content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def evaluations(ty, pv):
"""
evaluations(ty, pv) -> ACC
Calculate accuracy using the true values (ty) and predicted values (pv).
"""
if len(ty) != len(pv):
raise ValueError("len(ty) must equal to len(pv)")
total_correct = total_error = 0
for v, y in zip(pv, ty):
if y == v:
total_correct += 1
l = len(ty)
ACC = 100.0 * total_correct / l
return ACC
|
021c80dab1d4ed97876bebc882db3423af107ea5
| 8,327 |
import json
def load_json(json_file, verbose=True):
"""
Simple utility function to load a json file as a dict.
Args:
json_file (str): path to json file to load
verbose (bool): if True, pretty print the loaded json dictionary
Returns:
config (dict): json dictionary
"""
with open(json_file, 'r') as f:
config = json.load(f)
if verbose:
print('loading external config: =================')
print(json.dumps(config, indent=4))
print('==========================================')
return config
|
9487e5f164b4f6e221ec1fd7f35d880f0ba894f7
| 147,410 |
def _temp_analyze_files(tmpdir):
"""Generate temporary analyze file pair."""
img_dir = tmpdir.mkdir("img")
orig_img = img_dir.join("orig.img")
orig_hdr = img_dir.join("orig.hdr")
orig_img.open('w')
orig_hdr.open('w')
return orig_img.strpath, orig_hdr.strpath
|
bf14fd612757fe4751d3a276b9f6f4a617059d10
| 396,424 |
def primary_cat(catstr):
"""Return the primary category from a rider cat list."""
ret = u''
cv = catstr.split()
if cv:
ret = cv[0].upper()
return ret
|
f5204e6c705bd683e6521030c6b608021de9ae5c
| 147,969 |
from typing import Any
def build_where(**conditions: Any) -> str:
"""
Build WHERE statement with several `conditions`
If no `conditions` passed return `WHERE 1 = 1`
In case if a value has primitive type it will be an equal condition and
in case if it is an iterable it will be an include condition
"""
if not conditions:
return "WHERE 1 = 1"
where_str = "WHERE "
for i, (column, value) in enumerate(conditions.items()):
if i > 0:
where_str += " AND "
if value is None:
where_str += f"{column} IS NULL"
else:
if isinstance(value, (int, float)):
where_str += f"{column} = {value}"
elif isinstance(value, (list, tuple)):
in_str = ", ".join([f"'{v}'" if isinstance(v, str) else str(v) for v in value])
where_str += f"{column} IN ({in_str})"
else:
where_str += f"{column} = '{value}'"
return where_str
|
ec2d7c2aebe4798a7cb06b20f9d2c06259afdadd
| 648,289 |
def namedtuple_lower(t):
"""Lower cases a namedtuple"""
return type(t)(*[s.lower() for s in t])
|
8ad93713ea12b0b9cfa48dce1629ab8da7ce7cfe
| 91,459 |
def template_function(message: str, show: bool = True) -> str:
"""Return a message if `show` is True.
Args:
message (str): The message to be returned.
show (bool): Flag to return the message.
Return:
The message. Is show is True, empty string otherwise.
"""
return message if show else ""
|
bf84d876d133ff1a7ff2ab31d863ae5a527f8e0d
| 618,103 |
def get_tag(commands):
"""Generates a preprocessor tag from a set of grid commands."""
# Extra line break prevents unclosed paragraphs in markdown HTML output
return "\n<!--grid:%s-->" % ';'.join([str(cmd) for cmd in commands])
|
2e5d3c099a10dd6175e94c609b88fa211b3cbe0d
| 629,621 |
def apply_permutation(cm, perm):
"""
Apply permutation to a matrix.
Examples
--------
>>> cm = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
>>> perm = np.array([2, 0, 1])
>>> apply_permutation(cm, perm)
array([[8, 6, 7],
[2, 0, 1],
[5, 3, 4]])
"""
return cm[perm].transpose()[perm].transpose()
|
6dc35a54da4970e86506e2215411957ebfcd1d6f
| 634,584 |
import logging
def get_bucket_name_from_s3_event(event):
"""
Purpose:
Get the S3 Bucket name from an event triggered by the creation
of an object in S3
Args:
event (Dict): Dict with event details from the triggering event
for the function.
Return:
bucket_name (String): Bucket name of the object creation triggering
the call to the Lambda function
"""
bucket_name =\
event.get("Records", {})[0].get("s3", {}).get("bucket", {}).get("name", None)
if not bucket_name:
error_msg = "Event did not have a bucket name; cannot process event"
logging.error(error_msg)
raise Exception(error_msg)
return event.get("Records", {})[0].get("s3", {}).get("bucket", {}).get("name", None)
|
ce73ed2a67495240c2de1c667976b1a26d205f7d
| 393,854 |
import math
def efficiency_integrand(x):
"""
The integrand in the efficiency equation.
"""
return x**3 / (math.exp(x) - 1)
|
747bd05dda8bfd547b1f53e11df20a889341cf38
| 233,949 |
from typing import Counter
def percent_repeated_blocks(text: str, block_length: int = 16) -> float:
"""
Checks how many repeating blocks there are in the text, which is a indication/vulnerability of ECB encryption.
:param text The text in question we are checking for encryption.
:param block_length The length of each block to compare for repeats, defaults to 16-bit blocks.
:return: A float which is the percent of blocks which repeat, a indication of ECB encryption.
"""
# break the string down into block_length sized blocks
blocks = [text[i:i + block_length] for i in range(0, len(text), block_length)]
counts = list(Counter(blocks).values())
repeats = 0
for i in range(0, len(counts)):
if counts[i] > 1:
repeats += counts[i]
return repeats / len(blocks)
|
4ff0bb16ae03509e2b1e1360a16f13a4b4e53666
| 583,101 |
from typing import OrderedDict
def order_dict(content, order):
"""Converts a dict into an OrderedDict
Args:
content (dict): The content to convert.
order (Seq[str]): The field order.
Returns:
OrderedDict: The ordered content.
Examples:
>>> order_dict({'a': 1, 'b': 2}, ['a', 'b']) == OrderedDict(
... [('a', 1), ('b', 2)])
True
"""
get_order = {field: pos for pos, field in enumerate(order)}
keyfunc = lambda x: get_order[x[0]]
return OrderedDict(sorted(content.items(), key=keyfunc))
|
28df3c879a942e223ce963b58b1b1af8ca3372f4
| 326,980 |
def mean(feature_vector):
"""
:param feature_vector: List of integer/float/double..
:return: Mean of the feature vector.
"""
return sum(f for f in feature_vector)/len(feature_vector)
|
5ed9dfa0d54cc6fa2a882c32e52ba41be67ff3d3
| 109,911 |
def vertical_velocity_from_pass_diagnostics(diagnostic):
"""Method for handling a chain_pass diagnostic and outputting it's vertical velocity
Shouldn't be calculated for pass chains of 1 pass
vertical velocity = vertical distance / cumulative time
"""
vertical_distance = diagnostic[5]
elapsed_time = diagnostic[9]
pass_count = diagnostic[7]
if pass_count > 1:
return float(vertical_distance) / elapsed_time
else:
return None
|
8d9c0d49d9efd97870ad188c0ca8ad144a2ceb40
| 31,390 |
import pickle
def load_pickle(filepath):
"""Load a pickle at the given filepath and return the contents.
Args:
filepath (str): The filepath to load.
Returns:
The unpickled object.
"""
with open(filepath, 'rb') as f:
return pickle.load(f)
|
7b0b250c776fb8699c540d815e3593dd3f3ba77c
| 331,614 |
from typing import BinaryIO
from typing import cast
import struct
def read_short(stream: BinaryIO) -> int:
"""Read a short integer value in big-endian order."""
return cast(int, struct.unpack('>h', stream.read(2))[0])
|
20eb8c6c91b08841039f235a872ad8261fffd2bd
| 363,350 |
import six
def dslice(value, *args):
"""Returns a 'slice' of the given dictionary value containing only the
requested keys. The keys can be requested in a variety of ways, as an
arg list of keys, as a list of keys, or as a dict whose key(s) represent
the source keys and whose corresponding values represent the resulting
key(s) (enabling key rename), or any combination of the above."""
result = {}
for arg in args:
if isinstance(arg, dict):
for k, v in six.iteritems(arg):
if k in value:
result[v] = value[k]
elif isinstance(arg, list):
for k in arg:
if k in value:
result[k] = value[k]
else:
if arg in value:
result[arg] = value[arg]
return result
|
ae4c76bc75d48881609a7398806f1b688f6c1587
| 398,004 |
def compose(func_a, func_b):
"""
Return a new function that is the composition of the first one with the second.
"""
return lambda x : func_a(func_b(x))
|
a2fee8e0f7bb499c1839abc9cc66fe806f1fcdda
| 194,110 |
def fields_from(dataline, cols):
"""
Given a data line and a set of column definitions,
strip the data and return it as a list
"""
fields = []
for start, fin in cols:
fields.append(dataline[start:fin].strip())
return fields
|
9b733969ad066914dcf82caeea285f277e6fdbc2
| 251,707 |
def calc_PV_power(absorbed_radiation_Wperm2, T_cell_C, eff_nom, tot_module_area_m2, Bref_perC, misc_losses):
"""
To calculate the power production of PV panels.
:param absorbed_radiation_Wperm2: absorbed radiation [W/m2]
:type absorbed_radiation_Wperm2: float
:param T_cell_C: cell temperature [degree]
:param eff_nom: nominal efficiency of PV module [-]
:type eff_nom: float
:param tot_module_area_m2: total PV module area [m2]
:type tot_module_area_m2: float
:param Bref_perC: cell maximum power temperature coefficient [degree C^(-1)]
:type Bref_perC: float
:param misc_losses: expected system loss [-]
:type misc_losses: float
:return el_output_PV_kW: Power production [kW]
:rtype el_output_PV_kW: float
..[Osterwald, C. R., 1986] Osterwald, C. R. (1986). Translation of device performance measurements to
reference conditions. Solar Cells, 18, 269-279.
"""
T_standard_C = 25.0 # temperature at the standard testing condition
el_output_PV_kW = eff_nom * tot_module_area_m2 * absorbed_radiation_Wperm2 * \
(1 - Bref_perC * (T_cell_C - T_standard_C)) * (1 - misc_losses) / 1000
return el_output_PV_kW
|
31673aaf6d693fba150975841b3ae2717f7d0d5c
| 629,298 |
def tuple_min(t1, t2):
"""Return the entry-wise minimum of the two tuples"""
return tuple(min(a, b) for a, b in zip(t1, t2))
|
7a5df2634c8cc0f477ec62b53452b39c561cb356
| 555,788 |
def generate_wild_card_by_date(date: str) -> str:
"""
Method to build a wildcard_date from a date string
:param date:
:return:
"""
return f"{date}*"
|
4d5e5824468e3556f8c0e29f9342a50a35ab270f
| 524,372 |
def cycle(iterable):
"""
Returns iterator with values
which are in iterable object.
cycle(['A', 'B', 'C']) -> A, B, C, A, B, C, ...
cycle(['ABCA']) -> A, B, C, A, A, B, ...
cycle(('C')) -> C, C, C, ...
"""
lenght = len(iterable)
if lenght == 0:
return iterable
else:
while True:
for item in iterable:
yield item
|
caf86eef922ed28b8accac7b5a560ecbd0f3d534
| 272,904 |
def get_durations(raw_data, get_duration, is_successful):
"""Retrieve the benchmark duration data from a list of records.
:parameter raw_data: list of records
:parameter get_duration: function that retrieves the duration data from
a given record
:parameter is_successful: function that returns True if the record contains
a successful benchmark result, False otherwise
:returns: list of float values corresponding to benchmark durations
"""
data = [get_duration(run) for run in raw_data if is_successful(run)]
return data
|
b50ab9c3e2b9b9cbf82c2f745314ee683db30dab
| 322,621 |
def EnumNameToChoice(name):
"""Converts the name of an Enum value into a typeable choice."""
return name.replace('_', '-').lower()
|
0ee5074f6a97e71e5ac17e5181f7cc3d6119c237
| 474,508 |
def any(it, func=bool):
"""
对iter中的每个元素调用func,任意一个为真则返回True,否则为False
:param it: 可迭代对象
:param func: callable
:return: True if any func(i) is true ,otherwise false
"""
for i in it:
if func(i):
return True
return False
|
3b79130c525133d387beb7d946190ac864182449
| 539,839 |
import re
def filter_remove_device_sw_log_prefix(line):
"""
Remove the file/line information in log messages produced by device software
LOG() macros.
"""
# See base_log_internal_core() in lib/base/log.c for the format description.
pattern = r'^[IWEF?]\d{5} [a-zA-Z0-9\.-_]+:\d+\] '
if isinstance(line, bytes):
return re.sub(bytes(pattern, encoding='utf-8'), b'', line)
else:
return re.sub(pattern, '', line)
|
c69ce2ecc96370dd1c55ce47cb38ce59aa759a11
| 52,060 |
from typing import Any
def check_type(o: Any, target_type: str) -> bool:
"""
Check if `o`'s class path + name matches `target_type`.
E.g. `check_type(o, "numpy.ndarray")`
Checking types using this method instead of `isinstance` with the actual type is
preferred here so that we don't have to import pytorch, PIL, and numpy (and complicate
the code by handling import errors if any of these are missing, importing comet-ml
before pytorch, etc.).
"""
return str(type(o)) == f"<class '{target_type}'>"
|
cf96d05d720d6e057a6eb3b46b96ce213d463d65
| 596,924 |
def _calc_overlap(geom1, geom2):
"""Return area overlap"""
return geom1.intersection(geom2).area
|
13183e0f20dd441425b55793d667a0f7ff73ac59
| 615,995 |
import glob
def get_roi_zip_list(path):
"""
Returns a list of files ending in *.zip in provided folder
:param: path
:return: list -- filenames
"""
path += '/*.zip'
return glob.glob(path)
|
af5249d936709d11f57a72cac582ce3664764128
| 162,330 |
from typing import Dict
from typing import Any
def flatten(data: dict, prefix: str = "") -> Dict[str, Any]:
"""
Recursively flatten a dict into the representation used in Moodle/PHP.
>>> flatten({"courseids": [1, 2, 3]})
{'courseids[0]': 1, 'courseids[1]': 2, 'courseids[2]': 3}
>>> flatten({"grades": [{"userid": 1, "grade": 1}]})
{'grades[0][userid]': 1, 'grades[0][grade]': 1}
>>> flatten({})
{}
"""
formatted_data = {}
for key, value in data.items():
new_key = f"{prefix}[{key}]" if prefix else key
if isinstance(value, dict):
formatted_data.update(flatten(value, prefix=new_key))
elif isinstance(value, list):
formatted_data.update(flatten(dict(enumerate(value)), prefix=new_key))
else:
formatted_data[new_key] = value
return formatted_data
|
a2b0439de0a2505d8940e1d8d55b750275023afa
| 121,275 |
def convert_c_to_f(temp_c):
"""Converts temp (C) to temp (F)."""
try:
temp_f = (temp_c * 1.8) + 32
temp_f = round(temp_f, 2)
except TypeError:
temp_f = False
return temp_f
|
88b08f89c5d674a0220390aff91faa3db2e7e0be
| 83,183 |
import re
def strip_wiki_comment(src):
"""
Strip wiki comment like [1], [편집]
to get clean text
Args:
src: String to strip
Return:
Text that escaped wiki comment
"""
return re.sub(r"(\[.+\])", '', src)
|
d34f34f5e1cd182e9fd2f1c432e93f8328274787
| 409,919 |
from typing import Iterable
import itertools
def primed(iterable: Iterable):
"""Preprimes an iterator so the first value is calculated immediately
but not returned until the first iteration
"""
itr = iter(iterable)
try:
first = next(itr) # itr.next() in Python 2
except StopIteration:
return itr
return itertools.chain([first], itr)
|
73123976f40cc7331be5988c9c71cadd8f031b65
| 461,997 |
from typing import Union
def _calc_n_kwargs(args: list[str]) -> Union[str, int]:
"""
Here we try to calculate the nargs for **kwargs arguments.
Basically we are starting from the end until not encountering
the "=" sign in the provided argument.
Example: <CLI> <feature> <command> [arguments: pos[bst labs] *args[lib1 lib2] **kwargs[name1=lib1 name2=lib2]]
:param args: the list of arguments from the argparse
:return: nargs for argparse add_argument()
"""
n_kwargs = 0
for n_kwargs in range(0, -len(args), -1):
if "=" not in args[n_kwargs - 1]:
break
return -n_kwargs or "*"
|
60bd2c0ad1b43ea6818252ed82334a41aa06795f
| 429,622 |
def _get_top_values_categorical(series, num_x):
"""Get the most frequent values in a pandas Series. Will exclude null values.
Args:
column (pd.Series): data to use find most frequent values
num_x (int): the number of top values to retrieve
Returns:
top_list (list(dict)): a list of dictionary with keys `value` and `count`.
Output is sorted in descending order based on the value counts.
"""
frequencies = series.value_counts(dropna=True)
df = frequencies.head(num_x).reset_index()
df.columns = ["value", "count"]
df = df.sort_values(["count", "value"], ascending=[False, True])
value_counts = list(df.to_dict(orient="index").values())
return value_counts
|
d3ea35ba6ee60536a56bbfc07cfae3633f26b138
| 43,810 |
from typing import Tuple
def distance(point_a: Tuple[int, int],
point_b: Tuple[int, int],
m: int) -> float:
"""Generalized distance between two points
Note:
See more info here: https://xlinux.nist.gov/dads/HTML/lmdistance.html
Args:
- point_a (Tuple[int, int]): a coordinate pair
- point_b (Tuple[int, int]): a coordinate pair
- m (int): the type of distance to calculate between the points
Can only take three values:
1 -> manhattan
2 -> euclidean
More than 2 -> minkowski
Result:
float: the distance between the two points
"""
abs_diff_x_exp_m = abs(point_a[0] - point_b[0]) ** m
abs_diff_y_exp_m = abs(point_a[1] - point_b[1]) ** m
sum_dif = abs_diff_x_exp_m + abs_diff_y_exp_m
distance = sum_dif ** (1 / m)
return distance
|
f73fb9045a94dfe745f29bae7a30891f34221791
| 576,748 |
def overlap(range1, range2):
""" Checks whether two ranges (f.e. character offsets overlap)
This snippet by Steven D'Aprano is from the forum of
www.thescripts.com.
Keyword arguments:
range1 -- a tuple where range1[0] <= range1[1]
range1 -- a tuple where range2[0] <= range2[1]
Returns:
True (ranges overlap) or False (no overlap)
"""
assert(range1[0] <= range1[1])
assert(range2[0] <= range2[1])
# Fully overlapping cases:
# x1 <= y1 <= y2 <= x2
# y1 <= x1 <= x2 <= y2
# Partially overlapping cases:
# x1 <= y1 <= x2 <= y2
# y1 <= x1 <= y2 <= x2
# Non-overlapping cases:
# x1 <= x2 < y1 <= y2
# y1 <= y2 < x1 <= x2
return not (range1[1] < range2[0] or range2[1] < range1[0])
|
c8871689127cc6944e84788179efe98bb454de28
| 367,215 |
def match_substrings(text, items, getstr=None, cmp=None, unmatched=False):
"""
Matches each item from the items sequence with sum substring of the text
in a greedy fashion. An item is either already a string or getstr is used
to retrieve a string from it. The text and substrings are normally
compared with normal string equality but cmp can be replaced with
a two-argument function that does the comparison instead.
This function expects that all items are present in the text, in their order
and without overlapping! If this is not the case, an exception is raised.
Args:
text: the text to use for matching
items: items that are or contains substrings to match
getstr: a function that retrieves the text from an item (Default value = None)
cmp: a function that compares to strings and returns a boolean \
that indicates if they should be considered to be equal. (Default value = None)
unmatched: if true returns two lists of tuples, where the second list\
contains the offsets of text not matched by the items (Default value = False)
Returns:
a list of tuples (start, end, item) where start and end are the\
start and end offsets of a substring in the text and item is the item for that substring.
"""
if getstr is None:
getstr = lambda x: x
if cmp is None:
cmp = lambda x, y: x == y
ltxt = len(text)
ret = []
ret2 = []
item_idx = 0
start = 0
lastunmatched = 0
while start < ltxt:
itemorig = items[item_idx]
item = getstr(itemorig)
end = start + len(item)
if end > ltxt:
raise Exception("Text too short to match next item: {}".format(item))
if cmp(text[start:end], item):
if unmatched and start > lastunmatched:
ret2.append((lastunmatched, start))
lastunmatched = start + len(item)
ret.append((start, end, itemorig))
start += len(item)
item_idx += 1
if item_idx == len(items):
break
else:
start += 1
if item_idx != len(items):
raise Exception(
"Not all items matched but {} of {}".format(item_idx, len(items))
)
if unmatched and lastunmatched != ltxt:
ret2.append((lastunmatched, ltxt))
if unmatched:
return ret, ret2
else:
return ret
|
9413ed626d87d796be001d75403f950073b63a4b
| 535,109 |
import base64
def gen_basic_auth(username, password):
"""
Generates a basic auth header.
"""
encoded_username = username.encode("utf-8")
encoded_password = password.encode("utf-8")
return "Basic " + base64.b64encode(b"%s:%s" % (encoded_username, encoded_password)).decode(
"ascii"
)
|
12471f7383546346b45ea46f19ae0e216ee7c521
| 131,100 |
from typing import Optional
import torch
def batch_eye(
eye_dim: int, batch_size: int, device: Optional[torch.device] = None
) -> torch.Tensor:
"""Create a batch of identity matrices.
Parameters
----------
eye_dim : int
Desired eye dimension.
batch_size : int
Desired batch dimension.
device : Optional[torch.device], default=None
The device.
Returns
-------
torch.Tensor, shape=(batch_size, eye_dim, eye_dim)
Batched eye.
"""
if device is None:
eye = torch.eye(eye_dim).unsqueeze(0) # shape=(1, eye_dim, eye_dim)
else:
eye = torch.eye(eye_dim, device=device).unsqueeze(0)
return eye.expand([batch_size, eye_dim, eye_dim])
|
d1542fcc9a24a5a0306552cf47019891a26634e8
| 574,914 |
def get_gamma_distribution_params(mean, std):
"""Turn mean and std of Gamma distribution into parameters k and theta."""
# mean = k * theta
# var = std**2 = k * theta**2
theta = std**2 / mean
k = mean / theta
return k, theta
|
49b5ccdf7b83c949b81ad05e6d351cfb0b1f4d26
| 666,361 |
def hex_to_bin(txt: str) -> str:
"""Convert hexadecimal string to binary string.Useful for preprocessing the key and plaintext in different settings."""
return bin(int(txt,16))[2:]
|
beffae4a0eb8bda8a56e0a23fb9aefcdbd41dd37
| 683,643 |
from typing import Dict
import aiohttp
async def head(url: str) -> Dict:
"""Fetch headers returned http GET request.
:param str url:
The URL to perform the GET request for.
:rtype: dict
:returns:
dictionary of lowercase headers
"""
async with aiohttp.request("HEAD", url) as res:
response_headers = res.headers
return {k.lower(): v for k, v in response_headers.items()}
|
b4decbfb4e92863c07c5202e2c884c02e590943f
| 2,629 |
import requests
def extra_metadata_helper(json_content, repo_name, header):
"""
Build extra metadata dict to help with other integrations.
Parameters
----------
json_content: dict
Information about the GitHub repo
repo_name: str
The name of this GitHub repository
header: dict
GitHub Authorization header
Returns
-------
Extra metadata dictionary
"""
# Build up extra metadata
name_helper = requests.get(json_content['owner']['url'], headers=header)
first_name = None
last_name = None
if name_helper.status_code == 200:
try:
name = name_helper.json()['name'].partition(' ')
first_name = name[0]
last_name = name[2]
except AttributeError:
pass
try:
license = json_content['license']['name']
except TypeError:
license = None
extra_metadata = {
"title": repo_name,
"creators": [
{
"first_name": first_name,
"last_name": last_name,
"ORCID": None
}
],
"publication_date": json_content['created_at'],
"description": json_content['description'],
"keywords": json_content['topics'],
"license": license,
"related_identifiers": [],
"references": None,
"notes": None
}
return extra_metadata
|
51fb0fa1035827f4d93ccbc461e1938a92569264
| 364,470 |
def parse_scripts(scp_path, value_processor=lambda x: x, num_tokens=2):
"""
Parse kaldi's script(.scp) file
If num_tokens >= 2, function will check token number
"""
scp_dict = dict()
line = 0
with open(scp_path, "r") as f:
for raw_line in f:
scp_tokens = raw_line.strip().split()
line += 1
if num_tokens >= 2 and len(scp_tokens) != num_tokens or len(scp_tokens) < 2:
raise RuntimeError(
"For {}, format error in line[{:d}]: {}".format(
scp_path, line, raw_line
)
)
if num_tokens == 2:
key, value = scp_tokens
else:
key, value = scp_tokens[0], scp_tokens[1:]
if key in scp_dict:
raise ValueError(
"Duplicated key '{0}' exists in {1}".format(key, scp_path)
)
scp_dict[key] = value_processor(value)
return scp_dict
|
db22596c8639c2e7d81d3fe749fc235a6281d0c3
| 678,534 |
def clean_games_stats(game_details_ele, picture_link, url):
"""
This module contains functions for cleaning data,
it is called by BGA_scraper when run.
Keyword arguements:
-------------------
game_details - game info to be cleaned, string
picture_link - url to game image, passed on without cleaning
url - url to game page, passed on without cleaning
Returns:
--------
players - number of players required
playtime_cleaned - aproximate playtime in minutes
complexity - game complexity ranked from 1 (lowest) to 5 (highest)
picture_link - url for the game image, to be downloaded later
url - url to game page, for reference
"""
game_details = game_details_ele.text
game_details = game_details.split('\n')
game_details = game_details[1]
players = game_details[0:5]
playtime = game_details[8:12]
playtime_cleaned = playtime.split()
playtime_cleaned = playtime_cleaned[0]
complexity = game_details[-5:]
# add to dictionary in BGA_scraper
return [players, playtime_cleaned, complexity, picture_link, url]
|
86833c6bea183cb00d2d7c7815e28e7735aec766
| 480,659 |
def row_format_resource(*fields):
"""Transform a variable number of fields to a `table-row` format.
```
>>> row_format_resource(a,b,c,d)
'| a | b | c | d |'
```
:param fields: fields to be converted to row.
"""
return ('| {} ' * len(fields)).format(*fields) + '|\n'
|
bab8eec97396ba8021ce85e9a57d766a6de630ef
| 624,250 |
def bmi_to_bodytype(bmi):
"""
desc : converts bmi to a category body type based on CDC guidelines https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
args:
bmi (float) : the users bmi
returns:
bodytype (string) : The users bodytype
"""
if bmi < 18.5:
return "Underweight"
elif 18.5 <= bmi < 24.9:
return "Normal"
elif 24.9 <= bmi < 29.9:
return "Overweight"
else:
return "Obese"
|
24ff38d0b010df0b0fb0ee5c89fa071e4db2e0d9
| 474,490 |
def get_split_ratio(df):
"""
This function returns a copy of a data frame with a new column
for split ratios.
:param dataframe df: contains split times for individual runners
:return dataframe df_new: a copy of the passed data frame which contains one
new column; the split ratio comparing the second half of each individual's
marathon to the first half.
"""
df_new = df.copy()
df_new["split_ratio"] = (df_new["official_time"] - df_new["half"]) / (
df_new["half"]
)
return df_new
|
097464e980f19b85939360c90bf62fc88d6ba002
| 134,017 |
import pwd
def uid_to_name(uid):
"""
Find the username associated with a user ID.
:param uid: The user ID (an integer).
:returns: The username (a string) or :data:`None` if :func:`pwd.getpwuid()`
fails to locate a user for the given ID.
"""
try:
return pwd.getpwuid(uid).pw_name
except Exception:
return None
|
f9054e4959a385d34c18d88704d376fb4b718e47
| 6,022 |
def _fingerprint(row):
"""Generate a string-based fingerprint to characterize row diversity."""
return ''.join(map(lambda x: str(type(x)), row))
|
0ea349cd89e2f08e908c06fadb4c9509481b7cc1
| 213,689 |
def create_filename(last_element):
"""
For a given file, returns its name without the extension.
:param last_element: str, file name
:return: str, file name without extension
"""
return last_element[:-4]
|
3faaf647ed6e3c765321efb396b2806e7ef9ddf9
| 8,050 |
def convert_to_d_h_m_s(days):
"""Return the tuple of days, hours, minutes and seconds from days (float)"""
days, fraction = divmod(days, 1)
hours, fraction = divmod(fraction * 24, 1)
minutes, fraction = divmod(fraction * 60, 1)
seconds = fraction * 60
return int(days), int(hours), int(minutes), int(seconds)
|
f7457043788559689100441cc0b2099ee04c8993
| 497,154 |
def extension(filename):
""" returns the extension when given a filename
will return None if there is no extension
>>> extension('foo.bar')
'bar'
>>> extension('foo')
None
"""
s = filename.split('.')
if len(s) > 1:
return s[-1]
else:
return None
|
5634effc420299a66dd71985eb49cbbf98714622
| 586,575 |
def max_consecutive_sum(array):
"""
given an array of numbers (positive, negative, or 0)
return the maximum sum of consecutive numbers
"""
max_value = max(array)
running_sum = 0
for num in array:
if running_sum < 0:
running_sum = 0
running_sum += num
if running_sum > max_value:
max_value = running_sum
return max_value
|
32e7322f8936f8399ec2ebe0702dbb10332cb529
| 699,640 |
def cauchy(x0, gx, x):
"""1-D Cauchy. See http://en.wikipedia.org/wiki/Cauchy_distribution"""
#return INVPI * gx/((x-x0)**2+gx**2)
gx2 = gx * gx
return gx2 / ((x-x0)**2 + gx2)
|
ed76e0683c68642fc3c4a81754df2eb38344237b
| 121,353 |
def _correct_searchqa_score(x, dataset):
"""Method to correct for deleted datapoints in the sets.
Args:
x: number to correct
dataset: string that identifies the correction to make
Returns:
The rescaled score x.
Raises:
ValueError: if dataset is none of train, dev, test.
"""
if dataset == 'train':
return x * 90843 / (90843 + 8977)
elif dataset == 'dev':
return x * 12635 / (12635 + 1258)
elif dataset == 'test':
return x * 24660 / (24660 + 2588)
else:
raise ValueError('Unexepected value for dataset: {}'.format(dataset))
|
d92b992f98116d069456d7a9f34b2a95d93b5880
| 104,986 |
from typing import Tuple
def get_two_first_items(t: Tuple) -> Tuple:
"""Return (first, second) item of tuple as tuple."""
return (t[0], t[1])
|
cdc3d474f9dbbf2271a0617977140f6f995e7f90
| 484,191 |
def match_relationships(package_archive, relationship_sets):
"""
Validate that `package_archive` DebArchive satisfies all the relationships
of a `relationship_sets`. Return True if valid and False otherwise.
"""
archive_matches = None
for relationships in relationship_sets:
status = relationships.matches(package_archive.name, package_archive.version)
if status is True and archive_matches is not False:
archive_matches = True
elif status is False:
# This package archive specifically conflicts with (at least) one
# of the given relationship sets.
archive_matches = False
# Short circuit the evaluation of further relationship sets because
# we've already found our answer.
break
return archive_matches
|
f738fd9ce78f56f7f5931264dd32ada86f2aa442
| 589,475 |
from bs4 import BeautifulSoup
def info_from_html(html, name_selector, author_selector):
"""Return a tuple with song's name and author from a page.
name_selector -> css selector for song's name
author_selector -> css selector for author's name
"""
soup = BeautifulSoup(html, 'html.parser')
name = soup.select(name_selector)[0]
author = soup.select(author_selector)[0]
return (name.get_text().strip(), author.get_text().strip())
|
06eeafa40418730a98d25a28b65740b25e1f17e0
| 68,395 |
def _expand_global_features(B, T, g, bct=True):
"""Expand global conditioning features to all time steps
Args:
B (int): Batch size.
T (int): Time length.
g (Variable): Global features, (B x C) or (B x C x 1).
bct (bool) : returns (B x C x T) if True, otherwise (B x T x C)
Returns:
Variable: B x C x T or B x T x C or None
"""
if g is None:
return None
g = g.unsqueeze(-1) if g.dim() == 2 else g
if bct:
g_bct = g.expand(B, -1, T)
return g_bct.contiguous()
else:
g_btc = g.expand(B, -1, T).transpose(1, 2)
return g_btc.contiguous()
|
868e7c652e2b4aebc9d0a55ee908068b49639ef7
| 189,795 |
def is_valid_matrix(mtx):
"""
>>> is_valid_matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
True
>>> is_valid_matrix([[1, 2, 3], [4, 5], [7, 8, 9]])
False
"""
if mtx == []:
return False
cols = len(mtx[0])
for col in mtx:
if len(col) != cols:
return False
return True
|
2e57455155cca8f37f738ef5ca7444ec118f1f6a
| 663,151 |
def sum_payout(cost_matrix, confusion_matrix):
"""
Calculate the profit from cost and confusion matrices.
"""
return (confusion_matrix * cost_matrix).sum()
|
8b1b0fe44a283582625ad2cdee91411b59cfb105
| 645,854 |
def get_species_label(entry):
"""Get the species name of an assembly summary entry."""
parts = entry['organism_name'].split(' ')
if len(parts) < 2:
return 'sp.'
return parts[1]
|
b4e059d2f40e89351b9749bacea95909e8524873
| 613,430 |
def choose_weapon(decision, weapons):
"""Chooses a weapon from a given list
based on the decision."""
choice = []
for i in range(len(weapons)):
if i < decision:
choice = weapons[i]
return choice
|
86e6272022a45603525e06a732748cf7275337b8
| 86,978 |
def extract_from_dictionary(ls_of_dictionaries, key_name):
"""
Iterates through a list of dictionaries and, based on the inserted key name, extracts that data.
:param: ls_of_dictionaries: a list of dictionaries
:param: key_name: a string with ('') that indexes which set of the dictionary you want to extract
:returns: list with the specified (keyed) datatype
"""
#index = []
partic_name = []
data_element = []
for index, dictionary in enumerate(ls_of_dictionaries):
data = dictionary[key_name]
partic_name = dictionary['partic_number']
data_element.append(data)
return(data_element)
|
1bdc41a61a21d2cc1903440be7720300ea12ed46
| 460,921 |
def validate_connections(nodes, connections):
"""Ensure all connections actually connect to a node that has been provided."""
# nodes may have multiple connections to the same node
#(this is to allow for data centers/smaller servers)
if not connections or not nodes:
return
if len(nodes) < len(connections) - 1:
# There can't be no nodes then connections less 1
raise IndexError
names = [node.address for node in nodes]
for connection_obj in connections:
if (connection_obj.start_node.address == connection_obj.end_node.address
or connection_obj.start_node.address not in names
or connection_obj.end_node.address not in names):
raise AttributeError # addressError
return True
|
91f15cbcc8ef87d2585f6c5951a23cef3a267e92
| 466,878 |
def get_stats(stat_int_list: list) -> list:
"""Return a list of stats in play.
Argument(s):
stat_int_list: list -- list of stat indices
"""
stat_list = []
for stat in stat_int_list:
if stat == 0:
stat_list.append("Hunger")
elif stat == 1:
stat_list.append("Thirst")
elif stat == 2:
stat_list.append("Energy")
elif stat == 3:
stat_list.append("Fitness")
elif stat == 4:
stat_list.append("Mental Health")
return stat_list
|
22d36dcd5cb7736c1591e635ad49650c2e51fcc5
| 652,039 |
def _parse_requirements_file(filename):
"""Parses a requirements.txt file into a list of requirement strings."""
reqs = []
with open(filename, "r") as f:
for line in f.read().splitlines():
line = line.strip()
if line.startswith("#"):
continue
if not line:
continue
reqs.append(line)
return reqs
|
040feefaaf087746a55ee2a531dcec992fa5f633
| 516,959 |
def flatten(lst):
"""Flattens a list of lists"""
return [subelem for elem in lst for subelem in elem]
|
34b3c041a0d6bd6cb46bf15b218ac29be1fba566
| 112,190 |
import re
def matchline(line):
"""
>>> matchline("{{teet}}")
'teet'
>>> matchline("teet")
"""
rg = re.compile("{{(\S*)}}")
m = rg.match(line.strip())
if m:
return m.group(1)
else:
return
|
7db884f164197213497b27050dacd0ff90c1b29e
| 77,305 |
def heaviside(x, bias=0):
"""
Heaviside function Theta(x - bias)
returns 1 if x >= bias else 0
:param x:
:param bias:
:return:
"""
indicator = 1 if x >= bias else 0
return indicator
|
b325a862cbc2cac97b8e4808c6d77b54a0f1d643
| 700,057 |
import base64
import gzip
import json
def uncompress_payload(cw_event: dict) -> dict:
"""Uncompresses a Cloudwatch log event and turns it into a dict.
Args:
cw_event: Dict containing base64 encoded and zipped logs entry
delivered by Cloudwatch Logs subscription
Returns:
(dict): uncompressed logs data
"""
cw_data = cw_event["awslogs"]["data"]
compressed_payload = base64.b64decode(cw_data)
uncompressed_payload = gzip.decompress(compressed_payload)
return json.loads(uncompressed_payload)
|
bc2b9a69cfce7bfa8e6630b001df53104440cd6e
| 603,964 |
import copy
def deep_merge_dict(base, custom, dict_path=""):
"""Intended to merge dictionaries created from JSON.load().
We try to preserve the structure of base, while merging custom to base.
The rule for merging is:
- if custom[key] exists but base[key] doesn't, append to base[key]
- if BOTH custom[key] and base[key] exist, but their type is different, raise TypeError
- if BOTH custom[key] and base[key] exist, but their type is same ...
- if both are dictionary, merge recursively
- else use custom[key]
"""
for k in custom.keys():
if k not in base.keys():
# entry in custom but not base, append it
base[k] = custom[k]
else:
dict_path += "[{}]".format(k)
if type(base[k]) != type(
custom[k]
): # noqa - intended, we check for same type
raise TypeError(
"Different type of data found on merging key{}".format(dict_path)
)
else:
# Have same key and same type of data
# Do recursive merge for dictionary
if isinstance(custom[k], dict):
base[k] = deep_merge_dict(base[k], custom[k], dict_path)
else:
base[k] = custom[k]
return copy.deepcopy(base)
|
2f6461e35ef48937500e7148ee2180865844914a
| 429,159 |
def _is_logging_required(example_index, number_of_examples):
"""Returns True only if logging is required.
Logging is performed after 10%, 20%, ... 100% percents of examples
is processed.
"""
return (example_index + 1) % max(1, number_of_examples // 10) == 0
|
de48fe770f79e3f4f5f92f9a87e2b65b907656a2
| 453,518 |
def write_manningsn(fid, node, value):
"""
Write out a formated node value line to fid
:type fid: :class:`file`
:param fid: the file object to be written to
:type node: int
:param node: the node number
:type value: float
:param value: the nodal value
:rtype: string
:return: formatted string for a line in a ``fort.13`` formatted file
"""
return fid.write('{:<8d} {:17.15g}\n'.format(int(node), value))
|
2bae14a7dbd5c906a830384527d12931609cdca0
| 160,430 |
def __make_renderer(env, variables):
"""Returns a function that takes some text and creates and renders a
template from it using *env* and *variables*
"""
def renderer(text):
template = env.from_string(text)
return template.render(**variables)
return renderer
|
2f8553d3c7a22583e36f88abdd528cb422bf6eb2
| 234,882 |
def agent(request):
"""
A context processor that sets the template context variable ``agent`` to
the value of ``request.agent``.
"""
return {'agent': getattr(request, 'agent', None)}
|
fd2bf218db173101f63762f3c3fc862108073cbd
| 270,613 |
def get_number_of_unique_values_series(series):
"""
Return number of unique values of Pandas series
Parameters
----------
series: (Numeric) Pandas series
Returns
-------
Number of unique values of series
"""
return series.unique().shape[0]
|
5de75f35d95b7212b51eb233145327f477c9852d
| 357,470 |
def hash_qlinef(line):
"""
a hash function for QLineF,
Args:
line (QLineF) the line
Returns:
hash of tuple formed from end point coordinates (x1, x2, y1, y2)
"""
coords = (line.x1(), line.x2(), line.y1(), line.y2())
return hash(coords)
|
050cc88335a15129e3f721b694a2001e154f8114
| 509,582 |
import jinja2
import yaml
def parse(filename):
"""Parse a configuration file.
Parameters
----------
filename : str
The config file to parse. Should be YAML formatted.
Returns
-------
config: dict
The raw config file as a dictionary.
"""
with open(filename, "r") as fp:
config_str = jinja2.Template(fp.read()).render()
config = yaml.load(config_str, Loader=yaml.Loader)
return config
|
055bcca59e2c9d3adad2ca9bdc527fc849ef2290
| 16,822 |
import json
def message_to_json(message):
"""
This function tranforms the string message to a json
string, this is to make all REST responses
to be in JSON format and easier to implement
in a consistent way.
"""
#if message is alreay in json then do not do anything
mesage_dict = {}
try:
message_dict = json.loads(message)
except ValueError:
message_dict = {
"msg": message
}
return json.dumps(message_dict)
|
bf20d028068d2716c5b40807e6b17a6ffb8b1073
| 39,249 |
def _get_pad_size(in_size, dilated_kernel_size, stride_size):
"""Calculate the paddings size for Conv/Pool in SAME padding mode."""
if stride_size == 1 or in_size % stride_size == 0:
pad = max(dilated_kernel_size - stride_size, 0)
else:
pad = max(dilated_kernel_size - (in_size % stride_size), 0)
pad_before = pad // 2
pad_after = pad - pad_before
return [pad_before, pad_after]
|
94681f94f653749ef6192491398545c11f0ba3b5
| 275,210 |
def compare_values(values0, values1):
"""Compares all the values of a single registry key."""
values0 = {v[0]: v[1:] for v in values0}
values1 = {v[0]: v[1:] for v in values1}
created = [(k, v[0], v[1]) for k, v in values1.items() if k not in values0]
deleted = [(k, v[0], v[1]) for k, v in values0.items() if k not in values1]
modified = [(k, v[0], v[1]) for k, v in values0.items()
if v != values1.get(k, None)]
return created, deleted, modified
|
f16a299ae3ac989bca6d2c6b0d93f9a526b4a74d
| 252,458 |
def _jax_type(dtype, weak_type):
"""Return the jax type for a dtype and weak type."""
return type(dtype.type(0).item()) if (weak_type and dtype != bool) else dtype
|
44efbfdf00aff48d5535aad79b207dde956f59f6
| 193,805 |
def rating_label(rating, cfg):
"""Convert a credibility rating into a label
:param rating: a credibility rating. We assume it has
`reviewAspect == credibility` and float `confidence` and
`ratingValue`s
:param cfg: configuration options
:returns: a short string to summarise the credibility rating
:rtype: str
"""
if 'reviewAspect' in rating:
assert rating['reviewAspect'] == 'credibility', '%s' % (rating)
conf_threshold = float(cfg.get('cred_conf_threshold', 0.7))
if 'confidence' in rating and rating['confidence'] < conf_threshold:
return 'not verifiable'
assert 'ratingValue' in rating, '%s' % (rating)
val = rating['ratingValue']
assert val <= 1.0 and val >= -1.0, '%s' % (rating)
if val >= 0.5:
return 'credible'
if val >= 0.25:
return 'mostly credible'
if val >= -0.25:
return 'uncertain'
if val >= -0.5:
return 'mostly not credible'
return 'not credible'
|
80fb93416e3be227153ba1db078178fddd99fb89
| 499,880 |
import re
def clean_whitespace(text: str) -> str:
"""
Replace all contiguous whitespace with single space character,
strip leading and trailing whitespace.
"""
text = str(text or '')
stripped = text.strip()
sub = re.sub(r'\s+', ' ', stripped, )
return sub
|
1744f4ea82dfc538b2e095e66a2260368c5c09ac
| 63,322 |
def moment_from_muad(mu, A, d):
"""moment = mu * A * d
:param mu: shear modulus, in Pa
:type mu: float
:param A: area, in m^2
:type A: float
:param d: slip, in m
:type d: float
:returns: moment, in Newton-meters
:rtype: float
"""
return mu*A*d;
|
c2ff5a654165d5ede686d41b66e930751552e11d
| 178,158 |
from urllib.parse import urlparse
def check_pdf(download_url: str) -> bool:
"""Check if the download_url is a PDF or not by reading the extension."""
result = urlparse(download_url)
return result.path[-3:] == 'pdf'
|
9754d14f0c04edf05c4618a5934fa84dc006af71
| 158,913 |
def get_frequency(every):
"""Get frequency value from one every type value:
>>> get_frequency('3.day')
3
:param every: One every type value.
"""
return int(every[:every.find('.')])
|
713916a264bd4172f02b0996121d50830f0f3ce4
| 181,858 |
def sig(nTermAnte, coef) :
"""Devolve '+' se coef não é negativo e existe termo anterior ao
termo dele no polinômio. Devolve '' (string vazia) no caso
contrário. Usado para determinar se o '+' deve aparecer antes
de coef na string que representa o polinômio.
nTermAnte -- expoente de x no termo anterior ao termo do coef
coef -- coeficiente de um termo do polinômio
"""
if nTermAnte > 0 and coef >= 0 :
return "+"
else :
return ""
|
640a0e9f1300f4eb4e4a5c11e2f9ee653846da54
| 165,331 |
import socket
import struct
def decode_hosts_ports(peers_raw):
"""Decode a compact byte string of hosts and ports into a list of tuples.
Peers_raw's length must be a multiple of 6."""
if len(peers_raw) % 6 != 0:
raise ValueError('size of byte_string host/port pairs must be'
'a multiple of 6')
peers = (peers_raw[i:i+6] for i in range(0, len(peers_raw), 6))
hosts_ports = [(socket.inet_ntoa(peer[0:4]),
struct.unpack('!H', peer[4:6])[0]) for peer in peers]
return hosts_ports
|
2d8c1406fd0be8d2b43e206c4a4a421357b7f0dc
| 237,087 |
def _get_metadata_map_from_client_details(client_call_details):
"""Get metadata key->value map from client_call_details"""
metadata = {metadatum[0]: metadatum[1] for metadatum in (client_call_details.metadata or [])}
return metadata
|
1d0b843b41f2777685dad13b9269410033086b02
| 21,571 |
def _cliname_to_modname(parser_cli_name):
"""Return real module name (dashes converted to underscores)"""
return parser_cli_name.replace('--', '').replace('-', '_')
|
91f5c750984b3a53bee51fe3752627ae3234b162
| 317,822 |
def clean(elems):
"""
This method takes a list of scraped selenium web elements
and filters/ returns only the hrefs leading to publications.
"""
urls = []
for elem in elems:
url = elem.get_attribute("href")
if 'article' in url and 'pdf' not in url\
and 'search' not in url\
and 'show=' not in url:
urls.append(url)
return urls
|
8703797a615c8662def5cea40c7805c51694da75
| 542,126 |
def get_required_kwonly_args(argspecs):
"""Determines whether given argspecs implies required keywords-only args
and returns them as a list. Returns empty list if no such args exist.
"""
try:
kwonly = argspecs.kwonlyargs
if argspecs.kwonlydefaults is None:
return kwonly
res = []
for name in kwonly:
if not name in argspecs.kwonlydefaults:
res.append(name)
return res
except AttributeError:
return []
|
35f06e45e7f686e64db9ab39a66a025f5a4512c2
| 299,595 |
def DistanceFromMatrix(matrix):
"""Returns function(i,j) that looks up matrix[i][j].
Useful for maintaining flexibility about whether a function is computed
or looked up.
Matrix can be a 2D dict (arbitrary keys) or list (integer keys).
"""
def result(i, j):
return matrix[i][j]
return result
|
f3cb95aace0cfe70bfeef9d8778947df16cdd4b1
| 698,249 |
from typing import Counter
def glass_catalog_stats(glass_list, do_print=False):
"""Decode all of the glass names in glass_cat_name.
Print out the original glass names and the decoded version side by side.
Args:
glass_list: ((group, num), prefix, suffix), glass_name, glass_cat_name
do_print (bool): if True, print the glass name and the decoded version
Returns:
groups (dict): all catalog groups
group_num (dict): all glasses with multiple variants
prefixes (dict): all the non-null prefixes used
suffixes (dict): all the non-null suffixes used
"""
groups = Counter()
group_nums = Counter()
prefixes = Counter()
suffixes = Counter()
for g in glass_list:
(group_num, prefix, suffix), gn, gc = g
group, num = group_num
if prefix != '':
prefixes[prefix] += 1
if suffix != '':
suffixes[suffix] += 1
groups[group] += 1
group_nums[group_num] += 1
if do_print:
fmt_3 = "{:14s} {:>2s} {:8s} {:12s}"
print(fmt_3.format(gn, prefix, group+num, suffix))
# filter group_nums to include only multi-use items
group_nums = {k: v for k, v in group_nums.items() if v > 1}
return groups, group_nums, prefixes, suffixes
|
7f139179eb8c531e41bd5d6a36ab6751be397a97
| 174,786 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.