content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def remove_duplicate_index(df): """Remove all entries in a data frame that have a duplicate index. :param df: DataFrame containing duplicate indicies. :returns: DataFrame with the duplicates removed """ index_name = df.index.name md = df.reset_index() md.drop_duplicates(index_name, inplace=True) md.set_index(index_name, inplace=True) return md
1a22c39b82c91aa00bbb7c7c71e18427cbd3058a
296,938
def struct_dict(struct): """ take a ctypes.Structure and return its field/value pairs as a dict. """ get_pair = lambda field_type: ( field_type[0], getattr(struct, field_type[0])) return dict(list(map(get_pair, struct._fields_)))
dcabfa370af5446255cb71faeccb2f8086b35ff6
324,051
def _get_c_string(data, position): """Decode a BSON 'C' string to python unicode string.""" end = data.index(b"\x00", position) return data[position:end].decode('utf8'), end + 1
6cd01aba9c675cdef0db5df4d523e3fdbf7a2ff6
249,232
from typing import List def as_package(names: List[str]) -> str: """Joins names as a package name.""" return '.'.join(names)
7369de516104d94d11784e1dfef64ca9c86ddb26
612,463
def option_list(opts): """Convert key, value pairs into command-line options. Parameters ---------- opts : dict-like Convert a dictionary into command-line options. Returns ------- :class:`list` A list of command-line options. """ optlist = [] for key, val in opts.items(): keystr = "--{}".format(key) if isinstance(val, bool): if val: optlist.append(keystr) else: optlist.append(keystr) if isinstance(val, float): optlist.append("{:.14e}".format(val)) elif isinstance(val, (list, tuple)): optlist.extend(val) else: optlist.append("{}".format(val)) return optlist
db4acd20b1509b757776916411609cfa576168ea
555,866
def list_all_equal(lst): """Return true if all elements in the list are equal.""" return len(set(lst)) == 1
1c01928305ada17390e9198cb25d8af2e913ad9b
437,092
import re def configSingleEntry (lineData, configSection): """ Searches for section and returns single entry lines after section heading """ sectionContentsString = "" error='NONE' sectionfound = 0 for line in lineData: #print(line) if sectionfound is 0: if re.match(configSection, line): sectionfound = 1 #print(line + "\n") # section found get single line data else: sectionContentsString = line #print(line) break if sectionfound is 0: error = "Section " + configSection + " not found" return error, sectionContentsString
da5325d6ff525e70a9fa46b7380a2585d831a15e
474,887
def narrowpeaks_cols() -> list: """ Return list of narrowpeak column names :return: a list of string """ return ['chr', 'start', 'stop', 'name', 'score', 'strand', 'signalValue', 'pValue', 'qValue', 'peak']
3cd49c738fff19775c0ee934a1a2158dd0b06fce
557,953
import logging def collect_element(tree, selector: str, default=""): """ Selects first element from html tree by selector and returns its text_content(), or default if element not found """ elements = tree.xpath(selector) if not elements: logging.info("Collecting isn't possible by selector: %s", selector) return default return elements[0].text_content()
d055b3c638d5c2982173c04635e8c699a038d200
242,818
def keep_expired_by(flags, mstone): """Filter flags to contain only flags that expire by mstone. Only flags that either never expire or have an expiration milestone <= mstone are in the returned list. >>> keep_expired_by([{'expiry_milestone': 3}], 2) [] >>> keep_expired_by([{'expiry_milestone': 3}], 3) [{'expiry_milestone': 3}] >>> keep_expired_by([{'expiry_milestone': -1}], 3) [] """ return [f for f in flags if -1 != f['expiry_milestone'] <= mstone]
c5c6b7e7a2cc730a77e3928e78977b14d10759b4
452,922
def argmax(x): """ Returns the index of the largest element of the iterable `x`. If two or more elements equal the maximum value, the index of the first such element is returned. >>> argmax([1, 3, 2, 0]) 1 >>> argmax(-abs(x) for x in range(-3, 4)) 3 """ argmax_ = None max_ = None for (nItem, item) in enumerate(x): if (argmax_ is None) or (item > max_): argmax_ = nItem max_ = item return argmax_
847f7f7a599c0623d8ee6218ea85a8176fa07d79
220,926
import tempfile import requests def file_from_url(url: str): """ file_from_url requests a file from an URL. Raises an exception if the request fails. Parameters ========== url : str The resource URL. Returns ======= _TemporaryFileWrapper Requested file as temporary file handler. """ CHUNK_SIZE = 1024*1024 file = tempfile.NamedTemporaryFile() res = requests.get(url, stream=True) if not res.ok: raise Exception( 'request failed with status code {0}'.format(res.status_code)) for chunk in res.iter_content(chunk_size=CHUNK_SIZE): file.write(chunk) return file
f0ae2801e49604129f359bc8d5d6cbb97d58a887
116,395
def get_unicode(text: str) -> bytes: """Returns the unicode for input text Parameters ---------- text : str Text to encode Returns ------- bytes Text with characters encoded in raw unicode. """ return text.encode("raw_unicode_escape")
701e37c96e9c93921c744a16afae570fc345d02c
247,704
def fix_initial_data(initial, initial_data_keymap): """ Take a dict like this as `initial`: { 'key1': 'val1', 'key2': 'val2', 'key3': 'val3'} and a dict like this as `initial_data_keymap`: { 'newkey1': ['key1', 'key2'], 'newkey2': ['key3']} and remap the initial dict to have this form: { 'newkey1': ['val1', 'val2'], 'newkey2': ['val3']} Used for rearranging initial data in fields to match declared maps. """ if initial: for dest, sources in list(initial_data_keymap.items()): data = [initial.pop(s, None) for s in sources] initial[dest] = data return initial
5f72592e460c058c7a3ffee6f1e2d5957c5fe7b1
576,708
def invcalcbarycentric(pointuv, element_vertices): """ Convert barycenteric coordinates into 3d https://en.wikipedia.org/wiki/Barycentric_coordinate_system https://math.stackexchange.com/questions/2292895/walking-on-the-surface-of-a-triangular-mesh :param pointuv: Point in barycenteric coordinates (u, v) :param element_vertices: Vertices of current element :return: pointuv in 3d coordinates (x, y, z) """ return element_vertices[0] + pointuv[0] * (element_vertices[1] - element_vertices[0]) + pointuv[1] * (element_vertices[2] - element_vertices[0])
9aebf9e0579321788b242653a8c51b20dcad2fea
80,752
def readall(read_fn, sz): """Reads `sz` bytes using `read_fn` Raises `EOFError` if `read_fn` returned the empty byte array while reading all `sz` bytes. """ buff = b'' have = 0 while have < sz: chunk = read_fn(sz - have) have += len(chunk) buff += chunk if len(chunk) == 0: raise EOFError return buff
a5f1395dd5306f7e907a598e716090fc3f19681d
163,504
def get_load_config_timestamp(pefile_object): """ Retrieves the timestamp from the Load Configuration directory. :param pefile.PE pefile_object: pefile object. :return: Recovered timestamps from PE load config (if any). None if there aren't. :rtype: int """ timestamp = 0 if hasattr(pefile_object, 'DIRECTORY_ENTRY_LOAD_CONFIG'): loadconfigdata = pefile_object.DIRECTORY_ENTRY_LOAD_CONFIG timestamp = getattr(loadconfigdata.struct, 'TimeDateStamp', 0) return timestamp
4b04afa7d844ce05761fa5b8f484540a1ae243a4
21,184
def append_default_extension(filename, default_extension='.png'): """If a filename has no extension yet, add the default extension to it""" if '.' in filename: return filename else: return filename + default_extension
70181b03aba9ec73836d6e33784b2123ade67406
118,006
def hexify(s): """ Used to convert message to hex integers when encrypting. :param s: a string. :return: a string like '0x..', decode each character as a ascii hex number. """ if not s: # if input is null, evcrypt the message: '!' return '0x21' # ascii code for '!' lst = [] for ch in s: hv = hex(ord(ch)).replace('0x', '') lst.append(hv) return '0x' + ''.join(lst)
e457880c713cbc8d70ba3463a6fe9331a96ba5a8
630,709
import torch def init_optimizerD(opt, D, train_last_layer_only=False): """Initialize optimizer for discriminator D """ params_to_train = D.parameters() if train_last_layer_only and opt.DiscArch == 'concat_first': params_to_train = D.last_linear.parameters() optimizerD = torch.optim.Adam(params_to_train, lr=opt.lrD, betas=(opt.beta1, opt.beta2), weight_decay=opt.wdecay) return optimizerD
9c788aae510ab6cf64f588646450b9c285934375
159,934
def _substitute(template, fuzzer, benchmark): """Replaces {fuzzer} or {benchmark} with |fuzzer| or |benchmark| in |template| string.""" return template.format(fuzzer=fuzzer, benchmark=benchmark)
84e110aa6aca334176ae1bd682472c008d0ee228
291,880
import yaml def read_params_from_file(fname): """Read model parameters from a file. Parameters ---------- fname : str Name of YAML-formatted parameters file. Returns ------- dict A dict of parameters for the heat model. """ with open(fname, "r") as fp: params = yaml.safe_load(fp) return params
cec5fe2af0578a6288c415823618d005144f6151
472,702
def _CustomMachineTypeString(cpu, memory_mib): """Creates a custom machine type from the CPU and memory specs. Args: cpu: the number of cpu desired for the custom machine type memory_mib: the amount of ram desired in MiB for the custom machine type instance Returns: The custom machine type name for the 'instance create' call """ machine_type = 'db-custom-{0}-{1}'.format(cpu, memory_mib) return machine_type
bfa285d9de4a66c9b88ef89925ce5266bb8e68c7
479,528
def _strip_shape(name: str) -> str: """Strip the dimension name.""" if name[0] == "/": return name[1:] return name
ba6329bdca1cf4e7c4db7daf0fcbb3c5c5f475b7
579,191
def serialize_results(results : dict) -> str: """Serialize a results dict into something usable in markdown.""" n_first_col = 20 ans = [] for k, v in results.items(): s = k + " "*(n_first_col-len(k)) s = s + f"| {v[0]*100:.1f} | {v[1]*100:.1f} |" ans.append(s) return "\n".join(ans)
c64ba7bbf898e3085290615d163401b7c2382ca6
626,979
def is_in_any_txt(txt, within_txts_list, case_insensitive=False): """is "txt" in any of the texts list ?""" for within_txt in within_txts_list: if case_insensitive: # slower if txt.lower() in within_txt.lower(): return True else: if txt in within_txt: return True return False
5e5316fdbaf21617ee8ae3172a0efe4a3c17ae8c
669,588
def tensor_size_bytes(tensor, unit='MB'): """ Get the size of the tensor in bytes, or a unit that's multiple of bytes :param tensor: the pytorch tensor :param unit: GigaBytes or GB (assumes GB=1e9 Bytes), MegaBytes or MB (assumes MB=1e6 Bytes), KiloBytes or KB (assumes KB=1e3 Bytes), Bytes or B :return: the size of the tensor in the desired unit """ if 'G' in unit.upper(): factor = 1e9 elif 'M' in unit.upper(): factor = 1e6 elif 'K' in unit.upper(): factor = 1e3 else: factor = 1.0 return (tensor.element_size() * tensor.nelement()) / factor
f8d68b99597b2bcfb90ff18f7f1d9f9b02478de1
110,700
def slicex(df, values, keep_margins=True): """ Return an index-wise slice of df, keeping margins if desired. Assuming a Quantipy-style view result this function takes an index slice of df as indicated by values and returns the result. Parameters ---------- df : pandas.DataFrame The dataframe that should be sliced along the index. values : list-like A list of index values that should be sliced from df. keep_margins : bool, default=True If True and the margins index row exists, it will be kept. Returns ------- df : list The sliced dataframe. """ # If the index is from a frequency then the rule # should be skipped if df.index.levels[1][0]=='@': return df name_x = df.index.levels[0][0] slicer = [(name_x, value) for value in values] if keep_margins and (name_x, 'All') in df.index: slicer = [(name_x, 'All')] + slicer df = df.loc[slicer] return df
6719eba7824b04b2e1d5735fd699412190a8811e
53,718
def _step_id(step): """Return the 'ID' of a deploy step. The ID is a string, <interface>.<step>. :param step: the step dictionary. :return: the step's ID string. """ return '.'.join([step['interface'], step['step']])
c1ff629a09758ff5817f76ea487af467fbbffc84
68,298
def add_titlebox(ax, text, x=0.05, y=0.9, alignment='left', fontsize=12.5): """ add title text box. Arguments: ax {`matplotlib.axes.Axes`} -- the `Axes` instance used for plotting. text {string} -- title text Keyword Arguments: x {float} -- title x position (default: {0.05}) y {float} -- title y position (default: {0.9}) alignment {str} -- horizontal alignment (default: {'left'}) fontsize {float} -- text font size (default: {12.5}) Returns: `matplotlib.axes.Axes` -- the `Axes` instance used for plotting. """ ax.text( x, y, text, horizontalalignment=alignment, transform=ax.transAxes, bbox=dict(facecolor='white'), fontsize=fontsize) return ax
ce8804d5f25097046c54cbeb4c15936888539eae
554,533
import re def byteform_to_num(byte_format): """Converts a string expressing a size of a file in bytes into the corresponding number of bytes. Accepts commas and decimal points in nums. Allows 'b', 'mb', 'gb', and variants like 'bytes', but not 'tb', 'zb', etc. Note that format_bytes is a lossy function (it doesn't retain all sigfigs by default), so byteform_to_num(format_bytes(x)) does not always equal x. """ x = re.findall("([\d,\.]+)\s*([a-z]*)", byte_format, re.I)[0] num, suf = float(x[0].replace(",", "")), x[1].lower() if suf == "" or suf[0] == "b": return num elif suf[:2] == "kb": return num * 1e3 elif suf[:2] == "mb": return num * 1e6 elif suf[:2] == "gb": return num * 1e9 raise ValueError(f"byteform_to_num couldn't recognize quantifier '{suf}'")
300ede4ef120b9e3a8db85effcb6611dd9299953
10,953
import tempfile def write_tmpacl(acl, process_name='_tmpacl'): """Write a temporary file to disk from an Trigger acl.ACL object & return the filename""" tmpfile = tempfile.mktemp() + process_name f = open(tmpfile, 'w') for x in acl.output(acl.format, replace=True): f.write(x) f.write('\n') f.close() return tmpfile
7aa735a85dc60ce1975769045c6ee52031f7ba38
360,283
def set_config_var(from_file, from_env, default): """ Set a configuration value based on the hierarchy of: default => file => env :param from_file: value from the configuration file :param from_env: value from the environment :param default: default configuration value :return: value to use as configuration """ if from_env is not None: return from_env elif from_file is not None: return from_file else: return default
48e0fa5aa4b9e67ceb4a7cb1fea7e23529a5f3bf
102,741
def get_synsets(lemma, synset_dict): """Return synonym set given a word lemma. The function requires that the synset_dict is passed into it. In our case we provide downloadable models from MCR (Multilingual-Central-Repository). :cite:`gonzalez2012multilingual`. If the lemma is not found in the synset_dict, then this function returns a set with the lemma in it. :param lemma: Lemma to be look-up into the synset :type lemma: string :param synset_dict: key-value pairs, lemma to synset :type synset_dict: Python dict :return: The set of synonyms of a given lemma :rtype: Python set of strings """ return synset_dict.get(lemma, {lemma})
1e0ef9669a6bcdc3f8c1a19013d1cbf109266330
296,981
import traceback def _str_backtrace(backtrace=None): """ Return a string representation of an existing or new backtrace """ if backtrace: return "".join(traceback.format_tb(backtrace)) else: return "".join(traceback.format_stack()[:-1])
6f4038fde8d8e0ab350cb9a41bfabe75b4017997
506,266
def vshale_to_vclay(vshale, multiplier): """ Converts a shale volume to clay volume using a multiplier. Parameters ---------- vshale : float Shale volume multiplier : float Shale to clay multiplier (decimal) Returns ------- float Returns a clay volume. References ---------- Bhuyan, K. and Passey, Q. R. (1994) ‘Clay estimation from GR and neutron-density porosity logs’, SPWLA 35th Annual Logging Symposium, pp. 1–15. """ return vshale * multiplier
f46fd70940a513d990b25d505a59d516ae525a15
356,192
def is_nonterminal(text: str): """Return True if string text starts with ( and doesn't end with ).""" return text[0] == '(' and not text[-1] == ')'
d668d1edf541e5a381282caadb36daa974c17d8a
545,782
def read_mg_types(mgfile): """ Read the metagenome types from a file where the first four columns are [domain, type, species, seqid]. For example, sharks_fish.distance.labelled.tsv which is the output from join.pl :param mgfile: the sharks_fish.distance.labelled.tsv file :return: a dict of all the metagenomes """ val = {} with open(mgfile, 'r') as f: for l in f: p=l.strip().split("\t") if "Metagenome" in p[0]: val[p[3]] = [p[1], p[2]] return val
b7eabc1a52199951404f114e0732020a6c807334
133,897
def _parse_line(line): """If line is in the form Tag=value[#Comment] returns a (tag, value) tuple, otherwise returns None.""" non_comment = line.split('#')[0].strip() if len(non_comment) > 0: tag_value = [x.strip() for x in non_comment.split('=')] if len(tag_value) != 2: raise Exception("Line '" + line + "' not understood") return (tag_value[0], tag_value[1]) return None
b39f6862768fe8937acd17a9830329dc213fc31f
477,679
def quotify(comment, username): """ Converts 'Foo\nbar' to: > @username said: > Foo > bar \n\n """ header = "@%(username)s said:" % {'username': username, } lines = comment.splitlines() quote = "\n> ".join(lines) quote = "> %(header)s\n> %(quote)s\n\n" % {'header': header, 'quote': quote} return quote
ad601fb15199cbf481daea26b9baecb4b0b0028d
459,403
def normalize(name): """ normalizes the name of the company for comparison by lowercasing, substitution :param name: the name string :return: normalized string """ if name == "-": return "company_name_not_available" name = name.lower().strip().replace("co ", "company").replace("co.", "company").replace("&", "and") name = name.lower().strip().replace("inc ", "incorporated").replace("inc.", "incorporated") name = ''.join(e for e in name if e.isalnum()).replace("ltd", "limited") return name
bfabb84b004c242a6c34b8a4efd54e265c1c711d
321,751
def get_normalized(x, xmax, xmin): """ Normalized a value given max and min """ x_norm = (x - xmin)/(xmax - xmin) return x_norm
6db770cf71eb73d2a5cddbfc5bc1f88db92cf397
280,592
from datetime import datetime def text_to_datetime(dt): """Convert text date and time to datetime format then put in ISO8601 format.""" converted = datetime.strptime(dt, "%Y-%m-%d %H:%M:%S") reformat_iso = datetime.strftime(converted, "%Y-%m-%dT%H:%M:%S") return reformat_iso
5d7e9c2a744e4b56d815987cd5110fccd0476cc8
114,320
def interaction_test(configuration, order=None): """ Returns True if the configuration has an interaction Parameters ---------- order : int, optional Specific order to check for. E.g. a value of 3 checks for ternary interactions Returns ------- bool True if there is an interaction. Examples -------- >>> configuration = [['A'], ['A','B']] >>> interaction_test(configuration) True >>> interaction_test(configuration, order=2) True >>> interaction_test(configuration, order=3) False """ interacting_species = [len(subl) for subl in configuration if isinstance(subl, (tuple,list))] if order is None: # checking for any interaction return any([subl_occupation > 1 for subl_occupation in interacting_species]) else: return any([subl_occupation == order for subl_occupation in interacting_species])
052d82d9c218ae54abb739e789d5789f83029dcf
253,465
def dichotomy(list, value): """ list: array of integers in ascending order value: value to return its position in list return: False in value not in list, else the position of value in the list """ list_beginning = 0 list_end = len(list) list_middle = ((list_beginning+list_end)//2) if value not in list: return False while list[list_middle] != value: # middle index is calculated at each iteration list_middle = ((list_beginning+list_end)//2) # tests if value is superior to the middle value if value > list[list_middle]: list_beginning = list_middle # tests if value is inferior to the middle value if value < list[list_middle]: list_end = list_middle return list_middle
4aa89c0b28a92cf371c1b4b688931cdf99331c70
304,392
import torch def particle_to_quantile(predictions): """ Converts a particle prediction to a quantile prediction. Not fully differentiable because of the sorting operation involved. Should be thought of as a permutation function Args: predictions (tensor): array [batch_size, n_particles], a batch of particle predictions Returns: tensor: a batch of quantile predictions """ return torch.sort(predictions, dim=1)[0]
11a88bee1b3f420344a6d5f8f0eab027856ec27d
290,176
def get_mu_tilda(x_i, r, n): """Calculates the conditional descendant normal distribution *expectation* for generation-gap n. Latex equation: tilde{\mu}_{i+n} = r^n X_i (See the paper for the derivation.)""" return (r**n) * x_i
3ff119704d3c9db2fbc1b52c683948a44a0ceb89
243,673
def imageSplit( data, labelcol='Label_nr', imagedim=[455,423], testsize=0.3): """ Split test and traing dataset taking the testsize proportion from the top of the image as test dataset and the rest as training dataset Parameters ---------- data: numpy.dataFrame dataframe with data label_col: str (optional) name of label column imagedim: list (optional) list containing image size in width and height testsize: float proportion of image to use for test dataset (values between 0 and 1) Examples -------- >>> x_train, x_test, y_train, y_test = imageSplit( data_raw, "Label_nr", [455, 423], 0.2) Returns ------- list test and training datasets """ row_count = round(imagedim[1] * testsize) * imagedim[0] x = data.drop(labelcol, axis=1) y = data[labelcol] x_test = x.iloc[0:row_count] x_train = x.iloc[row_count+1:x.shape[0]] y_test = y.iloc[0:row_count] y_train = y.iloc[row_count+1:y.shape[0]] return x_train, x_test, y_train, y_test
1b3501572242e4091259970a882bd5fd950ea0ca
345,082
def _resample_params(N, samples): """Decide whether to do permutations or random resampling Parameters ---------- N : int Number of observations. samples : int ``samples`` parameter (number of resampling iterations, or < 0 to sample all permutations). Returns ------- actual_n_samples : int Adapted number of resamplings that will be done. samples_param : int Samples parameter for the resample function (-1 to do all permutations, otherwise same as n_samples). """ n_perm = 2 ** N if n_perm - 1 <= samples: samples = -1 if samples < 0: n_samples = n_perm - 1 else: n_samples = samples return n_samples, samples
f1493aa3409cef023d05c9e74951d59f481b11bc
121,021
def is_influx_rule(rule): """ A function that detects if the alert rule defined uses influx, Influx rules should not contain a '#' because split returns """ if len(rule.check_field.split('#')) == 1: return True else: return False
60f168f2f859522607127fa82cc32f75401794f6
424,383
def timedelta_to_seconds(delta): """ Take a timedelta object and return the total number of seconds. """ return delta.seconds + (delta.days * 86400)
23bc2b9e36f58db68e39625e41dd4f0728d25457
646,039
def strftime(format, p_tuple=None): # real signature unknown; restored from __doc__ """ strftime(format[, tuple]) -> string Convert a time tuple to a string according to a format specification. See the library reference manual for formatting codes. When the time tuple is not present, current time as returned by localtime() is used. """ return ""
218d2a78bbd6bacadb2dcfd17800708dd7526038
539,830
def list_square_to_input(list_signs,list_index_signs): """ Take the list of squares fill in by a sign and create a 9x1 array (input_layer for neural network) with values -1 for a cross, 0 if empty square and 1 for a circle. """ input_layer = [0 for k in range(9)] for i in range(len(list_signs)): if type(list_signs[i]) == list: input_layer[list_index_signs[i]] = -1 else: input_layer[list_index_signs[i]] = 1 return input_layer
532918046029493ca8e2fb43369808e46dcd8501
79,743
import re def alphanum_key(key): """ Used to generate a natural numeric sort key Example: ("p10" => ["p", 10]) is greater than ("p1" => ["p", 1]) adapted from https://stackoverflow.com/a/2669120/240553 """ def convert(text): return int(text) if text.isdigit() else text return [convert(c) for c in re.split(r'([0-9]+)', key)]
16a0f085b2051dbd951b801dd6713845eae9c09c
88,034
def abs(var): """ Wrapper function for __abs__ """ return var.__abs__()
c2e834da463e9e3e57933489537545d927f40e85
615,720
def to_digits_base10(n): """ Return the digits of a number in base 10. """ digits = [] remaining = n while remaining > 0: digit = remaining % 10 remaining = (remaining - digit) // 10 digits.append(digit) return digits[::-1]
5acc6a2ef1e10bc3142371944232c7d1bcad3a32
24,843
def power_spectrum(k,a): """Simple function for power laws Args: k (float array): wave number a (float): power law Returns: float array: k^-a (note minus sign is assumed!) """ return k**-a
4caa3bf6af923d4406a939cf14cd9d8893ef2e09
523,731
def get_turn_on_descriptions(get_turn_on, initial_state, current_state): """ Get all 'turn on' descriptions from the current state (if any). Parameters ---------- get_turn_on: function Function that gets the color of light which is on. initial_state: nd.array Initial state of the environment. current_state: nd.array Current state of the environment. Returns ------- descr: list of str List of 'turn on' descriptions satisfied by the current state. """ turn_on_descriptions = [] light_on = get_turn_on(initial_state, current_state) for c in light_on: turn_on_descriptions.append('Turn on the {} light'.format(c)) return turn_on_descriptions.copy()
fe5e2bbca20be6fe3e008fd6167ec035d13d5fd7
279,702
def get_default_guess_params(model, df, pressure_key, loading_key): """ Get dictionary of default parameters for starting guesses in data fitting routine. The philosophy behind the default starting guess is that (1) the saturation loading is close to the highest loading observed in the data, and (2) the default assumption is a Langmuir isotherm. Reminder: pass your own guess via `param_guess` in instantiation if these default guesses do not lead to a converged set of parameters. :param model: String name of analytical model :param df: DataFrame adsorption isotherm data :param pressure_key: String key for pressure column in df :param loading_key: String key for loading column in df """ # guess saturation loading to 10% more than highest loading saturation_loading = 1.1 * df[loading_key].max() # guess Langmuir K using the guess for saturation loading and lowest # pressure point (but not zero) df_nonzero = df[df[loading_key] != 0.0] idx_min = df_nonzero[loading_key].idxmin() langmuir_k = df_nonzero[loading_key].loc[idx_min] / \ df_nonzero[pressure_key].loc[idx_min] / ( saturation_loading - df_nonzero[loading_key].loc[idx_min]) if model == "Langmuir": return {"M": saturation_loading, "K": langmuir_k} if model == "Freundlich": return {"n_inv": 0.5, "K": 10} if model == "Quadratic": # Quadratic = Langmuir when Kb = Ka^2. This is our default assumption. # Also, M is half of the saturation loading in the Quadratic model. return { "M": saturation_loading / 2.0, "Ka": langmuir_k, "Kb": langmuir_k**2.0 } if model == "BET": # BET = Langmuir when Kb = 0.0. This is our default assumption. return { "M": saturation_loading, "Ka": langmuir_k, "Kb": langmuir_k * 0.01 } if model == "DSLangmuir": return { "M1": 0.5 * saturation_loading, "K1": 0.4 * langmuir_k, "M2": 0.5 * saturation_loading, "K2": 0.6 * langmuir_k } if model == "Henry": return {"KH": saturation_loading * langmuir_k} if model == "TemkinApprox": # equivalent to Langmuir model if theta = 0.0 return {"M": saturation_loading, "K": langmuir_k, "theta": 0.0}
5921078cf6c566b4b4bf040941b3241ac519d431
410,662
def recall_pos_conf(conf): """compute recall of the positive class""" TN, FP, FN, TP = conf if (TN + FP) == 0: return float('nan') return TP/float(TP+FN)
333f0aec1a6e84e0affa340c8bfcaa44d153230c
574,820
def m3_hr2cfm(m3_hr): """m^3/hr -> cfm""" return 0.58857778*m3_hr
f36cde87efb1c9a34477eee128450ea8d157add8
315,486
def get_geo_coordinates(tweet): """ Get the user's geo coordinates, if they are included in the payload (otherwise return None) Args: tweet (Tweet or dict): A Tweet object or dictionary Returns: dict: dictionary with the keys "latitude" and "longitude" or, if unavaiable, None Example: >>> from tweet_parser.getter_methods.tweet_geo import get_geo_coordinates >>> tweet_geo = {"geo": {"coordinates": [1,-1]}} >>> get_geo_coordinates(tweet_geo) {'latitude': 1, 'longitude': -1} >>> tweet_no_geo = {"geo": {}} >>> get_geo_coordinates(tweet_no_geo) #returns None """ if "geo" in tweet: if tweet["geo"] is not None: if "coordinates" in tweet["geo"]: [lat, lon] = tweet["geo"]["coordinates"] return {"latitude": lat, "longitude": lon} return None
a78af74152670cc29277a9b3c4f23dce4d778c7e
110,100
def get_file_attachment(res_client, incident_id, artifact_id=None, task_id=None, attachment_id=None): """ call the Resilient REST API to get the attachment or artifact data :param res_client: required for communication back to resilient :param incident_id: required :param artifact_id: optional :param task_id: optional :param attachment_id: optional :return: byte string of attachment """ if incident_id and artifact_id: data_uri = "/incidents/{}/artifacts/{}/contents".format(incident_id, artifact_id) elif attachment_id: if task_id: data_uri = "/tasks/{}/attachments/{}/contents".format(task_id, attachment_id) elif incident_id: data_uri = "/incidents/{}/attachments/{}/contents".format(incident_id, attachment_id) else: raise ValueError("task_id or incident_id must be specified with attachment") else: raise ValueError("artifact or attachment or incident id must be specified") # Get the data return res_client.get_content(data_uri)
8dcf887f2773addbbf8a29791157f9be833ab9e9
646,803
import json def parseEnvLog(envLog): """ Parse env log file Parameters ---------- envLog : str Env lof file path. Returns ------- sysInfo : dict system information . progList : dict programs used. """ #parse the env log with open(envLog) as f: envdata=f.read().splitlines() sysInfo={} progList={} for l in envdata: if not l.startswith("#"): if not sysInfo: sysInfo=json.loads(l) else: thisProgram=json.loads(l) if 'name' in thisProgram: progList[thisProgram['name']]=thisProgram return sysInfo,progList
896e44939a9f4ec70538c7c556c93ae72f894911
218,462
def fake_task_sync(data): """Fake task for testing.""" return data
e51214646642999147ac4f5a9fba71447f63154f
133,085
from typing import Any from typing import Mapping from typing import Counter from typing import Iterable def process_result(result) -> Any: """Make the result of a query JSON-serializable. Parameters ---------- result : The result of a query Returns ------- : The processed result """ # Any fundamental type if isinstance(result, (int, str, bool, float)): return result # Any dict query elif isinstance(result, (dict, Mapping, Counter)): res_dict = dict(result) return {k: process_result(v) for k, v in res_dict.items()} # Any iterable query elif isinstance(result, (Iterable, list, set)): list_res = list(result) # Check for empty list if list_res and hasattr(list_res[0], "to_json"): list_res = [res.to_json() for res in list_res] return list_res else: raise TypeError(f"Don't know how to process result of type {type(result)}")
710e791b8aa802f0d147bf446a2db272a52033a4
169,541
def addCol(adjMatrix): """Adds a column to the end of adjMatrix and returns the index of the comlumn that was added""" for j in range(len(adjMatrix)): adjMatrix[j].append(0) return len(adjMatrix[0])-1
29ee11953cbdb757e8ea80e897751059e42f1d90
6,572
from typing import Sequence from typing import Dict def _get_dict(l: Sequence[str], name_as_key: bool, starts_with: int = 1) -> Dict[str, str]: """ Converts a list into a dict, where keys/values are the list indices. :param l: A list of categories :param name_as_key: Whether to return the dict with category names as key (True) :param starts_with: index count start :return: A dictionary of list indices/list elements. """ if name_as_key: return {v: str(k) for k, v in enumerate(l, starts_with)} return {str(k): v for k, v in enumerate(l, starts_with)}
6f8c682c99d332648443f0cfeea59e02f54162fc
569,448
def tidy_source(code): """ Strips and fixes the indentation of python code. eg. | def foo(): | bar() or |def foo(): | bar() becomes |def foo(): | bar() """ raw_lines = code.splitlines() lines = [] # Remove all empty lines for line in raw_lines: if line.strip() != "": lines.append(line) if len(lines) > 1: if lines[0].rstrip()[-1] == ":": indents = 4 # If you don't use 4 spaces, you will break stuff. else: indents = 0 lines[0] = lines[0].lstrip() remove = len(lines[1])-len(lines[1].lstrip())-indents code = lines[0] for idx in range(1, len(lines)): lines[idx] = lines[idx][remove:] code = "\n".join((code, lines[idx])) else: code = code.strip() return code
48748013b8e2ccd5d118ba661807d3ff9e6f052e
271,790
def _compare_first_n(series_1, series_2, n): """ Utility function that sees if the first n rows of a Pandas series are the same """ for i in range(n): if series_1.iloc[i] != series_2.iloc[i]: return False return True
a06059cebd758a12953fc31eb4b06867ea3851b0
52,562
def check_intensifiers(text, INTENSIFIER_MAP): """ Utility function to check intensifiers of an emotion :param text: text chunk with the emotion term :return: boolean value and booster value for intensifiers """ # BOOSTER_MAP = {"B_INCR": 2, # "B_DECR": 0.5} intensity_word_list = INTENSIFIER_MAP print(intensity_word_list) has_intensity = False booster = 'NULL' for int_term in intensity_word_list: intensifier = int_term.split(':')[0].strip() # print(intensifier) if intensifier in text: # print('yes') has_intensity = True booster = float(int_term.split(':')[2].strip()) return has_intensity, booster
2c35b6b66395bc7105b9fb1b9cf7f04b5686cb8d
14,278
import re def limit(pageurl): """Finds the current '?start=' limit from the page""" b = re.findall('Τέλος.*start=([0-9]+)', pageurl) slimit = int(b[0]) # print(type(slimit)) return slimit
3fcaa343aed8e48820db79e14bd1bc9fcf75f2f7
568,399
def phase_fold(times, period): """ Folds the given light curve over its period to express the curve in terms of phase rather than time. Parameters ---------- times : numpy.ndarray The light curve times. period : numpy.float64 The light curve period. Returns ------- phase_times : numpy.ndarray The light curve times in terms of phase. """ phase_times = (times % period) / period return phase_times
949c71bab8d070e312c6a41b4d5393b0375de6d2
413,584
def widget_generator(klass, fields): """ Takes in a class and a list of tuples consisting of field_name and an attribute dictionary :param klass: Class of the input widget :param fields: List of tuples mapping field names to attribute dictionaries :return: A dict of input widget instances """ widgets = {} for field_name, attrs in fields: widgets[field_name] = klass(attrs=attrs) return widgets
5e09950148f902ace17b6f52e06ee0f16760c195
687,610
import random def generateDistribution(maxLength, totalCount, numDice, randomness): """ Returns a bell curve distribution. maxLength controls how wide your x-axis will be. totalCount is the total number of points you want to generate. numDice is the number of random numbers you want to add together to create one length. The more dice you roll, the steeper you curve will be. randomness is a number between 0 and 100 that represents a percentage chance that a number is randomly dropped from the number creation. This is useful for shifting a data set to the left and gives a better horizontal asymptote. """ lengthList = list() for i in range(totalCount): # Generate numbers num = 0 for d in range(numDice): # Pass randomness test randomizer = random.randint(1,100) if (randomness < randomizer): # Add random number in range to total num += random.randint(0,(maxLength//numDice)) if(num >= maxLength): #print(num) num = maxLength - 1 lengthList.append(num) countList = list(0 for i in range(maxLength)) for l in lengthList: countList[l] += 1 return countList, lengthList
0415a90ece99c22634f6abb2b652e93c410f9310
589,578
import math def xy_intersect_of_polar_coords(rho1, theta1, rho2, theta2): """(x, y) coordinates of 2 lines defined by their parameters in polar coordinates @param rho1: distance from origin to line 1 @param theta1: angle in radians between horizontal line and perpendicular to line 1 @param rho2: distance from origin to line 2 @param theta2: angle in radians between horizontal line and perpendicular to line 2 @note: This function assumes that the lines cross and doesn't take special care to be numerically stable. Its intended usage is to straighten a rectangle that has only be slightly warped by the perspective of the camera taking its picture. >>> xy_intersect_of_polar_coords(0, 0, 0, math.pi / 2) (0.0, 0.0) >>> xy_intersect_of_polar_coords(0, math.pi/4, math.sqrt(2), - math.pi / 4) (1.0, -1.0000000000000002) """ # Represent line 1 as a*x + b*y = e a = math.cos(theta1) b = math.sin(theta1) e = rho1 # Represent line 2 as c*x + d*y = f c = math.cos(theta2) d = math.sin(theta2) f = rho2 # These two lines cross in x, y where x, y is the solution of the 2 linear # equations defined above. det = a * d - b * c x = (d * e - b * f) / det y = (a * f - c * e) / det return x, y
144a0518878af5af2a37d1d4dfbdf8f0d39954d3
312,283
def encode_all( header: bytes, stream: bytes, funcs: bytes, strings: bytes, lib_mode: bool ) -> bytes: """ Combine the various parts of the bytecode into a single byte string. Parameters ---------- header: bytes The bytecode's header data. stream: bytes The actual bytecode instructions. funcs: bytes The function pool. strings: bytes The string pool. lib_mode: bool Whether to build a library bytecode file or an application one. Returns ------- bytes The full bytecode file as it should be passed to the VM. """ if lib_mode: return b"".join((header, b"\r\n\r\n\r\n", strings, b"\r\n\r\n", funcs)) return b"".join( (header, b"\r\n\r\n\r\n", strings, b"\r\n\r\n", funcs, b"\r\n\r\n", stream) )
9325a01b6b485feb3c634b56df1da9b6c9182e04
578,947
def get_two_hospital_plot_labels(measurement_type): """A function to get necessary labels for the two hospitals plot""" if measurement_type == "w": title = "Waiting times of two hospitals over different distribution of patients" y_axis_label = "Waiting Time" else: title = ( "Blocking times of two hospitals over different distribution of patients" ) y_axis_label = "Blocking Time" x_axis_label = "Hospital 1 arrival proportion" return (x_axis_label, y_axis_label, title)
1be47f2a320eb55c5cb1da40c56e6d3a6fc6615d
166,183
def indented_setup(setup, indentation): """Indent each line of setup with given amount of indentation. >>> indented_setup("x = 1\\n", " ") ' x = 1\\n' >>> indented_setup("x = 1\\ny = 2\\n", " ") ' x = 1\\n y = 2\\n' """ return ''.join([indentation + line for line in setup.splitlines(True)])
8ca289d78253cea6435399f0a44cdce3bd1e32a1
217,809
import requests def lookup_mailinglists(prefix): """Find all mailing lists owned by `prefix`""" req = requests.get("https://lists.srcf.net/getlists.cgi", params={'prefix': prefix}) req.raise_for_status() assert req.headers['content-type'].split(';')[0] == 'text/plain' return [listname for listname in req.text.split("\n") if listname]
293043fdead6affd667655a5a2135dd32c6f7893
217,735
from typing import List def convertTo(data) -> List[dict]: """ Converst scores from new to old format :param data: New format data :return: Old format data """ return [ { 'Team': { 'Number': team['teamno'], 'DisplayName': team['teamname'] }, 'Scores': team['scores'], 'TotalGuess': -1 } for team in data ]
68d4686e93bb2fb4b754643168f3b181d9ec9438
207,367
def jaccard(r_tokens: list, s_tokens: list) -> float: """Computes jaccard similarity. JAC(r, s) = |r ∩ s| / |r ∪ s| Parameters ---------- r_tokens : list First token list. s_tokens : list Second token list. Returns ------- Jaccard similarity of r and s. """ r_set = set(r_tokens) s_set = set(s_tokens) return len(r_set.intersection(s_set)) / len(r_set.union(s_set))
427bd308e153cf6781ada6ba45f4bdd0b8f73220
82,120
import torch import math def chebyshevLobatto(n: int): """ Compute the chebyshev lobatto points which are in the range [-1.0, 1.0] Args : n : number of points Returns : A tensor of length n with x locations from negative to positive including -1 and 1 [-1,...,+1] """ k = torch.arange(0, n) ans = -torch.cos(k * math.pi / (n - 1)) ans = torch.where(torch.abs(ans) < 1e-15, 0 * ans, ans) return ans
28ab75cad21812ed32e689b73ca535190de49e91
219,336
def filter_kwargs(kwargs, prefix): """Keep only kwargs starting with `prefix` and strip `prefix` from keys of kept items.""" return {k.replace(prefix, ''): v for k, v in kwargs.items() if k.startswith(prefix)}
3f1475a2a655f37094383491745996027d1363bb
532,270
def get_key(rule_tracker, value): """ Given an event index, its corresponding key from the dictionary is returned. Parameters: rule_tracker (dict): Key-value pairs specific to a rule where key is an activity, pair is an event index value (int): Index of event in event log Returns: key (int): Position of value in rule_tracker """ for key in rule_tracker: if rule_tracker[key] == value: return key
1921e9a68d0df0867248ca83e2ba641101735fc7
708,421
def prefixify(d: dict, p: str): """Create dictionary with same values but with each key prefixed by `{p}_`.""" return {f'{p}_{k}': v for (k, v) in d.items()}
aaad6b11640df7c5e288bdd039b039ce373dcba1
657,513
def _validate_args(user_input_args: tuple[str, ...], num_allowed: int, *args: str) -> list: """ Ensures kwargs entered in a function call are acceptable. Args: input (dict): The kwarg(s) input into a function. num_allowed (int): Limit, if any, on number of kwargs allowed. args (iterable): The acceptable keys for kwargs. Raises: SystemExit: Raised if input doesn't match any accepted kwargs. Returns: list: Containing user_input_args that passed test, if any. """ # Establish lists for testing input and containing inputs that passed. acceptable_args = [arg for arg in args] lowercase_args = [item.lower() for item in acceptable_args] accepted_args = [] # If user didn't input an arg, skip testing. if not len(user_input_args) > 0: return [] # Test user_input_args against acceptable_args. for item in user_input_args: # Check if non-string args are in acceptable_args. if not isinstance(item, str) and item in acceptable_args: accepted_args.append(item) # Test string args as case-insensitive. elif item.lower() in lowercase_args: # Ensure output arg is properly cased even if input arg wasn't. right_arg = acceptable_args[lowercase_args.index(item.lower())] accepted_args.append(right_arg) # Skip unacceptable user_input_arg, removing it from args list. else: print(f'{item} removed - not in {acceptable_args}.') continue # Return user_input_args that passed test if not more than num_allowed. if len(accepted_args) > 0 and len(accepted_args) <= num_allowed: return accepted_args # Exit program. user_input_args failed to validate. else: print('Keyword arg must be no more than' f' {num_allowed} of {".".join(acceptable_args)}.') raise SystemExit
9e309329dd9f20799ed7c80c31af0cb5e046f3f0
142,212
from functools import reduce from operator import mul def prod(iterable): """Product of all values in an iterable, like sum() but for multiplication.""" # NOTE: in Python 3.8 this is now available as math.prod() return reduce(mul, iterable, 1)
51a7fd605d2df46b4c81f89defbc66e474833b82
346,232
def manhattan_distance(x, y): """ Returns the Manhattan (City Block) distance between two lists """ return sum(abs(a - b) for a, b in zip(x, y))
4887024603a8fe3398ec80a17d1d70fbe15fdfab
10,407
def get_resource_path(resource): """ Return the full path for the resource (with or without a parent). """ return ("%s/%s" % (resource.parent and resource.parent.id or '', resource.id.lstrip('/'))).lstrip('/')
2ece218a78f93050d008f5729839e68a9c1a4a06
122,533
def clean_path(path): """ remove index.html from end of a path, add / if not at beginning """ path = path.split("index.html")[0] if not path.startswith("/"): path = "/" + path if not path.endswith("/"): path += "/" return path
55360f0e0729b9cb0510308f5e5be32a404f1e70
48,930
def linear_search(item, my_list): """ Searching position by position :param item: the number to look for :param my_list: a list of integers :return: either True or False if the item is in the list or not. """ found = False for i in range(len(my_list)): if item == my_list[i]: found = True return found
463c23c85626be396c06f56d913fca9b5972fc0e
19,110
import cgi def check_api_v3_error(response, status_code): """ Make sure that ``response`` is a valid error response from API v3. - check http status code to match ``status_code`` :param response: a ``requests`` response :param status_code: http status code to be checked """ assert not response.ok assert response.status_code == status_code # Should return json anyways.. content_type = cgi.parse_header(response.headers['content-type']) assert content_type[0] == 'application/json' assert content_type[1]['charset'] == 'utf-8' data = response.json() # This is an error! assert data['success'] is False assert 'error' in data assert 'result' not in data return data
ca1be2ac3cff99b06fc0aaba73a075ff90024c9b
675,264
import re def Author_name_sep(value: str) -> list: """Splits the authors up into a list of different authors. checks on commas and 'and'. :param value: string of author text :return: list of authors """ x = re.split(", +| +and +", value) return x
e0fca4494968e396b425606b25aa94cc0cc2085c
155,261
def cagr(prices): """ Calculates the Compound Annual Growth Rate (CAGR) of a stock with given prices """ delta = (prices.index[-1] - prices.index[0]).days / 365.25 return ((prices[-1] / prices[0]) ** (1 / delta) - 1) * 100
49fec9f5eb5cca70c9d9cd52f386a4f312a0671a
230,417
def _get_indentation(value: str) -> int: """Calculates the number of leading spaces in a string. Args: value: the string to check for leading spaces. Returns: An integer indicating the number of leading spaces in the string. """ return len(value) - len(value.lstrip())
9e7d4923a9fde230bc4ce3d0c91685d8d7cbf78a
399,176
def unpad(string): # type: (str) -> str """ Simple function that exctracts the initial string from a padded string """ return string[0 : -ord(string[-1])]
375518cc656f8eaaf03e6626ad729a7f34ea71b3
255,225
def binary_search_iterative(array, target): """ Search target element in the given array by iterative binary search - Worst-case space complexity: O(1) - Worst-case performance: O(log n) :param array: given array :type array: list :param target: target element to search :type target: Any :return: index of target element, -1 for not found :rtype: int """ # check base case if len(array) == 0: return -1 # lower bound lb = 0 # upper bound ub = len(array) - 1 while lb <= ub: mid = lb + (ub - lb) // 2 # if element is present at the middle itself if target == array[mid]: return mid # if element is greater than mid, then it # can only be present in right subarray elif target > array[mid]: lb = mid + 1 # else the element can only be present # in left subarray else: ub = mid - 1 return -1
0cca6c4344e384b058408e935c663409b0f78b00
585,589
from functools import reduce def ip_string_to_num(s): """Convert dotted IPv4 address to integer.""" return reduce(lambda a, b: a << 8 | b, map(int, s.split(".")))
3dc5e9ac103149ff12bef43728421e3d30973281
603,712
def get_accept(environ): """get_accept(environ) -> accept header Return the Accept header from the request, or */* if it is not present. environ is the WSGI environment variable, from which the Accept header is read. """ if 'HTTP_ACCEPT' in environ: return environ['HTTP_ACCEPT'] return '*/*'
c58e94a185e475c48fa2f6dd58a0719297db730a
109,509