content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def make_italic(text: str) -> str:
"""Returns the text surrounded by *"""
return "*" + text + "*"
|
d3b150bc9bc42f0dbcd6c61e492c837430217260
| 319,579 |
def interpret_line(line, splitter=','):
"""
Split text into arguments and parse each of them to an appropriate format (int, float or string)
Args:
line: text line
splitter: value to split by
Returns: list of arguments
"""
parsed = []
elms = line.split(splitter)
for elm in elms:
try:
# try int
el = int(elm)
except ValueError as ex1:
try:
# try float
el = float(elm)
except ValueError as ex2:
# otherwise just leave it as string
el = elm.strip()
parsed.append(el)
return parsed
|
0f51c08484dfd126b59d89231b072523fea4e72a
| 588,378 |
def load_lines(text_file):
"""
Reads the text file and returns a list of lines.
"""
lines = []
with open(text_file, encoding='utf-8') as text:
for line in text:
lines.append(line.strip())
return lines
|
8de0a3b1cfd9a4c0b59c6bd5f7510ffc45de11f6
| 196,982 |
def blksLeftStakeWindow(height, netParams):
"""
Return the number of blocks until the next stake difficulty change.
Args:
height (int): Block height to find remaining blocks from.
netParams (module): The network parameters.
Returns:
int: The number of blocks left in the current window.
"""
window = netParams.StakeDiffWindowSize
# Add one to height, to account for the genesis block.
return window - (height + 1) % window
|
b0dcfc6747aec4a7c9e580a24dda80a32b9e5f03
| 645,807 |
def parse_intf_status(lines):
"""
@summary: Parse the output of command "show interface description".
@param lines: The output lines of command "show interface description".
@return: Return a dictionary like:
{
"Ethernet0": {
"oper": "up",
"admin": "up",
"alias": "etp1",
"desc": "ARISTA01T2:Ethernet1"
},
...
}
"""
result = {}
for line in lines:
fields = line.split()
intf = fields[0]
oper, admin, alias, desc = None, None, None, None
if len(fields) == 4: # when port description is empty string ""
oper, admin, alias, desc = fields[1], fields[2], fields[3], ''
if len(fields) > 4:
oper, admin, alias, desc = fields[1], fields[2], fields[3], ' '.join(fields[4:])
if oper and admin and alias:
result[intf] = {"oper": oper, "admin": admin, "alias": alias, "desc": desc}
return result
|
dfc4590f0659fea16daac31e01c9beeae98d590f
| 672,017 |
def adjustNumberInRange(x: float) -> float:
"""Adjust number into range (0,100)"""
if x <= 0:
return 1e-12
if x >= 100:
return 100 - 1e-12
return x
|
3cb16d47a3b69972764473d05dd4963f47eb4090
| 585,429 |
def _generate_payload(sentence):
"""
Helper function to prep the payload data structure. Also a good
place to manipulate the payload (e.g., lower-casing if needed)
Args:
sentence: sentence to be used for the inference (str)
Returns:
dictionary of the prediction payload, the input data is nested below a
"instances" key as a list of dicts with the different input tensors
More details: https://cloud.google.com/ml-engine/docs/v1/predict-request
"""
return {"instances": [{"sentence": sentence}]}
|
9a85a111752c27570c130b78e1de2971448e2bcf
| 432,489 |
def is_odd(n):
"""Returns True if n is odd, and False if n is even.
Assumes integer.
"""
return bool(n & 1)
|
7cc975feb89fa6dcc847342ec1b4b50371a81446
| 516,082 |
def is_git_repo(template_repo):
""" Returns True if the template_repo looks like a git repository. """
return template_repo.startswith("git@") or \
template_repo.startswith("https://")
|
ef7454846afde986f635ed23b32dff561f2404df
| 324,900 |
def fromSecondsToHMS(seconds):
"""from seconds to Hour:Minute:Sencond"""
seconds = int(seconds)
seconds_per_hour = 60 * 60
seoncds_per_minute = 60
hour = seconds / seconds_per_hour
minute = (seconds % seconds_per_hour) / seoncds_per_minute
second = seconds % seconds_per_hour % seoncds_per_minute
return '%s:%s:%s' % (hour, minute, second)
|
1ac3568d1e20b5bff4458b9f42e3ebc61580fd51
| 196,395 |
def is_close(a, b, rel_tol=1e-09, abs_tol=0.0):
"""
Determines whether one float value is approximately equal or "close"
to another float value.
Copied from PEP 485.
Args:
a (float): Specifies the first value to be tested for relative
closeness.
b (float): Specifies the second value to be tested for relative
closeness.
rel_tol (float): Specifies the relative tolerance -- it is the
amount of error allowed, relative to the larger absolute
value of a or b. For example, to set a tolerance of 5%, use
rel_tol=0.05. The default tolerance is 1e-9, which assures
that the two values are the same within about 9 decimal
digits. rel_tol must be greater than 0.0.
abs_tol (float): Specifies a minimum absolute tolerance level --
useful for comparisons near zero.
Returns:
bool: Indicates whether the first float value is approximately
equal or "close" to the second float value.
"""
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
|
eb0cf402504882ed90ea238b0a86a7d821cec258
| 142,254 |
def eval_overlap(n1, n2):
"""
Return a tuple containing the number of matches (resp.,
mismatches) between a pair (n1,n2) of overlapping reads
"""
hang1 = n2["begin"] - n1["begin"]
overlap = zip(n1["alleles"][hang1:], n2["alleles"])
match = mismatch = 0
for (c1, c2) in overlap:
if c1 == c2:
match += 1
else:
mismatch += 1
return match, mismatch
|
fa6a64897849f3d3671e854bd18bde25e6455905
| 416,392 |
import tempfile
def create_temporary_vocab_file(words, counts=None):
"""
Creates a temporary vocabulary file.
Args:
words: List of words in the vocabulary
Returns:
A temporary file object with one word per line
"""
vocab_file = tempfile.NamedTemporaryFile()
if counts is None:
for token in words:
vocab_file.write((token + "\n").encode("utf-8"))
else:
for token, count in zip(words, counts):
vocab_file.write("{}\t{}\n".format(token, count).encode("utf-8"))
vocab_file.flush()
return vocab_file
|
fab87ac9153259e56ca2c0ecd6915ff0185c5845
| 192,620 |
def builddict(fin):
"""
Build a dictionary mapping from username to country for all classes.
Takes as input an open csv.reader on the edX supplied file that lists
classname, country, and username and returns a dictionary that maps from
username to country
"""
retdict = {}
for course, country, username in fin:
if username not in retdict:
retdict[username] = country
return retdict
|
ddf9272e0da6616abd0495b7b159807a36a83dcc
| 702,628 |
import re
def parse_full_section(section_name, docs):
"""
Find warning defined in the documentation.
Parameters
----------
docs : str
Returns
-------
str or None
Returns warnings from documentation or ``None`` if
function didn't find it.
"""
parser = re.compile(r"{}\s+-+\s+(?P<section_text>(.*\n)+?)\s+"
# Here we try to find next section title or
# the end of the documentation
r"([\w\ ]+\n\s+-+\s+|$)"
r"".format(section_name))
parsed_doc_parts = parser.findall(docs)
if not parsed_doc_parts:
return None
section_text_block = parsed_doc_parts[0]
full_section_text = section_text_block[0]
# Regexp can catch multiple `\n` symbols at the and of
# the section. For this reason we need to get rid of them.
return full_section_text.rstrip()
|
5cf967b132ac1fb1412b658799a80b3f9659e60d
| 569,099 |
def is_pokemon_included(pokemon:str, team:str) -> int:
"""
A helper function to check if a pokemon is in a certain team
Returns 1 if the pokemon is in the team, 0 otherwise
"""
if pokemon.strip().lower() in team:
return 1
else:
return 0
|
9e5a7bcdb09bd50be8198f542ad673ef8cfd60a3
| 524,440 |
def calc_scale1fb(xs, sum_weights):
"""
Given xs (in pb) and sum of gen weights,
calculate scale1fb.
:param xs: cross section (in pb)
:type xs: float
:param sum_weights: sum of gen weights
:type sum_weights: float
:return: scale1fb
:rtype: float
"""
if xs <= 0:
return -1
else:
return (xs * 1000.) / sum_weights
|
c0da32b1a706ff9d6a841935a625a535fd8b96c8
| 491,786 |
import re
def find_gaps(seq):
"""
Accepts a string and returns the positions of all of the gaps in the sequence
:param seq: str
:return: list of [start,end] of all of the gaps
"""
match = re.finditer(r"-+", seq)
positions = []
for m in match:
positions.append([m.start(),m.end()])
return positions
|
b57d28837dd81cf446eb7fae7a94b1594214187f
| 480,783 |
def refractivity_dry_continuum(ν, θ, pd, e):
"""Complex refractivity due to dry air continuum terms.
ν GHz frequency at which refractivity is evaluated
θ - reciprocal temperature
pd hPa pressure of dry air
e hPa pressure of water vapor
Liebe et al. (1993).
"""
S0 = 6.14e-11 * pd * θ*θ
γ0 = 0.56e-3 * (pd+e) * θ**0.8
F0 = -ν/(ν + 1j*γ0)
Sn = 1.40e-18 * pd*pd * θ**3.5
Fn = ν/(1 + 1.9e-5*ν**1.5)
return S0*F0 + 1j*Sn*Fn
|
386c12ab130368761e88897a0d0d775b43c8a323
| 346,738 |
def remove_prior(dataframe, include_prior):
"""If include_prior is False. Drops the prior features from dataframe."""
# The prior is included in the data by default.
if not include_prior:
print('Removing prior speaking labels from training features.')
return dataframe.drop(
[c for c in dataframe.columns if 'prior' in c],
axis=1,
)
return dataframe
|
8aa2409cf6996779455c332fc1d7c5e9f66fdfee
| 140,531 |
import functools
def sorted_data(func):
"""Decorator to sort data passed to stats functions."""
@functools.wraps(func)
def inner(data, *args, **kwargs):
data = sorted(data)
return func(data, *args, **kwargs)
return inner
|
7b2ee9668a875e8716edb4e83fc8e59b7f287314
| 591,169 |
def indent(str, level):
"""
Returns string where each line is indented by the given level in tabs.
"""
if level == 0: return str
return "\n".join("\t" * level + line for line in str.splitlines())
|
96ad7f3aed849a731e877641bf69ec3f8936e085
| 131,814 |
import math
def two_strong_shocks(left, right, g):
"""
Pressure at the interface of the Riemann problem in the case of two strong shocks
Input:
left - Primitive variables on the left side
right - Primitive variables on the right side
g - Adiabatic index
"""
dl = left.Density
vl = left.Velocity
dr = right.Density
vr = right.Velocity
return (dl*dr*(1 + g)*(vl - vr)**2)/(2.*(math.sqrt(dl) + math.sqrt(dr))**2)
|
597587dfdac77cef7856fec7d48038185c2c3f69
| 217,383 |
def excel_column_name(n):
"""Number to Excel-style column name, e.g., 1 = A, 26 = Z, 27 = AA, 703 = AAA."""
name = ''
while n > 0:
n, r = divmod (n - 1, 26)
name = chr(r + ord('A')) + name
return name
|
46d97f35dd2bf053483550851fbd836d0325f118
| 427,421 |
def ea_from_rhmax(e_tmin, rh_max):
"""
Calculates actual vapour pressure [kPa] from maximum relative humidity
using FAO equation (18).
Arguments:
e_tmin - saturation vapour pressure at daily minimum temperature [kPa]
rh_max - maximum relative humidity [%]
"""
# Raise exceptions:
if (rh_max < 0 or rh_max > 100):
raise ValueError, 'RH_max=%g is not in range 0-100' % rh_max
return e_tmin * (rh_max / 100.0)
|
0679cf1de4b71e4b722be718c190ae416db49ea5
| 448,981 |
def ejer51a(polls):
""" Dado un dataframe calcula el número de personas según el nivel de preocupación (concern very, somewhat,...)
y categoriza las entrevistas por aquellas realizadas estrictamente antes del 2020-09-01, o después
:param polls: Un dataframe de entrevistas intersectado con su entrevistador
:return: El dataframe de entrada con las columnas `n_very`, `n_somewhat`, `n_not_very`, `n_not_at_all` y `date_group`
"""
def set_date_group(row):
row["date_group"] = "Before 2020-09-01" if row["end_date"] < "2020-09-01" else "After 2020-09-01"
return row
df51a = polls.apply(set_date_group, axis=1) # Generate date_group column
df51a["n_very"] = df51a["very"] / 100 * df51a["sample_size"]
df51a["n_somewhat"] = df51a["somewhat"] / 100 * df51a["sample_size"]
df51a["n_not_very"] = df51a["not_very"] / 100 * df51a["sample_size"]
df51a["n_not_at_all"] = df51a["not_at_all"] / 100 * df51a["sample_size"]
return df51a
|
5bd37bfd19a2cf91453fb54d5ede4ecc0a7db16b
| 311,713 |
def soft_capitalize(string: str):
"""Capitalizes string without affecting other chars"""
return f"{string[0].upper()}{string[1:]}"
|
9cfadc1b5fb51e88625eaad2f64fe3812d226a10
| 671,861 |
def s_polynomial(f, g, order):
"""
Return S-polynomial of f and g with respect to the order.
S(f, g) = (lc(g)*T/lb(f))*f - (lc(f)*T/lb(g))*g,
where T = lcm(lb(f), lb(g)).
"""
f_lb, f_lc = order.leading_term(f) # term = (base, coeff)
g_lb, g_lc = order.leading_term(g)
t = f_lb.lcm(g_lb)
return f.term_mul((t - f_lb, g_lc)) - g.term_mul((t - g_lb, f_lc))
|
ec58d4ea179a89b4cfdb2615d69f80fb59aa4e4b
| 139,932 |
def _grad_j(q_j, A_j, b_j, b_j_norm, a_1_j, a_2_j, m):
"""Compute the gradient with respect to one of the coefficients."""
return (A_j.t() @ q_j / (-m)) + (b_j * (a_1_j / b_j_norm + a_2_j))
|
d051883d848386af9eeb40a10029351158b075c0
| 651,750 |
def Drop(x, **unused_kwargs):
"""Drops one element."""
del x # Just for the compiler.
return ()
|
0dfb948270351f0f36d99c3748a0d64efd5845c5
| 581,261 |
def store_decorators(decorators):
"""Sets a list of decorators as the attribute `_decorators` on a
function.
This is for the purpose of applying decorators to a higher-level
wrapping function.
"""
def outer(fn):
fn._decorators = decorators
return fn
return outer
|
a63df3dfec1cff24ee9e4fd7651284f86459bc1d
| 573,609 |
def idf(x):
"""
Returns the identity function.
The identity function returns the element with which the function was applied.
.. note:: Useful commonly as an identity element of a function composition.
Parameters
----------
x : any
Element to apply the function with.
Returns
-------
x : any
The same element as `x`.
Examples
--------
>>> idf(1)
1
>>> idf([])
[]
"""
return x
|
940ea54cee5b79502b7f7c5476f40ea12b4ea8f9
| 370,991 |
def str_convert(val: str) -> str:
""" Converts the given value to a string type. """
return str(val)
|
8f9bfca8e6296ef95d747dbcdb7d2bc854245d22
| 290,853 |
import html
def linebrk(s, n):
""" Break input string s with <br/> for every n charactors."""
result = ""
j = 0
for i, c in enumerate(s):
if j == n and i != len(s) - 1:
result = result + "\n"
j = 0
j = j + 1
result = result + c
result = html.escape(str(result), quote=True)
result = result.replace("\n", "<br/>")
return result
|
bfae6d96ab042e283ade4358df69e23bacac4b5f
| 585,836 |
import copy
def pair_from_inputs(inputs, b=0):
"""Return a pair without the batch dimension.
Note that b specifies which batch index to use.
Also note that inputs has a nested dictionary structure 2 layers deep.
"""
pair = {}
for key, value in inputs.items():
if isinstance(value, dict):
pair[key] = {}
for key2, value2 in value.items():
pair[key][key2] = copy.deepcopy(value2[b])
else:
pair[key] = copy.deepcopy(value[b])
return pair
|
7684f8f80253d57546f4308d604df308fd43d9db
| 366,000 |
def convert_variants_trace_idx_to_trace_obj(log, variants_trace_idx):
"""
Converts variants expressed as trace indexes to trace objects
Parameters
-----------
log
Trace log object
variants_trace_idx
Variants associated to a list of belonging indexes
Returns
-----------
variants
Variants associated to a list of belonging traces
"""
variants = {}
for key in variants_trace_idx:
variants[key] = []
for value in variants_trace_idx[key]:
variants[key].append(log[value])
return variants
|
a3ea3f2246af41241b5e32515747b54bc0e076c6
| 162,044 |
def DNA_to_mRNA_List(DNA_string):
"""Takes in DNA sequence string and converts it to an mRNA list.
Parameters
----------
DNA_string : string
String that contains letters/characters of a DNA string, e.g., 'a,' t,' 'c,' and 'g.'
Returns
-------
mRNA_List : list
List that converts each and every value in input to corresponding mRNA values.
"""
# Creates an empty list to which values will be appended
mRNA_List = [];
# Loops through each character of DNA string input
for char in DNA_string:
if char == 'a' or char == 'A':
# Characters are appended to mRNA_List
mRNA_List.append('U')
elif char == 't' or char == 'T':
mRNA_List.append('A')
elif char == 'c' or char == 'C':
mRNA_List.append('G')
elif char == 'g' or char == 'G':
mRNA_List.append('C')
# Output mRNA_List is returned by function
return mRNA_List
|
bd44382d7178269341d24acb021d2e3eb82e0417
| 170,966 |
def switch_bl(key):
"""
switch antenna ordering in (ant1, ant2, pol) key
where ant1 and ant2 are ints and pol is a two-char str
Ex. (1, 2, 'xx')
"""
return (key[1], key[0], key[2][::-1])
|
2564eb844944fb91786b4c203df59ac031249391
| 381,215 |
def generate_evergreen_project_name(owner, project, branch):
"""Build an evergreen project name based on the project owner, name and branch."""
return "{owner}-{project}-{branch}".format(owner=owner, project=project, branch=branch)
|
254a9ab85d4f1805bfef4c1750e714f983bd0a65
| 87,689 |
def upperhexstr(buff):
"""Buffer -> Upper Human Readable Hex String"""
return ' '.join([("%.2x" % ord(c)).upper() for c in buff])
|
e4e988b4f2422191d5fe16a5a9c8326594814cf0
| 99,482 |
def tweet_id_to_timestamp(theid):
""" Get millisecond creation time from twitter IDs
:param theid: int id from tweet object
:return: timestamp of object creation
----
!!Only works for tweets authored after 2010-06-01!!
----
"""
return ((theid >> 22) + 1288834974657) / 1000
|
f583ea42848520dbee573b2b250ef9cbea72daa3
| 127,078 |
import logging
def validate_query_file(**kwargs):
"""
Validates query file. Currently only checks the query file name
Kwargs:
query_filename(str): Name of query file
Returns:
True(bool): Query succesfully validated
False(bool): Query failed validation
"""
if not kwargs["query_filename"].endswith(".sql"):
logging.warning(
"Query filename "
+ kwargs["query_filename"]
+ ' is invalid - does not end in ".sql". Skipping'
)
return False
else:
return True
|
84c4c630a3580f32ca2eb9b71b6a5ad05e5673d3
| 409,405 |
def compute_iou(boxA, boxB):
"""Computes the Intersection over Union (IoU) for two bounding boxes.
Args:
boxA, boxB (`numpy.ndarray`): Bounding boxes [xmin, ymin, width, height]
as arrays with shape (4,) and dtype float.
Returns:
IoU (`float`): The IoU of the two boxes. It is within the range [0, 1],
0 meaning no overlap and 1 meaning full overlap of the two boxes.
"""
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[0] + boxA[2], boxB[0] + boxB[2])
yB = min(boxA[1] + boxA[3], boxB[1] + boxB[3])
interArea = abs(max((xB - xA, 0)) * max((yB - yA), 0))
if interArea == 0:
return 0
boxAArea = abs(boxA[2] * boxA[3])
boxBArea = abs(boxB[2] * boxB[3])
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
|
a2ed259794923c9874c59fde39877a108f27627f
| 412,609 |
def int_safe(obj, default=0):
"""safely convert something to an integer"""
try:
obj_int = int(obj)
except ValueError:
obj_int = default
return obj_int
|
7c916465e75a11444a55978fd698990b02022fbc
| 369,533 |
def process_schema_name(name):
""" Extract the name out of a schema composite name by remove unnecessary strings
:param name: a schema name
:return: a string representing the processed schema
"""
new_raw_name = name.replace("_schema.json", '').replace('.json', '')
name_array = new_raw_name.split('_')
output_name = ""
for name_part in name_array:
output_name += name_part.capitalize()
return output_name
|
416f3c521111f107b22da844b0726d867508fab4
| 542,491 |
def fail_safe(temperature, neutrons_produced_per_second, threshold):
"""Assess and return status code for the reactor.
:param temperature: value of the temperature in kelvin (integer or float)
:param neutrons_produced_per_second: neutron flux (integer or float)
:param threshold: threshold (integer or float)
:return: str one of: 'LOW', 'NORMAL', 'DANGER'
- `temperature * neutrons per second` < 90% of `threshold` == 'LOW'
- `temperature * neutrons per second` +/- 10% of `threshold` == 'NORMAL'
- `temperature * neutrons per second` is not in the above-stated ranges == 'DANGER'
"""
result = temperature * neutrons_produced_per_second
if result < threshold * 0.9:
return 'LOW'
if 0.9 * threshold <= result <= 1.1 * threshold:
return 'NORMAL'
return 'DANGER'
|
bf3f27d5f66ec8d9cc3d76de245d5fc85eb292bc
| 347,790 |
def verify(parser, argv):
"""verify(parser, argv)
Check for input errors
Arguments:
parser: OptionParser instance
argv (list): Argument list
Returns:
An error message in the event of an input error, or None
"""
opts, args = parser.parse_args(argv)
err_msg = None
if opts.script and len(args) != 1:
err_msg = "Must provide a script\n"
return err_msg
|
30d8649ad23309516259b188707bb90df9cbbd8a
| 536,062 |
def Jy2K(S, theta, lam):
"""
Convert Jansky/beam to Kelvin, taken from
https://science.nrao.edu/facilities/vla/proposing/TBconv
S: Flux in Jy/beam
theta: FWHM of the telescope in radians
lam: Wavelength of the observation in m
Returns: Brightness temperature in K
"""
return 0.32e-3 * lam**2. / theta**2. * S
|
b28aae3fbad261ce83368a667997c31904a7a85d
| 255,714 |
import functools
import warnings
def deprecated(obj=None, suffix=""):
"""
Decorator to mark a function or a class as deprecated
"""
def decorator_deprecation_warning(obj):
@functools.wraps(obj)
def wrapped(*args, **kwargs):
if isinstance(obj, type):
msg = (
'Class "%s" is deprecated and will be removed in 6.0.'
% obj.__name__
)
else:
msg = (
'Function "%s" is deprecated and will be removed in 6.0.'
% obj.__name__
)
if suffix:
msg += "; %s" % suffix
warnings.warn(msg, category=FutureWarning)
return obj(*args, **kwargs)
return wrapped
if obj is None:
return decorator_deprecation_warning
return decorator_deprecation_warning(obj)
|
019813143c185c4d322d0a057210631481d9843b
| 629,078 |
def call_one_by_one(objs, method_name: str, args, **kwargs):
"""
Call specified method of given objects with given args in order.
"""
for obj in objs:
assert hasattr(obj, method_name), \
"'{cmd}' has no method '{method}".format(
cmd=obj.__name__,
method=method_name
)
args = getattr(obj, method_name)(args, **kwargs)
return args
|
4a3eaf05a786df7978bd4168eb60c60a136f529a
| 597,909 |
from functools import reduce
def get_chunk_ranges(N, num_procs):
"""
A helper that given a number N representing the size of an iterable and the num_procs over which to
divide the data return a list of (start_index, end_index) pairs that divide the data as evenly as possible
into num_procs buckets.
"""
per_thread = N / num_procs
allocation = [per_thread] * num_procs
allocation[0] += N - num_procs * per_thread
data_ranges = [0] + reduce(lambda acc, num: acc + [num + (acc[-1] if len(acc) else 0)], allocation, [])
data_ranges = [(data_ranges[i], data_ranges[i + 1]) for i in range(len(data_ranges) - 1)]
return data_ranges
|
87405d16f4f89050d8f96baa1d1787998ac5cf06
| 540,578 |
def degree_to_compass(degree):
"""
Converts the wind direction from degrees to a compass bearing.
Shamelessly copied from @steve-gregory
https://stackoverflow.com/questions/7490660/converting-wind-direction-in-angles-to-text-words
"""
val = int((degree / 22.5) + .5)
bearings = ["N","NNE","NE","ENE","E","ESE", "SE", "SSE","S","SSW","SW","WSW","W","WNW","NW","NNW"]
return bearings[val % 16]
|
b7419fc433317b02fe0be58703bb58ff81c928ea
| 210,082 |
def process_base64(img_string: str):
"""
Converts a base64 image string to byte array.
Example: "..."
becomes b'iVBORw0KGgoAAAANSUhE...'
"""
# If base64 has metadata attached, get only data after comma
if img_string.startswith("data"):
img_string = img_string.split(",")[-1]
return bytes(img_string,'utf-8')
|
46f1d46fcb887515ca31c3671b08e3573cd9da41
| 196,121 |
import torch
def jitter_soma_depth(feats, scale=10):
""""
Apply jitter to soma depth.
Args:
feats: features per node
scale: scale factor of jittering
"""
new_feats = feats.copy()
new_feats[:, 1] += torch.randn(1).numpy() * scale
return new_feats
|
188cb75555c330402c2b703ef9038de40eebd15c
| 629,797 |
import torch
def _get_anchor_positive_mask(labels):
"""Return a 2D mask where mask[a, p] is True if
a and p are distinct and have same label."""
indices_equal = torch.eye(labels.size(0)).bool().cuda()
indices_not_equal = ~indices_equal
labels_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
return labels_equal & indices_not_equal
|
0c77776f6ab1a68966455e8e1ad32719d7512cc3
| 285,812 |
def continuous_magnitude_peak(disc_peak_index, disc_magnitude, exponent=0.2308):
"""Estimate the value and location of a continuous spectrum peak.
Applies quadratic interpolation to the discrete peak and its two neighbors
to estimate the location and value of the continuous peak. Weighs the
peaks using an exponential function to increase the accuracy of
the estimate.
Based on the paper The XQIFFT: Increasing the Accuracy of Quadratic
Interpolation of Spectral Peaks via Exponeltial Magnitude Spectrum
Weighting by Kurt James Werner.
Parameters
----------
disc_peak_index : integer
Index in the `disc_magnitude` array where the magnitude peak
is located.
disc_magnitude : array_like
Magnitude of the discrete spectrum with the peak of interest.
exponent : float
Exponent of the weighting function.
Returns
-------
float
A value between `0` and `len(disc_magnitude)-1` indicating the
location of the peak in the continuous spectrum.
float
Estimated peak magnitude in the continuous spectrum.
"""
# Weighing function and its inverse
omega = lambda x: x**exponent
inv_omega = lambda x: x**(1/exponent)
# Weigh alpha, beta and gama
alpha = omega(disc_magnitude[disc_peak_index-1])
beta = omega(disc_magnitude[disc_peak_index])
gamma = omega(disc_magnitude[disc_peak_index+1])
# Estimate continuous peak index (peak location)
cont_peak_index = (disc_peak_index
+ (1/2)*(alpha - gamma)/(alpha - 2*beta + gamma))
# Estimate continuous peak magnitude
cont_peak = beta - (1/8)*(alpha - gamma)**2/(alpha - 2*beta + gamma)
# Unweigh peak magnitude
cont_peak = inv_omega(cont_peak)
return cont_peak_index, cont_peak
|
ca507d5b2a0f323a2781e9300f5c0b2ffa6de8e1
| 217,897 |
import re
from datetime import datetime
def clean_title_input(title, draft=False):
"""Convert a string into a valide Jekyll filename.
Remove non-word characters, replace spaces and underscores with dashes,
and add a date stamp if the file is marked as a Post, not a Draft.
Args:
title (string): A string based title
draft (bool): A boolean indicating that the file is a draft
Returns:
string: a cleaned title for saving a new Jekyll post file
"""
title_clean = title.lower()
title_clean = re.sub(r'[^\w -]', '', title_clean)
title_clean = re.sub(r' |_', '-', title_clean)
today = datetime.today()
title_date = today.strftime('%Y-%m-%d')
return title_date + '-' + title_clean if not draft else title_clean
|
80958f893641bd420f487077d009be4c3efec1dc
| 633,633 |
def preprocess_baseline2(segment_df, rush_hour):
"""
Preprocess the segment data considering the weather and the rush hour
Algorithm:
Preprocess segment_df to add a new column of rush hour
split the dataframe with groupby(segment_start, segment_end, weather, rush_hour)
Define the new dataframe
For name, item in grouped:
calcualte the average travel duration
save the record into the new dataframe
:param segment_df: dataframe after adding the rush hour from final_segment.csv file
:param rush_hour: tuple to express which is the rush hour, example: ('17:00:00', '20:00:00')
:return: dataframe for the baseline2
"""
# Preprocess segment_df to add a new column of rush hour
rush_hour_column = segment_df['timestamp'].apply(lambda x: x[11:19] < rush_hour[1] and x[11:19] > rush_hour[0])
new_segment_df = segment_df
new_segment_df['rush_hour'] = rush_hour_column
grouped = new_segment_df.groupby(['segment_start', 'segment_end', 'weather', 'rush_hour'])
result = grouped['travel_duration'].mean()
result = result.reset_index()
return result
|
b3a3a4ed4096b6c2424023d2adad2fb2a176d71a
| 673,131 |
def _tf(word_occured_in_doc: int, total_words_in_doc: int) -> float:
"""Term frequency of a word in certain document.
See: https://bit.ly/3zEDkMn
"""
assert word_occured_in_doc <= total_words_in_doc
return word_occured_in_doc / total_words_in_doc
|
32bd03d0b068ad229b7d9871bf3665643d35021e
| 19,948 |
import hashlib
def getmd5(filename):
"""
获取文件 md5 码
:param filename: 文件路径
:return: 文件 md5 码
"""
file_txt = open(filename, 'rb').read()
m = hashlib.md5(file_txt)
# hexdigest()方法来获取摘要(加密结果)
return m.hexdigest()
|
d258ca212d94ad89b97ce2b9c0016256378aec6d
| 317,035 |
def get_objects(resource, bucket_name, prefix=""):
"""List objects inside a bucket"""
client = resource.meta.client
next_token = ""
content = []
directory = []
add_list = lambda keys, values: keys.extend(values) if values is not None else None
while True:
response = client.list_objects_v2(
Bucket=bucket_name,
Prefix=prefix,
Delimiter="/",
ContinuationToken=next_token,
)
add_list(content, response.get("Contents"))
add_list(directory, response.get("CommonPrefixes"))
next_token = response.get("NextContinuationToken")
if next_token is None:
return {"Contents": content, "CommonPrefixes": directory}
|
6cdf8fa079417320379f21e94224821ee4b9f225
| 618,076 |
import re
def splitTypeName(name):
""" Split the vendor from the name. splitTypeName('FooTypeEXT') => ('FooType', 'EXT'). """
suffixMatch = re.search(r'[A-Z][A-Z]+$', name)
prefix = name
suffix = ''
if suffixMatch:
suffix = suffixMatch.group()
prefix = name[:-len(suffix)]
return (prefix, suffix)
|
1a7013b82e554fe6ff6ebff1b84d7d96ae3481db
| 686,328 |
def get_slices(data, slice_size):
"""Slices up and returns the data in slices of slice_size.
:param data: list to divide in one or several slices of size slice_size
:param slice_size: integer designating the size of a slice from data
:return: list of len(data) / slice_size slices of data of size slice_size if
the number of items in data is a multiple of slice_size, or list of
len(data) / slice_size + 1 slices of data of size slice_size except for
the last slice, of size len(data) - slice_size * len(data) / slice_size
"""
slices = list()
indexes = [i for i in range(0, len(data), slice_size)]
for i in range(0, len(indexes) - 1):
slices.append(data[indexes[i]:indexes[i + 1]])
if len(data) > indexes[-1]: # is there a last slice?
slices.append(data[indexes[-1]:])
return slices
|
7832ba5f0995e2d9aee959e517376fe8afc2602e
| 308,240 |
def reset_line_breaks(curr_boundary={}):
"""
Builds a fresh line breaks dictionary while keeping any
information provided concerning line boundaries.
Parameters
----------
curr_boundary: dict
Line boundaries to be preserved
Returns
-------
dict
The newly initialized line breaks dictionary
"""
start = []
end = []
tokens = []
if "end" in curr_boundary:
end = curr_boundary["end"]
if "start" in curr_boundary:
start = curr_boundary["start"]
if "tokens" in curr_boundary:
tokens = curr_boundary["tokens"]
line_breaks = {
"end": end,
"pageBoundaries": {},
"start": start,
"tokens": tokens
}
return line_breaks
|
da7f1fc0f206e8a39f0a0d42f1652a3c4bb23200
| 702,221 |
def get_positions_at_time(positions, t):
"""
Return a list of positions (dicts) closest to, but before time t.
"""
# Assume positions list is already sorted.
# frame is a list of positions (dicts) that have the same timestamp.
frame = []
frame_time = 0.0
for pos in positions:
# If we passed the target time t, return the frame we have
if pos["time"] > t:
break
# If this positions is part of the current frame, add it
if pos["time"] == frame_time:
frame.append(pos)
# If current frame is over, make a new frame and add this position to it
else:
frame = []
frame.append(pos)
frame_time = pos["time"]
return frame
|
905f40f8226a0aca96cff13faf725c55794c3caf
| 597,423 |
def _format_case_params(case_params):
"""
Format a set of case parameters for inclusion in an error message. Account
for the fact that while the case parameters are supposed to be a
dictionary, they could be anything.
"""
try:
return "\n".join(
f'{k!r}: {v!r}' for k, v in case_params.items()
)
except:
return repr(case_params)
|
ce3347dee1cf24c3b37fadfb31cd1a254a12edd3
| 212,989 |
def format_value(value, fmt):
"""
Convert numerical value to string with a specific format
Parameters
----------
value : int or float
Numerical variable to convert.
fmt : str
String format used to apply the conversion
Returns
-------
string_value : str
String containing a formatted version of the value
Examples
--------
>>> format_value(30.5, ".3f")
'30.500'
>>> format_value(30.5, "5g")
'30.5'
>>> format_value(123, "d")
'123'
>>> format_value(123, ".2f")
'123.00'
"""
return "{value:>{fmt}}".format(value=value, fmt=fmt).strip()
|
3a402d8a640ead35bea8e2fe3e602a2d700102d4
| 321,534 |
def utterance_from_line(line):
"""Converts a line of text, read from an input file, into a list of words.
Start-of-sentence and end-of-sentece tokens (``<s>`` and ``</s>``) will be
inserted at the beginning and the end of the list, if they're missing. If
the line is empty, returns an empty list (instead of an empty sentence
``['<s>', '</s>']``).
:type line: str or bytes
:param line: a line of text (read from an input file)
:rtype: list of strs
:returns: list of words / tokens
"""
if isinstance(line, bytes):
line = line.decode('utf-8')
line = line.rstrip()
if not line:
# empty line
return []
result = line.split()
if result[0] != '<s>':
result.insert(0, '<s>')
if result[-1] != '</s>':
result.append('</s>')
return result
|
cbf32b595ed354e44644a7fed9215e24feb93073
| 522,894 |
def GET_DATA(tag: str) -> dict:
"""GET_DATA: generate APDU for GET DATA command
"""
return {'header' : '80CA' + tag, 'Le' : '00'}
|
92f406b125d137a90613fa5760a4f45a5e521c34
| 107,729 |
def pad(bytestring, k=16):
"""
Pad an input bytestring according to PKCS#7
"""
l = len(bytestring)
val = k - (l % k)
return bytestring + bytearray([val] * val)
|
5c4917619edb5203402b9370cd1a45a370ad3dc3
| 611,065 |
def chunks(items, size):
""" Split list into chunks of the given size.
Original order is preserved.
Example:
> chunks([1,2,3,4,5,6,7,8,9], 2)
[[1, 2], [3, 4], [5, 6], [7, 8], [9]]
"""
return [items[i:i+size] for i in range(0, len(items), size)]
|
960bc6ba7775ce66c3deb6c07966a9157b3e3e2c
| 634,069 |
def process_ubls(ubls):
"""
Return list of tuples of unique-baseline pairs from command line argument.
Input:
comma-separated value of baseline pairs (formatted as "b1_b2")
Output:
list of tuples containing unique baselines
"""
# test that there are ubls to process
if ubls == '':
return []
else:
ubaselines = []
for bl in ubls.split(','):
try:
i, j = bl.split('_')
ubaselines.append((int(i), int(j)))
except ValueError:
raise AssertionError(
"ubls must be a comma-separated list of baselines (formatted as b1_b2)")
return ubaselines
|
91a434d776d7fe5d98f7f2f31a4b570c6100ff18
| 380,441 |
from typing import Dict
from typing import Any
from typing import Optional
def __get(data: Dict[str, Any], key: str, src: Optional[str] = None) -> Any:
"""
Get a value from a dictionary; if the key does not exist, raise an
exception that identifies the missing key and the configuration section in
which it was expected.
:param data: The dictionary from which to get the value.
:param key: The key name.
:param src: The configuration section associated with the dictionary.
"""
try:
return data[key]
except KeyError:
if src is None:
src = 'Configuration'
if src:
raise ValueError('{}: "{}" is missing'.format(src, key))
else:
raise ValueError('"{}" is missing'.format(key))
|
263f8e13e28b304cdf50546e0df8c7ed5ae8589e
| 40,551 |
def _nice_cls_repr(cls):
"""Nice repr of classes, e.g. 'module.submod.Class'
Also accepts tuples of classes
"""
return f"{cls.__module__}.{cls.__name__}"
|
a291bac7b3347beb5c9baca1776484d07493ec51
| 500,430 |
def get_reading_level_from_flesch(flesch_score):
"""
Thresholds taken from https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests
:param flesch_score:
:return: A reading level and difficulty for a given flesch score
"""
if flesch_score < 30:
return "Very difficult to read"
elif flesch_score < 50:
return "Difficult to read"
elif flesch_score < 60:
return "Fairly difficult to read"
elif flesch_score < 70:
return "Plain English"
elif flesch_score < 80:
return "Fairly easy to read"
elif flesch_score < 90:
return "Easy to read"
else:
return "Very easy to read"
|
54903df2bc4114de663fb85af8500fe1cb26ddc5
| 37,752 |
import requests
def get_asn(ip_address):
"""Get the ASN details of a give IP address."""
try:
data = requests.get(
"https://api.iptoasn.com/v1/as/ip/{}".format(ip_address), timeout=5
).text
return data
except requests.exceptions.ConnectionError:
return None
|
624847f27990d0da89aaab44aee44b3911e4b94a
| 366,321 |
from typing import Union
from pathlib import Path
def remove_suffix(path: Union[str, Path], suf: str) -> str:
"""Remove a suffix from a string, if it exists."""
# modified from https://stackoverflow.com/a/18723694
if isinstance(path, Path):
path = str(path)
if suf and path.endswith(suf):
return path[: -len(suf)]
return path
|
8e48152e4add2a8f3c4497ab0f3a083776799e5c
| 614,740 |
import torch
def bellman(qf, targ_qf, targ_pol, batch, gamma, continuous=True, deterministic=True, sampling=1, reduction='elementwise_mean'):
"""
Bellman loss.
Mean Squared Error of left hand side and right hand side of Bellman Equation.
Parameters
----------
qf : SAVfunction
targ_qf : SAVfunction
targ_pol : Pol
batch : dict of torch.Tensor
gamma : float
continuous : bool
action space is continuous or not
sampling : int
Number of sampling in calculating expectation.
reduction : str
This argument takes only elementwise, sum, and none.
Loss shape is pytorch's manner.
Returns
-------
bellman_loss : torch.Tensor
"""
if continuous:
obs = batch['obs']
acs = batch['acs']
rews = batch['rews']
next_obs = batch['next_obs']
dones = batch['dones']
targ_pol.reset()
_, _, pd_params = targ_pol(next_obs)
pd = targ_pol.pd
next_acs = pd.sample(pd_params, torch.Size([sampling]))
next_obs = next_obs.expand([sampling] + list(next_obs.size()))
targ_q, _ = targ_qf(next_obs, next_acs)
next_q = torch.mean(targ_q, dim=0)
targ = rews + gamma * next_q * (1 - dones)
targ = targ.detach()
q, _ = qf(obs, acs)
ret = 0.5 * (q - targ)**2
if reduction != 'none':
ret = torch.mean(
ret) if reduction == 'elementwise_mean' else torch.sum(ret)
return ret
else:
raise NotImplementedError(
"Only Q function with continuous action space is supported now.")
|
8f57db995c092c9ec81aa321c347439788ab06f3
| 100,239 |
def harmonic_mean(frequencies1, frequencies2):
"""Finds the harmonic mean of the absolute differences between two frequency profiles,
expressed as dictionaries.
Assumes every key in frequencies1 is also in frequencies2
>>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1})
1.0
>>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':1, 'c':1})
1.0
>>> harmonic_mean({'a':2, 'b':2, 'c':2}, {'a':1, 'b':5, 'c':1}) # doctest: +ELLIPSIS
1.285714285...
>>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \
normalise({'a':1, 'b':5, 'c':1})) # doctest: +ELLIPSIS
0.228571428571...
>>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \
normalise({'a':1, 'b':1, 'c':1})) # doctest: +ELLIPSIS
0.0
>>> harmonic_mean(normalise({'a':2, 'b':2, 'c':2}), \
normalise({'a':1, 'b':1, 'c':0})) # doctest: +ELLIPSIS
0.2
"""
total = 0.0
for k in frequencies1:
if abs(frequencies1[k] - frequencies2[k]) == 0:
return 0.0
total += 1.0 / abs(frequencies1[k] - frequencies2[k])
return len(frequencies1) / total
|
c8701a5df020bd8f4d1655f406a13ffdf92cf362
| 678,613 |
def lldp_caps_to_bits(caps, caps_map):
"""
Convert list of LLDP capabilities names to integer,
suitable to IGetLLDPNeighbors remote_capabilities
:param caps: List of LLDP capabilities names
:param caps_map: name -> LLDP_CAP_* mapping. Name in lowercase
:return: IGetLLDPNeighbors.remote_capabilities
"""
r = 0
for cap in caps:
cv = caps_map.get(cap.lower())
if cv is not None:
r += cv
return r
|
4b26d2319d74c1d1beb566e7484861157ef08727
| 513,538 |
def __avg__(list_):
"""Return average of all elements in the list."""
return sum(list_) / len(list_)
|
3204d823e83bd43efccf9886acd3ae8b01e1d7a0
| 14,022 |
import json
async def _get_kubeconfig(model):
"""Get kubeconfig from kubernetes-master."""
unit = model.applications["kubernetes-master"].units[0]
action = await unit.run_action("get-kubeconfig")
output = await action.wait() # wait for result
return json.loads(output.data.get("results", {}).get("kubeconfig", "{}"))
|
c48371cb4ac96f9821e4dd44d60d2bbed4e46df5
| 349,377 |
def pos_in_rect(rect, pos):
"""Return True if pos is in the rectangle"""
pos_x, pos_y = pos
x, y, width, height = rect
return (x <= pos_x <= x + width
and y <= pos_y <= y + height)
|
108d214965f3a4172bd5bc4608ec9b2c48908c10
| 71,400 |
def total_fluorescence_from_monomer(m, b, c_b_1):
"""
Calculate fluorescence from monomer fraction, brightness relation and
monomer brightness.
"""
return c_b_1*(m+(1-m)*b)
|
275cbe906f18452fa83708062bf40896ed25ece5
| 459,173 |
def repr_type(obj):
"""Return a string representation of a value and its type for readable
error messages.
"""
the_type = type(obj)
msg = '{!r} {!r}'.format(obj, the_type)
return msg
|
4bc3dea793ed1a6c1b15107986847ce17321bb93
| 268,230 |
def news_url(newsitem):
"""
Returns the URL of a newsitem depending on if it is based on a twitter
post or not.
"""
if newsitem.twitter_id:
return newsitem.get_twitter_url()
return newsitem.get_absolute_url()
|
1fbcb8719fb8a01d1c6e8be44e1baa31f3ea4290
| 242,285 |
def leftPadItems(alist):
"""Add a space to the begining of each string in a given list."""
return [' ' + item for item in alist]
|
8cd74bdf74c021a81532c8209774975fa5b6f9b4
| 65,399 |
import base64
def decrypt_password(encoded):
"""
Decrypt password with base64
"""
password_decypt_bytes = base64.b64decode(encoded)
return password_decypt_bytes.decode('utf-8')
|
4bdff76964226e39350c2dcac8dc03c34d5bcdb9
| 180,100 |
def factor_first_event(match_info, event_list, team_key):
""" Creates factor for an event in event_list
Arguments:
event_list: list of 'Event' objects
team_key: string of the event type in the 'Team' object, e.g. 'firstTower'
Returns:
-1 if no event did not happen yet
0 if red team did event
1 if blue team did event
"""
if len(event_list) > 0:
first_event_team = match_info['teams'][0][team_key]
return int(first_event_team)
else:
return -1
|
0691915ddc4fd81775068fa6a1fcda341cbedc3d
| 691,753 |
def median_val(vals):
"""
:param vals: an iterable such as list
:return: the median of the values from the iterable
"""
n = len(vals)
sorted_vals = sorted(vals)
if n % 2 == 0:
return (sorted_vals[n // 2] + sorted_vals[n // 2 - 1]) / 2
else:
return sorted_vals[n // 2]
|
b0255bce064d72c7031f81ed6b7f0b5f7c2c4ca0
| 649,971 |
def lowercase(lista):
"""Function to lowercase list of texts
Args:
lista ([list]): list of texts
Returns:
[list]: List of texts lowercased
"""
return [text.lower() for text in lista]
|
2be877aa3b80c5e01eb4237625b426123d5b9976
| 697,099 |
def MSE_loss_grad_cupy(outi, out0):
"""
Computes mean squared error gradient between targets
and predictions.
Input: predictions (N, k) ndarray (N: no. of samples, k: no. of output nodes)
targets (N, k) ndarray (N: no. of samples, k: no. of output nodes)
Returns: (N,k) ndarray
Note: The averaging is only done over the output nodes and not over the samples in a batch.
Therefore, to get an answer similar to PyTorch, one must divide the result by the batch size.
"""
return 2*(outi-out0)/outi.shape[1]
|
53915983ce290baa1ebe03641e055bf66ba16906
| 491,859 |
def naive_string_matcher(string, target):
""" returns all indices where substring target occurs in string """
snum = len(string)
tnum = len(target)
matchlist = []
for index in range(snum - tnum + 1):
if string[index:index + tnum] == target:
matchlist.append(index)
return matchlist
|
cdb42e37836b57952cb237a8de8ed6de4933dca7
| 205,481 |
from typing import Optional
def extract_filename_from_object_info(object_info: dict) -> Optional[str]:
"""Extracts the filename from the object_info.
if filename is in object_info use that, otherwise try to extract it from the one of the access methods.
Returns filename if found, else return None
Args
object_info (dict): DRS object dictionary
"""
if "name" in object_info and object_info["name"]:
return object_info["name"]
for access_method in object_info["access_methods"]:
url = access_method["access_url"]["url"]
parts = url.split("/")
if parts:
return parts[-1]
return None
|
2e2c6e37147f8689703a38de200953648c066710
| 207,481 |
def calc_jaccard_score(span_1: dict, span_2: dict) -> float:
"""Calculate the jaccard score of the provided spans of tags.
Jaccard index = Intersection of argument list / Union of argument list
Ref: https://en.wikipedia.org/wiki/Jaccard_index
Args:
span_1 (dict): first span of tags. Format:
{IndexOfTokenInSentence:
"tag",
...
}
span_2 (dict): second span of tags. Format:
{IndexOfTokenInSentence:
"tag",
...
}
Returns:
float: jaccard score for the given spans.
"""
s1 = set(span_1)
s2 = set(span_2)
j_union = s1.union(s2)
j_intersection = 0
for sent_index in j_union:
if sent_index in span_1 and sent_index in span_2:
if span_1[sent_index] == span_2[sent_index]:
# both spans have the same tag at the same position.
j_intersection += 1
elif span_1[sent_index] in ["B", "I"] and span_2[sent_index] in ["B", "I"]:
# both spans have either a 'B' or an 'I' tag are the same position.
# Thus, both spans of 'BI' tags intersect at this position.
j_intersection += 1
else:
pass
js = float(j_intersection / len(j_union))
return js
|
53d1189bb20a4b2cbd535d1f852e2c7a7a79597e
| 229,840 |
def find_first_peak(corr):
"""
Find row and column indices of the first correlation peak.
Parameters
----------
corr : np.ndarray
the correlation map
Returns
-------
i : int
the row index of the correlation peak
j : int
the column index of the correlation peak
corr_max1 : int
the value of the correlation peak
Original code from openPIV pyprocess
"""
ind = corr.argmax()
s = corr.shape[1]
i = ind // s
j = ind % s
return i, j, corr.max()
|
d17959bb446cdc2c0bc19dfb00c6adf4a0d4b1fb
| 146,405 |
def sum_fuel_across_sectors(fuels):
"""Sum fuel across sectors of an enduse if multiple sectors.
Otherwise return unchanged `fuels`
Arguments
---------
fuels : dict or np.array
Fuels of an enduse either for sectors or already aggregated
Returns
-------
sum_array : np.array
Sum of fuels of all sectors
"""
if isinstance(fuels, dict):
sum_array = sum(fuels.values())
return sum_array
else:
return fuels
|
6a9dea9be2899bd9884106333c550e1ccf619883
| 675,125 |
import re
def counts(result):
""" Extract integer values from command's return value. """
return [int(s) for s in re.findall(r"\d+", result)]
|
20b372d2a9e98aa03959d704b641e0ec87fe718c
| 167,399 |
def _singularity_image_name_on_disk(name: str) -> str:
"""Convert a singularity URI to an on disk sif name
:param str name: Singularity image name
:rtype: str
:return: singularity image name on disk
"""
docker = False
if name.startswith('shub://'):
name = name[7:]
elif name.startswith('library://'):
name = name[10:]
elif name.startswith('oras://'):
name = name[7:]
elif name.startswith('docker://'):
docker = True
name = name[9:]
# singularity only uses the final portion
name = name.split('/')[-1]
name = name.replace('/', '-')
if docker:
name = name.replace(':', '-')
name = '{}.sif'.format(name)
else:
tmp = name.split(':')
if len(tmp) > 1:
name = '{}_{}.sif'.format(tmp[0], tmp[1])
else:
name = '{}_latest.sif'.format(name)
return name
|
c4cb55cf0be9c0497a6df79051aef5855f45dd35
| 378,454 |
import requests
from bs4 import BeautifulSoup
def scrape_hyperlinks(url):
"""Parses a web page and returns a list of all hyperlinks on it.
Parameters
----------
url : str
URL of web page to scrape links from
Returns
-------
links : list
list of hyperlinks found
"""
response = requests.get(url)
soup = BeautifulSoup(response.content, "html.parser")
links = [x.get('href') for x in soup.findAll('a')]
return links
|
182de26a1fee152b2d8e9bd5af46766b0fa22bb5
| 200,590 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.