74819b039
461,889
def check_match(issue, patterns): """Check if any pattern matches the given issue :param issue: issue to match against :type issue: dict :param patterns: patterns to try to match :type patterns: list :return: True if any pattern matches :rtype: bool """ for item, rgx in patterns: if item == 'title' or item == 'any': if rgx.search(issue['title']): return True if item == 'text' or item == 'any': if rgx.search(issue['body']): return True if item == 'label' or item == 'any': for label in issue['labels']: if rgx.search(label['name']): return True return False
31e00395344134df47a8d5613eb32a374eea378b
360,591
def checkTestCaseSuccess(output): """ Searches the output of the GDB script for incentives of failure """ incentives = ["error", "fail", "unexpected", "cannot"] for word in incentives: if output.lower().find(word) != -1: return False return True
f3fce44219999030f6f01cc77a0b084dbdde09c0
505,406
def shader_source_with_tex_offset(offset): """Returns a vertex shader using a texture access with the given offset.""" return """#version 150 uniform sampler1D tex; void main() { vec4 x = textureOffset(tex, 1.0, """ + str(offset) + "); }"
3a8764e74f588afbfb983db7ab5dd86a4e61b5c9
125,745
def total_ret(x): """ Calculates Total cumalative Return """ return (x.add(1).prod() - 1) * 100
5bddf551fa2293749f576fc06028a3fc5d177543
607,019
def to_plugin_config(cp_inst): """ Helper method that transforms the configuration dictionary gotten from the passed Configurable-subclass instance into the standard multi-plugin configuration dictionary format (see above). This result of this function would be compatible with being passed to the ``from_plugin_config`` function, given the appropriate plugin-getter method. TL;DR: This wraps the instance's ``get_config`` return in a certain way that's compatible with ``from_plugin_config``. :param cp_inst: Instance of a Configurable-subclass. :type cp_inst: Configurable :return: Plugin-format configuration dictionary. :rtype: dict """ name = cp_inst.__class__.__name__ return { "type": name, name: cp_inst.get_config() }
41993c9af895bf147c99afee5adca7540f2f5e75
531,424
def _publications_urls(request, analyses): """Return set of publication URLS for given analyses. Parameters ---------- request HTTPRequest analyses seq of Analysis instances Returns ------- Set of absolute URLs (strings) """ # Collect publication links, if any publication_urls = set() for a in analyses: surface = a.related_surface if surface.is_published: pub = surface.publication pub_url = request.build_absolute_uri(pub.get_absolute_url()) publication_urls.add(pub_url) return publication_urls
f60efb37c9603d614f8cf0fa9c53657235d0a156
666,609
from datetime import datetime def create_modif_log( doc, action, dt = datetime.utcnow(), by = None, val = None, ) : """ Create a simple dict for modif_log and insert it into document """ ### store modification modif = { "modif_at" : dt, "modif_for" : action } ### add author of modif if by != None : modif["modif_by"] = by if val != None : modif["modif_val"] = val doc["modif_log"].insert(0, modif) return doc
7a2625fce27b561437692741acdca7d1a32f2c52
472,143
def get_file_contents(file): """ Utility function to read contents of a file. Will only read files in current path :param file: Specifies the file to read :return: File contents """ return open(file).read()
e05584bfff223acd6536a08519eda68d59d9fe9f
315,027
import random def distinct_permutation(sequence): """ Returns a permutation of the given sequence that is guaranteed to not be the same order as the given input. """ assert len(sequence) > 1, "there is no distinct permutation for this input" original = list(sequence) result = original.copy() while result == original: random.shuffle(result) return result
00fc54ea0a2b3f1f5a775be70a3075d6dc576f99
124,322
def str2boolean(string): """ Converts the parameter to a boolean value by recognising different truth literals. """ return (string.lower() in ('yes', 'true', '1'))
489521a4af89b061674e69de483b6f51b87cea34
588,767
import random def mpda_cxPartialyMatched(ind1, ind2): """Executes a partially matched crossover (PMX) on the input individuals. The two individuals are modified in place. This crossover expects :term:`sequence` individuals of indices, the result for any other type of individuals is unpredictable. :param ind1: The first individual participating in the crossover. :param ind2: The second individual participating in the crossover. :returns: A tuple of two individuals. Moreover, this crossover generates two children by matching pairs of values in a certain range of the two parents and swapping the values of those indexes. For more details see [Goldberg1985]_. This function uses the :func:`~random.randint` function from the python base :mod:`random` module. .. [Goldberg1985] Goldberg and Lingel, "Alleles, loci, and the traveling salesman problem", 1985. """ size = min(len(ind1), len(ind2)) p1, p2 = [0] * size, [0] * size # Initialize the position of each indices in the individuals for i in range(size): p1[ind1[i]] = i p2[ind2[i]] = i # Choose crossover points cxpoint1 = random.randint(0, size) cxpoint2 = random.randint(0, size - 1) if cxpoint2 >= cxpoint1: cxpoint2 += 1 else: # Swap the two cx points cxpoint1, cxpoint2 = cxpoint2, cxpoint1 # Apply crossover between cx points for i in range(cxpoint1, cxpoint2): # Keep track of the selected values temp1 = ind1[i] temp2 = ind2[i] # Swap the matched value ind1[i], ind1[p1[temp2]] = temp2, temp1 ind2[i], ind2[p2[temp1]] = temp1, temp2 # Position bookkeeping p1[temp1], p1[temp2] = p1[temp2], p1[temp1] p2[temp1], p2[temp2] = p2[temp2], p2[temp1] return ind1, ind2
8a20c7778e690205ffd5b85000400d1b648f32f5
559,723
def wrap_angle(x): """Wraps an angle between 0 and 360 degrees Args: x: the angle to wrap Returns: a new angle on the interval [0, 360] """ if x < 0: x = 360 - x elif x > 360: x = x - 360 return x
011c21fb4354ce9462196da6a0c971d9c5f83dc7
601,899
def _group_ccs_with_issuetracker(ccs_payload, ccs_issuetracker): """Group ccs from ggrc system and issuetracker. Args: - ccs_system: CCs on Issue Tracker Payload - ccs_tracker: CCs from Issue Tracker Returns: list of grouped ccs from ggrc and issuetracker. """ ccs_system = set(cc.strip() for cc in ccs_payload) ccs_tracker = set(cc.strip() for cc in ccs_issuetracker) return list(ccs_system.union(ccs_tracker))
e43265bca4eb7047aa9ab2f2ed0c49fabb0b5ed2
619,000
def outer_product(features): """InterProduct: Get inter sequence product of features Arguments: features: feature vectors of sequence in the shape of (n, l, h) Return: f: product result in (n, l, l, h) shape """ n, l, c = features.shape features = features.contiguous() x = features.view(n, l, 1, c) x = x.expand(n, l, l, c) y = features.view(n, 1, l, c).contiguous() y = y.expand(n, l, l, c) return x * y
d8bce915a7b935f5de0861b52508e6c2b72052cb
172,736
import torch def label_to_onehot(labels, num_classes=10): """ Converts label into a vector. Args: labels (int): Class label to convert to tensor. num_classes (int): Number of classes for the model. Returns: (torch.tensor): Torch tensor with 0's everywhere except for 1 in correct class. """ one_hot = torch.eye(num_classes) return one_hot[labels.long()]
e6cfd53cf460970dcc85254a175359a14dbf9bed
621,709
def swap_empty_string_for_none(array): """ replace empty string fields with None """ def swap(value): """ change empty string to None """ if value == "": return None else: return value return [swap(x) for x in array]
aa6a9189057fe72d28ed938e65240c5bd90ddbcc
526,963
def mirc_format(s): """ Replaces mIRC-Codes (for example ^K for Strg+K for colors) with the corresponding chars """ s = s.replace("^B", chr(0x02)) s = s.replace("^K", chr(0x03)) s = s.replace("^R", chr(0x0f)) return s;
379c4f3bf9a7003ff2a459ba79c98bfe3d832929
124,088
def make_slim_provenance_dict(model_type, slim_generation, stage='late', spatial_dimensionality='', spatial_periodicity='', separate_sexes=False, nucleotide_based=False): """ Returns a dictionary encoding provenance information for a SLiM tree sequence. """ document = { "schema_version": "1.0.0", "software": { "name" : "SLiM", "version": "3.3.2" }, "parameters": { "command": ['pyslim'], "model_type": model_type, "stage": stage, "spatial_dimensionality": spatial_dimensionality, "spatial_periodicity": spatial_periodicity, "separate_sexes": separate_sexes, "nucleotide_based": nucleotide_based, }, "environment": {}, "metadata": { "individuals": { "flags": { "16": { "name" : "SLIM_TSK_INDIVIDUAL_ALIVE", "description" : "the individual was alive " + "at the time the file was written", }, "17": { "name" : "SLIM_TSK_INDIVIDUAL_REMEMBERED", "description" : "the individual was requested " + "by the user to be permanently remembered", }, "18": { "name" : "SLIM_TSK_INDIVIDUAL_RETAINED", "description" : "the individual was requested " + "by the user to be retained only if its " + "nodes continue to exist in the tree sequence", }, } } }, "slim": { "file_version": "0.4", "generation": slim_generation, "model": "" } } return document
a1e1788dcb22ed2c593d8df7c604e165236a32f6
634,433
def _convert_to_float_if_possible(s): """ A small helper function to convert a string to a numeric value if appropriate :param s: the string to be converted :type s: str """ try: ret = float(s) except (ValueError, TypeError): ret = s return ret
d8e736ee3072f1368a991b3b2cc974f3d04894d1
570,490
def get_token_embeddings(tokenized_text, encoded_layers): """ Convert the hidden state embeddings into single token vectors. """ # Holds the list of 12 layer embeddings for each token # Will have the shape: [# tokens, # layers, # features] token_embeddings = [] batch_i = 0 # For each token in the sentence... for token_i in range(len(tokenized_text)): # Holds 12 layers of hidden states for each token hidden_layers = [] # For each of the 12 layers... for layer_i in range(len(encoded_layers)): # Lookup the vector for `token_i` in `layer_i` vec = encoded_layers[layer_i][batch_i][token_i] hidden_layers.append(vec) token_embeddings.append(hidden_layers) return token_embeddings
6011a359388fd0cbabba81bb2efd14adf1d52502
229,437
def print_tree(sent, token_attr): """Prints sentences tree as string using token_attr from token(like pos_, tag_ etc.) :param sent: sentence to print :param token_attr: choosen attr to present for tokens(e.g. dep_, pos_, tag_, ...) """ def __print_sent__(token, attr): print("{", end=" ") [__print_sent__(t, attr) for t in token.lefts] print(u"%s->%s(%s)" % (token,token.dep_,token.tag_ if not attr else getattr(token, attr)), end="") [__print_sent__(t, attr) for t in token.rights] print("}", end=" ") return __print_sent__(sent.root, token_attr)
84d97efb8f6f95a73efb7b214c2f77d88ebe77f3
517,239
def json(path, _pod): """Retrieves a json file from the pod.""" return _pod.read_json(path)
d5d62b698fee0ed62400c6a40cbe76cd7319ec96
671,589
import hashlib def _sha256(string): """Returns a hash for the given string.""" sha256 = hashlib.sha256() sha256.update(string) return sha256.hexdigest()
fd28388976ef845f0efbc9c99014e4555b525449
288,372
import base64 import dill def deserialize_obj(obj: str) -> str: """Deserialize given object with the following steps: 1. Decode it using base64 to obtain bytes representation. 2. Load it into an object using dill. """ obj_dill = base64.b64decode(obj) obj_str = dill.loads(obj_dill) return obj_str
6e27eb25e2840a632eb92c32b69c9bb9e9092b14
118,385
import re def match(pattern, target): """Match a string exactly against a pattern, where the pattern is a regex with '*' as the only active character. Args: pattern (str): Pattern. target (str): Target. bool: `True` if `pattern` matches `target`. """ pattern = "".join(".*" if c == "*" else re.escape(c) for c in pattern) return bool(re.match("^" + pattern + "$", target))
6c481a32664f1bd383772df2286016f13732435c
307,465
def _ev_charge_level_value(data, unit_system): """Get the charge level value.""" return round(data["evStatus"]["chargeInfo"]["batteryLevelPercentage"])
b8ce457fd18fe91f27e8e06a597121854f673f9b
468,109
def convert_SI(val, unit_in, unit_out): """Unit converter. Args: val (float): The value to convert. unit_in (str): The input unit. unit_out (str): The output unit. Returns: float: The value after unit conversion. """ SI = { "cm": 0.01, "m": 1.0, "km": 1000.0, "inch": 0.0254, "foot": 0.3048, "mile": 1609.34, } return val * SI[unit_in] / SI[unit_out]
78ddc342a194a6f2841b01c2d1d949dc3c12c10d
225,547
def get_train_val_split_from_names(src, val_list): """ Get indices split for train and validation entity names subset src -- list of all entities in dataset val_list -- contains entities that belong to the validation subset """ train_idx = [] val_idx = [] len_ = len(val_list) for i, x in enumerate(src): found = False j = 0 while j < len_ and not found: found = val_list[j] in x j += 1 if found: val_idx.append(i) else: train_idx.append(i) return train_idx, val_idx
931c9ed22997bdfdbbaf89454ada2f02439e0208
587,503
def get_http_addr(config): """ Get the address of the Proteus server Args: config (Config): Pytest config object containing the options Returns: str: Address of the Proteus server """ hostname = config.getoption("hostname") http_port = config.getoption("http_port") return f"{hostname}:{http_port}"
46352e1c65186fac5c08e5320e70cdd08b6786f3
119,741
import six import struct def int_to_bytes(val, bit=32, signed=False, big_endian=True): """ Converts an int to a byte array (bytes). :param val: value to encode :param bit: bit length of the integer to encode :param signed: encode as unsigned int if false :param big_endian: encode with big or little endian :return: """ val = int(val) #ensure it is an int if six.PY3: order = 'little' if big_endian: order = 'big' return val.to_bytes(length=bit//8, byteorder=order, signed=signed) if bit == 8: code = 'B' elif bit == 16: code = 'H' elif bit == 32: code = 'I' elif bit == 64: code = 'Q' else: raise Exception("int_to_bytes : size parameter value should be 8, 16, 32, or 64") if big_endian: code = '>'+code else: code = '<'+code if signed or val < 0: code = code.lower() return struct.pack(code, val)
1737dd18714afe4faf71bfd6cb86914d4b8a965f
438,565
def compute_voltages(grid, configs_raw, potentials_raw): """Given a list of potential distribution and corresponding four-point spreads, compute the voltages Parameters ---------- grid: crt_grid object the grid is used to infer electrode positions configs_raw: Nx4 array containing the measurement configs (1-indexed) potentials_raw: list with N entries corresponding to each measurement, containing the node potentials of each injection dipole. """ # we operate on 0-indexed arrays, config holds 1-indexed values # configs = configs_raw - 1 voltages = [] for config, potentials in zip(configs_raw, potentials_raw): print('config', config) e3_node = grid.get_electrode_node(config[2]) e4_node = grid.get_electrode_node(config[3]) print(e3_node, e4_node) print('pot1', potentials[e3_node]) print('pot2', potentials[e4_node]) voltage = potentials[e3_node] - potentials[e4_node] voltages.append(voltage) return voltages
d060cf55e0439872a48c2e969eff128ced142923
362,352
import random def get_random_proxy(list_of_proxies): """ Returns a dictionary with a random proxy chosen from the given list. Parameters ---------------- list_of_proxies : list A list containing various proxies. Returns ---------------- dictionary Returns a dictionary with a random proxy which uses the http protocol. """ random_proxy = "http://" + str(random.choice(list_of_proxies)) proxy_dict = {"http" : random_proxy} return proxy_dict
376d3274229a3d796045a705bd02847548da388d
339,060
from typing import Dict def bounds(stac: Dict) -> Dict: """ Return STAC bounds. Attributes ---------- stac : dict STAC item. Returns ------- out : dict dictionary with image bounds. """ return dict(id=stac["id"], bounds=stac["bbox"])
6a7d6d3845d001a8e9975f3d64e41ca45e403479
316,652
def fill_fields_template(fields, templates): """ Substitute the name, type and value for all the fields """ final_template = "" for field in fields: final_template += (templates[3] .replace("{name}", field['name']) .replace("{type}", field['type']) .replace("{value}", field['value'])) return final_template
aa3aaa570769e722fb7f84f28756ab628e1abda2
217,280
def get_successors(graph): """Returns a dict of all successors of each node.""" d = {} for e in graph.get_edge_list(): src = e.get_source() dst = e.get_destination() if src in d.keys(): d[src].add(dst) else: d[src] = set([dst]) return d
1ec7b0ab8772dc738758bb14fe4abd5dd4b9074e
709,606
def csv_escape(text): """Escape functional characters in text for embedding in CSV.""" if text is None: return '' return '~' + text.strip('\n -') + '~'
3715565582f00e927ec490399d277abe4cbae413
247,333
def problem_3_6(stack): """ Write a program to sort a stack in ascending order. You should not make any assumptions about how the stack is implemented. The following are the only functions that should be used to write this program: push | pop | peek | isEmpty. Solution #1: use one more stack. Solution #2: no additional stack but using recursion, first recurse on the substack without the last element to bring the max to top, then compare top two elements. This is bubble-sort. """ def move_last(stack): """ Finds the max element in stack and moves it to to the top. """ if len(stack) <= 1: return stack last = stack.pop() stack = move_last(stack) previous = stack.peek() if previous > last: previous = stack.pop() stack.push(last) stack.push(previous) else: stack.push(last) return stack def stack_sort(stack): if stack.is_empty(): return stack stack = move_last(stack) last = stack.pop() stack = stack_sort(stack) stack.push(last) return stack return stack_sort(stack)
d8c95fb053a4190a1628c48fe4014ca45e962890
585,632
def get_data_file_path_list(data_file_list_path): """Get mappting of video id to sensor data files. video id to (original video id, [file 1, ..., file n]) where file 1, ..., file n are one series data. Note. - Original video id in input files sometimes mixed lower and upper case. - To treat several case, lower case of them are used as key of mapping. """ mapping = {} with open(data_file_list_path) as f_in: for line in f_in.readlines(): if line.strip() == '': continue video_name_prefix, files_txt = line.strip().split('\t') mapping[video_name_prefix.lower()] = ( video_name_prefix, files_txt.split(',')) return mapping
7655c27105b1ce051bf1942655daabc2dfce9bd0
21,851
import socket async def async_discover_unifi(hass): """Discover UniFi address.""" try: return await hass.async_add_executor_job(socket.gethostbyname, "unifi") except socket.gaierror: return None
a59b928937582813f4210e91d03b739ecc1a77e8
332,534
def reorder(li: list, a: int, b: int): """Reorder li[a] with li[b]. Args: li (list): List to process. a (int): Index of first item. b (int): Index of second item. Returns: list: List of reordered items. Example: >>> reorder([a, b, c], 0, 1) <<< [b, a, c] """ li[a], li[b] = li[b], li[a] return li
6629e47d3e172d2f9c2fb1c2feceb4efb4c0b14b
417,251
def get_conv_gradweights_shape_1axis( image_shape, top_shape, border_mode, subsample, dilation ): """ This function tries to compute the image shape of convolution gradWeights. The weights shape can only be computed exactly when subsample is 1 and border_mode is not 'half'. If subsample is not 1 or border_mode is 'half', this function will return None. Parameters ---------- image_shape: int or None. Corresponds to the input image shape on a given axis. None if undefined. top_shape: int or None. Corresponds to the top shape on a given axis. None if undefined. border_mode: string, int or tuple of 2 ints. If it is a string, it must be 'valid', 'half' or 'full'. If it is an integer, it must correspond to the padding on the considered axis. If it is a tuple, its two elements must correspond to the asymmetric padding (e.g., left and right) on the considered axis. subsample: int. It must correspond to the subsampling on the considered axis. dilation: int. It must correspond to the dilation on the considered axis. Returns ------- kernel_shape: int or None. Corresponds to the kernel shape on a given axis. None if undefined. """ if None in [image_shape, top_shape, border_mode, subsample, dilation]: return None if subsample != 1 or border_mode == "half": return None if border_mode == "full": kernel_shape = top_shape - image_shape elif border_mode == "valid": kernel_shape = image_shape - top_shape else: if isinstance(border_mode, tuple): pad_l, pad_r = border_mode else: pad_l = pad_r = border_mode if pad_l < 0 or pad_r < 0: raise ValueError("border_mode must be >= 0") kernel_shape = image_shape + pad_l + pad_r - top_shape if dilation > 1: kernel_shape = kernel_shape / dilation return kernel_shape + 1
d9a0221d09b24d1c0dd18f3848f11e6b185c5ce4
368,906
def get_permission_code(permission): """ Get unique code for identify permission :param permission: Permission object :return: unique_code: unique code of Permission object """ return '{app_label}.{codename}'.format( app_label=permission.content_type.app_label, # model=permission.content_type.model, codename=permission.codename, )
7f753347b757530be5892232e94672ac0ccace8a
122,172
import torch def squeeze_left(const: torch.Tensor): """ Squeeze the size-1 dimensions on the left side of the shape tuple. PyTorch's `squeeze()` doesn't support passing multiple `dim`s at once, so we do it iteratively. """ while len(const.shape) > 0 and const.shape[0] == 1: const = const.squeeze(dim=0) return const
1f2390a17e06258757b8890fa8e0df38edb79a67
120,363
from collections import defaultdict def _AOP_product(n): """for n = (m1, m2, .., mk) return the coefficients of the polynomial, prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients of the product of AOPs (all-one polynomials) or order given in n. The resulting coefficient corresponding to x**r is the number of r-length combinations of sum(n) elements with multiplicities given in n. The coefficients are given as a default dictionary (so if a query is made for a key that is not present, 0 will be returned). Examples ======== >>> from sympy.functions.combinatorial.numbers import _AOP_product >>> from sympy.abc import x >>> n = (2, 2, 3) # e.g. aabbccc >>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand() >>> c = _AOP_product(n); dict(c) {0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1} >>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)] True The generating poly used here is the same as that listed in http://tinyurl.com/cep849r, but in a refactored form. """ n = list(n) ord = sum(n) need = (ord + 2)//2 rv = [1]*(n.pop() + 1) rv.extend([0]*(need - len(rv))) rv = rv[:need] while n: ni = n.pop() N = ni + 1 was = rv[:] for i in range(1, min(N, len(rv))): rv[i] += rv[i - 1] for i in range(N, need): rv[i] += rv[i - 1] - was[i - N] rev = list(reversed(rv)) if ord % 2: rv = rv + rev else: rv[-1:] = rev d = defaultdict(int) for i in range(len(rv)): d[i] = rv[i] return d
612cf61c6bf07fdc44df906e2cb5d3ad28aab72c
564,650
from typing import List from typing import Callable from typing import Tuple def build_consumer(charset: List[str]) -> Callable[[str], Tuple[str, str]]: """Return a callable that consume anything in *charset* and returns a tuple of the consumed and unconsumed text""" def consumer(text: str) -> Tuple[str, str]: consumed = [] start_ix = 0 should_continue = True while should_continue: should_continue = False for chars in charset: if text[start_ix:].startswith(chars): start_ix += len(chars) consumed.append(chars) should_continue = True token = "".join(consumed) return token, text[len(token) :] return consumer
3f7d24f32fb667786012af7bf247be997ee4c806
361,692
from typing import Iterable def digit_range(num_digits: int) -> Iterable[int]: """ Range over all numbers with a given number of digits """ minimum = 10 ** (num_digits - 1) maximum = 10 ** num_digits return range(minimum, maximum)
d357cd747e1000124b542e269afed78b1b936a8e
374,766
def round_list(input, ndigits=3): """ Takes in a list of numbers and rounds them to a particular number of digits """ return [round(i, ndigits) for i in input]
27ad731e626afce3d928aca2093ef022c78f95d2
310,429
def findAncestor(acc, pred): """ Searches for an ancestor satisfying the given predicate. Note that the AT-SPI hierarchy is not always doubly linked. Node A may consider node B its child, but B is not guaranteed to have node A as its parent (i.e. its parent may be set to None). This means some searches may never make it all the way up the hierarchy to the desktop level. @param acc: Starting accessible object @type acc: Accessibility.Accessible @param pred: Search predicate returning True if accessible matches the search criteria or False otherwise @type pred: callable @return: Node matching the criteria or None if not found @rtype: Accessibility.Accessible """ if acc is None: # guard against bad start condition return None while 1: if acc.parent is None: # stop if there is no parent and we haven't returned yet return None try: if pred(acc.parent): return acc.parent except Exception: pass # move to the parent acc = acc.parent
643a3265c2c5d0dd38fadcee82fc37678df8b32e
391,024
def encode_function_data(initializer=None, *args): """Encodes the function call so we can work with an initializer. Args: initializer ([brownie.network.contract.ContractTx], optional): The initializer function we want to call. args (Any, optional): The arguments to pass to the initializer function Returns: [bytes]: Return the encoded bytes. """ if not len(args): args = b"" if initializer: return initializer.encode_input(*args) return b""
303c297d8ea2b62d3ecb6ccc1e208fc54dd84e49
700,798
def _webwallet_support(coin, support): """Check the "webwallet" support property. If set, check that at least one of the backends run on trezor.io. If yes, assume we support the coin in our wallet. Otherwise it's probably working with a custom backend, which means don't link to our wallet. """ if not support.get("webwallet"): return False return any(".trezor.io" in url for url in coin["blockbook"] + coin["bitcore"])
b9ed226a8cff055910c3e5883a17aff54ab09843
62,612
def set_session_settings(torrent_client, params): """ Set speed limits params - session settings key=value pairs. More info can be found in <a href="http://www.rasterbar.com/products/libtorrent/manual.html#session-customization">libtorrent API docs</a>. :return: 'OK' """ torrent_client.set_session_settings(**params) return 'OK'
3174240f919514646af0d9abf08667a8b670db8e
272,003
def format_dict_str(record): """ Transform all dict values into strings """ for key, value in record.items(): record[key] = str(value) return record
8602f708e6e8bbd56d636ceb9023f58e80b114c6
92,440
import re def _clean_cassandra_log(string): """Strip the text formatting from Cassandra output""" string = re.sub(r"\^\[\[0m", "", string) string = re.sub(r"\^\[\[1m", "", string) return string
e56d6b44d20bdd7b67ae035860fe513e9548defc
232,367
def plotKernel2D(kernel, figAxis, title): """ Creates a 2D representation of a kernel. Parameters ---------- kernel: numpy.array Kernel to display in 2D. figAxis: matplotlib.figure.axis Figure axis where to plot the graphic. title: str Title of the graphic built. Returns ------- imAxis: matplotlib.axis Axis in which the image is placed on the plot. """ figAxis.set_title(title, fontsize=15) figAxis.set_xlabel('x') figAxis.set_ylabel('y') figAxis.set_xticks([]) figAxis.set_yticks([]) return figAxis.imshow(kernel.real, cmap='hot', interpolation='bicubic')
7d1d54b9802ecfbf397f02e2304cb0d037fc43e3
452,128
import pkg_resources def get_installed_version(base_version_only: bool = False): """Get the version of the installed aws-parallelcluster package.""" pkg_distribution = pkg_resources.get_distribution("aws-parallelcluster") return pkg_distribution.version if not base_version_only else pkg_distribution.parsed_version.base_version
0ad3875465867daf897e6d9404bb5e309778998c
145,652
def getAngledAttrIfNecessary(font, attr): """ Coerce "leftMargin" or "rightMargin" to "angledLeftMargin" or "angledRightMargin" if the font is italic. """ useAngledMargins = font.info.italicAngle != 0 if useAngledMargins: if attr == "leftMargin": attr = "angledLeftMargin" elif attr == "rightMargin": attr = "angledRightMargin" return attr
7476b4e8e2bffdd323e2c290143e3e1f910b1b65
529,089
def find_member(message, nickname): """ Finds the first memeber that matches the nickname on the guild where the message was sent. Parameters ---------- message : discord.Message Message that triggered the event. nickname : str nickname of the user that might be on the same guild where the message was delivared. Returns ------- member : discord.Member First discord member that matches the nickname. If no member was found that matches the nickname None will be returned. """ for member in message.guild.members: if nickname in member.display_name: return member
036ec983a34522f15293ab25246f7b89fc83dade
83,808
def _parse_qsub_job_id(qsub_out): """Parse job id from qsub output string. Assume format: "Your job <job_id> ("<job_name>") has been submitted" """ return int(qsub_out.split()[2])
6af319f93cc5ab06fb81597196675e87e3719f5f
610,839
def format_none_and_zero(value): """Return empty string if the value is None, zero or Not Applicable """ return "" if (not value) or (value == 0) or (value == "0") or (value == 'Not Applicable') else value
a9bcff49098ca6ced92f38e07e922845d87f8fd9
130,227
def to_float(val): """Convert string to float, but also handles None and 'null'.""" if val is None: return None if str(val) == "null": return None return float(val)
3a4fe68fa215b414a36e009d56aeb16c7a38573a
622,846
def coalesce_blocks(blocks): """ Coalesce a list of (address, size) blocks. ---------------------------------------------------------------------- Example: blocks = [ (4100, 10), (4200, 100), (4300, 10), (4310, 20), (4400, 10), ] Returns: coalesced = [(4100, 10), (4200, 130), (4400, 10)] """ # nothing to do if not blocks: return [] elif len(blocks) == 1: return blocks # before we can operate on the blocks, we must ensure they are sorted blocks = sorted(blocks) # # coalesce the list of given blocks # coalesced = [blocks.pop(0)] while blocks: block_start, block_size = blocks.pop(0) # # compute the end address of the current coalescing block. if the # blocks do not overlap, create a new block to start coalescing from # if sum(coalesced[-1]) < block_start: coalesced.append((block_start, block_size)) continue # # the blocks overlap, so update the current coalescing block # coalesced[-1] = (coalesced[-1][0], (block_start+block_size) - coalesced[-1][0]) # return the list of coalesced blocks return coalesced
43aebd989dc548fb41eb95555422fd544dcac19f
466,392
def mask_2d_centres_from_shape_pixel_scale_and_centre(shape, pixel_scales, centre): """Determine the (y,x) arc-second central coordinates of a mask from its shape, pixel-scales and centre. The coordinate system is defined such that the positive y axis is up and positive x axis is right. Parameters ---------- shape : (int, int) The (y,x) shape of the 2D array the arc-second centre is computed for. pixel_scales : (float, float) The (y,x) arc-second to pixel scales of the 2D array. centre : (float, flloat) The (y,x) centre of the 2D mask. Returns -------- tuple (float, float) The (y,x) arc-second central coordinates of the input array. Examples -------- centres_arcsec = centres_from_shape_pixel_scales_and_centre(shape=(5,5), pixel_scales=(0.5, 0.5), centre=(0.0, 0.0)) """ y_centre_arcsec = (float(shape[0] - 1) / 2) - (centre[0] / pixel_scales[0]) x_centre_arcsec = (float(shape[1] - 1) / 2) + (centre[1] / pixel_scales[1]) return (y_centre_arcsec, x_centre_arcsec)
a95972dda4ef22db8ee7b044a2782fc484f11da6
456,102
def parse_execution_line_for_python_program(execution_line): """ Take a line ex. 'python -m service_framework -s service.py' and parse it so it can be used by the subprocess module. execution_line::str return::[str] """ split_line = execution_line.split(' ') execution_list = [] for item in split_line: if item: cleaned_item = item.strip() execution_list.append(cleaned_item) return execution_list
699787f343a1f8690db8a4d9890556619795d203
214,082
def lookup_clutter_geotype(clutter_lookup, population_density): """ Return geotype based on population density Parameters ---------- clutter_lookup : list A list of tuples sorted by population_density_upper_bound ascending (population_density_upper_bound, geotype). population_density : float The current population density requiring the lookup. """ highest_popd, highest_geotype = clutter_lookup[2] middle_popd, middle_geotype = clutter_lookup[1] lowest_popd, lowest_geotype = clutter_lookup[0] if population_density < middle_popd: return lowest_geotype elif population_density > highest_popd: return highest_geotype else: return middle_geotype
e778a079ee30e5130f50566bf5b8af1f21d49166
145,080
import struct import socket def long_to_ipv4(ip_long): """Convert a long representation to a human readable IPv4 string >>> long_to_ipv4(2130706433L) '127.0.0.1' >>> long_to_ipv4(16909060L) '1.2.3.4' """ ip_bytes = struct.pack("!I", ip_long) return socket.inet_ntop(socket.AF_INET, ip_bytes)
a4fd91227d5625865113cac06abbb5895f6c6e67
319,893
import attr def DictParameter(default=None, factory=dict, **kwargs): """Adds a dict parameter: Args: default (optional, dict): Default value. Default: None. base (optional, callabe): Factory function, e.g. dict or collections.OrderedDict. Default: dict. """ if default is not None: return attr.ib(default, **kwargs) return attr.ib(factory=factory, **kwargs)
023b58244cd7152bdd25d35211afd189f3eaf136
260,497
def words(string, sep=','): """Split string into stripped words.""" return [x.strip() for x in string.split(sep)]
538beeed79212a3ee160e7f9dc17e07e3ea93f85
135,982
import time def get_time(timestamp): """ Get a string representing the timestamp Parameters ------------ timestamp Numeric timestamp Returns ------------ stru String timestamp """ return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)).replace(" ", "T") + ".000"
0ca53e4a61d3b234f2890e99bff359338d1aed45
315,250
def identity_nd(*args): """Identity functions Args: args: variable arguments Returns: args: same arguments """ return args
c19aca21442e99b2e00306afd9c25f679103ffad
588,106
def rotate(deg, x, y): """ Generate an SVG transform statement representing rotation around a given point. """ return "rotate(%i %i %i)" % (deg, x, y)
27f963dc7bff21b3047495c2ea255d8a2a6325e1
304,654
def normalize_input(answer): """Take a string and normalize it to a standard format.""" return answer.strip()
b7ed9600ae230a07b90b3feabc6ac509f4d0a5a2
226,679
def normalize_string(s: str) -> str: """ function to normalize strings by removing extra quotes and trailing spaces """ if s.startswith("'") and s.endswith("'"): return s.replace("'", "", 2).rstrip("'").strip() return s.rstrip()
5c822446f54718c9891d51c09ba820216efb23bb
268,952
def get_DiAC_phases(cliffNum): """ Returns the phases (in multiples of pi) of the three Z gates dressing the two X90 pulses comprising the DiAC pulse correspoding to cliffNum e.g., get_DiAC_phases(1) returns a=0, b=1, c=1, in Ztheta(a) + X90 + Ztheta(b) + X90 + Ztheta(c) = Id """ DiAC_table = [ [0, 1, 1], [0.5, -0.5, 0.5], [0, 0, 0], [0.5, 0.5, 0.5], [0, -0.5, 1], [0, 0, 1], [0, 0.5, 1], [0, 1, -0.5], [0, 1, 0], [0, 1, 0.5], [0, 0, 0.5], [0, 0, -0.5], [1, -0.5, 1], [1, 0.5, 1], [0.5, -0.5, -0.5], [0.5, 0.5, -0.5], [0.5, -0.5, 1], [1, -0.5, -0.5], [0, 0.5, -0.5], [-0.5, -0.5, 1], [1, 0.5, -0.5], [0.5, 0.5, 1], [0, -0.5, -0.5], [-0.5, 0.5, 1]] return DiAC_table[cliffNum]
e8c9f7e4aabc1840968663a19557ed7cc4fcf939
184,387
def get_cspad(azav, gas_det, bin_low, bin_high): """ Get the intensity of the diffraction ring on the CSPAD. The returned value is normalized to the intensity from the gas detector. Parameters ---------- azav : ndarray Azimuthal average calculated from CSPAD. gas_det : float Gas detector intensity. bin_low : int The bin number of the lower bound of the intensity integration. bin_high : int The bin number of the upper bound of the intensity integration. Returns ------- intensity : float Sum of 5 qbins above and below the center, normalized by gas detector. """ intensity = sum(azav[bin_low:bin_high]) / gas_det return intensity
309b4799b602038b7a9be0060c57e1285397c3d9
310,544
def unemployment_rate(earning, earning_new, unemployment): """ Args: earning: how much money the player earned last round earning_new: how much money the player earned this round unemployment: unemployment rate of the player had last round Returns: unemployment rate of the player has this round """ # based on okuns law delta_unemployment = ((earning - earning_new) / earning) / 1.8 new_unemployment = max(0, unemployment + delta_unemployment) return new_unemployment
25f671212bc9b428a8c52f88a575ea36e1fc0178
669,897
def set_type(values, new_type): """Convert string values to integers or floats if applicable. Otherwise, return strings. If the string value has zero length, none is returned Args: values: A list of values new_type: The type to coerce values to Returns: The input list of values modified to match their type. String is the default return value. If the values are ints or floats, returns the list formatted as a list of ints or floats. Empty values will be replaced with none. """ if new_type == str: coerced_values = [str(x) for x in values] elif new_type == int or new_type == float: float_values = [float(x) for x in values] if new_type == int: coerced_values = [int(round(x)) for x in float_values] else: coerced_values = float_values else: raise ValueError("{} not supported for coercing types".format(new_type.__name__)) return coerced_values
a1aa1cc74800a1add464e8ac124e0873a455f59a
34,866
def _axes_get_size_inches(ax): """ Size of axes in inches Parameters ---------- ax : axes Axes Returns ------- out : tuple[float, float] (width, height) of ax in inches """ fig = ax.get_figure() bbox = ax.get_window_extent().transformed( fig.dpi_scale_trans.inverted() ) return bbox.width, bbox.height
02dcd5a8b5f099dc136007c0c74dc067042b7538
227,421
import re def parse_params(path): """Parse a path fragment and convert to a list of tuples. Slashes separate alternating keys and values. For example /a/3/b/5 -> [ ['a', '3'], ['b', '5'] ].""" parts = re.split('/',path) keys = parts[:-1:2] values= parts[1::2] return zip(keys,values)
c79bc783374f314c00c559fb61879e7671eb8f5a
693,130
def XYZtoCIELab(X, Y, Z, obs): # XYZ - Lab """ convert XYZ to CIE-L*ab color :param X: X value :param Y: Y value (luminance) :param Z: Z value :param obs: Observer (CIEObs class or class inheriting from it) :return: CIE-L*ab tuple """ xyz = [X / obs.ref_X, Y / obs.ref_Y, Z / obs.ref_Z] for i in range(len(xyz)): if xyz[i] > 0.008856: xyz[i] = pow(xyz[i], (1.0 / 3.0)) else: xyz[i] = (7.787 * xyz[i]) + (16.0 / 116.0) CL = (116.0 * xyz[1]) - 16.0 Ca = 500.0 * (xyz[0] - xyz[1]) Cb = 200.0 * (xyz[1] - xyz[2]) return CL, Ca, Cb
759063a1f6a5cd4f63854b88c581fc773d32ea02
376,292
def fib_r(n: int) -> int: """Recursively the nth fibonacci number :param n: nth fibonacci sequence number :type n: int :returns: the nth fibonacci number :rtype: int .. doctest:: python >>> fib_r(1) 1 >>> fib_r(2) 2 >>> fib_r(6) 13 """ return n if n < 3 else fib_r(n - 1) + fib_r(n - 2)
82952279aba9bfd1946f9b32f57943b4dcf2d643
496,879
def NumSearch(big, sub): """ Helper function for ModelML. Returns the number of times the string sub appears in the string big. sub: string of shorter or equal length to big big: string to search in """ results = 0 subLen = len(sub) for i in range(len(big)): if big[i:i + subLen] == sub: results += 1 return results
12a284e3ca35a61ef7efa845d781c243957f9e17
431,233
from pathlib import Path import tempfile import venv def create_new_venv() -> Path: """Create a new venv. Returns: path to created venv """ # Create venv venv_dir = Path(tempfile.mkdtemp()) venv.main([str(venv_dir)]) return venv_dir
077dd1318d579ccdb3333849b092555c54297903
676,018
def get_iob_site(db, grid, tile, site): """ Return the prjxray.tile.Site objects and tiles for the given IOB site. Returns tuple of (iob_site, iologic_tile, ilogic_site, ologic_site) iob_site is the relevant prjxray.tile.Site object for the IOB. ilogic_site is the relevant prjxray.tile.Site object for the ILOGIC connected to the IOB. ologic_site is the relevant prjxray.tile.Site object for the OLOGIC connected to the IOB. iologic_tile is the tile containing the ilogic_site and ologic_site. """ gridinfo = grid.gridinfo_at_tilename(tile) tile_type = db.get_tile_type(gridinfo.tile_type) sites = sorted(tile_type.get_instance_sites(gridinfo), key=lambda x: x.y) if len(sites) == 1: iob_site = sites[0] else: iob_site = sites[1 - int(site[-1])] loc = grid.loc_of_tilename(tile) if gridinfo.tile_type.startswith('LIOB33'): dx = 1 elif gridinfo.tile_type.startswith('RIOB33'): dx = -1 else: assert False, gridinfo.tile_type iologic_tile = grid.tilename_at_loc((loc.grid_x + dx, loc.grid_y)) ioi3_gridinfo = grid.gridinfo_at_loc((loc.grid_x + dx, loc.grid_y)) ioi3_tile_type = db.get_tile_type(ioi3_gridinfo.tile_type) ioi3_sites = ioi3_tile_type.get_instance_sites(ioi3_gridinfo) ilogic_site = None ologic_site = None target_ilogic_site = iob_site.name.replace('IOB', 'ILOGIC') target_ologic_site = iob_site.name.replace('IOB', 'OLOGIC') for site in ioi3_sites: if site.name == target_ilogic_site: assert ilogic_site is None ilogic_site = site if site.name == target_ologic_site: assert ologic_site is None ologic_site = site assert ilogic_site is not None assert ologic_site is not None return iob_site, iologic_tile, ilogic_site, ologic_site
627f7f4d6d3a0d5eb67115ed7a55b36723d0f375
291,617
def first_10_digits_of_sum(filename): """Calculates first 10 digits of sum of numbers in file.""" summ = 0 with open(filename) as f: for line in f.readlines(): summ += int(line[:12]) return str(summ)[:10]
a8d38a84535b31a5d8816e035961c331d6bbf1bf
299,259
def _get_minimal_smoothing(N): """An heuristic function for the "most optimal" (in some sense) smoothing parameter for inverting an integral operator of quadrature dimension *N*.""" return 9.5e-11*N**1.71
04281dc5cab3bac6bdfd49f2400a0c8c415ab8b2
363,132
def Run(benchmark_spec): """Doc will be updated when implemented. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample instances. """ ycsb_vms = benchmark_spec.vm_groups['clients'] samples = benchmark_spec.executor.LoadAndRun(ycsb_vms) return samples
6dc058ad3d5a50dba27a1a7c6df58f870328f1b8
170,990
from typing import IO import hashlib def _hash_fileobj(fileobj: IO[bytes]) -> str: """ Compute sha256 hash of a file. File pointer will be reset to 0 on return. """ fileobj.seek(0) h = hashlib.sha256() for block in iter(lambda: fileobj.read(2 ** 20), b""): h.update(block) fileobj.seek(0) return h.hexdigest()
d7bab1e68dca88af9df0a22bb0ba05abc8093ff9
584,649
def get_import_definition_from_import_marker(import_marker: str) -> str: """ Restores a Python import definition from a given import marker. :param import_marker: The import marker String containing the path to be imported. :returns: The restored Python import definition. """ module_path = ( import_marker.split(" ")[2] .replace('"', "") .replace("./", "") .replace(".py", "") .replace("\n", "") .replace("/", ".") ) import_definition = f"from .{module_path} import *" return import_definition
3faabd2a1ad350f24de7722157b9c77bdd02392d
355,307
from datetime import datetime def parse_date(datestr): """ Given a date in xport format, return Python date. """ return datetime.strptime(datestr, "%d%b%y:%H:%M:%S")
b802a528418a24300aeba3e33e9df8a268f0a27b
2,235
def make_sequence_output(detections, classes): """ Create the output object for an entire sequence :param detections: A list of lists of detections. Must contain an entry for each image in the sequence :param classes: The list of classes in the order they appear in the label probabilities :return: """ return { 'detections': detections, 'classes': classes }
019d3b74699af20a9f3cbc43b575e8bae5e15946
3,743