content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def get_all(model, scenario): """ :param model: a database model with fields scenario and name which are unique together :return: a dictionary of the fields of the given model corresponding to the current simulation, with their name fields as key. """ records = model.objects.filter(scenario=scenario) return {record.name: record for record in records}
ac53802ce77dabe070f18c6c4aaac8fdf213d950
678,257
def collapse_sents(doc): """ Collapse a doc to a list of sentences """ return [sent for part in doc for sent in part]
f640d485e01d470f46a009bc3f5d35f78a1027ba
221,653
import re def get_cmip_file_info(filename): """ From a CMIP6 filename, return the variable name as well as the start and end year """ if filename[-3:] != '.nc': return False, False, False attrs = filename.split('_') var = attrs[0] pattern = r'\d{6}-\d{6}' match = re.match(pattern, attrs[-1]) if not match: # this variable doesnt have time return var, False, False start = int(attrs[-1][:4]) end = int(attrs[-1][7:11]) return var, start, end
5296b7edf98adae455805b2138260d7e1afdc842
291,370
import click def call_client_method(method, *args): """ Given a API client method and its arguments try to call or exit program :param method: API client method :param args: Arguments for method :return: object from method call """ try: return method(*args) except Exception as e: click.echo(str(e), err=True) exit(1)
f5b1afddbb1c1ca7d5b3ce1ac8615d9674a7147a
123,554
def lyap_r_len(**kwargs): """ Helper function that calculates the minimum number of data points required to use lyap_r. Note that none of the required parameters may be set to None. Kwargs: kwargs(dict): arguments used for lyap_r (required: emb_dim, lag, trajectory_len and min_tsep) Returns: minimum number of data points required to call lyap_r with the given parameters """ # minimum length required to find single orbit vector min_len = (kwargs['emb_dim'] - 1) * kwargs['lag'] + 1 # we need trajectory_len orbit vectors to follow a complete trajectory min_len += kwargs['trajectory_len'] - 1 # we need min_tsep * 2 + 1 orbit vectors to find neighbors for each min_len += kwargs['min_tsep'] * 2 + 1 return min_len
0190ce1328c239561465e03109ca624eac3432d7
561,047
def _get_cls(prefix: str | None, index: int) -> str: """Constructs a class identifier with the given prefix and index.""" return "ptg" + ("-" + prefix if prefix is not None else "") + str(index)
2f9f390a8999d795d891ee93f33eacc9fe281abc
253,562
import itertools def flatten(lol): """ See http://stackoverflow.com/questions/406121/flattening-a-shallow-list-in-python e.g. [['image00', 'image01'], ['image10'], []] -> ['image00', 'image01', 'image10'] """ chain = list(itertools.chain(*lol)) return chain
b6233b7d268bb13c74c7e8a6bcae835282f9be46
157,659
def getAverage(items): """ Gets the average amount in a list. Args: items (list): must contain floats or integers. Returns: (integer, float): average of all the items in list. """ return sum(items) / len(items)
77e633decb9789b8a5e82a831b5539740dea85dc
299,950
def toBytes(s): """ Method aimed to convert a string in type bytes @ In, s, string, string to be converted @ Out, response, bytes, the casted value """ if type(s) == type(""): return s.encode() elif type(s).__name__ in ['unicode','str','bytes']: return bytes(s) else: return s
fb5253027efc0f98fc8da803a4982b49fd9af533
104,266
import time import json def retrieve_from_stash(request, key, timeout, default_value, min_count=None, retain=False): """Retrieve the set of reports for a given report ID. This will extract either the set of reports, credentials, or request count from the stash (depending on the key passed in) and return it encoded as JSON. When retrieving reports, this will not return any reports until min_count reports have been received. If timeout seconds elapse before the requested data can be found in the stash, or before at least min_count reports are received, default_value will be returned instead.""" t0 = time.time() while time.time() - t0 < timeout: time.sleep(0.5) with request.server.stash.lock: value = request.server.stash.take(key=key) if value is not None: have_sufficient_reports = (min_count is None or len(value) >= min_count) if retain or not have_sufficient_reports: request.server.stash.put(key=key, value=value) if have_sufficient_reports: return json.dumps(value) return default_value
3aa3067a0e397e60c2c405c6e02362544d7442f3
257,058
def floatN(x): """ Convert the input to a floating point number if possible, but return NaN if it's not :param x: Value to convert :return: floating-point value of input, or NaN if conversion fails """ try: return float(x) except ValueError: return float('NaN')
58013fc6e79ca3294981cb79e4dfc844ed00df9e
93,685
def format_price(amount): """ Format a price in USD Args: amount (decimal.Decimal): A decimal value Returns: str: A currency string """ return f"${amount:0,.2f}"
56a27bffe7bbc273951f7058bce7e0329d78c6e2
211,639
def format_pattern(bit, pattern): """Return a string that is formatted with the given bit using either % or .format on the given pattern.""" try: if "%" in pattern: return pattern % bit except: pass try: return pattern.format(bit) except: return pattern
ad1aba8ca129d8639a84d1be9904f06feb9b7164
466,302
def extract_phone_number(num, replacement): """Takes in the phone number as string and replace_with arg as replacement, returns processed phone num or None""" phone_num = "".join(i for i in num if i.isdigit()) if len(phone_num) != 10: phone_num = replacement if replacement == "--blank--" else num return phone_num
cf49aa0f2cea5974feb487385d76349430e3b5f7
18,644
def hamming_similarity(s1, s2): """ Hamming string similarity, based on Hamming distance https://en.wikipedia.org/wiki/Hamming_distance :param s1: :param s2: :return: """ if len(s1) != len(s2): return .0 return sum([ch1 == ch2 for ch1, ch2 in zip(s1, s2)]) / len(s1)
8a07dc99ae17e29fe9972c001b3586c23a89958f
448,359
def to_title(str): """returns a string formatted as a title""" return str.replace("_", " ").capitalize()
13336936174445f61d5209ce1fabd19d7ae66fa2
25,753
def get_value_from_tuple_list(list_of_tuples, search_key, value_index): """ Find "value" from list of tuples by using the other value in tuple as a search key and other as a returned value :param list_of_tuples: tuples to be searched :param search_key: search key used to find right tuple :param value_index: Index telling which side of tuple is returned and which is used as a key :return: Value from either side of tuple """ for i, v in enumerate(list_of_tuples): if v[value_index ^ 1] == search_key: return v[value_index]
bc98e43430bca180bc95886aafc3580d87eab5f5
436,654
def getVar(var, d, exp = 0): """Gets the value of a variable Example: >>> d = init() >>> setVar('TEST', 'testcontents', d) >>> print getVar('TEST', d) testcontents """ return d.getVar(var,exp)
b9cfb18566fabcbe133b20308539edfecbe15451
430,987
import unicodedata def unicode_normalize(text): """Return the given text normalized to Unicode NFKC.""" normalized_text = unicodedata.normalize('NFKC', text) return normalized_text
1b6defacd09665412a1b31dd48f5291c4984d044
7,083
def delete_from(to_delete, string, pos): """ Deletes instance of 'str' in 'data' at this 'pos' :param to_delete: string to be deleted from 'string' :param string: string from which 'to_delete' will be deleted :param pos: position of 'string' to delete """ data_array = list(string) for i in range(len(to_delete)): data_array.pop(pos) return "".join(data_array)
99d859ea646b776dfbdda486aadbda4cba9adfb9
545,968
def get_ether_vendor(mac, lookup_path): """ Takes a MAC address and looks up and returns the vendor for it. """ mac = ''.join(mac.split(':'))[:6].upper() try: with open(lookup_path, 'r') as f: for line in f: if line.startswith(mac): return line.split()[1].strip() except Exception as e: # pragma: no cover return 'NO DATA'
b7f9b161fd1b00ef0a28fc37f210799eec8c1113
564,629
def coverage_rule(M, i, j, w): """ Total staffing coverage constraint :param M: Model :param i: period :param j: day :param w: week :return: Constraint rule """ return M.cov[i, j, w] + M.under1[i, j, w] + M.under2[i, j, w] >= M.dmd_staff[i, j, w]
28db465b702fbb7eb78102582a9f4edcbf4344c4
371,317
def getrouteccil(docdf): """ This splits the data frame column to produce new columns holding route and ccil information Parameters docdf: A dataframe holding the paragraphs of the document Returns docdf: A dataframe with new columns in appropriate order """ docdf[['route','narrative']] = docdf['narrative'].str.split(' – ',1,expand=True) docdf[['ccil','narrative']] = docdf['narrative'].str.split(' / ',1,expand=True) docdf = docdf[['route','ccil','narrative']] print(docdf['ccil']) #replace blank ccils to be implemented return docdf
afbf534919596c56826e693103269e1dd2d21f00
214,427
def sls_cmd(command, spec): """Returns a shell command string for a given Serverless Framework `command` in the given `spec` context. Configures environment variables (envs).""" envs = ( f"STAGE={spec['stage']} " f"REGION={spec['region']} " f"MEMORY_SIZE={spec['memory_size']} " ) return f"{envs}serverless {command} --verbose"
11d55f92e7dd34676666dfbfb8068490a33fb282
566,533
def select_nodes(batch_data, roots): """ Run 'select' in MCTS on a batch of root nodes. """ nodes = [] for i, root in enumerate(roots): data = batch_data[i] game = data[0] state = data[1] player_1 = data[2] player_2 = data[3] root = roots[i] player = player_1 if game.player(state) else player_2 nodes.append(player.select(root)) return nodes
bf6684814314b78200e115fdbb245c0a861fd74a
80,876
import json def parse_json(file_location): """ Load a json file into a dictionary. :param file_location: The file to load :return: A dictionary of the loaded data """ file = open(file_location, 'r') json_data = json.loads(file.read()) file.close() return json_data
67323381d18e823b4aa4bf85ace1bc868878b463
398,112
def decode_float(value): """Decode a float after checking to make sure it is not already a float, 0, or empty.""" if type(value) is float: return value elif value == 0: return 0.0 elif not value: return None return float(value)
6bf499633b9a8ad7f669b899c15452f88efa88bc
580,638
def _none_to_neg_1(x): """ Swaps None to -1 for torch tensor compatibility. """ if x is None: return -1 else: return x
3498c3d5457933f4ccdfbcd366fe4f45ee276a1d
114,348
def sum_neg_off_diags_naive(m): """Returns sum of negative off-diags in m. Naive, slow implementation -- don't use. Primarily here to check correctness of faster implementation. """ sum = 0 for row_i, row in enumerate(m): for col_i, item in enumerate(row): if (row_i != col_i) and (item < 0): sum += item return sum
027854945c295f4df067b7d440fdbf9b63f9ac81
260,390
import requests def get_team(team_id, gw): """ Get the players in a team Args: team_id (int): Team id to get the data from gw (int): GW in which the team is taken Returns: (tuple): List of integers, Remaining budget """ res = requests.get( 'https://fantasy.premierleague.com/api/entry/' + f'{team_id}/event/{gw}/picks/').json() # Scrape GW before FH to get the team from GW prior if res['active_chip'] == 'freehit': res = requests.get( 'https://fantasy.premierleague.com/api/entry/' + f'{team_id}/event/{gw-1}/picks/').json() # Adjust the player id with fplreview indices return [i['element'] for i in res['picks']], res['entry_history']['bank']
295c46628c14ad64715ee4a06537598878a8ef2e
21,495
def CreateMnemonicsPython(mnemonicsIds): """ Create the opcodes dictionary for Python. """ s = "Mnemonics = {\n" for i in mnemonicsIds: s += "0x%x: \"%s\", " % (mnemonicsIds[i], i) if len(s) - s.rfind("\n") >= 76: s = s[:-1] + "\n" # Fix ending of the block. s = s[:-2] # Remote last comma/space we always add for the last line. if s[-1] != "\n": s += "\n" # Return mnemonics dictionary only. return s + "}"
4aab5f65413e8f2841d52a73b3e3a28396c867ec
76,071
def strclass(cls): """Generate a class name string, including module path. Remove module '__main__' from the ID, as it is not useful in most cases. """ if cls.__module__ == "__main__": return cls.__name__ return f"{cls.__module__}.{cls.__name__}"
d2ca0f6e4dcdb737c67935172fa977a529fc9f80
613,166
def rename_bridge(df, batch_num): """ Append batch number to bridge sample label """ cols = df.columns.tolist() cols[-1] = 'Bridge%d' % batch_num df.columns = cols return df
4acf0eb470f2a71429a26069618058d6a773b2b6
524,834
import random import string def make_key(length=64): """Generate a sequence of random characters.""" return "".join( random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(length) )
4c9760ea00b3d4b38c2c0d918cf75f1059159df8
406,573
import json def json_retreiver(json_filename): """Call this from a variable with a filename string to populate with json content""" filename = json_filename with open(filename) as f: return json.load(f)
e0fd2118b56d4638afa230fd866190fc0ebad2b6
457,626
def whitespace_tokenize(text): """Splits an input into tokens by whitespace.""" return text.strip().split()
266f6bb537f82e599c85c96f70675a571bf5dafd
36,688
def make_tag(token_function: str, span_type: str, delimiter: str = "-") -> str: """Create a tag from a token function and a span type. Args: token_function: The token function for the tag, it is the first part of the tag. span_type: The type of the span this tag is part of it. It is the second part of the tag. delimiter: A separator character (or sequence of characters) that separate the `token_function` and the `span_type`. Returns: The created tag. """ return f"{token_function}{delimiter}{span_type}"
4be5eafe6925e6b7ff53c76c003f0706b0e56edc
160,394
def lamb_blasius(re): """ Calculate friction coefficient according to Blasius. Parameters ---------- re : float Reynolds number. Returns ------- lamb : float Darcy friction factor. """ return 0.3164 * re ** (-0.25)
45ae98b55d7e84a55a6f054350172c95dd224876
489,034
def _trim_quality(seq, qual, to_trim, min_length): """Trim bases of the given quality from 3' read ends. """ removed = 0 while qual.endswith(to_trim): removed += 1 qual = qual[:-1] if len(qual) >= min_length: return seq[:len(seq) - removed], qual else: return None, None
8aa42a0cf4df8cbfd73e3bb464430ef8bf57b0e0
578,382
def get_multiples_desc(number, count): """ return the first count multiples of number in desc order in a list. e.g call with input (3,2) returns [6,3] call with input(5,3) returns [15,10, 5] Hint: one line of code, use a builtin function we have already seen in the lists lesson. """ return list(reversed(range(number,(number*count)+1,number)))
a95a4b74a8298b28e9c5bd3b90c3100dc4df5c74
279,973
def get_kp_labels(bands_node, kpoints_node=None): """ Get Kpoint labels with their x-positions in matplotlib compatible format. A KpointsData node can optionally be given to fall back to if no labels are found on the BandsData node. The caller is responsible for ensuring the nodes match. This should be the case if you take the kpoints from the input and the bands from the output of a calculation node. :param BandsData bands_node: The BandsData node will be searched labels first :param KpointsData kpoints_node: The optional KpointsData node will be searched only if no labels are present on the BandsData node. No consistency checks are performed. :return: (kpx, kpl), the x-coordinates and text labels :rtype: tuple(list[int], list[unicode]) :raises AttributeError: if neither of the given nodes have a labels attribute """ kplabs = None kpx = [] kpl = [] try: kplabs = bands_node.labels except AttributeError as err: if kpoints_node: kplabs = kpoints_node.labels else: raise err if kplabs: kpx = [i[0] for i in kplabs] kpl = [i[1] for i in kplabs] for i, kpoints in enumerate(kpl): if kpoints == 'G': kpl[i] = r'$\Gamma$' return kpx, kpl
decd7c5f0a027fa975b7bdab692548f3c0c7d05a
674,676
def get_third_party_permissions(manifest_tree): """Analyze manifest to see what permissions to request.""" root = manifest_tree.getroot() values = [] third_party = set() for neighbor in root.iter('uses-permission'): values.append(list(neighbor.attrib.values())) for val in values: for perm in val: if 'com' in perm: third_party.add(perm) return third_party
93c78b021369eea6bbdbc2d2b59aee08268bb142
548,193
def trim_bg(img, color=None): """Trim background rows/cols from an image-like object.""" if color is None: color = img[0, 0] img = img[:, (img != color).any(0).any(-1)] img = img[(img != color).any(1).any(-1)] return img
23a1105415953f90b36cb1b5266035eeeefab32c
348,668
def mbxor(msg: bytearray, key: bytearray) -> bytearray: """Encrypt a message using the repeating key xor. Arguments: msg {bytearray} -- Message to be encrypted key {bytearray} -- Key to be used Returns: bytearray -- Ciphertext of msg ^ key, length of longer msg """ cipher = bytearray(len(msg)) for i in range(len(msg)): cipher[i] = msg[i] ^ key[i % len(key)] return cipher
cc7b02a69df0114589bea5af787b8ef6a3b6a95b
536,319
def compile_hierarchy_req_str_list(geo_list: dict, str_list: list) -> list: """Recursively go through geo config to get list ids and combine with their str. An example of hierarchial required geo ids would be: county subdivision: { '<state id>': { '<county id>': { '<county subdivision id>': '<county subdivision name>' } } } Args: geo_list: Dict of geo ids required for a particular summary level. str_list: List API query prefix string for each level of dict. Returns: List of required geo strings to be added to API call. """ ret_list = [] for k, v in geo_list.items(): if isinstance(v, dict): new_list = str_list.copy() new_list[1] = f'{str_list[0]}{k}{str_list[1]}' ret_list.extend(compile_hierarchy_req_str_list(v, new_list[1:])) else: ret_list.append(f'{str_list[0]}{k}') return ret_list
2de7df35c975f5842d4c88124e52da2698764a4b
599,457
import torch def get_entropy_loss(memory, args, i_agent): """Compute entropy loss for exploration Args: memory (ReplayMemory): Class that includes trajectories args (argparse): Python argparse that contains arguments i_agent (int): Index of agent to compute entropy loss Returns: entropy_loss (torch.Tensor): Entropy loss for encouraging exploration """ _, _, entropies, _, _ = memory.sample() entropy = torch.stack(entropies[i_agent], dim=1) assert entropy.shape == (args.traj_batch_size, args.ep_horizon), \ "Shape must be: (batch, ep_horizon)" entropy_loss = -args.entropy_weight * torch.mean(torch.sum(entropy, dim=1)) return entropy_loss
0d031100d17b64402340f1c0626a04fc083be8a0
32,591
def as_json_bool(value): """ Casts a value as a json-compatible boolean string :param value: the value we want to force to a json-compatible boolean string :type value: bool :return: json-compatible boolean string :rtype: str """ return str(bool(value)).lower()
eb7b9ffa142706947db8435f088d0e2ee390eaf0
133,983
def BFT(tree): """ Breadth-first treavsal on general RST tree :type tree: SpanNode instance :param tree: an general RST tree """ queue = [tree] bft_nodelist = [] while queue: node = queue.pop(0) bft_nodelist.append(node) queue += node.nodelist return bft_nodelist
2e034943b0d9f55a1fcc2391e2a4fd4fe2b5dfcd
395,986
def calc_min_flow(m0, m1): """ This function calculates the minimum flow of a distribution by comparison of two vectors. this is useful when looking up at multiple buildings in a for loop. :param m0: last minimum mass flow rate :param m1: current minimum mass flow rate :type m0: float :type m1: float :return: mmin: new minimum mass flow rate :rtype: float """ if m0 == 0: m0 = 1E6 if m1 > 0: mmin = min(m0, m1) else: mmin = m0 return mmin
e202e5d2ff0a1d451c4492fad8d1145cf017a85e
144,822
def STR_CASE_CMP(x, y): """ Performs case-insensitive comparison of two strings. Returns 1 if first string is “greater than” the second string. 0 if the two strings are equal. -1 if the first string is “less than” the second string. https://docs.mongodb.com/manual/reference/operator/aggregation/strcasecmp/ for more details :param x: The first string or expression of string :param y: The second string or expression of string :return: Aggregation operator """ return {'$strcasecmp': [x, y]}
8fe54c3b62cb3b286b4b59583911a8a637f0fa69
126,735
def input_to_int(value): """ Checks that user input is an integer. Parameters ---------- n : user input to check Returns ------- integer : n cast to an integer Raises ------ ValueError : if n is not an integer """ if str(value).isdigit(): return int(value) else: raise ValueError('Expecting integer. Got: "{0}" ({1})' .format(value, type(value)))
702f6102a0abe37b139afcf298308ed1fc51ecf4
55,676
import copy def get_subdatasets_transforms(transform_params): """Get transformation parameters for each subdataset: training, validation and testing. Args: transform_params (dict): Returns: dict, dict, dict: Training, Validation and Testing transformations. """ transform_params = copy.deepcopy(transform_params) train, valid, test = {}, {}, {} subdataset_default = ["training", "validation", "testing"] # Loop across transformations for transform_name in transform_params: subdataset_list = ["training", "validation", "testing"] # Only consider subdatasets listed in dataset_type if "dataset_type" in transform_params[transform_name]: subdataset_list = transform_params[transform_name]["dataset_type"] # Add current transformation to the relevant subdataset transformation dictionaries for subds_name, subds_dict in zip(subdataset_default, [train, valid, test]): if subds_name in subdataset_list: subds_dict[transform_name] = transform_params[transform_name] if "dataset_type" in subds_dict[transform_name]: del subds_dict[transform_name]["dataset_type"] return train, valid, test
8b5ec9f9ebefde3447807e860bd482e6957f3ead
489,191
def btdot(large, small): """Batch dot tensor product. If the dimension of small is `N+1`, perform a batch N-dimensional dot product. The dot operation produces the sum of the multiplied components. For example, if small is 2D, perform a vector-vector multiplication. The first dimension of both tensors is a batch dimension and it must match or be broadcastable. If large has extra dimensions, they are considered batch dimensions too. Args: large (tensor): its last `N` dimensions are multiplied by small. The remaining dimensions are batch dimensions. small (tensor): a tensor whose first dimension is the batch, and the remaining ones are to be multiplied. Its dimension must be equal or saller than those of large. Returns: tensor: the result of the product. """ dim_diff = large.dim() - small.dim() batch_dim = small.size(0) extra_dims = [1] * dim_diff remaining_dims = small.size()[1:] sview = small.view(batch_dim, *extra_dims, *remaining_dims) return (large * sview).sum(tuple(range(dim_diff + 1, large.dim())))
6940a2f2bc3aa37dd54ad3e09f4cf753e9bde6f0
320,088
def check_parent(obj, Nparent): """Recursively check that the object have the correct number of parent For instance: check_parent(stator, 3) will check that output.simu.machine.stator exist Parameters ---------- obj : A pyleecan object Nparent : int Number of parent we expect the object to have Returns ------- has_parent : bool True if the object has N parent """ if Nparent == 0: return True elif obj.parent is None: return False else: return check_parent(obj.parent, Nparent - 1)
3167f952f9561bf0ec6977cdb14e6672d614009d
213,722
import pathlib def store_path_constructor(filename, dir_path): """ Construct a filepath object for fxcm file store in the designated clean store :param filename: regex "^[A-Z]{6}_20\\d{1,2}_\\d{1,2}" ex: "AUDCAD_2015_1" :param dir_path: base path :return: full path """ store = pathlib.Path(dir_path) symbol = filename[:6] year = filename[7:11] full_filename = filename + '.csv.gz' return store / symbol / year / full_filename
a7897de23da3bbd29329f3d90046cea7b9664779
556,986
from typing import Optional from typing import Union import math def calculate_gain(nonlinearity: str, param: Optional[Union[int, float]] = None): """ Return the recommended gain value for the given nonlinearity function. The values are as follows: ================= ==================================================== nonlinearity gain ================= ==================================================== Linear / Identity :math:`1` Conv{1,2,3}D :math:`1` Sigmoid :math:`1` Tanh :math:`\\frac{5}{3}` ReLU :math:`\sqrt{2}` Leaky Relu :math:`\sqrt{\\frac{2}{1 + \\text{negative\_slope}^2}}` SELU :math:`\\frac{3}{4}` ================= ==================================================== Parameters ---------- nonlinearity : str Name of the non-linear function param : Union[int, float], optional Optional parameter for the non-linear function """ linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d'] if nonlinearity in linear_fns or nonlinearity == 'sigmoid': return 1 elif nonlinearity == 'tanh': return 5.0 / 3 elif nonlinearity == 'relu': return math.sqrt(2.0) elif nonlinearity == 'leaky_relu': if param is None: negative_slope = 0.01 elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError("negative_slope {} not a valid number".format(param)) return math.sqrt(2.0 / (1 + negative_slope ** 2)) elif nonlinearity == 'selu': return 3.0 / 4 # Value found empirically (https://github.com/pytorch/pytorch/pull/50664) else: raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
8c80343f1435b7e3e84b83557cff8aa35443b326
655,804
import re def strip_version(arxiv_id): """ Remove the version suffix from an arXiv id. :param arxiv_id: The (canonical) arXiv ID to strip. :returns: The arXiv ID without the suffix version >>> strip_version('1506.06690v1') '1506.06690' >>> strip_version('1506.06690') '1506.06690' """ return re.sub(r"v\d+\Z", '', arxiv_id)
dd5cb79abbd842e6e968e4690af75d1797c830dd
299,315
def get_cursor_ratio(image_size: tuple, screen_size: tuple): """ Used to calculate the ratio of the x and y axis of the image to the screen size. :param image_size: (x, y,) of image size. :param screen_size: (x, y,) of screen size. :return: (x, y,) as the ratio of the image size to the screen size. """ x_ratio = screen_size[0] / image_size[0] y_ratio = screen_size[1] / image_size[1] return x_ratio, y_ratio
7e0f0e66ba572657cc058aa7e83feeac2212f818
105,731
def get_number_of_epochs(opt, loader_train): """define the number of training epochs based on the lenght of the dataset and the number of steps""" epochs = opt['epochs'] iter_per_epoch = -(-len(loader_train.dataset) // opt['bs']) if epochs < 0: epochs = 1 + opt['nsteps'] // iter_per_epoch return epochs, iter_per_epoch
a73904933e151ad03bb7ef3f9a23f0627d0ca086
95,777
from typing import Dict def config_to_runner_env(config: Dict[str, str]) -> Dict[str, str]: """ Converts runner config to standard env vars (prefixed with 'RUNNER_') Args: config: Runner config dictionary Returns: Formatted env map for runner """ return {f"RUNNER_{key.upper()}": config[key] for key in config}
93faf5bf6f9a113dd10b6341674138d153e0bbd2
130,160
def make_histogram(s: list) -> dict: """Takes a string or a list, finds its elements frequency and returns a dictionary with element-frequency as key-value pairs. """ d = dict() for char in s: d[char] = 1 + d.get(char, 0) return d
355206fe757571fc9973df9b3984a642c829abdd
561,457
import torch def initialize_decoder_module(in_channels: int, out_channels: int) -> torch.nn.Module: """Initialize a decoder module including a ConvT, batchnorm and ReLU """ m = torch.nn.Sequential( torch.nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=4, stride=2, padding=1, bias=False), torch.nn.BatchNorm2d(num_features=out_channels, momentum=1, track_running_stats=False), torch.nn.LeakyReLU(negative_slope=1e-2) ) return m
ca2b1dc9c6f52b162aeccfae0b72d434b821aea8
509,208
def ham(s1, s2): """Return the Hamming distance between equal-length sequences""" if len(s1) != len(s2): raise ValueError("Undefined for sequences of unequal length") mm=0 sup=0 for el1, el2 in zip(s1, s2): if el1=='-' and el2=='-': continue sup +=1 if el1 != el2: mm +=1 return mm*1.0/sup
42ee5c8cbbcbf1d9e59e6bac2941bed969ad08bf
486,086
def vcf_get_index(vcf): """Return index as "CHR.POS".""" return [ ".".join([chrom, str(pos)]) for chrom, pos in zip( vcf["variants/CHROM"], vcf["variants/POS"] ) ]
1dda63652283b6506fc666ca2d563d2267fa6e25
258,112
def _calc_pred_mse(tau, level): """Calculate a scaled predicted MSE based on the predicted noise variance and the level of wavelet decomposition. Args: tau (list): predicted noise variance in each subband in the "wavelet" format. Returns: pred_mse (float): scaled predicted MSE. Note: The predicted MSE is used to determine whether to stop D-VDAMP early. """ pred_mse = 0 pred_mse += tau[0] * (4 ** (-level)) for b in range(level): weight = 4 ** (b - level) for s in range(3): pred_mse += tau[b + 1][s] * weight return pred_mse
44a008601f8aea96ea701d7b9b4585559c9e0690
126,576
def check_chemistry_def(chemistry): """ Validate a chemistry definition dict. Return (ok, error_msg) """ required_keys = [ 'description', 'barcode_read_type', 'barcode_read_offset', 'barcode_read_length', 'rna_read_type', 'rna_read_offset', 'rna_read_length', 'rna_read2_type', 'rna_read2_offset', 'rna_read2_length', 'umi_read_type', 'umi_read_offset', 'umi_read_length', 'si_read_type', 'si_read_offset', 'si_read_length', 'read_type_to_bcl_processor_filename', 'read_type_to_bcl2fastq_filename', 'strandedness', ] if 'name' not in chemistry: return (False, "Chemistry definition is missing a 'name' key") missing_keys = set(required_keys) - set(chemistry.keys()) if len(missing_keys) > 0: return (False, "Keys missing from chemistry definition %s: %s" % (chemistry['name'], ','.join(sorted(list(missing_keys))))) return True, None
7eb3713325678aeaf139d7b21e60998ccdf784b5
139,575
def _FindPeakOnActual(latency_value): """Find a peak on actual stream using timestamp of reference peak and delay. Args: latency_value: (tuple (float, float)) containing a timestamp and a delay value. Unit is seconds. Returns: (float) timestamp of the peak on the actual stream. Unit is seconds. """ return latency_value[0] - latency_value[1]
97421af61a247854cb22c46571218584c387554f
472,581
from pathlib import Path import stat def is_special_file(path: Path) -> bool: """Check to see if a special file. It checks if the file is a character special device, block special device, FIFO, or socket. """ mode = path.stat().st_mode # Character special device. if stat.S_ISCHR(mode): return True # Block special device if stat.S_ISBLK(mode): return True # FIFO. if stat.S_ISFIFO(mode): return True # Socket. if stat.S_ISSOCK(mode): return True return False
5cf516dfa8cf15d502216b83d36bf5a1f226ef88
270,706
def read_file(name): """Given the path of a file, return a list of numbers to be processed. """ d = [] file = open(name,'r') data = file.readlines() for line in data: items = line.split() d.append(int(items[0])) return d
fc0f94ee01df683a8c5e449089508c00ca0b0f3a
455,433
def list_services(config_dict): """ List available services Args: config_dict (dict): configuration dictionary Returns: list: list of available services """ return list(config_dict.keys())
a3226589405292f0bcef99aabaec71722aaeb1db
697,838
import json def write_to_json_file(file_path, file_contents): """ Writes the given file_contents to the file_path in JSON format if current user's permissions grants to do so. :param file_path: Absolute path for the file :param file_contents: Contents of the output file :return: Output path :rtype: str :raises: This method raises OSError if it cannot write to file_path. """ with open(file_path, mode='w', encoding='utf-8') as handler: json.dump(file_contents, handler) return file_path
f34898b8ec01e6035a7b255914d91db0e14bca88
155,338
def move(x, y, direction, multiplier): """ Moves point (x,y) in direction, returns a pair """ if direction == "UP": return (x,y-multiplier) elif direction == "DOWN": return (x,y+multiplier) elif direction == "LEFT": return (x-multiplier, y) elif direction == "RIGHT": return (x+multiplier, y) return (x,y)
5dc4d27e3a7eb3643adacc1f3ebaf9fe85a94d07
303,992
def contains_duplicate(nums: list[int]) -> bool: """Returns True if any value appears at least twice in the array, otherwise False Complexity: n = len(nums) Time: O(n) Space: O(n) Args: nums: array of possibly non-distinct values Examples: >>> contains_duplicate([1,2,3,1]) True >>> contains_duplicate([1,2,3,4]) False >>> contains_duplicate([1,1,1,3,3,4,3,2,4,2]) True """ """ALGORITHM""" ## INITIALIZE VARS ## # DS's/res nums_set = set() for num in nums: if num not in nums_set: nums_set.add(num) else: return True else: return False
397c5f03cd7025eec1fda6041e1a344e7e61f4bc
691,000
import torch def get_torch_device(try_to_use_cuda): """ Return torch device. If using cuda (GPU), will also set cudnn.benchmark to True to optimize CNNs. Args: try_to_use_cuda (bool): if True and cuda is available, will use GPU Returns: device (torch.Device): device to use for models """ if try_to_use_cuda and torch.cuda.is_available(): torch.backends.cudnn.benchmark = True device = torch.device("cuda:0") else: device = torch.device("cpu") return device
8bdc407df3fc0a8184f99c1cdaabaccb34792547
148,581
def clean_plan_name(plan_name): """Standardize plan name.""" return str.lower(plan_name.replace(' ', '_'))
863468932c12145ebb1ed819fbf0d2ede9c2f4e8
107,878
def merge (d, o): """Recursively merges keys from o into d and returns d.""" for k in o.keys(): if type(o[k]) is dict and k in d: merge(d[k], o[k]) else: d[k] = o[k] return d
1c1477e87c9596f10fc283969b985109b9d4cac6
333,999
def insertion_sort(integers): """Iterate over the list of integers. With each iteration, place the new element into its sorted position by shifting over elements to the left of the pointer until the correct location is found for the new element. Sorts the list in place. O(n^2) running time, O(1) space. """ integers_clone = list(integers) for i in range(1, len(integers_clone)): j = i while integers_clone[j] < integers_clone[j - 1] and j > 0: integers_clone[j], integers_clone[j-1] = integers_clone[j-1], integers_clone[j] j -= 1 return integers_clone
ee7aa8920406f7c74870e346e486f29486894df1
15,670
def extract_preterminals(tree): """Extract the preterminals from the given tree.""" return [node for node in tree.subtrees() if node.height() == 2]
41386b2165fa5394c5a5cdc7c09c928681ba0b11
317,667
def _is_notify_empty(notify_db): """ notify_db is considered to be empty if notify_db is None and neither of on_complete, on_success and on_failure have values. """ if not notify_db: return True return not (notify_db.on_complete or notify_db.on_success or notify_db.on_failure)
23c7e29240597991b7d7ee6ccf55a9e39fb9dbae
527,878
import random def d6() -> int: """Roll a D6""" return random.randint(1, 6)
8a56a6bc614a5397d28fb5abafd97df0383276f4
50,569
def is_integer(s_in): """Check if string represents an integer.""" s_in = str(s_in) if s_in[0] in ('-', '+'): return s_in[1:].isdigit() return s_in.isdigit()
70ad2b0500625163d834aca0e81bdd23c791750c
163,382
import shlex def shlex_join(split_command): """Return a shell-escaped string from *split_command*. This is from Python 3.8: https://github.com/python/cpython/blob/3.8/Lib/shlex.py XXX: Obsolete with 3.8. """ return ' '.join(shlex.quote(arg) for arg in split_command)
6556d64fcc5fcc5f013459c8a8285167fb288d84
166,772
def make_prefix_tree(flat_dict): """Convert a dictionary with keys of dotted strings into nested dicts with common prefixes. Ex: { 'abc.xyz': 1, 'abc.def': 2, 'www': 3} is converted to: { 'abc': {'xyz': 1, 'def': 2}, 'www': 3 } """ tree = {} for key, value in flat_dict.items(): subtree = tree parts = key.split('.') for part in parts[:-1]: if part not in subtree: subtree[part] = {} subtree = subtree[part] subtree[parts[-1]] = value return tree
723f9ee1ad6c50b88f3456d51c2d91b90d4f4dca
524,646
def downcase_string(s): """Convert initial char to lowercase""" return s[:1].lower() + s[1:] if s else ''
05ee7c118b3d635f978ddf73f107336cea26375c
355,921
import socket import struct def ipIntToString(ip_int): """Convert integer formatted IP to IP string""" return socket.inet_ntoa(struct.pack('!L',ip_int))
4883a075476f136640a691fce839f2c758ec84bd
252,572
def listToNum(list): """Converts a bit-list [0, 1, 0, 1] to an int.""" return int(''.join(str(x) for x in list), 2)
9ab86c56b09f6ffe4d158350d066c38a4f014c5a
94,686
def add_tabix_subparser(subparser): """ Get commandline arguments Args: subparser (?): Subparser object. Returns: args (Namespace): the parsed arguments. """ parser = subparser.add_parser("tabix", help="Tabix subparser") parser.add_argument("-vcf", "--variant-call-file", dest="vcf", help="Tabix indexed VCF.") parser.add_argument("-in", "--primer-input-file", dest="p_info", help="The output of the primer pipeline.") parser.add_argument("-o", "--output", dest="output", help="The name of the output file") return parser
001d09086df2f9c0308496eeda6476f85345278e
609,356
def duthost(testbed_devices): """ Shortcut fixture for getting DUT host """ return testbed_devices["dut"]
51e92bfe15cb2046616df34144eae0836adbff73
554,710
def compose(fun_f, fun_g): """ Composition of two functions. :param fun_f: callable :param fun_g: callable :return: callable """ return lambda x: fun_f(fun_g(x))
8a40332d610fd4ae8bbe89b2843c95d7493822ff
53,388
def get_attribute(target, name): """ Gets an attribute from a Dataset or Group. Gets the value of an Attribute if it is present (get ``None`` if not). Parameters ---------- target : Dataset or Group Dataset or Group to get the attribute of. name : str Name of the attribute to get. Returns ------- value The value of the attribute if it is present, or ``None`` if it isn't. """ if name not in target.attrs: return None else: return target.attrs[name]
7c80d02c4f079055ec534cdf15f17cb0f7d5cde5
127,946
def part1(data): """ Each digit of a seven-segment display is rendered by turning on or off any of seven segments named a through g There are ten unique signal patterns: 0: 1: 2: 3: 4: aaaa .... aaaa aaaa .... b c . c . c . c b c b c . c . c . c b c .... .... dddd dddd dddd e f . f e . . f . f e f . f e . . f . f gggg .... gggg gggg .... 5: 6: 7: 8: 9: aaaa aaaa aaaa aaaa aaaa b . b . . c b c b c b . b . . c b c b c dddd dddd .... dddd dddd . f e f . f e f . f . f e f . f e f . f gggg gggg .... gggg gggg Each entry consists of ten unique signal patterns, a | delimiter, and finally the four digit output value Within an entry, the same wire/segment connections are used (but you don't know what the connections actually are) In the output values, how many times do digits 1, 4, 7, or 8 appear? """ count_1478 = 0 for item in data: for output_value in item[1]: if len(output_value) in [2, 3, 4, 7]: count_1478 += 1 return count_1478
11be73780676b97fa20b8fd9137a6a4b3f1d845b
579,230
def ashex(line): """ convert a byte-array to a space separated list of 2-digit hex values. """ return " ".join("%02x" % _ for _ in line)
d51dafe221c81697569f0d714fe814f8690d77aa
387,361
def _get_input(prompt: str, default_value: str) -> str: """Wrapper around input() which shows the current (default value).""" if default_value: prompt = '{} ({}): '.format(prompt, default_value) else: prompt = '{}: '.format(prompt) return input(prompt).strip().lower() or default_value
5c6bbabb219b35a17f26a03feaa29f27e0b6590a
171,912
def str_to_bin_array(number, array_length=None): """Creates a binary array for the given number. If a length is specified, then the returned array will have the same add leading zeros to match `array_length`. Args: number: the number to be represented as a binary array. array_length: optional) the length of the binary array to be created. (Default value = None) Returns: the binary array representation of `number`. """ bin_str = "{0:b}".format(number) bin_str = bin_str.zfill(array_length) if array_length else bin_str return list(map(int, bin_str))
f2a6763c59da9efa2c08943278622b3b50d703e2
114,918
def get_ratio(data_frame, field): """Calculates the ratio of the values of a given field of a DataFrame. Args: data_frame (DataFrame): a Pandas DataFrame to analyze field (string): the field to calculate the values of Returns: Series: Pandas Series representing the count of distinct values as ratio """ return data_frame[field].value_counts(normalize=True) * 100 # ------------------------------------------------------------ get_ratio()
bd0f99369feda29f886f6195c32366a1775c46bc
153,029
import time def ValueOfDate() -> int: """ Return current unix time in milisecond (Rounded to nearest number) """ return round(time.time() * 1000)
cc0b51a1eb997ae12e19f40751fde28caad12877
664,050
def split_file(infile, prefix, max_size=50*1024*1024, file_buffer=1024): """ file: the input file prefix: prefix of the output files that will be created max_size: maximum size of each created file in bytes buffer: buffer size in bytes Returns the number of parts created. """ with open(infile, 'r+b') as src: suffix = 0 while True: with open(prefix + '.%s' % suffix, 'w+b') as tgt: written = 0 while written < max_size: data = src.read(file_buffer) if data: tgt.write(data) written += file_buffer else: return suffix suffix += 1
27d329610d1545995d600ec53dd9ae48301e6d75
571,607
def pow(x, y): """ Return x raised to the power y. """ return x**y
fac9a0235e03d15ddaa32d6e2aaf1561b0bb8df2
198,917
def bytes2str(info): """ Converts bytes to string. """ if isinstance(info, bytes): info = info.decode("utf-8") return info
562f297f1169d66f4c53da5e9027c750f60bfb6d
226,212
def binary_search(arr, key): """ binary seach using iterative method """ first = 0 last = len(arr)-1 found = False while first <= last and not found: mid = (first + last) // 2 if arr[mid] == key: found = True else: if arr[mid] > key : last = mid -1 else: first = mid + 1 return found
2957a9f9900b69f31c24954ad040f4f70f79cdf7
564,756