content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def status_request(token):
"""Create ACME "statusRequest" message.
:param unicode token: Token provided in ACME "defer" message.
:returns: ACME "statusRequest" message.
:rtype: dict
"""
return {
"type": "statusRequest",
"token": token,
}
|
eb63269820aff9ef84cb67ef3348d1121be051f5
| 383,637 |
import pathlib
import click
def get_filenames_from_template(photo, filename_template, original_name):
""" get list of export filenames for a photo
Args:
photo: a PhotoInfo instance
filename_template: a PhotoTemplate template string, may be None
original_name: boolean; if True, use photo's original filename instead of current filename
Returns:
list of filenames
Raises:
click.BadOptionUsage if template is invalid
"""
if filename_template:
photo_ext = pathlib.Path(photo.original_filename).suffix
filenames, unmatched = photo.render_template(filename_template, path_sep="_")
if not filenames or unmatched:
raise click.BadOptionUsage(
"filename_template",
f"Invalid template '{filename_template}': results={filenames} unmatched={unmatched}",
)
filenames = [f"{file_}{photo_ext}" for file_ in filenames]
else:
filenames = [photo.original_filename] if original_name else [photo.filename]
return filenames
|
ce392d636262a59f8bc7cb6f14948c9bdb4f0acc
| 393,387 |
from pathlib import Path
def path_join(*other):
"""Add each of other argumetns to path in turn"""
return Path().joinpath(*other)
|
b1c71ddf423dd2852cb3de4f368761415a584be7
| 524,314 |
def first(element):
"""
A wrapper around element[0].
params:
element: an element that implements __getitem__
"""
return element[0]
|
e6014c95616e4a95644833deeed01a670649cc94
| 377,105 |
import typing
def trace_lines_model_checking_mode(stdout) -> typing.List[typing.List[str]]:
"""
Returns list of lists. Each sublist is a list of lines
that make a trace.
Args:
stdout : stdout of TLC execution run in model checking mode
"""
ret = []
lines = stdout.split("\n")
header_open = False
def is_header(line):
"""One line before the beginning of the trace."""
single_state_trace_header = "is violated by the initial state" in line
mult_state_trace_header = line == "Error: The behavior up to this point is:"
return single_state_trace_header or mult_state_trace_header
def is_start_of_new_trace(line):
"""When there are multiple traces, closes the previous trace"""
# when there are multiple violations, a new trace report starts with:
continue_case = line.startswith("Error: Invariant")
# when the first violation was in the init state, the second one starts with:
init_state_continue_case = line.startswith("Finished computing initial states")
return continue_case or init_state_continue_case
def is_footer(line):
multi_state_footer = (
("states generated" in line)
and ("distinct states found" in line)
and ("states left on queue" in line)
and (not line.startswith("Progress"))
) or ("Model checking completed" in line)
single_state_footer = "Finished in" in line
return single_state_footer or multi_state_footer
header_cnt = 0
header_ix = -1
for i, line in enumerate(lines):
if is_start_of_new_trace(line):
header_open = True
if 0 < header_cnt:
trace = lines[header_ix + 1 : i]
ret.append(trace)
if is_header(line):
header_cnt += 1
header_ix = i
# we need boolean header_open because the footer the conditions for the footer
# of a single state trace will be met also in the line after the footer of a multi-state trace
if header_open and is_footer(line):
header_open = False
if 0 < header_cnt:
trace = lines[header_ix + 1 : i]
ret.append(trace)
break
return ret
|
26b57ee29370a764b51961d672c5969050dccb85
| 680,500 |
import click
def format_options(original_function=None, headers=None):
"""Shared output format options."""
def _format_options(f):
f = click.option('--format', '-f', 'fmt', default=None,
type=click.Choice(['simple', 'table', 'csv']),
help="Output format. Defaults to the value of "
"'git config pw.format' else 'table'.")(f)
if headers:
f = click.option('--column', '-c', 'headers', metavar='COLUMN',
multiple=True, default=headers,
type=click.Choice(headers),
help='Columns to be included in output.')(f)
return f
if original_function:
return _format_options(original_function)
return _format_options
|
c4caed905f16e570abda4893b6c49e9296991c73
| 261,502 |
def bbox_to_list(bbox_string):
"""
Convert bounding box passed in as string such as:
"[0.536007, 0.434649, 0.635773, 0.543599]" to list of floats
"""
bbox = bbox_string.strip('][').split(', ')
bbox = [float(x) for x in bbox]
return bbox
|
a1d24730dad42312c9ef9f7541cbf906885202ca
| 266,406 |
def mydub(a):
"""Double a
"""
return a * 2
|
bf039316d510db53264ab435e5092477bd57e397
| 648,533 |
def R_curv(deltaT_sub, r_min, radius, Q_drop):
""" thermal resistance due drop curvature
Parameters
----------
deltaT_sub: float
temperature difference to the cooled wall in K
r_min: float
minimum droplet radius in m
radius: float
radius of drop in m
Q_drop: float
rate of heat flow through drop in W
Returns
----------
R_curv: float
thermal resistance due drop curvature in K/W
"""
R_curv = (deltaT_sub*r_min / radius) / Q_drop
return R_curv
|
176520b43184e879bb25bcecc50e64e6dabaa6cc
| 10,754 |
import torch
import logging
def get_device() -> torch.device:
"""Gets device to use for PyTorch.
Returns:
Device.
"""
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
logging.info("Model device: %s", device)
return device
|
587c03df06dc38fe4cd939faa42aeb92377234ed
| 451,064 |
def _host_absolute(name):
"""
Ensure that hostname is absolute.
Prevents us from making relative DNS records by mistake.
"""
if not name.endswith("."):
name = name + "."
return name
|
0569be8577063cbbecbed9bc860f686e2080c92b
| 209,694 |
def lookup_password(words, uhpd):
"""
lookup_password(words, (user, host, port, database)) -> password
Where 'words' is the output from pgpass.parse()
"""
user, host, port, database = uhpd
for word, (w_host, w_port, w_database, w_user) in words:
if (w_user == '*' or w_user == user) and \
(w_host == '*' or w_host == host) and \
(w_port == '*' or w_port == port) and \
(w_database == '*' or w_database == database):
return word
|
33f68e19e18faeef461c0e9c24f7df680c8b0945
| 112,122 |
def is_eligible_for_exam(mmtrack, course_run):
"""
Returns True if user is eligible exam authorization process. For that the course must have exam
settings and user must have paid for it.
Args:
mmtrack (dashboard.utils.MMTrack): a instance of all user information about a program.
course_run (courses.models.CourseRun): A CourseRun object.
Returns:
bool: whether user is eligible or not
"""
return course_run.has_future_exam and mmtrack.has_paid(course_run.edx_course_key)
|
2ee804ac8f338186bd543584b207cde440a109c5
| 678,337 |
def invert_mapping(kvp):
"""Inverts the mapping given by a dictionary.
:param kvp: mapping to be inverted
:returns: inverted mapping
:rtype: dictionary
"""
return {v: k for k, v in list(kvp.items())}
|
62c16608b83d9a10fe30930add87b8d73ba5e1cd
| 63,516 |
def get_armstrong_value(num):
"""Return Armstrong value of a number, this is the sum of n**k
for each digit, where k is the length of the numeral.
I.e 54 -> 5**2 + 4**2 -> 41.
Related to narcisstic numbers and pluperfect digital invariants.
"""
num = str(num)
length = len(num)
armstrong_value = 0
for char in num:
armstrong_value += int(char)**length
return armstrong_value
|
fd0692566ab0beffb785c1ac4fbd4aa27893cfbf
| 41,523 |
def get_element_text(element):
"""Builds the element text by iterating through child elements.
Parameters
----------
element: lxml.Element
The element for which to build text.
Returns
-------
text: str
The inner text of the element.
"""
text = ''.join(element.itertext())
return text
|
41409e83a23927a5af0818c5f3faace0ca117751
| 17,234 |
def rc4(buffer, key):
"""
Encrypt / decrypt the content of `buffer` using RC4 algorithm.
Parameters
----------
buffer : bytes
The bytes sequence to encrypt or decrypt.
key : bytes
The key to be used to perform the cryptographic operation.
Returns
-------
A bytes sequence representing the transformed input.
More information
----------------
Adapted from http://cypherpunks.venona.com/archive/1994/09/msg00304.html
"""
# Preparation step
state = list(range(256))
x = 0
y = 0
index1 = 0
index2 = 0
for counter in range(256):
index2 = (key[index1] + state[counter] + index2) % 256
state[counter], state[index2] = state[index2], state[counter]
index1 = (index1 + 1) % len(key)
# encryption / decryption step
output = [0] * len(buffer)
for i in range(len(buffer)):
x = (x + 1) % 256
y = (state[x] + y) % 256
state[x], state[y] = state[y], state[x]
xorIndex = (state[x] + state[y]) % 256
output[i] = buffer[i] ^ state[xorIndex]
return bytes(output)
|
d6b737e74c1ed04f45f783781307e1f5aca58509
| 145,167 |
import math
def floor(quantity, units):
"""Compute the floor of a quantity with units.
:param quantity: the quantity to take the ceiling of
:param units: the units to convert to before taking the ceiling, and of the result
:returns: the ceiling of quantity, measured in units
"""
number = quantity.to(units).magnitude
return math.floor(number) * units
|
723e4f2816c375b481b2fcf32be627a5f786d114
| 324,770 |
def case_sort(string):
"""
Here are some pointers on how the function should work:
1. Sort the string
2. Create an empty output list
3. Iterate over original string
if the character is lower-case:
pick lower-case character from sorted string to place in output list
else:
pick upper-case character from sorted string to place in output list
Note: You can use Python's inbuilt ord() function to find the ASCII value of a character
"""
upper_ch_index = 0
lower_ch_index = 0
sorted_string = sorted(string)
for index, character in enumerate(sorted_string):
ascii_int = ord(character)
if 97 <= ascii_int <= 122:
lower_ch_index = index
break
output = []
for character in string:
ascii_int = ord(character)
# if character is lower case pick next lower_case character
if 97 <= ascii_int <= 122:
output.append(sorted_string[lower_ch_index])
lower_ch_index += 1
else:
output.append(sorted_string[upper_ch_index])
upper_ch_index += 1
return "".join(output)
|
70391df1faaba08f0d596a6bd401c80d30fa8923
| 547,452 |
def is_mutating(status):
"""Determines if the statement is mutating based on the status."""
if not status:
return False
mutating = set(['insert', 'update', 'delete', 'alter', 'create', 'drop'])
return status.split(None, 1)[0].lower() in mutating
|
76c45a300773afe1313c1be36c07bc23b37c06f3
| 448,047 |
def merge(dict1,dict2):
"""
Returns a new dictionary merging (joining keys) dict1
and dict2.
If a key appears in only one of dict1 or dict2, the
value is the value from that dictionary. If it is in
both, the value is the sum of values.
Example: merge({'a':1,'b':2},{'b':3,'c':4}) returns
{'a':1,'b':5,'c':4}
Parameter dict1: The first dictionary to merge
Precondition: dict1 a dictionary with int or float values
Parameter dict2: The second dictionary to merge
Precondition: dict2 a dictionary with int or float values
"""
result = dict(dict1) # Makes a (shallow) copy
for k in dict2:
if k in dict1:
result[k] = result[k]+1
else:
result[k] = 1
return result
|
e542c33d84611485c8c18087d5bdad71e052749b
| 140,572 |
def _remove_lines_starting_with(string, start_char):
"""
Utility function that removes line starting with the given character in the
provided str.
:param data: the str to remove lines.
:param start_char: the character to look for at the begining of a line.
:returns: the string without the lines starting with start_char.
"""
data = ""
for line in string.split('\n'):
if not line.startswith(start_char):
data += line + '\n'
return data
|
59092b26601fe2b1e0038c21b1fc827dc8ce0fb8
| 60,458 |
def _default_converter(cls, value):
"""A default converter method that tries to deserialize objects."""
if isinstance(value, dict):
return cls.from_jsonld(value)
return value
|
12be1c65e413e2670e82a78dde096bb3a94f5078
| 552,935 |
def add_separator_argument(parser):
"""Add argument for setting table separator comma or tab
"""
parser.add_argument(
'-s', '--sep', choices=['TAB', ','], default='TAB',
help="Specify the field separator character in the library metadata file"
)
return parser
|
ba90c3bfa746329d6f42ee4d5ba48eddfe1f9ac6
| 394,814 |
def get_log_extra_item(log, item):
"""Returns an extra item from the logging object."""
return log.extra.get(item, 'unknown')
|
6e60d685eb28c7a37984043e1bb28d546303aab7
| 285,275 |
import requests
def gce_get_metadata(path):
"""Queries the GCE metadata server the specified value."""
return requests.get(
'http://metadata/computeMetadata/v1/{}'.format(path),
headers={
'Metadata-Flavor': 'Google'
}
).text
|
4cc6952275e27ee1317f9b6a7c70fadf155235af
| 394,381 |
def luminance_newhall1943(V, **kwargs):
"""
Returns the *luminance* :math:`R_Y` of given *Munsell* value :math:`V`
using *Sidney M. Newhall, Dorothy Nickerson, and Deane B. Judd (1943)*
method.
Parameters
----------
V : numeric
*Munsell* value :math:`V`.
\*\*kwargs : \*\*, optional
Unused parameter provided for signature compatibility with other
*luminance* computation objects.
Returns
-------
numeric
*luminance* :math:`R_Y`.
Notes
-----
- Input *Munsell* value :math:`V` is in domain [0, 10].
- Output *luminance* :math:`R_Y` is in domain [0, 100].
References
----------
.. [1] **Sidney M. Newhall, Dorothy Nickerson, and Deane B. Judd**,
*Final Report of the O.S.A. Subcommittee on the Spacing of the
Munsell Colors*,
*JOSA, Vol. 33, Issue 7, pp. 385-411 (1943)*,
DOI: http://dx.doi.org/10.1364/JOSA.33.000385
Examples
--------
>>> luminance_newhall1943(3.74629715382) # doctest: +ELLIPSIS
10.4089874...
"""
R_Y = 1.2219 * V - 0.23111 * (V * V) + 0.23951 * (V ** 3) - 0.021009 * (
V ** 4) + 0.0008404 * (V ** 5)
return R_Y
|
3806a6957aaca700f3f3477eaa33746b37c33249
| 671,322 |
import typing
from typing import TypeGuard
import asyncio
def is_async_iterator(obj: typing.Any) -> TypeGuard[typing.AsyncIterator[object]]:
"""Determine if the object is an async iterator or not."""
return asyncio.iscoroutinefunction(getattr(obj, "__anext__", None))
|
160d1dd2d5f1c9d6d2637e6006ae0ef268c7810f
| 32,050 |
import functools
import time
def profile(func):
"""Record the runtime of the decorated function"""
@functools.wraps(func)
def wrapper_timer(*args, **kwargs):
start = time.perf_counter_ns()
value = func(*args, **kwargs)
stop = time.perf_counter_ns()
print(f'{func.__name__} : {(stop - start)/1000_000_000} seconds')
return value
return wrapper_timer
|
d8b1d92c033a3033fd4171c5a3dda1087a7643f0
| 354,819 |
def ctof(temp_c):
"""Convert temperature from celsius to fahrenheit"""
return temp_c * (9/5) + 32
|
4357cb6d355d14c11b21bfe0bd4efc5c1e3b4703
| 49,167 |
def human_readable_size(filesize=0):
"""
Converts number of bytes from *filesize* to human-readable format.
e.g. 2048 is converted to "2 kB".
# Parameters:
filesize (int): The size of file in bytes.
# Return:
str: Human-readable size.
"""
for unit in ["", "k", "M", "G", "T", "P"]:
if filesize < 1024:
return "{} {}B".format(
"{:.2f}".format(filesize).rstrip("0").rstrip("."), unit
)
filesize = filesize / 1024
return "0 B"
|
37e54c9622394114c91059ed7c9236a8403c6a2f
| 144,217 |
def _create_database_sql(database_name):
"""Return a tuple of statements to create the database with the given name.
:param database_name: Database name
:type: str
:rtype: tuple
"""
tmpl = "create database {} with owner = dcc_owner template = template0 " \
"encoding = 'UTF8' lc_collate = 'C' lc_ctype = 'C'"
return tmpl.format(database_name),
|
48fc179d282750d162eb7544cf4b594d0e2f0729
| 645,176 |
import logging
def logger() -> logging.Logger:
"""Initialize a default logger for tests."""
log = logging.getLogger("test-logger")
log.setLevel(logging.CRITICAL)
return log
|
5e9f16998ec674eac19d25fc3bc45e68b7f14670
| 528,792 |
def unhex(s):
"""unhex(s) -> str
Hex-decodes a string.
Example:
>>> unhex("74657374")
'test'
"""
return s.decode('hex')
|
dcf2d6cd9c317b5eafd77e969272fcf753556403
| 694,014 |
def _column_number_to_letters(number):
"""
Converts given column number into a column letters.
Right shifts the column index by 26 to find column letters in reverse
order. These numbers are 1-based, and can be converted to ASCII
ordinals by adding 64.
Parameters
----------
number : int
Column number to convert to column letters.
Returns
-------
unicode
Column letters.
References
----------
:cite:`OpenpyxlDevelopers2019`
Examples
--------
# Doctests skip for Python 2.x compatibility.
>>> _column_number_to_letters(128) # doctest: +SKIP
'DX'
"""
assert 1 <= number <= 18278, (
'Column number {0} must be in range [1, 18278]!'.format(number))
letters = []
while number > 0:
number, remainder = divmod(number, 26)
if remainder == 0:
remainder = 26
number -= 1
letters.append(chr(remainder + 64))
return ''.join(reversed(letters))
|
c9a68bcd32c8f254af322bc61e447cfae61cb6d2
| 705,080 |
def wern_after_distillation(wA, wB):
"""Calculates the Werner parameter and success probabililty of distillation.
Parameters
----------
wA : float
Werner parameter of one of the two links.
wB : float
Werner parameter of the other link.
Returns
-------
Tuple (wern, prob)
Tuple of the Werner paramter after successful distillation, and the
probability that distillation is indeed successful.
"""
p_dist = (1 + wA * wB) / 2
w_dist = (1 + wA + wB + 5 * wA * wB) / (6 * p_dist) - 1/3
return w_dist, p_dist
|
5ec9a84f08e823160b1365fef1de8b1811d053c3
| 468,546 |
def matrix_dot(mat1, mat2):
"""Inner product for matrices
Compute the inner product between matrices as:
.. math:: \\mathrm{Trace}(M_1^T M_2)
Parameters
----------
mat1: 2d array
First matrix
mat2: 2d matrix
Second matrix
Returns
-------
dot: float
The matrix inner product.
"""
return (mat1 * mat2).sum()
|
85581405b51c1c13efb57da80a22e88322a38cea
| 533,051 |
import socket
def bindsocket(port, host=''):
"""
Creates a socket assigned to the IP address (host, port).
Parameters
----------
port : int
port assigned to the socket.
host : str, optional
host assigned to the socket. The default is ''.
Returns
-------
tcpsock : socket
socket connected at (host, port).
"""
tcpsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
tcpsock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
tcpsock.bind((host, port))
return tcpsock
|
48be29952a3d35af0ec0886e3ca332f9280384f1
| 13,175 |
def get_folders_from_params(advanced_args):
"""
Extracts and returns the list of file hash IDs from the input `advanced_args`. `folders` is an
expected property on `advanced_args`, if it does not exist, or it is empty, then an empty list
is returned instead.
"""
try:
if advanced_args['folders'] != '':
return advanced_args['folders'].split(';')
else:
return []
except KeyError:
return []
|
e74a57435c4e14c109f1c7905a65cb0315f7aa5f
| 196,211 |
def file_system_arn(arn):
"""
Converts an ARN to a file-system friendly string, so that it can be used for directory &
file names
"""
for source, dest in {":": "#", "/": "_", " ": "_"}.items():
arn = arn.replace(source, dest)
return arn
|
2c355a91e48a5ad87682e945d37f3b9c61311e46
| 44,528 |
def intensity( rgb ):
""" Returns the average value of the rgb pixel data.
Inputs:
-- rgb: rgb pixel array in the form [b,g,r]
Returns: average of the three values
"""
return int( (rgb[0] + rgb[1] + rgb[2])/3 )
|
31ee4138a9eca0d80e444bedd767c33e1911582f
| 443,262 |
def get_area_rect(length, width):
"""Returns area of rectangle
>>> get_area_rect(5 , 5)
25
>>> get_area_rect(5 , 0)
Traceback (most recent call last):
...
ValueError
>>> get_area_rect(5 , -1)
Traceback (most recent call last):
...
ValueError
"""
if(length <= 0) or (width <= 0):
raise ValueError
return length * width
|
6df6d1f075c4ff832800f88c0549555a29f65965
| 463,118 |
def reduceTuple(input_list):
""" Idea taken from https://www.geeksforgeeks.org/python-group-tuples-in-list-with-same-first-value/ """
out = {}
for elem in input_list:
try:
out[elem[0]].extend(elem[1:])
except KeyError:
out[elem[0]] = list(elem)
return [tuple(values) for values in out.values()]
|
099bee5a58ad70aa03123b28113c3c9d2170263a
| 552,808 |
def team_created_payload(team_default_payload):
"""Provide a team payload for creating a team."""
created_payload = team_default_payload
created_payload["action"] = "created"
return created_payload
|
105de6e28e2ff66f13289a5d67b406f3397f4fcf
| 335,483 |
from typing import Union
def hex_colour(colour: Union[str, int]) -> str:
"""
Converts the given representation of a colour to its RGB hex string.
As we are using a Discord dark theme analogue, black colours are returned as white instead.
"""
if isinstance(colour, str):
colour = colour if colour.startswith("#") else f"#{colour}"
else:
colour = f"#{colour:0>6X}"
return colour if colour != "#000000" else "#FFFFFF"
|
07512010c2b4a44ead8761b89ee648de7286dcf9
| 419,178 |
import torch
def reserve_nn_scores(similarities, nn_num):
"""Reserver top-k nearest neighbors' similarity scores
Args:
similarities (Matrix): test_num * train_num
Returns:
nn_scores (Matrix): only keep the scores of the top-k nearest neighbors
"""
scores = torch.FloatTensor(similarities)
# sorted each row, and get the index
# ascending order
sorted_scores, sorted_index = torch.sort(scores, 1, descending=True)
nn_scores = sorted_scores[:, 0:nn_num]
nn_index = sorted_index[:, 0:nn_num]
# only accept float32
nn_scores = torch.zeros(scores.size()).scatter_(1, nn_index, nn_scores)
# convert float32 to float64
return nn_scores.numpy().astype(float)
|
b3da2563c0ac56c9428167f7f6bb992556d826ce
| 60,195 |
def oneVoxelNoise(data, loc, scale=1.1):
"""applies 1-voxel scaling to the provided image matrix
The noise introduced is equivalent to a point magnification at the location
provided with scaled intensity equal to the value provided (default value is
an increase in intensity by 10%).
The location provided must be the same length or 1 fewer than the dimensions
of the data. When the location provided contains fewer dimensions than the
data matrix, the location is used to index the first dimensions, and noise
is applied across the entire last dimension.
Parameters
----------
data : ndarray
Image to be perturbed with D dimensions.
loc : list, tuple
List of coordinate locations for applying noise. Must be length D or D-1
scale : float
Multiplier for the signal at the target location. Default is 1.1
Returns
-------
data : ndarray
The perturbed data matrix with signal amplification by scale at location
loc.
"""
loc = tuple(loc) # Lists cannot be used to index arrays, but tuples can
if len(loc) < len(data.shape): # If fewer dimensions for location than data
data[loc, :] = data[loc, :] * (scale) # Apply noise
else:
data[loc] = data[loc] * (scale) # Apply noise
return data
|
eadf4383f5db6c7eb760f0acd6e487f5bb2fce5c
| 91,475 |
def _bytes_bytearray_to_str(s):
"""If s is bytes or bytearray, convert to a unicode string (PRIVATE)."""
if isinstance(s, (bytes, bytearray)):
return s.decode()
return s
|
675c9658b3512dbb9facbf865fe416a27c6dfd07
| 261,013 |
def unquote(s):
"""Strip single quotes from the string.
:param s: string to remove quotes from
:return: string with quotes removed
"""
return s.strip("'")
|
15d29698e6a3db53243fc4d1f277184958092bc6
| 7,561 |
def get_daily_thread(subreddit):
"""return submission containing 'daily' in the title"""
for submission in subreddit.hot(limit=5):
if "daily" in submission.title.lower():
return submission
|
6935290237f1d6e414182c5592beecb455a410b2
| 342,208 |
def parse_host(host):
"""
Parse *host* in format ``"[hostname:]port"`` and return :class:`tuple`
``(address, port)``.
>>> parse_host('localhost:4444')
('localhost', 4444)
>>> parse_host(':4444')
('', 4444)
>>> parse_host('4444')
('', 4444)
>>> parse_host('2001:db8::1428:57ab:4444')
('2001:db8::1428:57ab', 4444)
>>> parse_host('localhost')
ValueError: Invalid port number 'localhost'
"""
parts = host.split(':')
address = ':'.join(parts[:-1])
try:
port = int(parts[-1])
except ValueError:
port = None
if not port or port < 1 or port > 65535:
raise ValueError("Invalid port number '%s'" % port)
return address, port
|
7afa0ae098ba8161cc561ea9c75b057f93878806
| 342,925 |
import math
def radial_collide(item1, item2):
""" item1 and item2 are 3-tuples in the format of
(x, y, radius) for each object to test
"""
x_diff = item1[0] - item2[0]
y_diff = item1[1] - item2[1]
hit_radius = item1[2] + item2[2]
return math.hypot(x_diff, y_diff) < hit_radius
|
0e58976d9eae2565a8af46159b33d8538682e400
| 154,755 |
def boolean_color(mask, true_color='black', false_color='white',
name="face_color"):
"""Return a Series with colors replacing True and False."""
_mask = mask.copy()
result = _mask.apply(lambda x: true_color if x == True else false_color)
result.name = name
return result
|
58c9b08e14d74cb244a42a39aa7513b26a706a66
| 317,205 |
def _compute_subprefix(attr):
"""
Get the part before the first '_' or the end of attr including
the potential '_'
"""
return "".join((attr.split("_")[0], "_" if len(attr.split("_")) > 1 else ""))
|
9f91987a780d1d3c5d78745fd661608d22f247cf
| 247,502 |
import unicodedata
def phonenumber_from_raw_contact(raw_phone_string):
"""Parses a phone number from a raw contact string, which could include
unicode whitespaces.
e.g. " / 555-555-1959"
Arguments:
raw_phone_string {str} -- Raw unicode string that includes a phone number.
e.g. " / 555-555-1959"
Returns:
[str] -- Phone number as a string.
"""
phonenumber = unicodedata.normalize("NFKC", raw_phone_string).strip()
# Some phone numbers are prefixed with "(cell)", get rid of that
phonenumber = phonenumber.strip("(cell)") \
.strip(" – ")
return phonenumber
|
6ec7a67178f85062d001f4907b404331906d700a
| 424,846 |
import re
def only_numbers(string):
"""Return a string w only the numbers from the given string"""
return re.sub("\D", "", string)
|
99bf3aeae8a462c5f6b2f217445d8d2fc616984e
| 646,158 |
import torch
def rgb2yuv(rgb, device):
"""
Convert RGB image into YUV https://en.wikipedia.org/wiki/YUV
"""
rgb = ((rgb + 1) / 2) * 255.0
rgb_ = rgb.transpose(1, 3) # input is 3*n*n default
A = torch.tensor([[0.299, -0.14714119, 0.61497538],
[0.587, -0.28886916, -0.51496512],
[0.114, 0.43601035, -0.10001026]]).to(device) # from Wikipedia
yuv = torch.tensordot(rgb_, A, 1).transpose(1, 3)
yuv = yuv / 255.0
return yuv
|
689990a31bc6d02348c6427c1478e09d26da7f1d
| 99,111 |
import math
def lon2x(a):
""" Converts longitudinal co-ordinate to its web mercator equivalent"""
radius = 6378137.0 # in meters on the equator
return math.radians(a) * radius
|
923e8f92ec34c722b1bfb7355b0282d4019c2901
| 318,605 |
def join_plus(xs, check_non_empty=False):
"""
Concatenate strings with '+' to form legend label.
Parameters
----------
xs : list
List of strings
check_non_empty : bool
If True, assert that len(xs) > 0
Returns
-------
str
Concatenation of xs (e.g., "CPU + GPU")
Examples
--------
>>> join_plus(["CPU", "GPU"])
"CPU + GPU"
"""
if check_non_empty:
assert len(xs) != 0
return ' + '.join(sorted(xs))
# PROBLEM: this messes up the DQN plot for some reason...
# return " +\n".join(sorted(xs))
|
9fc9a086f24bc95c6b3a921810c4e1a8ec1f2bba
| 187,351 |
def unique_paths_with_obstacles(obstacle_grid: list[list[int]]) -> int:
"""
>>> print(unique_paths_with_obstacles([[0,0,0],[0,1,0],[0,0,0]]))
2
>>> print(unique_paths_with_obstacles([[0,1],[0,0]]))
1
>>> print(unique_paths_with_obstacles([[0,1,0],[0,0,0],[0,0,1]]))
0
"""
# If the obstacle grid is not given as input
if not obstacle_grid:
return 0
# If the starting tile is blocked there is no way to enter the grid
if obstacle_grid[0][0] == 1:
return 0
rows = len(obstacle_grid)
cols = len(obstacle_grid[0])
# Creating a 2D list to memorise unique paths to a tile
unique_paths = [[0 for col in range(cols)] for row in range(rows)]
# There is only one way to reach the starting the tile
unique_paths[0][0] = 1
# Finding no of ways to reach all the tiles in top row
for col in range(1, cols):
if obstacle_grid[0][col] == 1:
unique_paths[0][col] = 0
else:
unique_paths[0][col] = unique_paths[0][col - 1]
# Finding no of ways to reach all the tiles in left most column
for row in range(1, rows):
if obstacle_grid[row][0] == 1:
unique_paths[row][0] = 0
else:
unique_paths[row][0] = unique_paths[row - 1][0]
# Calculating no of unique paths for rest of the tiles
for row in range(1, rows):
for col in range(1, cols):
if obstacle_grid[row][col] == 1:
unique_paths[row][col] = 0
else:
unique_paths[row][col] = (
unique_paths[row - 1][col] + unique_paths[row][col - 1]
)
return unique_paths[-1][-1]
|
de854da00b5c7e8608dbc7f8a4d352fc61956f28
| 687,536 |
def id2num(s):
""" spreadsheet column name to number
http://stackoverflow.com/questions/7261936
:param s: str -- spreadsheet column alpha ID (i.e. A, B, ... AA, AB,...)
:returns: int -- spreadsheet column number (zero-based index)
>>> id2num('A')
0
>>> id2num('B')
1
>>> id2num('XFD')
16383
>>>
"""
n = 0
for ch in s.upper():
n = n * 26 + (ord(ch) - 65) + 1
return n - 1
|
a1966821557324a0e95568bf0f63207d8cd3f350
| 16,886 |
import math
def length(k):
"""Finds length of k in bits
Arguments:
k {int} -- Integer number
"""
return int(math.log2(k) + 1)
|
801863f985d48881a687e339fe96b3725a59f3f6
| 530,582 |
import requests
import json
def create_network(platform, key, cli_id, desired_name, desired_type):
"""
Sends a post request containing the information required to create that new network.
:param platform: URL for RiskSense Platform to be posted to
:type platform: str
:param key: API Key
:type key: str
:param cli_id: Client ID associated with the network to be created.
:type cli_id: int
:param desired_name: Desired name for the new network.
:type desired_name: str
:param desired_type: Type for the new network. "IP" or "HOSTNAME"
:type desired_type: str
:return: New network's attributes.
:rtype: dict
"""
# Assemble the URL for the API call
url = platform + "/api/v1/client/" + str(cli_id) + "/network/"
# Define the header for the API call
header = {
"x-api-key": key,
"content-type": "application/json",
"Cache-Control": "no-cache"
}
# Define the body for the API call. This is where we define the name and
# type of the network to be created.
body = {
"name": desired_name,
"type": desired_type
}
# Send API request to the platform
raw_response = requests.post(url, headers=header, data=json.dumps(body))
# If platform reports Success
if raw_response and raw_response.status_code == 201:
json_response = json.loads(raw_response.text)
# If request is unsuccessful...
else:
print(f"There was an error creating the network.")
print(f"Response Status Code: {raw_response.status_code}")
print(f"Response Text: {raw_response.text}")
exit(1)
return json_response
|
c97adaf150cc798a7b8771c0b96338a9d611967b
| 540,635 |
def _get_reaction_key(functional_groups):
"""
Return a key for :data:`._reactions`
Parameters
----------
functional_groups : :class:`iterable`
An :class:`iterable` of :class:`.GenericFunctionalGroup`.
The correct reaction must be selected for these functional
groups.
Returns
-------
:class:`.frozenset`
A key for :data:`_reactions`, which maps to the correct
reaction.
"""
return frozenset(
functional_group.get_num_bonders()
for functional_group in functional_groups
)
|
0dd855b6067830554332b5653410ed9940c0cd72
| 258,824 |
def delta(n_1, n_2) -> int:
"""Kronicka-delta function, yields 1 if indexing is the same, else zero."""
if n_1 == n_2:
return 1
else:
return 0
|
7ef01ef20ba0aff7f360eddb6d64873556116788
| 620,479 |
def second_smallest(numbers):
"""Find second smallest element of numbers."""
m1, m2 = float('inf'), float('inf')
for x in numbers:
if x <= m1:
m1, m2 = x, m1
elif x < m2:
m2 = x
return m2
|
0ca7b297da68651e4a8b56377e08f09d4d82cfb7
| 706,279 |
from typing import Set
def slate_teams(slate: dict) -> Set[str]:
"""Gets teams on given slate
Args:
slate (dict): the slate document
Returns:
Set[str]
"""
return set([sp['team'] for sp in slate['slatePlayers']])
|
96efae352a7094a1c0e7d339386b53adfe135ca4
| 110,453 |
def compute_M1_nl(formula, abundance):
"""Compute intensity of the second isotopologue M1.
Handle element X with specific abundance.
Parameters
----------
formula : pyteomics.mass.Composition
Chemical formula, as a dict of the number of atoms for each element:
{element_name: number_of_atoms, ...}.
abundance : dict
Dictionary of abundances of isotopes:
{"element_name[isotope_number]": relative abundance, ..}.
Returns
-------
float
Value of M1.
Notes
-----
X represents C with default isotopic abundance.
"""
M1_intensity = (
(formula["C"] * abundance["C[12]"]**(formula["C"]-1)
* abundance["C[13]"]
* abundance["X[12]"]**formula["X"]
* abundance["H[1]"]**formula["H"]
* abundance["N[14]"]**formula["N"]
* abundance["O[16]"]**formula["O"]
* abundance["S[32]"]**formula["S"])
+ (formula["X"] * abundance["C[12]"]**formula["C"]
* abundance["X[12]"]**(formula["X"]-1) * abundance["X[13]"]
* abundance["H[1]"]**formula["H"]
* abundance["N[14]"]**formula["N"]
* abundance["O[16]"]**formula["O"]
* abundance["S[32]"]**formula["S"])
+ (formula["H"] * abundance["C[12]"]**formula["C"]
* abundance["X[12]"]**formula["X"]
* abundance["H[1]"]**(formula["H"]-1) * abundance["H[2]"]
* abundance["N[14]"]**formula["N"]
* abundance["O[16]"]**formula["O"]
* abundance["S[32]"]**formula["S"])
+ (formula["N"] * abundance["C[12]"]**formula["C"]
* abundance["X[12]"]**formula["X"]
* abundance["H[1]"]**formula["H"]
* abundance["N[14]"]**(formula["N"]-1) * abundance["N[15]"]
* abundance["O[16]"]**formula["O"]
* abundance["S[32]"]**formula["S"])
+ (formula["O"] * abundance["C[12]"]**formula["C"]
* abundance["X[12]"]**formula["X"]
* abundance["H[1]"]**formula["H"]
* abundance["N[14]"]**formula["N"]
* abundance["O[16]"]**(formula["O"]-1) * abundance["O[17]"]
* abundance["S[32]"]**formula["S"])
+ (formula["S"] * abundance["C[12]"]**formula["C"]
* abundance["X[12]"]**formula["X"]
* abundance["H[1]"]**formula["H"]
* abundance["N[14]"]**formula["N"]
* abundance["O[16]"]**formula["O"]
* abundance["S[32]"]**(formula["S"]-1) * abundance["S[33]"])
)
return M1_intensity
|
8c1ec0f2bcdf5c097a500d57ab20ef03a6443a89
| 232,023 |
def vorf_str_to_set(vorf):
"""
Convert a Vorf string into a Python set with the Vorf values in it,
appropriately quoted.
"""
bits = [x.strip() for x in vorf.split(',')]
bits_str = ["'{}'".format(x) for x in bits]
return "{%s}" % ', '.join(bits_str)
|
c3406422d0f214cd2298651e7cd324aeb8f4bb43
| 563,665 |
def describe_result(result):
""" Describe the result from "import-results" """
status = result['status']
suite_name = result['suite-name']
return '%s %s' % (status, suite_name)
|
1c7daa6df6bc5ce2267dc602002da4ab741f407f
| 310,761 |
def getOrCreateNew(couchServer, dbName):
""" Get a couch Database object given dbName. If dbName is not existed,
create a new database.
"""
try:
db = couchServer[dbName]
except: # couchdb.http.ResourceNotFound
db = couchServer.create(dbName)
return db
|
54741eb436761dd1caccb320a6059584f31a5ad1
| 387,875 |
def get_primary_key_column_names(model):
"""
Returns the constituent column names for the primary key of the given
model.
Args:
model (class or object): The given model class or model instance.
Return:
list: Primary key column names as a list of strings.
"""
return [column.name for column in model.__table__.primary_key.columns]
|
369bf25022458b9f861f0e1af695e2ce05dede1e
| 314,843 |
def unmap_address(library, session):
"""Unmap memory space previously mapped by map_address().
Corresponds to viUnmapAddress function of the VISA library.
Parameters
----------
library : ctypes.WinDLL or ctypes.CDLL
ctypes wrapped library.
session : VISASession
Unique logical identifier to a session.
Returns
-------
constants.StatusCode
Return value of the library call.
"""
return library.viUnmapAddress(session)
|
6420df343a3704f9747a91289f3ebeb69866a310
| 469,238 |
import re
def clean(s):
"""
Cleans given string from non-relevant information: links, punctuation, etc.
:param s: raw string
:return: cleaned string
"""
s = re.sub(r"https\S+", " ", s)
s = re.sub(r"^\s+|\n|\r|\t|\s+$", " ", s)
s = re.sub(r"[^\w\s\d]", " ", s)
s = re.sub(r"\s{2,}", " ", s)
return s.lower().strip()
|
4d5d0ab6119456d131e2cba58dfed77dc9c9bdaa
| 486,079 |
def count_distinct(collection, key, exclude=None):
"""Get the number of distinct values for key in the specified database collection"""
values = collection.distinct(key)
if exclude is not None and exclude in values:
values.remove(exclude)
return len(values)
|
894428df0a3d913963c33ce2940c01305a5b700e
| 625,073 |
def make_simple_preprocessor(obj):
"""Factory that makes a function that accepts (step, context) and returns the given obj as *args and no kwargs.
:param obj: Any object.
:return: A function that accepts (step, context) paramteres and returns a tuple (*args, **kwargs) in the
following form:
(
(obj,),
{}
)
"""
return lambda step, context: ((obj,), {})
|
3b7ff8b9a92102480e2b0fb12b251863ec19d7ec
| 390,289 |
def left_part_of(txt, sub_txt, n=1):
"""
Return the left part before the nth of sub_txt appeared in txt.
:param txt: text
:param sub_txt: separate text
:param n: the nth of sub_txt(default:1)
"""
parts = txt.split(sub_txt)
return sub_txt.join(parts[:n])
|
af99d668038d62581792612ec189d15104b31cbf
| 620,309 |
def is_second_run(command):
"""It's second run of `fudge`?"""
return command.script.startswith('fudge')
|
d89335c3390bef8dc9b295f6e982bb7295cd80c8
| 362,029 |
import random
import string
def random_string(size=60):
"""Generates a random alphanumeric string for a given size"""
return ''.join(random.choice(string.ascii_letters + string.digits) for i in range(size))
|
0deae6d46bd09808df105e63a0e30323167fcc1f
| 239,744 |
from typing import Dict
from typing import List
def _continuous_columns(feature_types: Dict) -> List[str]:
"""
Parameters
----------
feature_types : Dict
Column name mapping to list of feature types ordered by most to least relevant.
Returns
-------
List[str]
List of columns that have continuous or ordinal in the feature type list.
Note
____
if a column has both ordinal/continuous and categorical pick whichever comes first.
"""
continuous_cols = []
for col in feature_types:
for feature_type in feature_types[col]:
if feature_type == "continuous" or feature_type == "ordinal":
continuous_cols.append(col)
break
if feature_type == "category":
break
return continuous_cols
|
d21b02f949a5c658defeaaa67a0abec916373f0d
| 689,242 |
def is_targeting_windows(pkg_vars):
"""Returns true if 'platform' in pkg_vars indicates Windows."""
return pkg_vars['platform'].startswith('windows-')
|
83ee031170327348c57b50c86739c876e9f9f8f4
| 617,551 |
import torch
def check_GPU_availability(cuda_n=0):
"""
Checks if GPU is available
:return: avilable device name
"""
if torch.cuda.is_available(): # Check we're using GPU
torch.backends.cudnn.deterministic = True
device = 'cuda:%s' %(cuda_n)
else:
device = 'cpu'
return device
|
0b8edaa5dce24c1cfeba58e96e6923a883b24b84
| 238,645 |
def recursive_array_addition(l:list):
"""Sum an array of integers using recursion."""
if len(l) == 0:
return 0
else:
i = l.pop()
return i + recursive_array_addition(l)
|
05b88afc8a2deadb9fafb4170aecc31128743cc3
| 584,139 |
def _process_imp(imp_df, imp_name):
"""
Preprocessing on the input feature importance dataframe
:param imp_df: feature importance pandas dataframe
:param imp_name: column name of the importance value
:return:
dataframe with relative_imp and feat_rank
"""
imp_df = imp_df.sort_values(
by=imp_name,
ascending=False).reset_index(
drop=True)
imp_df['relative_imp'] = imp_df[imp_name] * 1.0 / imp_df[imp_name].max()
imp_df['relative_imp'] = imp_df['relative_imp'].apply(
lambda x: round(x, 3))
imp_df['feat_rank'] = imp_df.index.values + 1
return imp_df
|
81a0253bee9c1aed746bf374ddf771ed691101a2
| 450,346 |
def _unary_apply(op, value):
"""
Constructs a Weld string to apply a unary function to a scalar.
Examples
--------
>>> _unary_apply("sqrt", "e")
'sqrt(e)'
"""
return "{op}({value})".format(op=op, value=value)
|
b5c69fc278e5b0453140e23ff21c1d1c8860ee2e
| 131,679 |
def calc_max_min_marks(marks):
""" Function which returns the minimum(excluding 0) and maximum score of the class in the form of a list. """
result = []
marks.sort()
min_max = []
min_max[:] = (value for value in marks if value != 0)
least_score = min_max[0]
highest_score = min_max[-1]
result.append(least_score)
result.append(highest_score)
return result
|
92c6581ea2d967772cda043adee5c5d5ce893335
| 53,528 |
def elementwise_residual(true_val, pred_val):
"""The residual between a single true and predicted value.
Parameters
----------
true_val : float
True value.
pred_val : float
Predicted value.
Returns
-------
residual : float
The residual, true minus predicted
"""
return true_val - pred_val
|
e1eb2434b1d24032f3b7abc1233c165d7146ffff
| 71,487 |
import re
def _SanitizeRepositoryName(name):
"""Sanitizes the given name to make it valid as an image repository.
As explained in
https://docs.docker.com/engine/reference/commandline/tag/#extended-description,
Valid name may contain only lowercase letters, digits and separators.
A separator is defined as a period, one or two underscores, or one or more
dashes. A name component may not start or end with a separator.
This method will replace the illegal characters in the given name and strip
starting and ending separator characters.
Args:
name: str, the name to sanitize.
Returns:
A sanitized name.
"""
return re.sub("[._][._]+|[^a-z0-9._-]+", ".", name.lower()).strip("._-")
|
d6785746a85143a9aff97acbacf76347501c0f9d
| 169,052 |
def _CreateActionsText(text, igm_field, action_types):
"""Creates text presented at each wait operation for given IGM field.
Args:
text: the text associated with the field.
igm_field: reference to a field in the Instance Group Manager.
action_types: array with field values to be counted.
Returns:
A message with given field and action types count for IGM.
"""
actions = []
for action in action_types:
action_count = getattr(igm_field, action, 0)
if action_count > 0:
actions.append('{0}: {1}'.format(action, action_count))
return text + ', '.join(actions) if actions else ''
|
2eb42dd58efccbc18dc827bb6582204eb7808144
| 609,513 |
def pick_latest_version(versions):
"""Returns the higher version available in the given list of versions.
versions:
Array of strings with the availalbe versions.
"""
def from_string(version):
return tuple(int(part) for part in version.split('.'))
def to_string(version):
return '.'.join(str(part) for part in version)
int_versions = [from_string(version) for version in versions]
latest = max(int_versions)
return to_string(latest)
|
550baba8d9d33dcff91f1572b046edfcb48deed5
| 245,006 |
import yaml
def write_watchlist(watchlist):
""" Writes the current watchlist to yaml file """
with open('data.yaml', 'w') as file:
return yaml.dump(watchlist, file)
|
29e4bf0150220bf22a937666f1a4839b9997cda9
| 211,669 |
def calc_accu(a, b):
"""
Returns the accuracy (in %) between arrays <a> and <b>. The two arrays must
be column/row vectors.
"""
a = a.flatten()
b = b.flatten()
accu = 100.0 * (a == b).sum() / len(a)
return accu
|
3f91e0805b3fc950da0ae02b34c8c0fb383e78c6
| 668,067 |
def fix_bases_mask(bases_mask,barcode_sequence):
"""Adjust input bases mask to match actual barcode sequence lengths
Updates the bases mask string extracted from RunInfo.xml so that the
index read masks correspond to the index barcode sequence lengths
given e.g. in the SampleSheet.csv file.
For example: if the bases mask is 'y101,I7,y101' (i.e. assigning 7
cycles to the index read) but the barcode sequence is 'CGATGT' (i.e.
only 6 bases) then the adjusted bases mask should be 'y101,I6n,y101'.
Arguments:
bases_mask: bases mask string e.g. 'y101,I7,y101','y250,I8,I8,y250'
barcode_sequence: index barcode sequence e.g. 'CGATGT' (single
index), 'TAAGGCGA-TAGATCGC' (dual index)
Returns:
Updated bases mask string.
"""
# Split barcode sequence string into components
indexes = barcode_sequence.split('-')
# Check input reads
reads = []
i = 0
for read in bases_mask.split(','):
new_read = read
if read.startswith('I'):
input_index_length = int(read[1:])
try:
actual_index_length = len(indexes[i])
except IndexError:
# No barcode for this read
actual_index_length = 0
if actual_index_length > 0:
new_read = "I%d" % actual_index_length
else:
new_read = ""
if input_index_length > actual_index_length:
# Actual index sequence is shorter so adjust
# bases mask and pad with 'n's
new_read = new_read + \
'n'*(input_index_length-actual_index_length)
i += 1
reads.append(new_read)
# Assemble and return updated index tags
return ','.join(reads)
|
ef3d7dd18ae338b6e4f92412085a2eb56c3e5514
| 486,999 |
def anagram(word_1: str,
word_2: str) -> bool:
"""Anagram check example
:param word_1: {str}
:param word_2: {str}
:return: {bool}
"""
word_1 = word_1.lower()
word_2 = word_2.lower()
return sorted(word_1) == sorted(word_2)
|
6e99ebb0659fb4f81414f2dd552f854d52d61a0d
| 669,562 |
import requests
def _download_index(category, index_url):
"""
Download the index.
:param category: suffixed category, e.g. 'filters', 'templates'
:param index_url: url to the index. Default: 'https://raw.githubusercontent.com/pandoc-extras/packages/master/<category>.yaml'
:return: the content of the index, which is in YAML
"""
if index_url is None:
index_url = 'https://raw.githubusercontent.com/pandoc-extras/packages/master/{}.yaml'
url = index_url.format(category)
r = requests.get(url)
if r.status_code != 200:
raise IOError("Cannot download index, error {}".format(r.status_code))
return r.text
|
190a4b39f962cae43d281fa91d1614cbebaa681a
| 50,209 |
def temba_compare_contacts(first, second):
"""
Compares two Temba contacts to determine if there are differences.
These two contacts are presumably referencing the same contact,
but we need to see if there are any differences between them.
Returns name of first difference found, one of 'name' or 'urns' or
'groups' or 'fields', or None if no differences were spotted.
"""
if first.uuid != second.uuid: # pragma: no cover
raise ValueError("Can't compare contacts with different UUIDs")
if first.name != second.name:
return 'name'
if sorted(first.urns) != sorted(second.urns):
return 'urns'
if sorted(first.groups) != sorted(second.groups):
return 'groups'
if first.fields != second.fields:
return 'fields'
return None
|
929460f61103ffda542f2e09c3d7dc0ff1e0d83a
| 451,787 |
def get_application_instance_name(application):
"""
Return the name of the application instance.
"""
return "{}-{}".format(application.image.project.name, application.name)
|
e877677b831740f7bd156dc840593e69e185e411
| 649,778 |
import string
def first_int(s):
"""Return the first integer in a string, or None"""
# This technique appears to be faster than the re-based method
# by almost an order of magnitude. Prefer it
ret = ''
for c in s:
if c in string.digits:
ret += c
else:
break
if len(ret) > 0:
return int(ret)
else:
return None
|
63499dfd382836571690dc34c80d7a9b319ecb49
| 594,193 |
def hashable(x):
"""Check if an object is hashable. Hashable objects will usually be
immutable though this is not guaranteed.
Parameters
----------
x: object
The item to check for hashability.
Returns
-------
bool: True if `x` is hashable (suggesting immutability), False otherwise.
"""
try:
_ = hash(x)
return True
except TypeError:
return False
|
81abc4ba519cf39c8447c17716bd723b81475b57
| 374,532 |
from io import StringIO
import csv
def data_to_string(data):
"""Write a list of dicts as a CSV string
Args:
data (list): A list of dicts, one per CSV row
Returns:
str: The stringified csv data, with a header row
"""
with StringIO() as fout:
fieldnames = data[0].keys()
writer = csv.DictWriter(fout, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(data)
return fout.getvalue()
|
416e285379244fd01463270899560fe3b11c9277
| 320,286 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.