content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def format_docstring(docstr: str) -> str:
"""Removes \n and 4 consecutive spaces."""
return docstr.replace('\n', '').replace(' ', '')
|
47b9103961a5a87436e52b55c1ae13206c6ee918
| 519,016 |
def has_local_name(agent):
"""Loops through all the agent names and returns True if any of them have
a source of `local`, `ingest`, `nad`, or `naf`"""
for name in agent.names:
if name.source in ['local', 'ingest', 'nad', 'naf']:
return True
return False
|
c259b01fdc9f1118877a215713e8e0ffa23425ae
| 473,747 |
def flip_1d_index_vertically(index, rows, columns):
"""Finds the index to the corresponding vertically flipped 1d matrix value.
Consider a 1d matrix [1, 2, 3, 4, 5, 6] with 3 rows and 2 columns. The
original and vertically flipped representations are shown below.
1 2 5 6
3 4 -> 3 4
5 6 1 2
This function allows the translated matrix to be accessed using indices
into the original matrix, such that index 0 (value 1) becomes index 4
(value 5, corresponding to index 0 of the flipped matrix).
Args:
index (int): Index into the original 1d matrix.
rows (int): Number of rows in the matrix.
columns (int): Number of columns in the matrix.
Returns:
The index for the corresponding value of the vertically flipped matrix,
as an int.
"""
# Get current row in 1d matrix, from 0 to rows-1
current_row = index // columns
# Flip row (0 -> rows-1, ..., rows-1 -> 0, etc.)
flipped_row = rows - current_row - 1
# Calculate total number of entries on preceding rows
offset_row = flipped_row * columns
# Calculate current column position in row
offset_column = index % columns
return offset_row + offset_column
|
ca8fb78915bd278b3ef397a1c9a1d3b2a6af1e15
| 602,407 |
def _make_class_name(name):
""" Make a ufunc model class name from the name of the ufunc. """
return name[0].upper() + name[1:] + 'Ufunc'
|
7f5e2b0c81b81532c4222efb1ab58b8126906628
| 171,473 |
def issolved(cube: list) -> bool:
"""
Return True if the cube is solved, False otherwise.
A cube is a solved cube if every sticker of each side of the cube is
the same.
"""
return all(all(x == s[0][0] for y in s for x in y) for s in cube)
|
bb6d0e35061b54a0476adfd90e80bd5a3b878807
| 594,115 |
from datetime import datetime
def getDateFromDatetime(inputDateString):
"""
Given a datetime string - return a date object + 1 day ahead since
tweets from day X are registered to midnight at day X+1
"""
dateOnly = inputDateString.split(" ")[0]
dateOnlyList = [int(x) for x in dateOnly.split("-")]
returnDate = datetime(dateOnlyList[0], dateOnlyList[1], dateOnlyList[2], 0, 0, 0)
return returnDate
|
d6b5168c68145f029b8a79c8a5682fe7948692e5
| 285,969 |
def binary_tag_to_tags(text_df, tag_values):
"""
+++INPUT+++
text_df: dataframe with binary tags, fillna with 0
tag_values: array of tag strings
example: tag_values = text_df.columns[2:].values
+++OUTPUT+++
text_df: with Tags column added containing tags
"""
tags_list = []
for row_index in range(len(text_df)):
selector = text_df.loc[row_index, tag_values].values.astype(bool)
selected_tags = tag_values[selector]
tags_string = ", ".join(selected_tags)
tags_list.append(tags_string)
text_df['Tags'] = tags_list
return text_df
|
d63aa63f67490b4372706a99afa39f7d9fa6acda
| 535,328 |
import torch
def densify_features(x, shape):
"""
Densify features from a sparse tensor
Parameters
----------
x : Sparse tensor
shape : Dense shape [B,C,H,W]
Returns
-------
Dense tensor containing sparse information
"""
stride = x.tensor_stride
coords, feats = x.C.long(), x.F
shape = (shape[0], shape[2] // stride[0], shape[3] // stride[1], feats.shape[1])
dense = torch.zeros(shape, device=x.device)
dense[coords[:, 0],
coords[:, 1] // stride[0],
coords[:, 2] // stride[1]] = feats
return dense.permute(0, 3, 1, 2).contiguous()
|
4ef60f15a1bae846009ddfa76595fa9121fc3035
| 575,298 |
def exp_chem_list(rdict):
"""extract the chemicals that were used.
:param rdict: see DataStructures_README.md
:return: a set of the chemicals used in all the experiments
"""
chemicalslist = []
for reagentnum, reagentobject in rdict.items():
for chemical in reagentobject.chemicals:
if chemical in chemicalslist:
pass
else:
chemicalslist.append(chemical)
return chemicalslist
|
0280e99cf3af3860320a23b0314a630d4b373648
| 424,939 |
def del_comment(string):
"""Delete the comment from the parameter setting string.
Parameters
----------
string : str, default None
The parameter setting string probably with the comment.
Returns
-------
string : str
The parameter setting string without the comment.
"""
return string.split('#')[0].replace(' ', '')
|
127130208c08f676dbc9258f0fe86ecf6d2b9f75
| 257,319 |
from pathlib import Path
def read_file_to_list(p4pfile: str) -> list:
"""
Reads a file and returns a list without line endings.
"""
p4plist = []
try:
p4plist = Path(p4pfile).read_text().splitlines(keepends=False)
except IOError as e:
print(e)
print('*** CANNOT READ FILE {} ***'.format(p4pfile))
return p4plist
|
bc0681fc3da1a547a40fe2e437dcc23d24487ea4
| 475,746 |
def _req_input_to_args(req_input):
"""
Given a list of the required inputs for the build command, create an args
string
:param list[str] req_input: input names
:return str: args string
"""
return ["--" + x + " <arg_here>" for x in req_input]
|
7f4418ee7e020d3747511d197c33dec5d541248d
| 441,953 |
def is_vm(obj):
"""
Checks if object is a vim.VirtualMachine.
:param obj: The object to check
:return: If the object is a VM
:rtype: bool
"""
return hasattr(obj, "summary")
|
263c26d1cf15de663bc00371edaec6173bb800dc
| 533,465 |
def data_has_value_from_substring_list(data, needle_list):
"""Recursively search for any values that contain a substring from the specified list
Args:
data (dict, list, primitive)
needle_list (list)
Returns:
(bool) True or False if found
"""
if isinstance(data, list):
return any(data_has_value_from_substring_list(item, needle_list) for item in data)
if isinstance(data, dict):
return any(data_has_value_from_substring_list(v, needle_list) for v in data.values())
if not data:
return False
return any(needle in data for needle in needle_list)
|
e5516aa0abb5e54b918b23e2ac35e4dc2a89c183
| 433,847 |
def set_regex_parentheses(parent_paragraph_id):
""" Adds parentheses if the paragraph has a parent.
Paragraphs with a parent ( = subparagraphs ) have
their identifiers wrapped in parentheses and an em dash.
"""
par_open = r""
par_close = r""
if parent_paragraph_id:
par_open += r"—\("
par_close += r"\)"
return par_open, par_close
|
5ffd5e15783ccade0fbcc67634a4dff2ebb869d5
| 548,281 |
import json
def load_json(file):
"""Loads a JSON file and returns it as a dict"""
with open(file) as f:
return json.load(f)
|
d2e593c2d698223ad28103e4c1d7d91426137f53
| 655,876 |
import asyncio
def wrap(fn, fn_name, called):
"""Wrap fn to add fn_name to called on invocation.
"""
async def async_wrapper(*args, **kwargs):
await fn(*args, **kwargs)
called.add(fn_name)
def wrapper(*args, **kwargs):
fn(*args, **kwargs)
called.add(fn_name)
return async_wrapper if asyncio.iscoroutinefunction(fn) else wrapper
|
b5059656c44d0fc22697f78b3c67a832dd99448b
| 255,663 |
import logging
import copy
def graph_directional_to_undirectional(graph):
"""
Convert a directional to an undirectional graph
Returns a deep copy of the full graph with all directional edges
duplicated as undirectional ones.
Undirectional edges share the same data dictionary. In converting
directional to undirectional edges their data dictionaries will
be merged.
.. Note:: dictionary merging may result in undesirable results due
to data overwrite.
:param graph: Graph to convert
:type graph: :graphit:Graph
:return: Directional graph
:rtype: :graphit:Graph
"""
if not graph.directed:
logging.info('Graph already configured as undirected graph')
graph_copy = graph.copy(deep=True)
graph_copy.directed = False
graph_copy.edges.clear()
done = []
for edge in graph.edges:
reverse_edge = tuple(reversed(edge))
values = copy.deepcopy(graph.edges[edge])
if edge in done or reverse_edge in done:
continue
if reverse_edge in graph.edges:
values.update(graph.edges[reverse_edge])
done.append(reverse_edge)
graph_copy.add_edge(*edge, **values)
done.append(edge)
return graph_copy
|
045ad1f1a7d455ca05ffe50aa4fb117957cb4ed1
| 607,279 |
import heapq
def sort_and_trim_beams(beams: list, beam_width: int):
"""
https://github.com/kensho-technologies/pyctcdecode/blob/v0.1.0/pyctcdecode/decoder.py#L68
"""
return heapq.nlargest(beam_width, beams, key=lambda x: x.score_lm)
|
91087ed3a9e4633c1bb2580d265ab59c1a521c09
| 353,934 |
def drop_zero_columns(dtf):
"""
Drop all columns from a dataframe if they are composed of only zeros
"""
return dtf.loc[:, (dtf != 0).any(axis=0)]
|
5710ffe6db72c59d22ff03430d9c07a6faf653d6
| 144,829 |
def uniform(random, n):
"""Returns a bytestring of length n, distributed uniformly at random."""
return random.getrandbits(n * 8).to_bytes(n, "big")
|
1076d1a1bc4d6838386fb6419d5f1ba58591f2a2
| 210,276 |
def get_snaps_for_instance(client, rds_instance, snapshot_type=''):
""" Gets all snapshots for a RDS instance"""
snapshots = []
resp = client.describe_db_snapshots(
DBInstanceIdentifier=rds_instance['DBInstanceIdentifier'],
SnapshotType=snapshot_type
)
while 'Marker' in resp:
snapshots.extend(resp['DBSnapshots'])
resp = client.describe_db_snapshots(
DBInstanceIdentifier=rds_instance['DBInstanceIdentifier'],
SnapshotType=snapshot_type,
Marker=resp['Marker']
)
snapshots.extend(resp['DBSnapshots'])
return snapshots
|
03d0c752476822f8f231c8794ac2c1f5c3bca7d6
| 435,807 |
def get_unique_list_values(list_to_review):
"""Helper function, takes in a list as a single argument and returns a unique list.
"""
unique_list = []
# traverse for all elements
for item in list_to_review:
# check if exists in unique_list or not
if item not in unique_list:
unique_list.append(item)
return unique_list
|
f9014c27bccc3f58524ad59c553b951e5150e7a6
| 227,661 |
def _attachment_v2_to_v1(vol):
"""Converts v2 attachment details to v1 format."""
d = []
attachments = vol.pop('attachments', [])
for attachment in attachments:
a = {'id': attachment.get('id'),
'attachment_id': attachment.get('attachment_id'),
'volume_id': attachment.get('volume_id'),
'server_id': attachment.get('server_id'),
'host_name': attachment.get('host_name'),
'device': attachment.get('device'),
}
d.append(a)
return d
|
061e7dd81e61ed1dab4e2ea529218bc51df8c9aa
| 155,174 |
def get_size_of_wordlist(filename):
"""Reuturn the number of lines in the file."""
return sum(1 for _ in open(filename))
|
67db2a86419dd3a5beb6053ad8b4a8b69542cee6
| 172,737 |
def get(lst, index, default=None):
"""
Retourne l'élément de `lst` situé à `index`.
Si aucun élément ne se trouve à `index`,
retourne la valeur par défaut.
"""
try:
return lst[index]
except IndexError:
return default
|
273345d2acf1c4aecbf584d600f67ff095a710ea
| 53,490 |
import yaml
def configuration(configuration_path):
"""Load our configuration."""
with open(configuration_path, 'r') as stream:
return yaml.load(stream, Loader=yaml.FullLoader)
|
5fab251f28ca9eca955cd396b92a6c5c7ae8ee97
| 33,149 |
def decode(string):
"""Unescape string originating from XML
:param string: string to decode
:type: str
:returns: decoded string
:rtype: str
"""
if ''' not in string and '"' not in string and '<' not in string and '>' not in string and '&' not in string: # already decoded
return string
string = string.replace(''', "'")
string = string.replace('"', '"')
string = string.replace('<', '<')
string = string.replace('>', '>')
string = string.replace('&', '&')
return string
|
a4432c0b22b239e51f96b2f0fb06d5ec28735b86
| 516,835 |
from typing import OrderedDict
import math
def get_latencies_summary(latencies):
"""
Given a raw timeseries of latencies, create a summary of each point in time,
with the average standard deviation and mean, the minimum and maximum, and
the minimum/maximum range for the percentiles (as we can't average them).
"""
summaries = OrderedDict()
for ts, lat in latencies.items():
sum_samples = float(sum([c['samples'] for c in lat.values()]))
# if sum of samples is zero, ignore (means end of metrics)
if sum_samples == 0:
continue
avg_var = 0.0
avg_mean = 0.0
mins = []
maxs = []
pcs = {'p50': [], 'p75': [], 'p95': [], 'p98': [], 'p99': [], 'p999': []}
for c in lat.values():
avg_var += (float(c['samples']) / sum_samples) * math.pow(c['stddev'], 2)
avg_mean += (float(c['samples']) / sum_samples) * c['mean']
mins.append(c['min'])
maxs.append(c['max'])
for pc in pcs.keys():
pcs[pc].append(c[pc])
summary = {'stddev': math.sqrt(avg_var), 'mean': avg_mean,
'min': min(mins), 'max': max(maxs), 'samples': sum_samples}
for pc, vals in pcs.items():
summary[pc] = {'min': min(vals), 'max': max(vals)}
summaries[ts] = summary
return summaries
|
cd8e00cb218924aa72e8839b55099b3b9a45c661
| 561,839 |
def get_file_extension(fn):
"""
get file extension and check if it is compressed
:param: str, file path
:return: str,bool
"""
# assert isinstance(fn, str)
compressed_file_ext = ["gz"]
fn_part = fn.split(".")
compressed = False
ext = fn_part[-1]
if ext in compressed_file_ext:
compressed = True
ext = fn_part[-2]
return ext, compressed
|
bce96d08f28381f42f329e4fa08c4b858401e019
| 418,303 |
from dateutil import tz
from datetime import datetime
def convert_datetime_string_to_object(datetime_string):
"""
Helper function to convert datetime string to object with local timezone
"""
local_tz = tz.tzlocal()
datetime_object = datetime.strptime(datetime_string, '%Y-%m-%d %H:%M:%S')
return datetime_object.replace(tzinfo=local_tz, microsecond=0).isoformat()
|
9e4c6007806b8932f7cb07ccaa4df068202ffaf5
| 334,301 |
import unicodedata
def normalize_grapheme(grapheme, bipa):
"""
Normalizes a grapheme.
Does Unicode normalization, splitting in case of Phoible/slash-notation,
BIPA default selection.
"""
# Unicode normalization
grapheme = unicodedata.normalize("NFC", grapheme)
# Split over slash notation, if any, keeping the entry to the right
if "/" in grapheme:
grapheme = grapheme.split("/")[1]
# Only split the vertical bar, as used in Phoible, if the grapheme is
# longer than one character (can be a click), keeping the first one
if len(grapheme) > 1 and "|" in grapheme:
grapheme = grapheme.split("|")[0]
# Normalize BIPA
grapheme = str(bipa[grapheme])
return grapheme
|
98af5b3f88bc88a482ee01c1193ab2a58e6aa907
| 562,614 |
def _trimmed_text(node):
"""Returns the trimmed text contained in the given DOM node or None if
empty or if node is None.
"""
try:
return node.text.strip() or None
except AttributeError:
return None
|
62f3e5c93d0d4a8a12b95f48a05380047407323e
| 529,017 |
from typing import List
import glob
def get_stock_symbols(market: str) -> List[str]:
"""
Read stock symbols from internal file
Parameters
----------
market: str
The stock market (NASDAQ | NYSE)
Returns
-------
List
A list of symbols for the given market
"""
sym = str()
syms = list()
sym_files = list()
# glob the sym files and get all the markets
sym_files = glob.glob('./stock_symbols/sym_*.txt')
for sym in sym_files:
syms.append(sym.strip().replace('.txt','').split('_')[2])
if market.upper() not in syms:
print(syms)
raise Exception
# read out symbols for given market
# market file name should be sym_<MARKET_NAME> located at ./stock_symbols/
symbols = list()
with open('./stock_symbols/sym_' + market.upper() + '.txt') as market_file:
for line in market_file:
symbols.append(line.strip())
return symbols
|
59471448192e6987fdedbd293f0a40f9e5495306
| 221,040 |
def cleanup(data, clean='layers', keep=None, copy=False):
"""Deletes attributes not needed.
Arguments
---------
data: :class:`~anndata.AnnData`
Annotated data matrix.
clean: `str` or list of `str` (default: `layers`)
Which attributes to consider for freeing memory.
keep: `str` or list of `str` (default: None)
Which attributes to keep.
copy: `bool` (default: `False`)
Return a copy instead of writing to adata.
Returns
-------
Returns or updates `adata` with selection of attributes kept.
"""
adata = data.copy() if copy else data
keep = list([keep]) if isinstance(keep, str) else list() if keep is None else list(keep)
keep.extend(['spliced', 'unspliced', 'Ms', 'Mu', 'clusters', 'neighbors'])
ann_dict = {'obs': adata.obs_keys(), 'var': adata.var_keys(),
'uns': adata.uns_keys(), 'layers': list(adata.layers.keys())}
if 'all' not in clean:
ann_dict = {ann: values for (ann, values) in ann_dict.items() if ann in clean}
for (ann, values) in ann_dict.items():
for value in values:
if value not in keep: del(getattr(adata, ann)[value])
return adata if copy else None
|
36127ef66a04a83ba78d4e8c1e78fdfe7edf94fe
| 513,330 |
import itertools
def _preorder_walk(node, _app=None):
"""Walk the tree in preorder"""
return itertools.chain(
[node],
*[_preorder_walk(child) for child in node.children]
)
|
b3503c892d4adb347032dbfe1e6e5cd0e4c203e2
| 431,040 |
def initial_fragment(string, words=20):
"""Get the first `words` words from `string`, joining any linebreaks."""
return " ".join(string.split()[:words])
|
5b390cb5f98c9e940f2a964101b9593f0fa1ffb8
| 32,365 |
def moving_average(data, target_var, features_list, num_days = 7):
"""
Cacluate moving average of target variable and store result in a new column
Parameters
----------
data: data frame
It has columns location, date, and a column with the response variable to forecast.
This data frame needs to be sorted by location and date columns in ascending order.
target_var: string
Name of the column in the data frame with the forecast target variable.
features_list: list of strings
Running list of feature column names
num_days: integer
Time window to calculate moving average for
Returns
-------
data: data frame
Original data frame with additional column for moving average
features_list: list of strings
Running list of feature column names
"""
column_name = str(num_days)+"_moving_avg_"+str(target_var)
features_list.append(column_name)
data[column_name] = data.groupby('location').rolling(num_days)[target_var].mean().reset_index(drop=True)
return data, features_list
|
1d1b63e76a84a6d6a76fd3ce0ce61e3a82b11b51
| 211,730 |
def is_by_sources(module):
"""
Returns whether module defined by sources
"""
return module.location is not None
|
56bf8041fd53d98b4699eca722d56e637324bf49
| 555,039 |
def load_login_file(fpath):
"""
Load login name and password from file.
"""
with open(fpath) as f:
name = f.readline().rstrip('\n')
passwd = f.readline().rstrip('\n')
return name, passwd
|
52e4f5e23d4b05e2a5c447bbace40fb8450162f6
| 262,302 |
def numeric_filter(operation, value, column, df):
"""Filters a data column numerically.
Arguments:
operation: Operator used to filter data (e.g. ">", "<", "==", ">=", "<=", "!=")
value: Operand
column: String for column name
df: DataFrame
Returns: Boolean column that indicates whether each entry matches the given numeric filter.
"""
return eval(f"df['{column}'] {operation} {value}")
|
868907d2fed5947c0974896af73a9277fcef0ae8
| 640,693 |
def public_dict(obj):
"""Same as obj.__dict__, but without private fields."""
return {k: v for k, v in obj.__dict__.items() if not k.startswith('_')}
|
2edee1a17d0dad6ab4268f80eb565406656a77b4
| 704,317 |
def readUntilNull(s):
"""
Read a string until a null is encountered
returns (string up to null , remainder after null)
"""
item = s.split(b'\0' , 1)
if len(item) == 1:
return (item[0] , None)
else:
return (item[0] , item[1])
|
62933ee1c30f8b077fe13f8f2074612c8b090213
| 445,879 |
def hex_bytes(data: bytes, sep: str= " "):
""" Format a bytes() object as a hex dump """
return sep.join("{:02x}".format(bval) for bval in data)
|
aacc0366a7e20cc3ead71559dba55bafd5d4275e
| 499,261 |
def _response_ok(response, call_type):
"""
Checks whether API HTTP response contains the associated OK code.
:param response: Response object.
:param call_type: String containing the HTTP request type.
:return: True if response was OK.
"""
ok_codes = {
"GET": [200],
"PUT": [200, 204],
"POST": [201],
"DELETE": [204],
}
return response.status_code in ok_codes[call_type]
|
e47516e51c7de8e3dd5e7c4eed88705055952803
| 312,507 |
def contains_test_passer(t, test):
"""
Return whether t contains a value that test(value) returns True for.
@param Tree t: tree to search for values that pass test
@param function[Any, bool] test: predicate to check values with
@rtype: bool
>>> t = descendants_from_list(Tree(0), [1, 2, 3, 4.5, 5, 6, 7.5, 8.5], 4)
>>> def greater_than_nine(n): return n > 9
>>> contains_test_passer(t, greater_than_nine)
False
>>> def even(n): return n % 2 == 0
>>> contains_test_passer(t, even)
True
"""
if t.children == []:
return test(t.value)
else:
return any([test(t.value)] + [contains_test_passer(c, test) for c
in t.children])
|
56cbd48f9c416c64c1822b637fd4e8780ce72bc5
| 650,058 |
def _is_decimal(col):
"""Check for decimal data types
Returns bool - True if column is decimal or numeric.
"""
return col['field_type_name'].upper() in ['DECIMAL', 'NUMERIC']
|
a48efd2f2b0c9883d0c09e786e209e1b8cb47778
| 480,047 |
def create_idea(conn, idea):
"""
Add a new idea into the ideas table
:param conn:
:param idea:
:return: idea id
"""
sql = """INSERT INTO ideas(name, description, tags)
VALUES(?,?,?)"""
cur = conn.cursor()
cur.execute(sql, idea)
conn.commit()
return cur.lastrowid
|
8df51c3e6361d2dbbfe03cc18cbae7f9c47841de
| 152,041 |
def put_bucket_policy(s3_obj, bucketname, policy):
"""
Adds bucket policy to a bucket
Args:
s3_obj (obj): MCG or OBC object
bucketname (str): Name of the bucket
policy (str): Bucket policy in Json format
Returns:
dict : Bucket policy response
"""
return s3_obj.s3_client.put_bucket_policy(Bucket=bucketname, Policy=policy)
|
c1f098a49e743f180ed7882951f0bd38ba9eeb39
| 571,855 |
from pathlib import Path
import re
def check_files_exist(directory, pattern_list):
"""Check that a list of file patterns exist in a given directory."""
existing_files = [str(i.relative_to(directory)) for i in sorted(Path(directory).rglob("*"))]
try:
assert len(existing_files) == len(pattern_list)
for path, pattern in zip(existing_files, pattern_list):
assert re.match(str(pattern), path)
except Exception as exc:
formatted_existing_files = "\n\t\t".join(existing_files)
formatted_pattern_list = "\n\t\t".join(pattern_list)
raise RuntimeError(
"Error when checking the files.\n\t"
f"The directory is: {directory}\n"
"\t"
f"The found files are:\n\t\t{formatted_existing_files}\n"
"\t"
f"The patterns are:\n\t\t{formatted_pattern_list}"
) from exc
return True
|
79ecee0d74606c37aef21ed72e7c4c735ad022f7
| 131,423 |
import ast
def has_node(code, node):
"""Given an AST or code string returns True if the code contains
any particular node statement.
Parameters
----------
code: A code string or the result of an ast.parse.
node: A node type or tuple of node types to check for. If a tuple is passed
it returns True if any one of them is in the code.
"""
tree = ast.parse(code) if isinstance(code, str) else code
for n in ast.walk(tree):
if isinstance(n, node):
return True
return False
|
9e1555a3393e3c91f35f6e3fc468eab14d5147b4
| 600,096 |
def unique(x):
"""Convert a list in a unique list."""
return list(set(x))
|
105df86a8a5df1cd1981bbfab304bc4f8b759fa0
| 580,550 |
def _date_long_form(date):
""" Displays a date in long form, eg 'Monday 29th April 2019'. """
second_last = (date.day // 10) % 10
last = date.day % 10
if second_last != 1 and last == 1:
ordinal = "st"
elif second_last != 1 and last == 2:
ordinal = "nd"
elif second_last != 1 and last == 3:
ordinal = "rd"
else:
ordinal = "th"
return f"{date:%A} {date.day}{ordinal} {date:%B} {date.year}"
|
248cdaaba72e6252d6fdcec6499a4332e50a85c9
| 646,725 |
def is_iterable(posibleList):
"""Validate if element is iterable
Args:
posibleList (Any): posible iterable element
Returns:
bool: if element is iterable
"""
try:
if isinstance(posibleList, (tuple, list)) or hasattr(posibleList, "__iter__"):
_ = posibleList[0]
return True
return False
except Exception as e:
return False
|
9f07a3fa1f21423b477c535020063d6abe376f58
| 542,062 |
import random
def random_every_time(context, values):
"""Choose a random value.
Unlike Jinja's random filter,
this is context-dependent to avoid caching the chosen value.
"""
return random.choice(values)
|
4e8a6294a1bf4ccbdfc9714c720ca83df24a6760
| 170,682 |
def flatten_dict(d, prefix="", separator="."):
"""
Flatten netsted dictionaries into a single level by joining key names with a separator.
:param d: The dictionary to be flattened
:param prefix: Initial prefix (if any)
:param separator: The character to use when concatenating key names
"""
ret = {}
for k, v in d.items():
key = separator.join([prefix, k]) if prefix else k
if type(v) is dict:
ret.update(flatten_dict(v, prefix=key))
else:
ret[key] = v
return ret
|
c7e53cb66db8938a196e9adc22e7013e20191d31
| 394,490 |
def beaufort(n):
"""Converts windspeed in m/s into Beaufort Scale descriptor."""
s = ''
if n < 0.3:
s = 'calm'
elif n < 1.6:
s = 'light air'
elif n < 3.4:
s = 'light breeze'
elif n < 5.5:
s = 'gentle breeze'
elif n < 8.0:
s = 'moderate breeze'
elif n < 10.8:
s = 'fresh breeze'
elif n < 13.9:
s = 'strong breeze'
elif n < 17.2:
s = 'high wind'
elif n < 20.8:
s = 'gale'
elif n < 24.5:
s = 'strong gale'
elif n < 28.5:
s = 'storm'
elif n < 32.7:
s = 'violent storm'
else:
s = 'hurricane force'
return s
|
75b6150a8530ea174c447d11ea2e5c212cdd0e93
| 442,093 |
def translate_direct(adata, direct, no_index):
"""Translate all direct hit genes into their orthologs.
Genes not found in the index of the table will be upper-cased, after
excluding some gene symbols that usually do not have an ortholog, i.e. genes
- Starting with 'Gm'
- Starting with 'RP'
- Ending with 'Rik'
- Containing a 'Hist'
- Containing a 'Olfr'
- Containing a '.'
Parameters
----------
adata : AnnData
AnnData object to translate genes in.
direct : dict
Dictionary with those adata genes mapping to a single ortholog
no_index : list
List of those adata genes not found in the table.
Returns
-------
AnnData
Updated original adata.
"""
guess_genes = [
x for x in no_index if
x[:2] != 'Gm' and
'Rik' not in x and
x[:2] != 'RP' and
'Hist' not in x and
'Olfr' not in x and
'.' not in x]
ndata = adata[:, list(direct.keys()) + guess_genes].copy()
ndata.var['original_gene_symbol'] = list(direct.keys()) + guess_genes
ndata.var_names = list(direct.values()) + [m.upper() for m in guess_genes]
return ndata
|
8d8ab2efd60463603fa5b8c212ae6878d5d68a36
| 142,888 |
from typing import Optional
from typing import Match
import re
def find_word(word, src) -> Optional[Match[str]]:
"""Find word in a src using regex"""
return re.compile(r'\b({0})\b'.format(word),
flags=re.IGNORECASE).search(src)
|
5619f472db8256ad7524529911cc190fc3140c46
| 440,393 |
def squish(tup):
"""Squishes a singleton tuple ('A',) to 'A'
If tup is a singleton tuple, return the underlying singleton. Otherwise,
return the original tuple.
Args:
tup (tuple): Tuple to squish
"""
if len(tup) == 1:
return tup[0]
else:
return tup
|
ddaa8e53edc9fbda2ba07185b98bf934171d92bf
| 170,911 |
import logging
def get_handler_filename(logger):
"""Gets logger filename
Parameters:
* logger (object): log file object
Returns:
* str: Log file name if any, None if not
"""
for handler in logger.handlers:
if isinstance( handler, logging.FileHandler ):
return handler.baseFilename
return None
|
bdaa47977c14601aa2217fc8a3c734e97b9a0295
| 37,729 |
def check_weights(data_ps):
"""Check if sum of propensity score weights match sample size
Args:
data_ps (pandas.DataFrame): dataframe with propensity score
Return:
tuple: sample size, treated size from weigths, untreated size froms weigths
"""
weight_t = 1./data_ps.query("nudge==1")["pscore"]
weight_nt = 1./(1.-data_ps.query("nudge==0")["pscore"])
print(f"Original sample size {data_ps.shape[0]}")
print("Original treatment sample size", data_ps.query("nudge==1").shape[0])
print("Original control sample size", data_ps.query("nudge==0").shape[0])
print(f"Weighted treatment sample size {round(sum(weight_t), 1)}")
print(f"Weighted control sample size {round(sum(weight_nt), 1)}")
return data_ps.shape[0], sum(weight_t), sum(weight_nt)
|
85abaf40e7a7e24318ba31797264361d3780ebbd
| 140,377 |
import __main__ as m
def is_running_interactive() -> bool:
"""Check if we're running in an REPL"""
try:
return not hasattr(m, "__file__")
except Exception as e:
print(e)
pass
return False
|
bafe84caf9e40c97a2f000136ca77546850e26c0
| 114,931 |
def find_between(s, first, last):
"""
Find sting between two sub-strings
Args:
s: Main string
first: first sub-string
last: second sub-string
Example find_between('[Hello]', '[', ']') -> returns 'Hello'
Returns:
String between the first and second sub-strings, if any was found otherwise returns an empty string
"""
try:
start = s.index(first) + len(first)
end = s.index(last, start)
return s[start:end]
except ValueError:
return ""
|
d2df4c89d63f07678cba8283849917ff767b0903
| 673,284 |
def is_range(obj):
"""Helper function to test if object is valid "range"."""
keys = ['start', 'step', 'stop']
return isinstance(obj, dict) and all(k in obj for k in keys) and \
all(isinstance(obj[k], float) for k in keys)
|
4bb1d210ebb0a7265671b3d7070912052f71601e
| 33,963 |
def is_redirect(page):
"""
Checks if a page is a redirect
Returns
--------
bool
True if the page is a redirect
False if the page is not a redirect
"""
redirect = page.getElementsByTagName('redirect')
if len(redirect) > 0:
return True
return False
|
c5913b1fb66099c9d38a9851496bfacb76b046aa
| 126,615 |
def description_length(user):
"""
Get the length of user description in words
:param user: the user object in json tweet
:return: vector length of 1 indicating the length of description. If user
if user has no description, [0] will be returned
"""
des_length=0
if user['description']:
description = user['description']
des_length = len(description.split())
return des_length
|
41e9ec6800b6fe86b14297114179d91955431100
| 107,571 |
def _endpoint_from_image_ref(image_href):
"""Return the image_ref and guessed endpoint from an image url.
:param image_href: href of an image
:returns: a tuple of the form (image_id, endpoint_url)
"""
parts = image_href.split('/')
image_id = parts[-1]
# the endpoint is everything in the url except the last 3 bits
# which are version, 'images', and image_id
endpoint = '/'.join(parts[:-3])
return (image_id, endpoint)
|
626484976a35b89ecaf5b363503ac993ee231613
| 90,570 |
def sanitize_list_input(_list: list, _def: list) -> list:
"""Sanitize the _list by reducing it to distinct values.
If _list is None, then return second parameters value _def
:param _list: list, if not None, will be reduced to its distinct values
:param _def: list, the value to be returned, if _list is None
:return: Either sanitized _list or _def value, if _list is None
"""
if not _list:
return [_def]
else:
return list(set(_list))
|
a2cec282d8ff38290e9249ba692ef696ee40abf9
| 149,163 |
def extract_name(row):
""" Helper function for comparing datasets, this extracts the name from the db name
Args:
row: row in the dataframe representing the db model
Returns:
name extracted from agency_name or np.nan
"""
return row['agency_name'][:row['agency_name'].rindex('(') - 1]
|
84d525d008cf35e4ee0b1347caf0909a67cad1e3
| 663,852 |
def get_true_positives(data, classifier):
"""Find the total positives that also are selected by our classifier."""
return data[data["foundSegment"] & classifier(data)].size
|
2d1581e5f9ade4ff299557c76f3a9507c4dc5a55
| 10,474 |
def generate_community_tags_scores(database, community):
"""
This function generates the most important terms that describe
a community of similar documents, alongside their pagerank and in-degree scores.
"""
# Get all intersecting nodes of the speficied community,
# ranked by their in-degree (which shows to how many documents they belong to).
# and pagerank score in descending order.
query = ('MATCH p=((d:Document {community: '+ str(community) +'})-[:includes]->(w:Word)) '
'WITH w, count(p) as degree '
'WHERE degree > 1 '
'RETURN w.key, w.pagerank as pagerank, degree '
'ORDER BY degree DESC, pagerank DESC')
tags_scores = database.execute(' '.join(query.split()), 'r')
return tags_scores
|
c7623fdbad3389ec5c3dbf55c6758036c7cfce03
| 660,460 |
def encode_info_token_http_auth(token):
"""
Encodes the token to be sent in the Authenticate header.
:param token: token to be sent. Assumes the token is already decoded
:return: the body of the `Authorization` header
"""
return ' Token {}'.format(token)
|
5cacc6b899cec0ab4db486b327646932e595253c
| 282,762 |
def _unfill(v, l = 5):
"""unfill takes a zfilled string and returns it to the original value"""
return [
str(int(v[l * i:l * (i + 1)]))
for i in range(len(v) // l)
]
|
28c9adfe90efe2b2e1f895b59844990e2455f183
| 147,892 |
import calendar
def which_ten(d):
"""
Determine which ten-day period a date falls in.
:type d: datetime.date
:param d: day of date, e.g. 2016-01-02 in format %Y-%m-%d is 2
:return: an integer that is the prefix of the relevant ten-day period.
"""
if not calendar.monthrange(d.year, d.month)[1] >= d.day > 0:
raise RuntimeError('Out of range date')
if d.day < 10:
return 0
elif d.day < 20:
return 1
elif d.day < 30:
return 2
else:
return 3
|
25b7ac3de60a7b0407191875f8c60f5f614bee1a
| 470,523 |
import torch
def ohe(input_vector, dim, device="cpu"):
"""Does one-hot encoding of input vector."""
batch_size = len(input_vector)
nb_digits = dim
y = input_vector.reshape(-1, 1)
y_onehot = torch.FloatTensor(batch_size, nb_digits).to(device)
y_onehot.zero_()
y_onehot.scatter_(1, y, 1)
return y_onehot
|
1b0406471d3755cf2f99d23f6873727b0986036a
| 84,907 |
def always_true(result, previous_state):
""" Not really necessary since no filters results in an always true result,
but this is useful to show an example of what a filter is without actually
doing anything.
"""
return True
|
157fe783cfe14049d6c9bf742eb41064fc9b1ef7
| 387,684 |
def process_gps_data(gps_df, threshold_record_length=5, threshold_uplift=5):
"""
Thin the gps data to remove stations with short record lengths and
unrealistically high uplift or subsidence rates
"""
gps_df = gps_df[gps_df['record_length'] > threshold_record_length]
gps_df = gps_df[gps_df['RU(mm/yr)'] < threshold_uplift]
gps_df = gps_df[gps_df['RU(mm/yr)'] > -threshold_uplift]
return gps_df
|
8a5247182f3132d0e693f6eb03c48b3edcae12bf
| 468,708 |
def rgb_to_hsv(rgb):
"""
Convert an RGB color representation to an HSV color representation.
(r, g, b) :: r -> [0, 255]
g -> [0, 255]
b -> [0, 255]
:param rgb: A tuple of three numeric values corresponding to the
red, green, and blue value.
:return: HSV representation of the input RGB value.
:rtype: tuple
"""
r, g, b = rgb[0] / 255, rgb[1] / 255, rgb[2] / 255
_min = min(r, g, b)
_max = max(r, g, b)
v = _max
delta = _max - _min
if _max == 0:
return 0, 0, v
s = delta / _max
if delta == 0:
delta = 1
if r == _max:
h = 60 * (((g - b) / delta) % 6)
elif g == _max:
h = 60 * (((b - r) / delta) + 2)
else:
h = 60 * (((r - g) / delta) + 4)
return round(h, 3), round(s, 3), round(v, 3)
|
aa2c75b92c9830c7e798b0ca6ee9feac20793de4
| 24,361 |
from pathlib import Path
from typing import List
def collect_app_bundles(source_dir: Path) -> List[Path]:
"""
Collect all app bundles which are to be put into DMG
If the source directory points to FOO.app it will be the only app bundle
packed.
Otherwise all .app bundles from given directory are placed to a single
DMG.
"""
if source_dir.name.endswith('.app'):
return [source_dir]
app_bundles = []
for filename in source_dir.glob('*'):
if not filename.is_dir():
continue
if not filename.name.endswith('.app'):
continue
app_bundles.append(filename)
return app_bundles
|
50a4bf767eb0208045257a2ebf8a760ae7a5fc6d
| 667,184 |
def parsesep(s:str, sep:str=","):
"""Get the next word from a string, separated ny sep. Return (word,remainder)"""
i=s.find(sep)
if i<0:
i=len(s)
result=s[0:i]
remain=s[i+len(sep):]
return (result,remain)
|
ebc09edf1f361768db15d1dfefd3d9d00efba795
| 451,028 |
def energy_value(h, J, sol):
"""
Obtain energy of an Ising solution for a given Ising problem (h,J).
:param h: External magnectic term of the Ising problem. List.
:param J: Interaction term of the Ising problem. Dictionary.
:param sol: Ising solution. List.
:return: Energy of the Ising string.
:rtype: Integer or float.
"""
ener_ising = 0
for elm in J.keys():
if elm[0] == elm[1]:
raise TypeError("""Interaction term must connect two different variables""")
else:
ener_ising += J[elm] * int(sol[elm[0]]) * int(sol[elm[1]])
for i in range(len(h)):
ener_ising += h[i] * int(sol[i])
return ener_ising
|
866e3175534f5c1e1d606b12e6815cf520a467b0
| 663,403 |
def get_scalebin(x, rmin=0, rmax=100, tmin=0, tmax=100, step=10):
"""
Scale variable x from rdomain to tdomain with step sizes
return key, index
:param `x`: Number to scale
:type `x`: number
:param `rmin`: The minimum of the range of your measurement
:type `rmin`: number, optional
:param `rmax`: The maximum of the range of your measurement
:type `rmax`: number, optional
:param `tmin`: The minimum of the range of your desired target scaling
:type `tmin`: number, optional
:param `tmax`: The maximum of the range of your measurement
:type `tmax`: number, optional
:param `step`: The step size of bins of target range
:type `step`: number, optional
:return: The bin-string of the scaled variable
:rtype: string
Example
>>> import truvari
>>> truvari.get_scalebin(4, 1, 5, 0, 20, 5)
('[15,20)', 3)
>>> truvari.get_scalebin(6, 1, 5, 0, 20, 5)
('>=20', 4)
"""
newx = (x - rmin) / (rmax - rmin) * (tmax - tmin) + tmin
pos = 0
for pos, i in enumerate(range(tmin, tmax, step)):
if newx < i + step:
return f"[{i},{i+step})", pos
return f">={tmax}", pos + 1
|
7cd22ca13e6dde43bada1557fabf3cb217047243
| 522,541 |
def get_rad_factor(rad, emission, solar_irr, emissivity=None):
"""
Return radiance factor (I/F) given observed radiance, modeled emission,
solar irradiance and emissivity. If no emissivity is supplied,
assume Kirchoff's Law (eq. 6, Bandfield et al., 2018).
Parameters
----------
rad (num or arr): Observed radiance [W m^-2 um^-1]
emission (num or arr): Emission to remove from rad [W m^-2 um^-1]
solar_irr (num or arr): Solar irradiance [W m^-2 um^-1]
emissivity (num or arr): Emissivity (if None, assume Kirchoff)
"""
if emissivity is None:
# Assume Kirchoff's Law to compute emissivity
emissivity = (rad - solar_irr) / (emission - solar_irr)
return (rad - emissivity * emission) / solar_irr
|
5d02a0e31012e4116e048e0a23e273824d926664
| 579,434 |
def filter_dict(original_dict, pattern_dict):
"""
Return a dict that contains all items of original_dict if item key is in pattern_dict.keys()
:param original_dict:
:param pattern_dict:
:return:
"""
keys = set(original_dict.keys()).intersection(pattern_dict.keys())
return {key: original_dict[key] for key in keys}
|
2e5ea5bd2590ebf71ca1174b7d7572f78555bd35
| 429,601 |
def parse_rrset_record_values(e_resource_records):
"""
Used to parse the various Values from the ResourceRecords tags on
most rrset types.
:param lxml.etree._Element e_resource_records: A ResourceRecords tag
beneath a ResourceRecordSet.
:rtype: list
:returns: A list of resource record strings.
"""
records = []
for e_record in e_resource_records:
for e_value in e_record:
records.append(e_value.text)
return records
|
92d758407e557301f766f122a4f6bca952035350
| 541,955 |
def create_point_datatype(records):
"""
Creates point datatype to enable fetching GeoJSON from Socrata
:param records: list - List of record dicts
"""
for record in records:
latitude = record["latitude"]
longitude = record["longitude"]
# Socrata rejects point upserts with no lat/lon
if latitude != None and longitude != None:
record["point"] = f"POINT ({longitude} {latitude})"
return records
|
3c762ad4cfbad5ef66cb84a91b5a9dcd0e7bfb4f
| 620,037 |
import re
def get_config_name(config):
"""
Return sample sheet configuration name. Remove any identifying local
directory information if present.
:param config_val: Original configuration name (string)
:return: String
"""
if config.find('/') == -1 and config.find('\\') == -1:
return config
return re.split('[/\\\\]', config)[-1]
|
bc6634dcc1030fc6b4929dd223b1b8611f922eed
| 554,939 |
def add_inference_args(parser):
"""Add parser arguments for inference options."""
parser.add_argument('--inference-type', metavar='<inference-type>', type=str, required=False, choices=['cvlib', 'fastmot'], default='cvlib', help='Input type for inference ["cvlib", "fastmot"].')
parser.add_argument('--names', metavar='<names>', type=str, required=False, default='./utils/cfg/coco.names', help='Path to *.names.')
parser.add_argument('--object-category', metavar='<object-category>', type=str, required=False, default='scissors', help='COCO object category to select [scissors].')
parser.add_argument('--confidence-threshold', metavar='<confidence-threshold>', type=float, required=False, default=0.25, help='Confidence threshold.') # 0.5
parser.add_argument('--nms-threshold', metavar='<nms-threshold>', type=float, required=False, default=0.3, help='NMS threshold.')
parser.add_argument('--model', metavar='<model>', type=str, required=False, default='yolov4', help='Path of input image.')
parser.add_argument('--no-filter-object-category', action='store_true', help='Disable biggest single-object category selection.')
parser.add_argument('--disable-gpu', action='store_true', help='Disable GPU usage for inference.')
return parser
|
b65ce0a0a2cc9fd270fa46a8eb9c96e045a5c24d
| 426,946 |
def check_fit(image, text_file):
"""
Checks if the supplied data will fit the image.
Args:
image: The image object of the PIL image.
text_file: the text file you want to embed to the image.
Returns:
True: If the supplied text fits the image.
False: If the supplied text will not fit in the image.
"""
# Reads the number of characters to embed
text_file.seek(0)
text_length = len(text_file.read())
# Calculates the number of pixels needed, plus the 11 extra pixels to embed text length
pixels_required = text_length*8+11
# Calculate the number of pixels the image has
image_width, image_height = image.size
total_pixels = image_width * image_height
if total_pixels < pixels_required:
return False
else:
return True
|
8b6ea04b0b7c40db9e464b2fd38214e9d9ae868e
| 437,725 |
def convert_int_to_bits(int_value, index, size):
"""
:param int_value: The integer value to convert to shifted bit representation.
:param index: Start index of value in desired 4-byte output. Least significant bit of output is index zero.
:param size: Size in bits that integer value should take up in returned data.
:return: A 4-byte integer containing the int_value at the specified index.
"""
if index < 0 or size < 1:
raise RuntimeError("Index provided to convert_int_to_bits must be a positive value. Index: {0}".format(index))
if size < 1:
raise RuntimeError("Size provided to convert_int_to_bits must be non-zero. Size: {0}".format(size))
if int_value > 2**size - 1:
raise RuntimeError("Value provided to convert_int_to_bits cannot be represented in desired number of bits. Value: {0}, number of bits: {1}".format(int_value, size))
num_bits = 32
if index + size > num_bits:
raise RuntimeError("Invalid values provided to convert_int_to_bits. Size + index must be less than or equal to 32.\nSize: {0} bits, index: {1}".format(size, index))
return int_value << index
|
aade4c823495305c517a7f573c0f752dcdd4bc38
| 542,437 |
import torch
def find_intersection(line_a, line_b):
"""Find the intersection point (if it exists) of two line segments, a and b.
This uses an algorithm based upon LeMothe's "Tricks of the Windows Game Programming Gurus". We
could have used some fancy cross product stuff here, but this is much more comprehensible.
Each segment is parameterized by variables, s and t, such at when s=0 we are at line_a[0] and
when s[1] we are at line_a[1] (and so on for t). We then solve for the values of s and t where
the equations for line_a and line_b give the same result. If we cannot find values for s and t
that satisfy this then there is no intersection.
Arguments:
line_a (tensor): 2x2 tensor describing line a. line_a[0] is the first point.
line_b (tensor): The same thing is line_a.
Returns:
None or 2 element torch.tensor
"""
xslope_a = line_a[1,0] - line_a[0,0]
xslope_b = line_b[1,0] - line_b[0,0]
yslope_a = line_a[1,1] - line_a[0,1]
yslope_b = line_b[1,1] - line_b[0,1]
# Find the parameters where the lines intersect
s_numerator = -yslope_a * (line_a[0,0] - line_b[0,0]) + xslope_a * (line_a[0,1] - line_b[0, 1])
t_numerator = -yslope_b * (line_a[0,0] - line_b[0, 0]) + xslope_b * (line_a[0,1] - line_b[0,1])
denominator = (-xslope_b * yslope_a + xslope_a * yslope_b)
# If the lines are parallel then the slope will cancel out and the denominator will be 0.
# For simplicity we will just say that they do not intersect in that case.
if 0 == denominator:
# Early return for efficiency
return None
# Check one range at a time to possibly skip a second division operation
s = s_numerator / denominator
if 0 <= s and s <= 1:
t = t_numerator / denominator
if 0 <= t and t <= 1:
intersection = [line_a[0,0] + t * xslope_a, line_a[0, 1] + t * yslope_a]
return torch.tensor(intersection)
# No intersection
return None
|
bb0fcc8cd3992abef05d13bdc18c1eae407fe5c1
| 277,294 |
def _check_1d_vector(vector):
"""Check 1D vector shape
Check 1D vector shape. array with shape
[n, 1] or [n, ] are accepted. Will return
a 1 dimension vector.
Parameters
----------
vector : array (n,) or (n, 1)
rank one vector
Returns
-------
vector : array, (n,)
"""
v_shape = vector.shape
if len(v_shape) == 1:
return vector
elif len(v_shape) == 2 and v_shape[1] == 1:
return vector.reshape(v_shape[0],)
else:
raise ValueError("Vector is not 1-d array: shape %s" % str(v_shape))
|
ff8cc78d71f8fdfa714c351dc7662a470c9f510a
| 547,500 |
def get_array_type(arr):
"""Returns if the array is a scalar ('scalars'), vector
('vectors') or tensor ('tensors'). It looks at the number of
components to decide. If it has a wierd number of components it
returns the empty string.
"""
n = arr.number_of_components
ret = {1: 'scalars', 3: 'vectors', 4: 'scalars', 9:'tensors'}
return ret.get(n) or ''
|
886949122ea3d4b2ea395c9fbdec618e0af973a8
| 578,484 |
def find_key_symptom(tariffs, cause_reduction, cause, endorsements,
rules=None):
"""Find the key endorsed symptom for a cause
Args:
tariffs (dict): processed tariff matrix
cause_reduction (dict): mapping from cause46 to cause34
cause (int): cause number at the cause34 level
endorsements (iterable): names of endorsed symptoms
rules (dict): mapping of rule-based cause prediction to key symptom
Returns:
symptom (str): name of the key symptom
"""
rules = rules or {}
rule_symp = rules.get(cause)
if rule_symp:
return rule_symp
causes46s = [cause46 for cause46, cause34 in cause_reduction.items()
if cause34 == cause]
values = {}
for cause46 in causes46s:
for symptom, tariff in tariffs[cause46]:
if symptom not in endorsements or tariff <= 0:
continue
if symptom in values and values[symptom] < tariff:
continue
else:
values[symptom] = tariff
if values:
return sorted(values.items(), key=lambda x: x[1])[-1][0]
|
e8805fd29bf09cd3e0269ae4203f4fd7912f5c72
| 8,678 |
from typing import TextIO
import csv
def process_ethnics(data: TextIO):
"""Returns a generator of ethnics dictionary
Args:
data (TextIO): A file-like object of ethnics data
"""
next(data)
datas = csv.reader(data)
return [item for item in datas]
|
517099893895b0e53d633c6c573ea767701455cd
| 298,080 |
def get_cmd_args(argv):
"""
Take the `argv` arguments apart and split up in arguments and options.
Options start with `-` and can be stacked. Options starting with `--` cannot
be stacked.
"""
args = []
options = []
i = 1
while (i < len(argv)):
if argv[i].strip()[0] == '-':
# it's an option
if argv[i].strip()[1] == '-':
options.append(argv[i].strip()[2:])
else:
for a in argv[i].strip()[1:]:
options.append(a)
else:
# it's an argument
args.append(argv[i])
return args, options
|
73b725a2215c845c97e0839f9f8b5f6768671798
| 448,728 |
def two_level_minus_r_over_t(g1d, gprime, Delta1):
"""
Minus the reflection coefficient of a two-level atom divided
by the transmission coefficient. The transfer matrix for the
two-level atoms will be written in terms of this ratio.
"""
#Assume real Omega
return g1d/(gprime-2j*Delta1)
|
27632dd9e2b048384624afd3dee05f2e1414841d
| 356,726 |
def formatTime(time):
"""Convert a datetime object to a string in the format expected
by the AppAssure API.
"""
return time.isoformat()[:-7]
|
47defe4d47b37bdf72442ff17e097bf05cb48f29
| 521,260 |
def adjust_timescales_from_daily(ds, tstep):
"""Adjust continuous growth rate parameters from daily scale to the scale of a
single timestep in the dynamic model.
Parameters
----------
ds : :class:`xarray.Dataset`
Dataset containing coords or variables corresponding to rate parameters, e.g.
$\lambda$ (asymptotic exponential growth rate), $\beta$ (daily transmission rate
per infectious individual), $\gamma$ (inverse of duration of infectious period),
and/or $\sigma$ (inverse of latency period).
tstep : float
Timestep of model, in days
Returns
-------
out : :class:`xarray.Dataset`
`ds`, with rate parameters adjusted.
"""
out = ds.copy()
for k, v in ds.variables.items():
if k.split("_")[0] in [
"lambda",
"beta",
"gamma",
"sigma",
]:
# staying in continuous rate
out[k] = out[k] * tstep
return out
|
802b472138be70934ff3e37af367d224970b5517
| 69,597 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.