content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import hashlib def encrypt(password): """Encrypt a plain text password. :param password [str]: plain text password :returns [str]: SHA256-encrypted password """ return hashlib.sha256(password.encode('utf-8')).hexdigest()
a6bc55a5e87023fe78d98fb0bb4d1ea34151cf51
520,686
def digit_arr(n): """ Given a number, this function returns an array with the digits of the given number """ return list(str(n))
bc298053ee713b1ac3cdae7a9cf76f10e0904782
115,196
def _find_largest_segment(segments): """Find the largest segment given a list of start and end indices of segments Args: segments: a list of start and end indices Returns: longest_segment: the start and end indices of the longest segment """ segment_list = zip(segments[:-1], segments[1:]) return max(segment_list, key=lambda x: x[1] - x[0])
10168aac3b6378e1f3d25774a63f7a358b3a0c77
356,116
def isLowerHull(dx, dy): """ Checks if a line is part of the lower hull :param float dx: :param float dy: """ lowerHull = (dx < 0.0) or (dx == 0.0 and dy < 0.0) return lowerHull
344c1997046744a6af6e4dae8d17162dee97e8e9
132,953
def select_scan_no_qc(scans_meta): """Select a scan from available scans in case there is not an available QC. Args: scans_meta: DataFrame containing the metadata for images to choose among Returns: DataFrame row containing selected scan """ # We choose the first scan (not containing repeat in name) selected_scan = scans_meta[ ~scans_meta.Sequence.str.contains("repeat", case=False, na=False) ] if selected_scan.empty: selected_scan = scans_meta scan = selected_scan.iloc[0] return scan
cdeb34c727ea4976db977f349a54d6b21c86f26a
631,936
def to_ascii20(name: str) -> str: """ Converts the name to max 20 ascii-only characters. """ # ascii characters have codes from 0 to 127 # but 127 is "delete" and we don't want it return "".join([c for c in name if ord(c) < 127])[:20]
0cd96fe4fdc1c80d7a10768e196bc98f8efc9435
496,063
def _hasExplicitOid(store, table): """ Does the given table have an explicit oid column? """ return any(info[1] == 'oid' for info in store.querySchemaSQL( 'PRAGMA *DATABASE*.table_info({})'.format(table)))
412e8991508e64c805537c92a072622661638c45
249,974
def pdir(obj): """ Puts dir of an object on stdout """ print(dir(obj)) return obj
7c7ec7c30ec7ccbf31efb87329b548310eec1edf
476,330
def linux_linebreaks(source): """Convert Windows CRLF, Mac CR and <br>'s in the input string to \n""" result = source.replace('\r\n', '\n').replace('\r', '\n') # There are multiple valid variants of HTML breaks result = result.replace('<br>', '\n').replace('<br/>', '\n').replace('<br />', '\n') return result
5a82b8f16c91dae539a69398b7010545d0bea817
346,145
def process_data(data, dict_): """This function process the data for the optimization process and returns the different arrays for the upcoming optimization. Parameters ---------- data: pandas.DataFrame Data set to perform the estimation on. Specified under dict_["ESTIMATION"]["file"]. dict_: dict Estimation dictionary. Returned by grmpy.read(init_file)). Returns ------ D: numpy.array Treatment indicator X1: numpy.array Outcome related regressors of the treated individuals X0: numpy.array Outcome related regressors of the untreated individuals Z1: numpy.array Choice related regressors of the treated individuals Z0: numpy.array Choice related regressors of the untreated individuals Y1: numpy.array Outcomes of the treated individuals Y0: numpy.array Outcomes of the untreated individuals """ indicator = dict_["ESTIMATION"]["indicator"] outcome = dict_["ESTIMATION"]["dependent"] D = data[indicator].values data1 = data[data[indicator] == 1] data2 = data[data[indicator] == 0] X1 = data1[dict_["TREATED"]["order"]].values X0 = data2[dict_["UNTREATED"]["order"]].values Z1 = data1[dict_["CHOICE"]["order"]].values Z0 = data2[dict_["CHOICE"]["order"]].values Y1 = data1[outcome].values Y0 = data2[outcome].values return D, X1, X0, Z1, Z0, Y1, Y0
61763bf3ee98f345a9ec7c84b1e2c6c5240de04e
515,269
def timestr(seconds): """ Convert seconds into seconds, minutes or hours """ if seconds < 60: return '{:.2f} seconds'.format(seconds) minutes = seconds / 60 if minutes < 60: return '{:.2f} minutes'.format(minutes) hours = minutes / 60 return '{:.2f} hours'.format(hours)
da2041210e70c7f311af50651094575d80928234
200,924
def process_single(word): """ Process a single word, whether it's identifier, number or symbols. :param word: str, the word to process :return: str, the input """ if word[0].isnumeric(): try: int(word) except ValueError: raise ValueError("Expression {} not valid".format(word)) return word
0a08fd6ed7402fb4351adff8fb7f59106fbe4ca8
682,833
def convert_data_types(df): """ Takes a pandas Dataframe (part of the black_friday_data_hack project) as input and convert the data types of some of its features. Arguments: data - DataFrame Returns: same DataFrame with converted data types """ # Convert categorical features into numeric type df['Age'] = df['Age'].map({'0-17': 15, '18-25': 21, '26-35': 30, '36-45': 40, '46-50': 48, '51-55': 53, '55+': 55}) df['Stay_In_Current_City_Years'] = df['Stay_In_Current_City_Years'].map({'0': 0, '1': 1, '2': 2, '3': 3, '4+': 4}) # Convert numeric features into categorical type df['Occupation'] = df['Occupation'].astype('category') df['Product_Category_1'] = df['Product_Category_1'].astype('category') df['Product_Category_2'] = df['Product_Category_2'].astype('category') df['Product_Category_3'] = df['Product_Category_3'].astype('category') df['Marital_Status'] = df['Marital_Status'].astype('category') # Convert Product_ID to numerical type by discarding the 1st letter 'P' df['Product_ID'] = df['Product_ID'].map(lambda x: x[1:]) df['Product_ID'] = df['Product_ID'].astype('int64') # Convert Purchase to numerical type df['Purchase'] = df['Purchase'].astype('int64') return df
1a24fe16bdf270c3bad2d56722269f4355cb3b96
99,412
def prettyprint_binding(binding, indent_level=0): """Pretty print a binding with variable id and data.""" indent = " " * indent_level if not binding: return indent + "<>" return "%s<v%d : %r>" % (indent, binding.variable.id, binding.data)
e1e196afd53027bbab076585dd8b6b6464b578bc
15,531
def div2D(v1,v2): """Elementwise division of vector v1 by v2""" return (v1[0] / v2[0], v1[1] / v2[1])
59415639346e89c5aed230caea807e8662c2f1ff
663,492
from pathlib import Path import logging import json def make_viridian_sample_header(new_run_uuid, sp3_sample_name): """ Args: new_run_uuid (uuid): The unique id for the current run sp3_sample_name: The name of the SP3 sample Returns: dict: An object containing a subset of information from the Viridian log file for the run. If no log file could be found None is return """ log = None vn = ( Path("/work/output") / new_run_uuid / "qc" / f"{sp3_sample_name}.json" ) if not vn.is_file(): logging.error(f"The {vn} file could not be found") return None else: log = {} with open(vn) as f: log["viridian_log"] = json.load(f) if log: return log else: logging.error(f"The {vn} file is empty") return None
823af746833581ed5ffb9c23cbaca42bb2350135
473,530
import json def json_formatter(subtitles): """ Serialize a list of subtitles as a JSON blob. """ subtitle_dicts = [ { 'start': start, 'end': end, 'content': text, } for ((start, end), text) in subtitles ] return json.dumps(subtitle_dicts)
3e1a28486425c5573084723acf63ed2ae8096bf0
508,133
def get_beta_y_cubic(x, mu): """ Evaluation of cubic polynomial form of LBCCs. Solutions are pinned at Beta(mu=1)=1 and y(mu=1)=0. :param x: parameter values as list/list-like :param mu: value of mu :return: Beta and y """ beta = 1. - (x[0] + x[1] + x[2]) + x[0] * mu + x[1] * mu ** 2 + x[2] * mu ** 3 y = -(x[3] + x[4] + x[5]) + x[3] * mu + x[4] * mu ** 2 + x[5] * mu ** 3 return beta, y
09508b8904b520600b6281d416e12d5b0f62588a
425,561
def _get_master_pod(release_name, pods): """Given a release name and a list of pods, returns the master pod of the release Args: release_name (str): Release name pods (:obj:`V1PodList`): List of pods Returns: (:obj:`Pod`, optional): The master pod """ master_pod_name = "{}-mlbench-master-".format(release_name) for pod in pods.items: if master_pod_name in pod.metadata.name: return pod return None
2830d070ce9b3b2e99c2fcaf0654c49205fc4c44
301,122
def get_changed_data_from_form(form): """Returns a dictionary with keys of all changed fields and values that are a dict with 'before' and 'after' keys values of 'before' and 'after' are display values for example: { 'First name': { 'before': 'George', 'after': 'Jorge' }, 'Date of birth': { 'before': 'February/6/1791', 'after': '2/6/1791'} } } Expects fields prefixed with 'existing_' in order to make that comparison """ changes = {} existing_data_form = form.__class__( form.raw_input_data, prefix='existing_', validate=True, skip_validation_parse_only=True) for field in form.iter_fields(): after = field.get_display_value() existing_data_field = existing_data_form.fields[field.context_key] before = existing_data_field.get_display_value() if before != after: changes[field.get_display_label()] = { 'before': before, 'after': after} return changes
421d9eee266baa9d02bd4034b1b3a56dfaacf5b1
112,734
def read_bst_file(filename): """Reads data from sequence alignment test file. Args: filename (str): The file containing the edge list. Returns: list: The frequencies for each key. """ with open(filename, 'r') as f: next(f) # Skip first line freq = [int(x) for x in next(f).strip().split(',')] return freq
a307d05202485acba99cad5f4c0152c0734c7d88
483,584
def ppi2ppm(val): """convert pixels per inch to pixels per mm""" return val/25.4
df526f71fc99426e3122c2598180def565c520c9
394,038
from typing import List from typing import Dict from typing import Any import json def get_full_execution_list() -> List[Dict[str, Any]]: """ Get pre-set list of execution commands for the entire Cassini UVIS auroral dataset. :return: List of commands, each in form of a dict. """ execution_list_file = importlib_resources.files("uvisaurorae.resources").joinpath( # type: ignore "full_command_list.json" ) with open(execution_list_file, "r") as f: execution_list: List[Dict[str, Any]] = json.loads(f.read()) return execution_list
a9bbc7f8a1d63c502ab9a5778e7d5854d9dc7907
272,828
def rsa_decrypt(cipher: int, d: int, n: int) -> int: """ decrypt ciphers with the rsa cryptosystem :param cipher: the ciphertext :param d: your private key :param n: your public key (n) :return: the plaintext """ return pow(cipher, d, n)
33822a0a683eca2f86b0e2b9b319a42806ae56cc
6,542
def get_indices(plot, speckeys): """ Returns indices of spectra we want to take a closer look at Parameters ---------- plot : instance of InteractivePlot class the interactive plot speckeys : list a list of all the indices contained within the current block """ subplots = plot.subplots check_spec = speckeys[subplots] return check_spec
56d103bd17cbd146eeeb9c15329884c9f4b581b8
451,275
def translate_bbox(bbox, translation): """ Translate given bbox by the amount in translation. Parameters ---------- bbox: tuple tuple of integers defining coordinates of the form (x1, y1, x2, y2, x3, y3, x4, y4). translation: tuple tuple of integers defining the translation to apply on the x axis (translation[0]) and the y axis (translation[1]). """ new_bbox = (bbox[0] + translation[0], bbox[1] + translation[1], bbox[2] + translation[0], bbox[3] + translation[1], bbox[4] + translation[0], bbox[5] + translation[1], bbox[6] + translation[0], bbox[7] + translation[1]) return new_bbox
cfa3c9c3233ea5646b7213c1c396f2555dd829e7
204,111
def determine_header_length(trf_contents: bytes) -> int: """Returns the header length of a TRF file Determined through brute force reverse engineering only. Not based upon official documentation. Parameters ---------- trf_contents : bytes Returns ------- header_length : int The length of the TRF header, prior to the table portion of the TRF file. """ column_end = b"\t\xdc\x00\xe8\t\xdc\x00\xe9\t\xdc\x00\xea\t\xdc\x00\xeb\t\xdc\x00" header_length = trf_contents.index(column_end) + len(column_end) # test = trf_contents.split(b"\t") # row_skips = 6 # i = next(i for i, item in enumerate(test[row_skips::]) if len(item) > 3) + row_skips # header_length_old_method = len(b"\t".join(test[0:i])) + 3 # if header_length_old_method != header_length: # raise ValueError("Inconsistent header length determination") return header_length
e8aa5110691e877c34f208af5bd508f0f5ec4760
703,469
from typing import Tuple def is_multi_class(output_shape: Tuple[int, ...]) -> bool: """Checks if output is multi-class.""" # If single value output if len(output_shape) == 1: return False return True
66726be66cce6f837b40287b75c547d28d709a74
699,374
def perforationskineffect(s_h=0, s_v=0, s_wb=0): """ Calculate perforation skin effect or s_p given... s_h == horizontal skin effect s_v == vertical pseudoskin s_wb == well bore blockage effect """ s_p = s_h + s_v + s_wb return(s_p)
5fcd3f6f383ea24ae50b9789bc525be46c4b4648
201,739
def mcd(a, b): """Restituisce il Massimo Comune Divisore tra a e b""" if a * b == 0: return 1 if a == b: return a elif a > b: return mcd(a - b, b) else: return mcd(b - a, a)
44dc2a0a05c6703f4333fd6241e79220a43540c5
264,315
import random def random_string(length=4): """Generate a random string.""" random_str = "" for i in range(length): random_integer = random.randint(97, 97 + 26 - 1) flip_bit = random.randint(0, 1) random_integer = random_integer - 32 if flip_bit == 1 else random_integer random_str += chr(random_integer) return random_str
44b3698da7b4e88c0c1221806b3163ef24688d29
528,507
def minimise_xyz(xyz): """Minimise an (x, y, z) coordinate.""" x, y, z = xyz m = max(min(x, y), min(max(x, y), z)) return (x-m, y-m, z-m)
78005610682605beec77a4bc2e7a84de876d7e8f
672,092
def height(tree): """Return the height of tree.""" if tree.is_empty(): return 0 else: return 1+ max(height(tree.left_child()),\ height(tree.right_child()))
a469216fc13ed99acfb1bab8db7e031acc759f90
598
import torch def create_padding_mask_from_length(length, maxlen=None): """ Transform a sequence length matrix to padding mask Args: length: sequence length matrix :math:`(N)` where N is batch size Returns: - padding mask indicating length :math:`(N, L)` where N is batch size and L is maximum length in `length` """ bsz = length.size(0) if maxlen is None: maxlen = length.max() index = torch.arange(maxlen).long().unsqueeze(0).repeat(bsz, 1).to(length) padding_mask = index.ge(length.unsqueeze(1)) return padding_mask
aa4e4f60c203647169de2f529a1ed3657a2c2f7c
482,691
def third_measurer_I_P(uniqueTuplesDf): """ third_measurer_I_P: computes the measure I_P that counts the number of problematic tuples (tuples participating in a violation of the constraints). Parameters ---------- uniqueTuplesDf : dataframe the result of the query that finds all tuples that particiapte in a violation. Returns ------- int number of tuples participating in a violation of the constraints. """ return len(uniqueTuplesDf)
0e5f1d4802fdd7b680a77fc227c48d45ca31e2e2
625,961
def parse_awards(movie): """ Convert awards information to a dictionnary for dataframe. Keeping only Oscar, BAFTA, Golden Globe and Palme d'Or awards. :param movie: movie dictionnary :return: well-formated dictionnary with awards information """ awards_kept = ['Oscar', 'BAFTA Film Award', 'Golden Globe', 'Palme d\'Or'] awards_category = ['won', 'nominated'] parsed_awards = {} for category in awards_category: for awards_type in awards_kept: awards_cat = [award for award in movie['awards'][category] if award['category'] == awards_type] for k, award in enumerate(awards_cat): parsed_awards['{}_{}_{}'.format(awards_type, category, k+1)] = award["award"] return parsed_awards
75d722da2778ff37897cb5a3a7efa0af3aa447e7
446,476
def mapRanges(povpct, povlow, povhigh, paylow, payhigh): # 135, (133..150), (3.0..4.0) """ Evenly map povpct in [povlow..povhigh] to [paylow..payhigh]. All aruments and return value are scaled percentages (*100). See # comments to the right for an example's expected calcs. This scheme may or may not match the final IRS technique. """ povrange = povhigh - povlow # 17 = 150 - 133 payrange = payhigh - paylow # 1.0 = 4.0 - 3.0 povincr = povpct - povlow # 2 = 135 - 133 pctincr = povincr / povrange # pct = 2 / 17 paypct = paylow + (pctincr * payrange) # 3.0 + (pct * 1.0) return round(paypct, 2) # per IRS: round to nearest 100th
4a29b9f9336c894cc7dc035471e2109eb8ec2f3e
359,556
def createYangHexStr(textString): """ Convert plain hex string into yang:hex-string """ data = textString[0:2] i = 2 while i < len(textString): data = data + ':' + textString[i:i+2] i = i + 2 return data
9e081e50efca5331f1bbad924c61549c6835e8e3
47,872
def lerp2d(a: tuple, b: tuple, r: float) -> tuple: """Returns a point interpolated from a to b, at r.""" return ( a[0] + (b[0] - a[0]) * r, a[1] + (b[1] - a[1]) * r )
03efab57d09f12a313ac8f649ea461931af0f979
52,770
from typing import List from typing import Tuple from pathlib import Path import fnmatch def get_ignore_regex(ignore_rules: List[Tuple[str, str]], regexes: List[str], logfile: Path) -> str: """Combine together regex for the given log file using file specific and global ignore rules.""" regex_list = regexes[:] for record in ignore_rules: files_glob, regex = record if fnmatch.filter([logfile.name], files_glob): regex_list.append(regex) return "|".join(regex_list)
2deece35a191018bcbbcfe279514b7ded440dd04
434,188
def min_sec(secs): """ Takes an epoch timestamp and returns string of minutes:seconds. :param secs: Timestamp (in seconds) >>> import time >>> start = time.time() # Wait a few seconds >>> finish = time.time() >>> min_sec(finish - start) '0:11' """ secs = int(secs) return '%d:%02d' % (secs / 60, secs % 60)
6c06866c0c44d7662b7b655798fd2f92357af14a
629,704
import ast def get_function_details(functions): """ Create a generator for function name/docstring tuples. ​ :param functions: Iterable of function objects from source code :return: Generator of tuples of fuction names and docstrings """ return ((f.name, ast.get_docstring(f)) for f in functions)
d75d1f122da9dde3fbbbc42c3c51e33f298af5bb
319,122
def gc(seq): """ Calculates GC content Args: seq (str): non empty Returns: GC content (float) Raises: ValueError: if the sequence is None or empty str """ if not seq: raise ValueError("Input must be non-empty string") g = seq.count("G") c = seq.count("C") return (g + c) / len(seq)
4d86ff88dc13f9321c6e3837955614bc58633a01
490,365
import tokenize def is_comment_token(token1): """ Returns True if the token1 is a comment token, False otherwise. Since there is an incompatibility between Python versions, this function resolves it. Some more information about incompatibility: Python 3.6: TokenInfo(type=59 (ENCODING), string='utf-8', start=(0, 0), end=(0, 0), line='') https://docs.python.org/3.6/library/token.html Python 3.7: TokenInfo(type=57 (ENCODING), string='utf-8', start=(0, 0), end=(0, 0), line='') https://docs.python.org/3.7/library/token.html Changed in version 3.7: Added COMMENT, NL and ENCODING tokens. """ assert isinstance(token1, tokenize.TokenInfo) result = False if "type=54 (COMMENT)" in str(token1): # Python 3.4.4 result = True elif "type=57 (COMMENT)" in str(token1): # Python 3.6.9 result = True elif "type=55 (COMMENT)" in str(token1): # Python 3.7.4 result = True elif " (COMMENT)" in str(token1): # a generic solution since Python changes it in every version. result = True return result
e312dd859ba8d9c72266e02fc30af59e3f691b6b
32,459
def device_mapper(os_type: str, proto: str = "netmiko"): """ map an os type to a netmiko device_type :params os_type: type str :params proto: type str, default "netmiko" :returns: device_type string """ if proto == "netmiko": device_types = { "ios": "cisco_ios", "iosxr": "cisco_xr", "iosxe": "cisco_xe", "nxos": "cisco_nxos", "eos": "arista_eos", } try: result = device_types[os_type] except KeyError: return os_type elif proto == "netconf": device_types = { "csr": "csr", "iosxr": "iosxr", "iosxe": "iosxe", "nxos": "nexus", "junos": "junos", } try: result = device_types[os_type] except KeyError: return "default" else: result = os_type return result
81ad4c4dd86c7e6930cf0fb070681872783a5fb8
14,495
def block_summary(block): """ Return a summary of a block """ return f"{block['blockhash']} {block['timestamp']} {block['proof']}"
3a6499ad7a432185a459e132c0c554cd2d5944b5
342,777
def can_view_group(group, user, level="member"): """ See if the user is allowed to view the group, or if they own it Params: ======= group: EAPGroup instance, as obtained from EAPGroup.objects.get(pk) user: EAPUser instance, as returned from request.user level: str, either "member" or "owner", to select level of permission to view Returns: ======= True if user is member / owner of the group. False otherwise. """ if level not in ["owner", "member"]: raise RuntimeError("'level' parameter should be 'owner' or 'member'") if not hasattr(user, "all_groups"): # probably AnonymousUser return False if level == "owner" and group.owner and group.owner == user: return True elif level == "member" and group in user.all_groups.get_queryset(): return True return False
8aa0fae5a654abe537e02ba06a255764ad2426fd
261,246
def imgarea(im, zeroel=None): """Returns the area of the image, as determined by checking against the 'zeroel'. i.e., the number of pixels that are != zeroel. If 'zeroel' is not given, it's determined from the image type. """ zeros = {'L':0, '1':0, 'I':0, 'F': 0.0, 'RGB': (0,0,0), 'RGBA': (0,0,0,0)} if zeroel is None: zeroel = zeros[im.mode] nz = sum(1 for p in im.getdata() if p != zeroel) return nz
37fb47f1f96c623623695952d6624b0c52cb756f
142,394
def flattenjson(obj, delim="__"): """ Flattens a JSON object Arguments: obj -- dict or list, the object to be flattened delim -- string, delimiter for sub-fields Returns: The flattened JSON object """ val = {} for i in obj: if isinstance(obj[i], dict): ret = flattenjson(obj[i], delim) for j in ret: val[i + delim + j] = ret[j] else: val[i] = obj[i] return val
470719e9570e20ee1ddc93e4d684f04981825f21
59,382
def write_metadata_to_file(filename, cs_id, process, units_e, units_sigma, ref='\\N', lhs_a='\\N', lhs_b='\\N', rhs_a='\\N', rhs_b='\\N', threshold='-1', wavelength='-1', lhs_v=-1, rhs_v=-1, lhs_j=-1, rhs_j=-1, background='\\N', lpu='-1', upu='-1'): """Given metadata for a cross section data set, write the metadata to a file in the correct format for a NEPC database. Parameters ---------- filename: str Name of the file where values of ``data_array`` should be written. cs_id: int ``cs_id`` corresponding to the cross section in the database. process: str The short name corresponding to the electron scattering process in the database. units_e: float The units, in eV, of the electron energies. units_sigma: float The units, in :math:`m^2`, of the cross sections. ref: str The short name for the reference corresponding to the dataset. lhs_a: str The short name for the lhs_a state for the process. lhs_b: str The short name for the lhs_b state. rhs_a: str The short name for the rhs_a state. rhs_b: str The short name for the rhs_b state. threshold: float The threshold electron energy for the process. wavelength: float The wavelength of the photon associated with the process, if applicable. lhs_v: int The vibrational energy associated with the LHS state, if applicable. rhs_v: int The vibrational energy associated with the RHS state, if applicable. lhs_j: int The rotational energy associated with the LHS state, if applicable. rhs_j: int The rotational energy associated with the RHS state, if applicable. background: str Background information for the cross section data. lpu: float Lower percent uncertainty of the cross section data. upu: float Upper percent uncertainty of the cross section data. Returns ------- : int The next cs_id to use. """ write_met = open(filename, "x") write_met.write( "\t".join( ('cs_id', 'process', 'units_e', 'units_sigma', 'ref', 'lhs_a', 'lhs_b', 'rhs_a', 'rhs_b', 'threshold', 'wavelength', 'lhs_v', 'rhs_v', 'lhs_j', 'rhs_j', 'background', 'lpu', 'upu')) + "\n") write_met.write( "\t".join( (str(cs_id), process, str(units_e), str(units_sigma), ref, lhs_a, lhs_b, rhs_a, rhs_b, str(threshold), str(wavelength), str(lhs_v), str(rhs_v), str(lhs_j), str(rhs_j), background, str(lpu), str(upu)))) write_met.close() return cs_id + 1
aa43876c53664e0c8d66bfa5d195750d186695a1
227,765
def batch_size(batch): """ Calculates the size of a batch. Args: batch: A list of dictionaries representing mutations. Returns: An integer specifying the size in bytes of the batch. """ size = 0 for mutation in batch: size += len(mutation['key']) if 'values' in mutation: for value in mutation['values'].values(): size += len(value) return size
d141914a01959da54d9e431f8ff8ba4a7fcaabf8
571,175
def _check_handler_present(logger, handler_type, *compare): """ Check if a handler of given and with given attributes has been added to the logger already. :param logging.Logger logger: logger whose handlers to check :param type handler_type: handler class to check for :param [(str, obj)] compare: list of (attribute, value) items to check the handler against (e.g., (stream, sys.stderr) will check if handler.stream == sys.stderr) :returns: True if such a handler is configured, False otherwise :rtype: bool """ for handler in logger.handlers: if isinstance(handler, handler_type): attrs_match = True for attr, value in compare: try: if getattr(handler, attr) != value: attrs_match = False break except AttributeError: continue if attrs_match: return True return False
326df0a397e2e5d22764702e6035ea8b1f5afbd2
241,105
def flatten_xml_string(xml_string): """ Flatten the xml string so that the output is in one line and without spaces/tabs etc. This is because otherwise the request is not valid and gets rejected. """ return ''.join([line.strip() for line in xml_string.split('\n')])
8a35c03b972b6d8bd6a3a1686196703ff4b6a9ae
595,279
def _extract_prop_set(line): """ Extract the (key, value)-tuple from a string like: >>> 'set foo = "bar"' :param line: :return: tuple (key, value) """ token = ' = "' line = line[4:] pos = line.find(token) return line[:pos], line[pos + 4:-1]
2bdb491c14308ca1b634e7d840893af3c698fa60
690,946
import math def get_bar_for_progress(full_width, progress): """get_bar_for_progress - returns string with a width of 'full_width' which illustrates specific progress value. """ number_of_equal_signs = int( math.ceil(progress * float(full_width - 2) / 100) ) return "[{0}{1}{2}]".format( "=" * number_of_equal_signs, ">" if number_of_equal_signs < full_width - 2 else "", " " * (full_width - 3 - number_of_equal_signs) )
41a9236f7f9ab52768d3fa465e6d8c37a68c0b3d
342,251
def obtainPredictedClasses(outputSceneLabel): """ Fucntion to obtain the indices for the 10 most-scored scene labels :param outputSceneLabel: Tensor obtain from the network :return: numpy array 1x10 with scene labels indices """ # Obtain the predicted class by obtaining the maximum score. _, pred = outputSceneLabel.topk(10, 1, largest=True, sorted=True) idx = pred.cpu().numpy()[0] return idx
a23e11db4389329199981216294f3ea89e48937d
231,687
def match_value(df, col1, x, col2): """ Match value x from col1 row to value in col2. """ return df[df[col1] == x][col2].values[0]
6735924eb39792f6c61ea193c87b31638ef4589b
575,145
def standardize_positions(s: str) -> str: """Standardizes position names Args: s (str): the position string Returns: str: the standardized string """ mapping = {'Def': 'DST', 'Defense': 'DST', 'DEF': 'DST', 'def': 'DST', 'dst': 'DST', 'PK': 'K', 'Kicker': 'K'} std = mapping[s] if s in mapping else s return std
44261362e6846b3310dd0b3078cfdb9aacdb6182
601,242
def generate_test_uuid(tail_value=0): """Returns a blank uuid with the given value added to the end segment.""" return '00000000-0000-0000-0000-{value:0>{pad}}'.format(value=tail_value, pad=12)
f113eef54eba9d8d1fb5234c87af3cb6290ea25e
701,487
def points(a, b, answer_given): """Check answer. Correct: 1 point, else 0""" true_answer = a*b if answer_given == true_answer: print('Correct!') return 1 else: print('Sorry! Correct answer was: {:d}'.format(true_answer)) return 0
2e0ac980b6cc140dd4cd812bd59f7e25cd12d865
19,289
def character_tokenizer(text: str) -> list: """Tokenize by single characters, keeping whitespace. Args: text: The text to tokenize. Returns: list: A list of character tokens. """ return [char for char in text]
c6806b488e2d39e2516baf7956d09bebc948a25f
128,688
def greenshieldFlow(speed, capacity, free_flow_speed): """ Returns the flow of a link following the Fundamental Diagram (Greenshield's Model). Parameters ---------- speed: miles/hr or km/hr capacity: link's capacity in veh/hr free_flow_speed: link's free flow speed in miles/hr or km/hr Returns ------- flow: resulting flow """ if speed > free_flow_speed or capacity < 0: return 0 x = 4 * capacity * speed / free_flow_speed - 4 * capacity * (speed ** 2) / (free_flow_speed ** 2) return x
2d753d367f7c37d3751327b5fcbb8a79aa54354d
605,857
import random def random_location(x_upper_bound = 100, y_upper_bound = 100): """ Returns a bounded, random Location. """ assert x_upper_bound > 0 and y_upper_bound > 0 x = random.randint(0, x_upper_bound - 1) y = random.randint(0, y_upper_bound - 1) return (x, y)
e9f8b3d9c6abc6461203dc77869a5467545911f7
458,777
import re def string_remove_regex(value,ex): """ remove sub-string of string that matches regex """ return re.sub(ex, '', value)
f834469992000df3b7bdea773ae15785c78c9ddf
178,023
def get_stats(equipment): """ Adds up the stats of the equipment :param equipment: A list with multiple lists inside - the inner lists are the equipment stats :return: Total cost, dmg, and armor points """ dmg = 0 armor_points = 0 cost = 0 for thing in equipment: dmg += thing[1] armor_points += thing[2] cost += thing[0] return cost, dmg, armor_points
457c6cf0f9168fad9bf91205f21b2c0a51f0d3c0
388,949
def _clean_up_path(path): """Strips an initial "./" and any trailing slashes from 'path'.""" if path.startswith("./"): path = path[2:] return path.rstrip("/")
66f2e3b2794d8ebadac0f51bd30d49aa6e7416cc
455,854
import hashlib import struct import base64 def volume_label_hash( s ): """ Linux volume labels are typically limited to 12 or 16 characters while the strings we want to use for them are longer, usually a namespaced role name with additional data at the end. This hash function returns a 12-character string that is reasonably representative of the input string. >>> volume_label_hash( 'hannes_spark-master__0' ) 'i0u77fnocoo' >>> volume_label_hash( '' ) 'PZ2FQWP48Ho' >>> volume_label_hash( ' ' ) 'oIf03JUELnY' >>> volume_label_hash( '1' ) 'yQYSos_Mpxk' """ h = hashlib.md5( s ) h = h.digest( ) assert len( h ) == 16 hi, lo = struct.unpack( '!QQ', h ) h = hi ^ lo h = struct.pack( '!Q', h ) assert len( h ) == 8 h = base64.urlsafe_b64encode( h ) assert h[ -1 ] == '=' return h[ :-1 ]
050ba25238c1f99fc9d0d72e435f76ea077b917d
375,613
import math def _ln_binomial(n, k): """log of binomial coefficient function (n k), i.e., n choose k""" if k > n: raise ValueError if k == n or k == 0: return 0 if k * 2 > n: k = n - k return math.lgamma(n + 1) - math.lgamma(k + 1) - math.lgamma(n - k + 1)
e4573a3223f2bcadb290b3378b70be1ef8af683b
591,359
def to_text(source): """ Generates a text value (an instance of text_type) from an arbitrary source. * False and None are converted to empty strings * text is passed through * bytes are decoded as UTF-8 * rest is textified via the current version's relevant data model method """ if source is None or source is False: return u'' if isinstance(source, bytes): return source.decode('utf-8') return str(source)
b471e03eebd4a3e9c41742d555123e5958b95013
611,419
def calculate(x: int, y: int = 1, *, subtract: bool = False) -> int: """Calculates the sum (or difference) of two numbers. Parameters: `x` : int The first number `y` : int, optional The second number (default is 1) `subtraction`: bool, optional Whether to perform subtraction. (Default is `False`.) Returns: int """ if subtract: return x - y else: return x + y
8f46dadf73536167c23e17d3b5da0f57fd084d7e
679,757
def trim_to_constant_numtimesteps(ds): """ Trims a :class:`DataSet` so that each circuit's data comprises the same number of timesteps. Returns a new dataset that has data for the same number of time steps for every circuit. This is achieved by discarding all time-series data for every circuit with a time step index beyond 'min-time-step-index', where 'min-time-step-index' is the minimum number of time steps over circuits. Parameters ---------- ds : DataSet The dataset to trim. Returns ------- DataSet The trimmed dataset, obtained by potentially discarding some of the data. """ trimmedds = ds.copy_nonstatic() numtimes = [] for circuit in ds.keys(): numtimes.append(ds[circuit].number_of_times) minnumtimes = min(numtimes) for circuit in ds.keys(): times, series = ds[circuit].counts_as_timeseries() trimmedtimes = times[0:minnumtimes] trimmedseries = series[0:minnumtimes] trimmedds.add_series_data(circuit, trimmedseries, trimmedtimes, aux=ds.auxInfo[circuit]) trimmedds.done_adding_data() return trimmedds
d88c535d6d0ae34d3d136b4606ff19c8c413ef80
593,508
def create_dict_from_guard_rows(col_dict): """Create a dictionary of lists from a dictionary of guard values Parameters ---------- col_dict : `dict` The dictionary with the guard values Returns ------- ret_dict : `dict` The dictionary we created """ ret_dict = {} for key in col_dict.keys(): ret_dict[key] = [] return ret_dict
3684b1ec801456cbae7ac09f223c4616a28b7f1b
456,636
def powerlaw(x, scale, power, return_components=False): """ Defines a power law Returns ------- scale * x**power """ return scale*x**power
04f047bbcdc34a87e788bd7d9727d9cde32d67c7
595,090
def _files_header_size_calc(files, farc_type): """Sums the size of the files header section for the given files and farc_type data.""" size = 0 for fname, info in files.items(): size += len(fname) + 1 size += farc_type['files_header_fields_size'] return size
683edc524a2f353cae8c974f5c72616bddafa27a
65,263
from typing import Mapping def validate_schema(assert_, data, schema, optional=None, on_unexpected_cols='raise'): """Check if a data frame complies with a schema Parameters ---------- data : pandas.DataFrame Data frame to test schema : list or dict List with column names (will only validate names) or dict with column names as keys, dtypes as values (will validate names and dtypes) optional : list, optional List of optional column names, no warns nor errors if they appear on_unexpected_cols : str, optional One of 'warn', 'raise' or None. If 'warn', it will warn on extra columns, if 'raise' it will raise an error, if None it will completely ignore extra columns """ if on_unexpected_cols not in {'warn', 'raise', None}: raise ValueError("'on_unexpected_cols' must be one of 'warn', 'raise' " "or None") optional = optional or {} cols = set(data.columns) expected = set(schema) missing = expected - cols unexpected = cols - expected - set(optional) msg = '(validate_schema) Missing columns {missing}.'.format( missing=missing) assert_(not missing, msg) if on_unexpected_cols is not None: msg = ('(validate_schema) Unexpected columns {unexpected}'.format( unexpected=unexpected)) caller = assert_ if on_unexpected_cols == 'raise' else assert_.warn caller(not unexpected, msg) # if passing a mapping, schema is validated (even for optional columns) for schema_to_validate in [schema, optional]: if isinstance(schema_to_validate, Mapping): # validate column types (as many as you can) dtypes = data.dtypes.astype(str).to_dict() for name, dtype in dtypes.items(): expected = schema_to_validate.get(name) if expected is not None: msg = ( '(validate_schema) Wrong dtype for column "{name}". ' 'Expected: "{expected}". Got: "{dtype}"'.format( name=name, expected=expected, dtype=dtype)) assert_(dtype == expected, msg) return assert_
068c5784a8ea4721fbd1fcdc4fd4328b6bfbd099
599,834
def _get_manager_log_hashes(manager, logger): """Get a dict mapping file paths to hashes for logs on the specified manager. File paths will be relative to the root of the logs (/var/log/cloudify). journalctl.log and supervisord.log will be excluded as they can't be kept from changing. """ logger.info('Checking log hashes for %s`', manager.private_ip_address) log_hashes = { f.split()[1][len('/var/log/cloudify'):]: f.split()[0] for f in manager.run_command( 'find /var/log/cloudify -type f -not -name \'supervisord.log\'' ' -exec md5sum {} + | sort', use_sudo=True ).stdout.splitlines() } logger.info('Calculated log hashes for %s are %s', manager.private_ip_address, log_hashes) return log_hashes
bb3d3bfb85ee923eacebdcf8051b97507165d36a
55,815
def Repository_exists(Command): """ Tests if YUM Repo with specific Name exists and is enabled: - **repo** - repo name to look for **returns** - True if String is found """ def f(repo): return (repo in Command.check_output("yum repolist")) return f
c32ecd98156e24246ccde393db431e2559254288
209,801
def dict2cfgString(dictionary, separator="\n", assigner="="): """ Converts a dictionary into a string ​ Parameters ---------- dictionary : dict The dictionary to be transformed. separator : str, optional The character to be used to separate individual entries. The default is "\n". assigner: str, optional The character to represent the assignment from the key to the value. The default is "=". ​ Returns ------- str """ return "{}".format(separator).join([f"{k}{assigner}{v}" for k, v in dictionary.items()])
12c1f3b102429c22d1bb15714631908be41a63f2
22,010
from pathlib import Path def is_file(path: Path) -> bool: """ Return true if the given path is a file, false otherwise. :param path: a Path :return: a bool """ return path.is_file()
16a110aed72917683bea00672778aba8676c0790
690,847
def RobustL2Loss(output, log_std, target) -> float: """Robust L2 loss using a Gaussian prior with aleatoric uncertainty estimation.""" loss = 0.5 * (output - target) ** 2 / (2 * log_std).exp() + log_std return loss.mean()
53a47a5c81b768271fee6bc4f45a26e047f9d438
99,491
def wordlists(*wl): """ Input is arbitrary number of lists of strings. Output is one dictionary where each string is a key and the count of those strings is the value """ word_dict = {} for i in wl: for x in i: if x in word_dict: word_dict[x] += 1 else: word_dict[x] = 1 return word_dict
4af789da735886447c02f089065e30b46f348b22
688,080
import io def parse(stdin: io.TextIOWrapper) -> list: """ Parse the input into a list of tuples, the first element being a set of allergens and the second a set of ingredients """ result = list() for line in stdin.read().strip().splitlines(): ingredients, allergens = line.strip(")").split(" (contains ") result.append((set(allergens.split(", ")), set(ingredients.split()))) return result
c65d4adaffdab2a2bd44336f58bdd316079b43d0
569,480
import json def parse_json_data(filename) -> dict: """Returns the contents of a JSON file as a dict""" with open(filename, "r") as f: return json.loads("".join(f.readlines()))
d061043cf29d1ed8d790a51d135c251e2226de77
25,940
def liquid_to_dry_malt_weight(malt): """ LME to DME Weight :param float malt: Weight of LME :return: DME Weight :rtype: float """ return malt / 1.25
fbfbef7aafcfcf5e187ef7b18467b3648e9198d9
487,425
def _get_bucket_filter_leading(bucket, len_seq): """Filtering function for sequence "contains" a "leading bucket". All n-grams in the leading bucket must be of the same length. The length of the sequence to be subject to the filtering function must be of length len_seq, and it must be longer than the n-grams in the leading bucket. A sequence is here defined as "containing" a "leading bucket" if the leading n-gram of the sequence, of the same length as the n-grams in the bucket, is present in the bucket. E.g. bucket = ["as", "we", "op"] seqs = ["asdf", "qwer", "uiop"] seqs filters to: ["asdf"] Args: bucket: Bucket of n-grams used to filter sequences. len_seq: Length of sequences to be filtered. Returns: Filter function for sequence to be filtered "containing" bucket. """ len_ng = len(bucket[0]) assert len_ng < len_seq bucket_set = set(bucket) def filter_fn(seq): assert len(seq) == len_seq return seq[:len_ng] in bucket_set return filter_fn
cec8c3fa310bc1e49c0b30196a8b708ce4eae683
167,011
from typing import List def _get_characters(sentence: str, whitespace: bool) -> List[str]: """Split sentence into individual characters. Args: sentence: An input sentence to split. whitespace: An indication whether to keep whitespaces during character n-gram extraction. Return: A list of separated characters. """ if whitespace: return list(sentence) return list(sentence.strip().replace(" ", ""))
63d5c6b5a75529b58cd97cad118ce9cd8b8cf88a
590,376
import torch def PReLU(x, a): """define PReLU(x)=max(x,0)+a*min(x,0)""" constant_zero = torch.FloatTensor([0.0]) return torch.max(x, constant_zero) + (a * torch.min(x, constant_zero))
0a6fdfe977dc1f068550c19c37068a0a2a3a4bfe
303,728
def violation(risk_estimates, risk_limits): """Return false if all estimates are within limits, true otherwise""" for i in range(len(risk_estimates)): if risk_estimates[i] > risk_limits[i]: return True return False
de86907ba792fb50a9678742ec2c66464cd8b5be
560,940
def round_up(x: float, decimal_places: int) -> float: """ Round a float up to decimal_places. Parameters ---------- x : float decimal_places : int Returns ------- rounded_float : float Examples -------- >>> round_up(1.2344, 3) 1.235 >>> round_up(1.234, 3) 1.234 >>> round_up(1.23456, 3) 1.235 >>> round_up(1.23456, 2) 1.24 """ return round(x + 5 * 10 ** (-1 * (decimal_places + 1)), decimal_places)
159e5b8bf09ee1339a7c49ac05c6926d75658145
443,051
import re def max_num(x: str)->int: """ Input: String Output: Integer Finds the maximum integer in the string """ c = re.findall(r"[1-9]+",x) maxele = 0 for i in c: if int(i) > int(maxele): maxele = i return maxele
640695ea55a5b2278a4382b02399d1c5672ae969
110,253
def reverse(x: int) -> int: """ https://leetcode.com/problems/reverse-integer :param x: a value to revert :return: reverse of a 32-bit signed integer """ # Prepare value unsigned_value = (x // 10) if (x % 10 == 0) else x unsigned_value = -unsigned_value if x < 0 else unsigned_value # Do some maths new_value = 0 while unsigned_value > 0: new_value = (new_value * 10) + (unsigned_value % 10) unsigned_value //= 10 # Apply sign new_value = -new_value if x < 0 else new_value # Check boundaries if new_value < -(2 ** 31) or new_value >= (2 ** 31): return 0 return new_value
0ba8c2c5695ca18e7e17252e37aa385ccf02dca0
406,572
def obtain_ECG(tensec_data): """ obtain ECG values of ten second data :param tensec_data: 10 seconds worth of heart rate data points :return ECGData: ECG unmultiplexed data """ ECGData = tensec_data[1::2] return ECGData
ce63b58435b67b6995d19e04a64bcc24d9687cd5
30,252
def get_char_mode(n): """Return different num according to the type of given letter: '1': num, '2': upper_letter, '4': lower_letter, '8': other symbols """ if (n >= 48 and n <= 57): #nums return 1; if (n >= 65 and n <= 90): #uppers return 2; if (n >= 97 and n <= 122): #lowers return 4; else: return 8;
cce56663551251b52d8a47eb6416b7ff1dee16cf
286,398
from typing import List from typing import Union def add_args(list_args: List[Union[str, List[str]]]) -> str: """Concatenate the given arguments and turn any string list in a space-separated string. :param list_args: list of arguments for the output command. """ out_cmd = '' for arg in list_args: if isinstance(arg, str): out_cmd += arg + ' ' else: for inner_arg in arg: out_cmd += inner_arg + ' ' # remove any trailing space character return out_cmd.strip()
458197557c779e42f271954b2ec318acdfdfd3be
448,604
import json def decode_transaction(raw): """Decode a transaction from bytes to a dict.""" return json.loads(raw.decode('utf8'))
24376971f21b9410b881de6e85fd3105425f89be
620,133
def addr_to_hash(addr): """ Creates hashable address representation """ return bytes(addr.spend_public_key + addr.view_public_key)
9a6584c8200c8c4252afb5b4a8c46eb7aa3f7cfd
608,811
def __matrix_blocks(A, m, n): """ Returns a list of four matrix blocks, where the first block is of size (m, n). """ return A[:m, :n], A[:m, n:], A[m:, :n], A[m:, n:]
e4060df4c85d87fc1e4d3e4c56cfbce700183e41
205,360
def get_parent_pb(xml_pbtype): """ Returns a parent pb_type of the given one or none if it is a top-level complex block """ assert xml_pbtype.tag in ["pb_type", "mode", "interconnect"], xml_pbtype.tag # Get immediate parent xml_parent = xml_pbtype.getparent() # We've hit the end if xml_parent is None or xml_parent.tag == "complexblocklist": return None # The immediate parent is a mode, jump one more level up if xml_parent is not None and xml_parent.tag == "mode": xml_parent = xml_parent.getparent() return xml_parent
135ba082dc3c1a37c171925bcddfc4bb11fc1573
285,144
def sp(dividend, divisor): """Returns the percentage for dividend/divisor, safely.""" if not divisor: return 0. return 100. * float(dividend) / float(divisor)
ca027d5637738f3a268e24d329d2d876f855e794
678,098
def _mjd2000_to_decimal_year_simple(mjd2k): """ Convert Modified Julian Date 2000 to decimal year. """ return 2000.0 + mjd2k / 365.25
f0c43a7bbc275ecaf7efccdfe324434bf467d03e
127,944