content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def hdr3Dtohdr2D(hdr3D,verbose=True):
"""
Removing the wavelength component of a hdr, i.e., converting
the WCS from 3D (lambda,ra,dec) to 2D (ra,dec)
--- INPUT ---
hdr3D The 3D hdr to remove wavelength components from
verbose Toggle verbosity
"""
hdr2D = hdr3D
for key in list(hdr2D.keys()):
if '3' in key:
del hdr2D[key]
hdr2D['WCSAXES'] = 2
return hdr2D | 2b851f719befe84662138cadccade78a32756de0 | 144,302 |
def sensitivity_calc(sign_residues_per_iter):
"""
| Inputs the output of ``bootstrapped_residue_analysis`` and calculates the sensitivity of each residue.
| The returned sensitivity of each residue is calculated by calculating ``residue_appearances / iterations``.
| A sensitivity of 1 is ideal meaning that the residue was significant to all the iterations.
|
Args:
sign_residues_per_iter: A list of sets containing the residue ids of the significant residues on each iteration
Returns:
A dictionary of ``ResidueId(key), Sensitivity(value)`` for all the residues that appeared at least on one
iteration
"""
sens_dict = {}
for which_iter in sign_residues_per_iter:
for which_res in which_iter:
try:
sens_dict[which_res] += 1
except KeyError:
sens_dict[which_res] = 1
# Get the sensitivity by calculating residue_appearances / total_iterations
sens_dict = {k: v / len(sign_residues_per_iter) for k, v in sens_dict.items()}
return sens_dict | f92772ea60d3ca660ee63aefa024047f8e3c5495 | 630,392 |
def host(ctx):
"""Returns true if player has host role"""
if "Host" in [role.name for role in ctx.message.author.roles]:
return True
return False | e36c3a7e3977142bdded4ff48cca68c0831fc37a | 91,072 |
import io
import tokenize
def _decode_source(source_bytes):
"""
Decode bytes representing source code and return the string. Universal newline support is used in the decoding.
Based on CPython's implementation of the same functionality:
https://github.com/python/cpython/blob/3.9/Lib/importlib/_bootstrap_external.py#L679-L688
"""
# Local imports to avoid bootstrap issues
# NOTE: both modules are listed in compat.PY3_BASE_MODULES and collected into base_library.zip.
source_bytes_readline = io.BytesIO(source_bytes).readline
encoding = tokenize.detect_encoding(source_bytes_readline)
newline_decoder = io.IncrementalNewlineDecoder(decoder=None, translate=True)
return newline_decoder.decode(source_bytes.decode(encoding[0])) | 1bd6efc154cfb6bf384d0f70aff68ff2cb5a21e9 | 58,029 |
def max_tau_dist(K):
"""Return the maximum unnormalised distance of K rankings. In other words, the maximum number of swaps performed by the bubble sort algorithm to reverse a list of rankings"""
return (K * (K - 1)/2 ) | 75f437490e9c47b807580572ab814551ae5b8720 | 342,602 |
def phred_to_prob(q):
"""Convert a phred score (Sanger or modern Illumina) in probabilty
Given a phred score q, return the probabilty p
of the call being right
Args:
q (int): phred score
Returns:
float: probabilty of basecall being right
"""
p = 10 ** (-q / 10)
return 1 - p | 8d1c0304c0058650f4ac613b6dde958ca22faa7f | 605,565 |
def bedl_matches_vcf(variant, line_split: list) -> bool:
""" Consecutive checks of whether the chromosome, start position and repeat unit
in the supplied variant and (split + stripped) bedl line match. If all matches, return True,
otherwise return False
"""
if not line_split[0] == variant.CHROM:
return False
if not int(line_split[1]) == variant.start + 1:
return False
try:
if not variant.INFO.get('RU').upper() == line_split[4]:
return False
except AttributeError:
return False
return True | c8950677bdfab2152314acf95138662de6e373d1 | 665,570 |
def to_language(locale):
"""Turns a locale name (en_US) into a language name (en-us)."""
p = locale.find('_')
if p >= 0:
return locale[:p].lower() + '-' + locale[p + 1:].lower()
else:
return locale.lower() | 260735d10cd06bf5d149cbed126f1bb99659c0be | 654,772 |
def get_session_summary(sessions):
"""
Takes a list of sessions and extract a summary-dictonary.
"""
summary = dict()
summary['all'] = len(sessions)
summary['waiting'] = len([s for s in sessions if s.proc_status == 'initialized'])
summary['running'] = len([s for s in sessions if s.proc_status in ('running', 'stopping')])
summary['done'] = len([s for s in sessions if s.proc_status in ('completed', 'stopped', 'canceled', 'failed')])
summary['success'] = len([s for s in sessions if s.session_status == 'success'])
summary['warning'] = len([s for s in sessions if s.session_status == 'warning'])
summary['error'] = len([s for s in sessions if s.session_status == 'error'])
return summary | cdaf2c25f9cdca9578fe2ef3413db0869645b36d | 623,044 |
def mean(numbers):
"""
Calculates the mean of an arrary
"""
return float(sum(numbers)) / max(len(numbers), 1) | f27f8393547773f89dba587dc5cd25fa8e14a296 | 421,628 |
import re
def check_for_str(text, pattern):
""" Checks for pattern in text
:param text: string to check for pattern in
:param pattern: pattern to check for
:return: boolean confirming or denying the presence of pattern in string
"""
has_url = False
urls = re.findall(pattern, text)
if len(urls) != 0:
has_url = True
return has_url | e4f17499bbb86254e5ded3c0085e40dea6cca3fe | 337,045 |
def identity(test_item):
"""Identity decorator
"""
return test_item | 799d2325e04066c0dfa405d24d5718b67eb64a00 | 37,709 |
def escape_tex(text):
"""Substitutes characters for generating LaTeX sources files from Python."""
return text.replace(
'%', '\%').replace(
'_', '\_').replace(
'&', '\&') | 99ec41da9a1effb12b6cbb733ee0468530a8dd2d | 333,103 |
import torch
def _broadcast_shape(shapes):
"""
Given a list of tensor sizes, returns the size of the resulting broadcasted
tensor.
Args:
shapes (list of torch.Size): list of tensor sizes
"""
shape = torch.Size([1])
for s in shapes:
shape = torch._C._infer_size(s, shape)
return shape | 3804cea0144466d5a44e578512081f2ae141ec63 | 607,512 |
def traverse_item_heirarchy(root, keys):
"""
Given a root and a list of keys, follow each key to get the value.
e.g.
traverse_item_heirarchy(root, [0, 'a', 'b'])
is equivalent to
root[0]['a']['b']
"""
item = root
for key in keys:
item = item[key]
return item | 3eb8a090dd56a982b02933a801c45ecb57e5f4bb | 319,881 |
from typing import Tuple
import re
def parse_assignment_name(name: str) -> Tuple[str, str]:
"""Splits an assignment id into its type and number"""
matches = re.match(r'^(HW|LAB|WS)(\d+)$', name, re.IGNORECASE)
if not matches:
raise ValueError('Invalid assignment ID: {}'.format(name))
else:
match_groups = matches.groups()
return match_groups[0], match_groups[1] | 500b1a9c4ad93b74b75e2b01fef2f80053f23938 | 376,446 |
def modify_config_for_default_image_exp(config):
"""
Modifies a Config object with experiment, training, and observation settings that
were used across all image experiments by default.
Args:
config (Config instance): config to modify
"""
assert config.algo_name not in ["hbc", "iris"], "no image training for HBC and IRIS"
with config.experiment.values_unlocked():
# save model during every evaluation (every 20 epochs)
config.experiment.save.enabled = True
config.experiment.save.every_n_epochs = 20
# every epoch is 500 gradient steps, and validation epoch is 50 gradient steps
config.experiment.epoch_every_n_steps = 500
config.experiment.validation_epoch_every_n_steps = 50
# do 50 evaluation rollouts every 20 epochs
# NOTE: horizon will generally get set depending on the task and dataset type
config.experiment.rollout.enabled = True
config.experiment.rollout.n = 50
config.experiment.rollout.horizon = 400
config.experiment.rollout.rate = 20
config.experiment.rollout.warmstart = 0
config.experiment.rollout.terminate_on_success = True
with config.train.values_unlocked():
# only cache low-dim info, and use 2 data workers to increase fetch speed for image obs
config.train.num_data_workers = 2
config.train.hdf5_cache_mode = "low_dim"
# batch size 16 and 600 training epochs
config.train.batch_size = 16
config.train.num_epochs = 600
with config.observation.values_unlocked():
# default low-dim observation is eef pose, gripper finger position
# default image observation is external camera and wrist camera
config.observation.modalities.obs.low_dim = [
"robot0_eef_pos",
"robot0_eef_quat",
"robot0_gripper_qpos",
]
config.observation.modalities.obs.rgb = [
"agentview_image",
"robot0_eye_in_hand_image",
]
config.observation.modalities.goal.low_dim = []
config.observation.modalities.goal.rgb = []
# default image encoder architecture is ResNet with spatial softmax
config.observation.encoder.rgb.core_class = "VisualCore"
config.observation.encoder.rgb.core_kwargs.feature_dimension = 64
config.observation.encoder.rgb.core_kwargs.backbone_class = 'ResNet18Conv' # ResNet backbone for image observations (unused if no image observations)
config.observation.encoder.rgb.core_kwargs.backbone_kwargs.pretrained = False # kwargs for visual core
config.observation.encoder.rgb.core_kwargs.backbone_kwargs.input_coord_conv = False
config.observation.encoder.rgb.core_kwargs.pool_class = "SpatialSoftmax" # Alternate options are "SpatialMeanPool" or None (no pooling)
config.observation.encoder.rgb.core_kwargs.pool_kwargs.num_kp = 32 # Default arguments for "SpatialSoftmax"
config.observation.encoder.rgb.core_kwargs.pool_kwargs.learnable_temperature = False # Default arguments for "SpatialSoftmax"
config.observation.encoder.rgb.core_kwargs.pool_kwargs.temperature = 1.0 # Default arguments for "SpatialSoftmax"
config.observation.encoder.rgb.core_kwargs.pool_kwargs.noise_std = 0.0
# observation randomizer class - set to None to use no randomization, or 'CropRandomizer' to use crop randomization
config.observation.encoder.rgb.obs_randomizer_class = "CropRandomizer"
# kwargs for observation randomizers (for the CropRandomizer, this is size and number of crops)
config.observation.encoder.rgb.obs_randomizer_kwargs.crop_height = 76
config.observation.encoder.rgb.obs_randomizer_kwargs.crop_width = 76
config.observation.encoder.rgb.obs_randomizer_kwargs.num_crops = 1
config.observation.encoder.rgb.obs_randomizer_kwargs.pos_enc = False
return config | 8fb5179d6ef5a81f73a26e870d6541778b55268b | 311,722 |
def check_compatibility(f):
"""
Decorator to assert that a preprocessing function returns compatible train and test sets.
Specifically it asserts than the number of columns is equal for both sets.
:param f: The preprocessing function
:return: The preprocessed train and test sets
"""
def wrap(*args, **kwargs):
train, test = f(*args, **kwargs)
assert(train.shape[1] == test.shape[1])
return train, test
return wrap | 24f131362c68d60be0b5fbace0dd517acf9eb379 | 464,976 |
def get_datastore_id(client, name):
"""return the id of a datastore
arguments:
client -- an authenticated trove client
name -- the name of the datastore to find
returns:
the id of the datastore or None if not found
"""
try:
store = client.datastores.find(name=name)
return store.id
except Exception:
return None | d7a9e8e9d4ed1c12d40128516aedfbdbbf44bd74 | 615,968 |
def analizar_anio(anio: int) -> str:
""" Realiza el análisis del año recibido por parámetro.
Parámetros:
anio (int) Año que se desea analizar. Debe ser un número entero
positivo.
Retorno:
str: Mensaje con la forma "El año X hace parte del milenio Y, siglo Z,
y década W."
"""
# Las siguientes instrucciones permiten calcular el milenio
# el siglo y le década del año ingresado por el usuario
milenio = anio // 1000 + 1
siglo = anio // 100 + 1
decada = (anio % 100) // 10 + 1
# Se construye el string de respuesta
respuesta = "El año " + str(anio) + " hace parte del milenio " + \
str(milenio) + ", siglo " + str(siglo) + " y década " + \
str(decada) + "."
# Se retorna el string
return respuesta | 0b92a8f2d2ddb0d333ce151bef55a17b262fb327 | 455,423 |
def get_voted_content_for_user(user):
"""Returns a dict where:
- The key is the content_type model
- The values are list of id's of the different objects voted by the user
"""
if user.is_anonymous():
return {}
user_votes = {}
for (ct_model, object_id) in user.votes.values_list("content_type__model", "object_id"):
list = user_votes.get(ct_model, [])
list.append(object_id)
user_votes[ct_model] = list
return user_votes | 799eff5efd184da0b5121f59025c39d0ddb593a3 | 701,082 |
def _prevent_sbd(doc):
""" Disables spaCy's sentence boundary detection """
for token in doc:
token.is_sent_start = False
return doc | f749e38a156825b63b527aff52487fa72b9fa345 | 285,619 |
def normalize_timestamp(timestamp):
"""
Format a timestamp (string or numeric) into a standardized
xxxxxxxxxx.xxxxx (10.5) format.
Note that timestamps using values greater than or equal to November 20th,
2286 at 17:46 UTC will use 11 digits to represent the number of
seconds.
:param timestamp: unix timestamp
:returns: normalized timestamp as a string
"""
return "%016.05f" % (float(timestamp)) | fa87b8e1c06343362c8c5496ad016a4671b8f125 | 380,907 |
import torch
def min_max_norm(x):
"""Min-Max normalization using PyTorch."""
maX = torch.max(x)
mIn = torch.min(x)
return (x - mIn) / (maX - mIn) | 027489c8325a250bcd33481bb61a35338a776324 | 49,911 |
import torch
def torch_multinomial(input, num_samples, replacement=False):
"""
Like `torch.multinomial()` but works with cuda tensors.
Does not support keyword argument `out`.
"""
if input.is_cuda:
return torch_multinomial(input.cpu(), num_samples, replacement).cuda()
else:
return torch.multinomial(input, num_samples, replacement) | bed9ac316c6f54f429d3da86a91d2337cd3b4e22 | 651,830 |
def calculate_target_shape(volume, header, target_spacing):
"""
Calculates a new number of pixels along a dimension determined by multiplying the
current dimension by a scale factor of (source spacing / target spacing)
The dimension of the volume, header spacing, and target spacing must all match, but the common usecase is 3D
:param volume: as numpy.ndarray
:param header: ITK-SNAP header
:param target_spacing: as tuple or list
:return: target_shape as list
"""
src_spacing = header.get_voxel_spacing()
target_shape = [int(src_d * src_sp / tar_sp) for src_d, src_sp, tar_sp in
zip(volume.shape, src_spacing, target_spacing)]
return target_shape | 27a4b8aac20dead14e12c89142111c9940903c17 | 245,675 |
import random
def random_user_agent() -> str:
"""Create a randomly generated sorta valid User Agent string."""
uas = {
"Edge": (
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/98.0.4758.80 Safari/537.36 Edg/98.0.1108.43"
),
"Chrome": (
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/97.0.4692.99 Safari/537.36"
),
"Firefox": "Gecko/20100101 Firefox/96.0",
"iphone": (
"AppleWebKit/605.1.15 (KHTML, like Gecko) "
"Version/15.2 Mobile/15E148 Safari/604.1"
),
"Safari": (
"AppleWebKit/605.1.15 (KHTML, like Gecko) " "Version/11.1.2 Safari/605.1.15"
),
}
os = {
"windows": "Windows NT 10.0; Win64; x64",
"iphone": "iPhone; CPU iPhone OS 15_2_1 like Mac OS X",
"mac": "Macintosh; Intel Mac OS X 10_11_6",
}
template = "Mozilla/5.0 ({os}) {ua}"
return template.format(
os=random.choice(list(os.values())), ua=random.choice(list(uas.values()))
) | 52d2fe258abe3770dafcd40488a0aeef6438c9b5 | 136,076 |
def allow(whitelist):
"""
Decorates a handler to filter all except a whitelist of commands
The decorated handler will only be called if message.command is in the
whitelist:
@allow(['A', 'B'])
def handle_only_a_and_b(client, message):
pass
Single-item whitelists may be passed as a string:
@allow('THIS')
def handle_only_this(client, message):
pass
"""
whitelist = [whitelist] if isinstance(whitelist, str) else whitelist
def inner_decorator(handler):
def wrapped(client, message):
if message.command in whitelist:
handler(client=client, message=message)
return wrapped
return inner_decorator | c193dddb1a530132d69a8b7d378751430aec0198 | 626,779 |
def max_common_prefix(a):
"""
Given a list of strings (or other sliceable sequences), returns the longest common prefix
:param a: list-like of strings
:return: the smallest common prefix of all strings in a
"""
if not a:
return ''
# Note: Try to optimize by using a min_max function to give me both in one pass. The current version is still faster
s1 = min(a)
s2 = max(a)
for i, c in enumerate(s1):
if c != s2[i]:
return s1[:i]
return s1 | e301b89e19e17d4fe40140501510c4f239b6286b | 164,594 |
def qmap(f, q):
"""
Apply `f` post-order to all sub-terms in query term `q`.
"""
if hasattr(q, '_fields'):
attrs = []
for field in q._fields:
attr = getattr(q, field)
attrs.append(qmap(f, attr))
cls = type(q)
obj = cls(*attrs)
return f(obj)
elif isinstance(q, (list, tuple)):
cls = type(q)
return cls(qmap(f, x) for x in q)
return f(q) | 993dc15cd875a786f89379968d793599ad5af8c9 | 117,609 |
def load_text_file(filename):
""" Load text file ``filename`` and return the (stripped) lines as list entries.
:param filename: path to the file to be loaded
:type filename: str
:return: list of strings consisting of the (stripped) lines from filename
"""
res = []
with open(filename, 'r') as f:
for line in f:
if line == "\n":
res.append(line)
else:
res.append(line.strip())
return res | a3ea196fedf0246dcef88e440d9c6be1516296fe | 484,257 |
def chinese_cycle(date):
"""Return 'cycle' element of a Chinese date, date."""
return date[0] | 0734a1062e81ffd661b9fe3cb12bdbcd34a793be | 115,974 |
import re
def symbolize(s):
"""Drop non-symbol characters and convert to lowercase."""
return re.sub(r'(?u)[^\w\-_]', '', s).lower() | 8cc7638c2d35a13439bb8924cef8fba904d10aff | 433,079 |
def apply_geo_transform(inx, iny, gt):
""" Apply a geotransform
@param inx: Input x coordinate (double)
@param iny: Input y coordinate (double)
@param gt: Input geotransform (six doubles)
@return: outx, outy Output coordinates (two doubles)
"""
outx = gt[0] + inx*gt[1] + iny*gt[2]
outy = gt[3] + inx*gt[4] + iny*gt[5]
return outx, outy | 60f48499156aefeb3de04826503d956a735d7107 | 522,276 |
import ast
def get_module_docstring(path):
"""get a .py file docstring, without actually executing the file"""
with open(path) as f:
return ast.get_docstring(ast.parse(f.read())) | e253372bfb6f65907a5461332d14c414c2370c66 | 707,283 |
def slice_dict(d, keys):
"""
Only return subset of dict keys
:param d: dict
:param keys: list
:return: dict
"""
keys = set(keys).intersection(d.keys())
sd = {k:d[k] for k in keys}
return sd | 4cba1ae4ac5c42eb7d19ddd956e9837892a6fd90 | 418,438 |
def getIndices(lines):
"""Returns list of tuples: (index1,index2,pair probability).
"""
index_list = []
#For each line that ends with 'ubox' (which denotes lines with indices)
for line in filter(lambda x: x.endswith('ubox'), lines):
#split on whitespace
up_index,down_index,probability,ubox = line.split()
#Build tuple with indices and pair probability
index_list.append((int(up_index), int(down_index), \
float(probability)))
return index_list | 286a76562b3a4307aa5ba42de872bfdb540d2dcf | 97,670 |
import six
def _transform(providers, transform_fun, out_mapping_type=dict):
"""Syntactic sugar for transforming a providers dict.
Args:
providers: provider dictionary
transform_fun: transform_fun takes a (vpkg, pset) mapping and runs
it on each pair in nested dicts.
out_mapping_type: type to be used internally on the
transformed (vpkg, pset)
Returns:
Transformed mapping
"""
def mapiter(mappings):
if isinstance(mappings, dict):
return six.iteritems(mappings)
else:
return iter(mappings)
return dict(
(name, out_mapping_type(
[transform_fun(vpkg, pset) for vpkg, pset in mapiter(mappings)]
))
for name, mappings in providers.items()) | cb731daa44bf92e53c635677c6f399c9e656dee1 | 147,944 |
import itertools
import collections
def count_valid_jolt_chains(adapters: list[int], gap: int) -> int:
"""
Count the number of configurations of functioning jolt chains
from the charging outlet (0) to the built-in adapter
(where two consecutive power devices must be within the given gap).
This function implements a dynamic programming algorithm with O(nk) running time
where n is the number of adapters and k is the input gap size.
An improved version of this algorithm using O(n) time (not implemented here)
is to maintain a sliding window of preceding config counts plus their total sum.
"""
builtin_adapter = max(adapters) + gap
jolt_chain = itertools.chain([0], sorted(adapters), [builtin_adapter])
config_counts = collections.Counter({0: 1})
for jolt in jolt_chain:
for downstep in range(-gap, 0):
config_counts[jolt] += config_counts[jolt + downstep]
return config_counts[builtin_adapter] | c62a971b006a931f01c14145f06efb8c8536583e | 176,583 |
def image_crop(src, x1, y1, x2, y2):
"""
Crop image from (x1, y1) to (x2, y2).
Parameters
----------
:param src: Input image in BGR format
:param x1: Initial coordinates for image cropping
:param y1: Initial coordinates for image cropping
:param x2: End coordinates of image cropping
:param y2: End coordinates of image cropping
"""
return src[x1:x2, y1:y2] | 6ab70dc644d0d7054ea70fadcf7ec0ca381918d8 | 699,802 |
def get_selfcontrol_out_pattern(content_pattern):
"""Returns a RegEx pattern that matches SelfControl's output with the provided content_pattern"""
return r'^.*org\.eyebeam\.SelfControl[^ ]+\s*' + content_pattern + r'\s*$' | e8bf556cbf14ef7c4ad20a60d84f049057bc4ffe | 607,776 |
def assoc(d, key, val):
""" Return copy of d with key associated to val """
d = d.copy()
d[key] = val
return d | ff69a77e20b588f8a40cf4f74947df45374b0972 | 500,767 |
def fib(n):
"""Return the n-th number in the fibonacci series.
>>> fib(0)
0
>>> fib(1)
1
>>> fib(2)
1
>>> fib(3)
2
>>> fib(4)
3
>>> fib(5)
5
>>> fib(29)
514229
"""
if n <= 0:
return 0
elif n == 1:
return 1
return fib(n - 1) + fib(n - 2) | f14d884171d027e3c83c4f433248bd57530e465e | 468,255 |
def expand_tensor(tensor, length):
"""
:param tensor: dim: N x M
:param length: l
:return: tensor of (N * l) x M with every row intercalated and extended l times
"""
rows, cols = tensor.size()
repeated = tensor.repeat(1, length)
return repeated.view(rows * length, cols) | 5682f59bca4b93d6d0544c55afbe14de1f5e7876 | 256,399 |
def create_msearch_payload(host, st, mx=1):
"""
Create an M-SEARCH packet using the given parameters.
Returns a bytes object containing a valid M-SEARCH request.
:param host: The address (IP + port) that the M-SEARCH will be sent to. This is usually a multicast address.
:type host: str
:param st: Search target. The type of services that should respond to the search.
:type st: str
:param mx: Maximum wait time, in seconds, for responses.
:type mx: int
:return: A bytes object containing the generated M-SEARCH payload.
"""
data = (
"M-SEARCH * HTTP/1.1\r\n"
"HOST:{}\r\n"
'MAN: "ssdp:discover"\r\n'
"ST:{}\r\n"
"MX:{}\r\n"
"\r\n"
).format(host, st, mx)
return data.encode("utf-8") | cb0da629716e992dd35a5b211f26cae3ad949dcb | 698,547 |
import re
def verify_email(email):
"""
This function validates the given email using regular expression.
Args:
email: Email to be verified.
Returns:
True if email format is correct otherwise False.
"""
email_rule = r"^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$"
return re.search(email_rule, email) | 99e27d71660d67ddb50d4d6ba759496e053fdaa9 | 571,481 |
def _ensure_aggregate(ctx, agg_uuid):
"""Finds an aggregate and returns its UUID (which is the same as the
supplied parameter). If not found, creates the aggregate with the supplied
UUID and returns the new aggregate's UUID.
"""
query = """
MERGE (agg:AGGREGATE {uuid: '%s'})
RETURN agg
""" % agg_uuid
result = ctx.tx.run(query).data()
return agg_uuid | 34b09277b89db00a4e7cedaefafb16becf22d4a7 | 481,660 |
def heuristic(node, goal)->int:
"""
Heuristic function that estimates the cost of the cheapest path from node to the goal.
In our case it is simple manhatan distance.
:param node:
:param goal:
:return: Manhatan distance of nodes
"""
# expand nodes
x1, y1 = node.get_pos()
x2, y2 = goal.get_pos()
# compute
return abs(x1 - x2) + abs(y1 - y2) | b625872a0eef65e860a41f768975f724b9f8cbb6 | 109,402 |
def _string_score(input_str):
"""Sum the ord(c) for characters in a string."""
return sum([ord(x) for x in input_str]) | 4674ca9c091afc2a47dd2d0a2b54e8f9adf90c71 | 596,949 |
def get_any_idi(sipper):
"""
Returns the interdrink intervals for a Sipper,
disregarding side or bottle contents
Parameters
----------
sipper : Sipper
sipper data loaded into the Sipper class
Returns
-------
idi_minutes : pandas.Series
array of the interdrink intervals in minutes
"""
data = sipper.data
combined = data['LeftCount'].diff() + data['RightCount'].diff()
combined.dropna(inplace=True)
combined = combined[combined > 0]
idi_delta = combined.index.to_series().diff().dropna()
idi_minutes = idi_delta.dt.total_seconds()/60
return idi_minutes | 178fa152d432a7bc33ede3594a7c3577f89860f0 | 152,057 |
from typing import Dict
from typing import List
from typing import Tuple
import re
def _extract_attributes(line: str) -> Dict[str, str]:
"""Extracts attributes from an m3u8 #EXT-X tag to a python dictionary."""
attributes: Dict[str, str] = {}
line = line.strip().split(':', 1)[1]
# For a tighter search, append ',' and search for it in the regex.
line += ','
# Search for all KEY=VALUE,
matches: List[Tuple[str, str]] = re.findall(
r'([-A-Z]+)=("[^"]*"|[^",]*),', line)
for key, value in matches:
attributes[key] = value
return attributes | 2154b95a9ec018d70af4fa0481a84107cf64e8b0 | 441,417 |
from pathlib import Path
def getfilepath(filename: str) -> Path:
"""
Searches for the filepath in the current directory and parent directory
If an empty string or nothing is passed as the parameter, sets the current working directory as path
Args:
filename: An str object that represents a file or a folder path
Return:
Path to the file object
"""
filepath = None
if not filename:
filepath = Path(__file__).parent
else:
filepath = Path(filename)
if not filepath.exists():
check_in_parent = Path(__file__).parent / filename
if not check_in_parent.exists():
raise FileNotFoundError
else:
filepath = check_in_parent
return filepath | ef4efe7b333ca25c676e3ffc7e83d6fb59f32f91 | 246,803 |
def is_in_element(coords, data_labeled):
"""
Evaluate if the given coords are in a element.
Parameters
---------
coords: Tuple
Contains the indices to check
data_labeled : NdArray
Data with elements labeled
Returns
---------
Boolean
True if coords point to an element of the data, False otherwise.
"""
return data_labeled[coords] != 0 | 85968c2f034955cf74f5ef47afcf9d4aaf5bde2e | 590,895 |
from typing import Tuple
def calculate_rules_indices(rules_idx: list, fold_id: int, num_folds: int) -> Tuple[list, list]:
"""
Calculates the indices of the samples which are to be included in training and test sets for k-fold cross validation
:param rules_idx: all rules indices (shuffled) that are to be splitted into cw training & cw test set rules
:param fold_id: number of a current hold-out fold
:param num_folds: the whole number of folds the data should be splitted into
:return: two arrays containing indices of rules that will be used for cw training and cw test set accordingly
"""
test_rules_idx = rules_idx[fold_id::num_folds]
train_rules_idx = [rule_id for rule_id in rules_idx if rule_id not in test_rules_idx]
if not set(test_rules_idx).isdisjoint(set(train_rules_idx)):
raise ValueError("Splitting into train and test rules is done incorrectly.")
return train_rules_idx, test_rules_idx | 9be1004ed0d1d2934f97d965358ea0a237d4b50b | 170,592 |
def nillable_string(func):
"""Decorator that retuns None if input is None."""
def wrapper(cls, string):
if string is None:
return None
else:
return func(cls, string)
return wrapper | e4dc2fda61334e6ed1368dfca431bdc5b8479e6c | 696,322 |
def reformat_replace_star_list_with_dash_list(text):
"""
Replaces bullet lists starting with `*` with the lists starting with `-`
:param text: Original text
:return: New text without `*` bullet lists
"""
lines = text.split('\n')
new_text = ''
for line in lines:
if line.strip().startswith('* '):
line = line.replace('* ', '- ', 1)
new_text += line + '\n'
return new_text | d80d1abae6c54daecabf9434e083ec3abd24bcc3 | 649,111 |
def subclasses(cls):
"""List all subclasses of cls recursively."""
p = {cls}
subclasses = set()
while p:
subclasses.update(p)
q = set()
for base in p:
for subclass in type.__subclasses__(base):
if subclass not in subclasses:
q.add(subclass)
p = q
return subclasses | 836fffe9a6bc34b39b3ae9ba1b9f9ca2b8b9456f | 375,563 |
def hc_response() -> str:
"""Generate a health check response."""
response = 'HTTP/1.1 200 OK\n'
response_body = 'Healthy'
# print('sending healthcheck')
response_headers = {
'Content-Type': 'text/html; encoding=utf8',
'Content-Length': len(response_body),
'Connection': 'close',
}
response += ''.join(f'{k}: {v}\n' for k, v in response_headers.items())
response += f'\n{response_body}'
return response | 81be8fb786594a2a228606dcebc0c7d109eb2109 | 245,205 |
def decimal_normalize(value):
"""
Normalize decimal value like cut zero ending.
"""
return value.normalize() | e9737bcb3d0b09a247ec89c3db257ca62550d5c6 | 50,129 |
from pathlib import Path
def get_data_dir() -> Path:
"""Return the path of the data volume."""
return Path("/app/data") | e9f437046d9b58313f8356d1fc94304331413d85 | 313,123 |
def days_with_errors_query(limit=None):
"""Return an SQL string to qurery for days with many HTTP errors.
Args:
limit (int): The maximum number of results to query for. If
ommited, query for all matching results.
Returns:
str: An SQL string. When used in a query, the result will contain
two columns describing days which had an HTTP response error
rate of more than 1%:
- The date as a string (e.g. "December 31, 2000").
- The rate of HTTP requests for that day which did not
result in a "200 OK" response (e.g. "1.11% errors").
"""
return """
WITH date_errpercent AS (
SELECT
time::date AS date,
(
-- Count the number of errors on this date
sum(CASE WHEN status != '200 OK' THEN 1 ELSE 0 END)
-- Calculate percentage compared to the total requests
-- Convert from integer so that we get decimal places
/ count(*)::decimal * 100
) as err_percent
FROM log
GROUP BY date
)
SELECT
to_char(date, 'FMMonth FMDD, YYYY') AS date,
format('%s%% errors', round(err_percent, 2)) AS errors
FROM date_errpercent
WHERE err_percent > 1
ORDER BY err_percent
LIMIT {number};
""".format(number=limit or 'ALL') | 40f031676915ac6d3987c3db0feaae0232725150 | 480,012 |
def fit_beta_mean_uncertainty(mean, var):
"""
Compute parameters from the mean and variance following this parameterization:
https://en.wikipedia.org/wiki/Beta_distribution#Mean_and_variance
"""
EPSILON = 1E-2
mean = EPSILON if mean==0 else 1-EPSILON if mean==1 else mean
nu = -1 + (mean * (1 - mean)) / var
alpha = mean * nu
beta = (1 - mean) * nu
if alpha < 0 or beta < 0:
pass
return alpha, beta | a5097d368f93746c6a03fc0ad6144e14694931c4 | 447,380 |
def has_undir_edge(g, x, y):
""" Returns whether there is an undirected edge from x to y in Graph g """
return g.has_edge(x, y) and g.has_edge(y, x) | 922019db92855515d98236740e62df01cef572eb | 519,257 |
def get_week_sec(epoch, epoch_start):
"""Returns seconds since the beginning of the week
Parameters
----------
epoch : datetime.datetime
epoch_start : datetime.datetime
Returns
-------
seconds : float
"""
current_epoch = epoch - epoch_start
week = current_epoch.days / 7.
seconds = (week - int(week)) * (7 * 24 * 60 * 60)
seconds += current_epoch.seconds
return seconds | 3810daaa4165286c4e063b284578255a2e4700a1 | 99,950 |
def signal_lf_hf_ratio(lf, hf):
"""Computes the ratio between the high and low frequency components of a signal
Parameters
:param lf: scalar
Summation of low frequency energies in a signal
:param hf: scalar
Summation of high frequency energies in a signal
:return: scalar
Ratio of the high and low frequency energies in a signal
"""
return lf / hf | 95f9033d964210ffc98716b6cb64ec0bb30d0e8b | 83,532 |
def distribute_atoms(atoms, n):
""" split a 1D list atoms into n nearly-even-sized chunks.
"""
k, m = divmod(len(atoms), n)
return [atoms[i*k+min(i,m) : (i+1)*k+min(i+1,m)] for i in range(n)] | 12a21245f2e1cb412bdb35aadf3c7d130d11107f | 692,409 |
def str_starts_with_any_in_list(string_a, string_list):
"""Check if string_a starts with any string the provided list of strings
Parameters
----------
string_a : str
Any string
string_list : list
A list of strings
Returns
-------
bool
True if any ``string_a`` starts with any string in ``string_list``
"""
for string_b in string_list:
if string_a.startswith(string_b):
return True
return False | a0431d9e0461c25bb3011197f4cd68211ae62266 | 256,578 |
def get_attrib_recursive(element, *attribs):
"""Find the first attribute in attribs in element or its closest ancestor
that has any of the attributes in attribs.
Usage examples:
get_attrib_recursive(el, "fallback-langs")
get_attrib_recursive(el, "xml:lang", "lang")
Args:
element: an etree element where to search for attributes in attribs
attribs: one or more attribute label(s) to search for
Returns:
the value of the first attribute in attribes found in element or the
closest ancestor that has any of the attributes in attribs, or None
"""
for attrib in attribs:
# We could also element.attrib[attrib] instead of xpath, but it only
# works for attributes without a name, like attrib="lang", while xpath
# also works for attributes with a namespace, like attrib="xml:lang".
path = element.xpath("./@" + attrib)
if path:
return path[0]
if element.getparent() is not None:
return get_attrib_recursive(element.getparent(), *attribs)
else:
return None | d04ba71a280bd1697cc61b79af21df46023473d2 | 10,012 |
def get_distance(point_cloud):
"""
:param point_cloud: (B, C, N) Point cloud data.
:return: (B, N) Distance of each point in the point cloud.
"""
distance = point_cloud.pow(2).sum(axis=1).sqrt()
return distance | e8f77872d1e8d36a45740230a60b1c9c6f76f7af | 136,037 |
def oct2dec(x):
"""
Convert octal string to decimal number.
For instance: '11' -> 9
"""
return int(x, 8) | e94f5b66262852c99e976574fd699becd8363a5c | 344,193 |
def f_to_k(temp):
"""
Converts Fahrenheit to Kelvin.
"""
return (temp + 459.67) * 5/9 | 8f7bafca6e55acd3937d4783c681b477fefce5af | 424,786 |
def BuildCvt(cvt):
"""Organizes information about a single CoordinatedVideoTiming object.
Full object name: coordinated_video_timings.CoordinatedVideoTiming.
Args:
cvt: A single CoordinatedVideoTiming object.
Returns:
A dictionary of coordinated video timing information.
"""
return {
'Active vertical lines': cvt.active_vertical_lines,
'Aspect ratio': cvt.aspect_ratio,
'Preferred refresh rate': cvt.preferred_vertical_rate,
'Supported refresh rates': cvt.supported_vertical_rates
} | baf3caaf881abaee69c078984de2c2960c44d82c | 124,556 |
def bucopt(self, method="", nmode="", shift="", ldmulte="", rangekey="",
**kwargs):
"""Specifies buckling analysis options.
APDL Command: BUCOPT
Parameters
----------
method
Mode extraction method to be used for the buckling analysis:
LANB - Block Lanczos
SUBSP - Subspace iteration
nmode
Number of buckling modes (i.e., eigenvalues or load multipliers) to
extract (defaults to 1).
shift
By default, this value acts as the initial shift point about which
the buckling modes are calculated (defaults to 0.0).
ldmulte
Boundary for the load multiplier range of interest (defaults to ).
rangekey
Key used to control the behavior of the eigenvalue extraction
method (defaults to CENTER):
CENTER - Use the CENTER option control (default); the program computes NMODE buckling
modes centered around SHIFT in the range of (-LDMULTE,
+LDMULTE).
RANGE - Use the RANGE option control; the program computes NMODE buckling modes in the
range of (SHIFT, LDMULTE).
Notes
-----
Eigenvalues from a buckling analysis can be negative and/or positive.
The program sorts the eigenvalues from the most negative to the most
positive values. The minimum buckling load factor may correspond to the
smallest eigenvalue in absolute value, or to an eigenvalue within the
range, depending on your application (i.e., linear perturbation
buckling analysis or purely linear buckling analysis).
It is recommended that you request an additional few buckling modes
beyond what is needed in order to enhance the accuracy of the final
solution. It is also recommended that you input a non zero SHIFT value
and a reasonable LDMULTE value (i.e., a smaller LDMULTE that is closer
to the last buckling mode of interest) when numerical problems are
encountered.
When using the RANGE option, defining a range that spans zero is not
recommended. If you are seeking both negative and positive eigenvalues,
it is recommended that you use the CENTER option.
This command is also valid in PREP7. If used in SOLUTION, this command
is valid only within the first load step.
Distributed ANSYS Restriction: Both extraction methods (LANB and SUBSP)
are supported within Distributed ANSYS. However, the subspace iteration
eigensolver (SUBSP) is the only distributed eigensolver that will run a
fully distributed solution. The Block Lanczos eigensolver (LANB) is not
a distributed eigensolver; therefore, you will not see the full
performance improvements with this method that you would with a fully
distributed solution.
"""
command = f"BUCOPT,{method},{nmode},{shift},{ldmulte},{rangekey}"
return self.run(command, **kwargs) | 0c1256711940b6511ff6a7e6a5aa9ab0b0d2d625 | 627,008 |
import click
def module_template_options(func):
"""Merge the module template option decorators into a single one."""
template_dec = click.option("--template",
"-t",
default="csharp",
show_default=True,
required=False,
type=click.Choice(["c", "csharp", "java", "nodejs", "python", "csharpfunction"]),
help="Specify the template used to create the default module")
group_id_dec = click.option("--group-id",
"-g",
default="com.edgemodule",
show_default=True,
help="(Java modules only) Specify the groupId")
return template_dec(group_id_dec(func)) | 246b65725c199ac21dd5e22aa355f830143929fd | 95,148 |
def endpoints(edge):
"""
Return a pair with the edge's **endpoints** (the nodes it connects).
"""
if len(edge) == 2:
return tuple(edge)
else:
return tuple(edge) + tuple(edge) | bc958c9933bf44af801b6c9c53be368ed9f67d3d | 392,188 |
def invite_user(slack_client, user, channel):
"""
Invite a user to a given channel.
"""
response = slack_client.api_call("channels.invite",
channel=channel,
user=user)
return response | 6519e85299ef817aca5a9a734599e38d7b6a7905 | 66,281 |
def get_epsilon_rate(data) -> str:
"""
Computes the epsilon rate by taking the least common bit for each bit in all binary entries of the given data set.
:param data: Array of binary numbers arranged as Strings.
:return: Epsilon rate as a string of binary values.
"""
_output = ''
for elem in range(len(data[0])):
_count_zeroes = 0
_count_ones = 0
# Iterate over each bit of the entries
for bit in range(len(data)):
if int(data[bit][elem]) == 0:
_count_zeroes += 1
elif int(data[bit][elem]) == 1:
_count_ones += 1
# Check if there are more '1' or '0' for the current bit
if _count_ones > _count_zeroes:
_output += '0'
else:
_output += '1'
return _output | f5c2ce8e07e08c0a6673f6ea81948b68d7c5e36b | 568,826 |
def xgcd(a: int, b: int) -> tuple:
"""Extended Euclidean (GCD) algorithm
gcd(a, b) = u*a + v*b
Returns gdc, u, v
"""
x, x1, y, y1 = 1, 0, 0, 1
while b:
q, a, b = a // b, b, a % b
x, x1 = x1, x - q * x1
y, y1 = y1, y - q * y1
return a, x, y | 3dba9fee305f2c423f84607177ca1b9025d33978 | 16,118 |
def is_scheduled(num_words, frequency, words_per_iteration):
"""Checks if an event is scheduled to be performed within given number
of updates after this point.
For example, word_per_iteration=9, frequency=2:
num_words: 1 2 3 4 [5] 6 7 8 [9] 10 11 12
* frequency: 2 4 6 8 10 12 14 16 18 20 22 24
modulo: 2 4 6 8 1 3 5 7 0 2 4 6
:type num_words: int
:param num_words: number of words so far
:type frequency: int
:param frequency: how many times per iteration the event should be performed
:type words_per_iteration: int
:param words_per_iteration: number of words in one iteration
:rtype: bool
:returns: whether the operation is scheduled to be performed
"""
modulo = num_words * frequency % words_per_iteration
return modulo < frequency | 9949e1af3384b3e592ef673e76e6d7dd88d8876e | 134,129 |
def row_major_form_to_ragged_array(flat, indices):
"""Convert [1, 2, 3, 5, 6], [0, 3] to
[[1,2,3], [5,6]] for serialization
"""
endices = indices[1:] + [None]
return [flat[start:end] for start, end in zip(indices, endices)] | e085735f2b3e6f73f63a37d6f7024aaca5eddf5b | 137,420 |
def pix_to_xyz(pixel, height, bounds, pixel_size, skip_height=False):
"""Convert from pixel location on heightmap to 3D position."""
u, v = pixel
x = bounds[0, 0] + v * pixel_size
y = bounds[1, 0] + u * pixel_size
if not skip_height:
z = bounds[2, 0] + height[u, v]
else:
z = 0.0
return (x, y, z) | 06d05b273865ad08e44e507a8172f7d495dc58d9 | 512,282 |
def fib (n: int) -> int:
""" Returns the n'th Fibonacci number.
Note that this function uses zero style indexing, meaning that the first Fibonacci number has an index
of zero (n=0)."""
f_p, f_c= 0, 1
for i in range(n):
f_n = f_c + f_p
f_p = f_c
f_c = f_n
return f_c | 431c0ba58b2dfb25eca03c14890d7b6ecab88f0d | 27,213 |
def _consolidate_bounds_with_equality_constraints(equality_pc, params):
"""consolidate bounds with equality constraints.
Check that there are no incompatible bounds on equality constrained parameters and
set the bounds for equal parameters to the strictest bound encountered on any of
them.
Args:
equality_pc (list): List of constraints of type "equality".
params (pd.DataFrame): see :ref:`param`.
Returns:
pp (pd.DataFrame): Copy of params with stricter bounds.
"""
pp = params.copy()
lower = pp["lower_bound"].copy()
upper = pp["upper_bound"].copy()
for eq in equality_pc:
lower.iloc[eq["index"]] = lower.iloc[eq["index"]].max()
upper.iloc[eq["index"]] = upper.iloc[eq["index"]].min()
pp["lower_bound"] = lower
pp["upper_bound"] = upper
return pp | a9034b7dc3c1c33913363fb5e996117027d19013 | 344,260 |
def to_int(value):
"""Converts the given string value into an integer. Returns 0 if the
conversion fails."""
try:
return int(value)
except (TypeError, ValueError):
return 0 | f219844de96d1d2236e94c4427c0ad27cc4b587b | 701,832 |
def FormatDate( DateTime ):
"""
Return a HL7 formatted DateTime (YYYYMMDDHHmmss).
Arguments:
DateTime -- The datetime.datetime object to format
"""
return DateTime.strftime( '%Y%m%d%H%M%S' ) | a98d81480637287792d9cb82009550fbac979851 | 297,698 |
def hit_count(result):
""" Parse the hit count from an ElasticSearch response
ES7: result['hits']['total']['value'], ES6: result['hits']['total']"""
return result['hits']['total']['value'] \
if type(result['hits']['total']) is dict \
else result['hits']['total'] | 254241975f5e5198cd96e423c175d728f81ef4b2 | 182,429 |
def is_member_of(userObj, groupObj):
"""
Will determine is a user is a member of a group. Returns ``Tru`` or ``False``
"""
if userObj.groups:
for group in userObj.groups:
if group.group_name == groupObj.group_name:
return True
return False
else:
return False | 0e08688ce975dc6333ce75742d209b17e08b8f0f | 374,917 |
def get_object_id(obj: dict) -> str:
"""Returns unique id of the object."""
return obj["name"].rpartition("/")[-1] | 806942ca0c5e033e9bdf6343e65a0e6895f75d92 | 383,362 |
import json
def read_json(read_path):
"""Returns dict from JSON file"""
with open(read_path, 'r') as f_in:
# read in JSON file as dict
data = json.load(f_in)
return data | e54ce61645012b6dc5efdd9cc9c81f35cdb6a377 | 240,866 |
def identity(x):
"""The identity activation function.
Shortcut is ``linear``.
Parameters
----------
x : Tensor
input.
Returns
-------
Tensor
A ``Tensor`` in the same type as ``x``.
"""
return x | 6815fd8d46c0ec3921a39ff588ee7d9b19ed0e67 | 507,345 |
def derived_P_species(df_R, f_TDP):
"""
Calculate: Total P as the sum of TDP and PP
SRP as a function of TDP
for both the daily mass flux and the concentrations
Inputs: reach results dataframe; value to multiply TDP by to get SRP
Returns: dataframe of reach results, with extra columns added
"""
# Calculate total P as the sum of TDP and PP
df_R['TP_mgl'] = df_R['TDP_mgl'] + df_R['PP_mgl'] # Concentration (mg/l)
df_R['TP_kg/day'] = df_R['TDP_kg/day'] + df_R['PP_kg/day'] # Mass (kg/day)
# Calculate SRP from TDP using a constant user-supplied factor
df_R['SRP_mgl'] = df_R['TDP_mgl']*f_TDP # Concentration (mg/l)
df_R['SRP_kg/day'] = df_R['TDP_kg/day']*f_TDP # Mass (kg/day)
return df_R | 3c5193c38847421fcffbfbf367aa643ca817aeb6 | 655,826 |
def _undefined_pattern(value, fn, undefined):
"""
If ``fn(value) == True``, return `undefined`, else `value`.
"""
if fn(value):
return undefined
return value | 634629dce914be4c948105c9b4b385fb22dcccd4 | 224,994 |
def address_pairs(fields):
"""
Zips address fields into pairs, appending the last field if the
total is an odd number.
"""
pairs = list(zip(fields[::2], fields[1::2]))
if len(fields) % 2:
pairs.append(fields[-1])
return pairs | d77150a67b117f9f023dd2fd0c2bd261c4c38b5f | 131,130 |
def trim_image(image):
"""
Returns an image with extra whitespace cropped out.
>>> name = "examples/images/playerShip1_orange.png"
>>> source_image = PIL.Image.open(name)
>>> cropped_image = trim_image(source_image)
>>> print(source_image.height, cropped_image.height)
75 75
"""
bbox = image.getbbox()
return image.crop(bbox) | 23426bd57abd93a90df03e20f3ff91b2f36ab555 | 505,015 |
def _recall(tp, fn):
"""Calculate recall from true positive and false negative counts."""
if fn == 0:
return 1 # by definition.
else:
return tp / (tp + fn) | ef6b40b984a5620e36fda8aae54d7a0c1ffcfbe2 | 92,385 |
def _fix_date_offset_format(date_str):
""" Remove ':' in the UTC offset, for example :
>>> print(_fix_date_offset_format("2018-10-15T08:49:00+02:00"))
2018-10-15T08:49:00+0200
"""
return date_str[:-3] + date_str[-2:] | 90661b2b3ef539c044975f9c32880ca56237b8b0 | 142,055 |
def get_resources_list(object_dict, resources_list):
"""
Method to get the list of resources labels
:param object_dict: dictionary to describe XNAT object parameters
:param resources_list: list of resources requested from the user
:return: None if empty, 'all' if all selected, list otherwise
"""
# Get list of resources' label
if resources_list == 'all':
res_list = object_dict('resources', None)
else:
res_list = resources_list
return res_list | ec68442c18ad0bc185b3bfae2fb8007d3ff42cf5 | 375,807 |
from typing import Tuple
def _color_rgb_to_int(rgb_color_tuple: Tuple[int, int, int]) -> int:
"""Convert an RGB color tuple to an 24 bit integer.
Parameters
----------
rgb_color_tuple : Tuple[int, int, int]
The color as RGB tuple. Values must be in the range 0-255.
Returns
-------
int :
Color as 24 bit integer
"""
return int("0x{:02x}{:02x}{:02x}".format(*rgb_color_tuple), 0) | ffd04cecfba4868fc4acc228056e029a9011d0ae | 515,033 |
def make_desc_dict(ecfp):
"""
Format tuple of fingerprint information into dictionary
:param ecfp: Tuple of fingerprint features and values
:return: dictionary of fingerprint features and values
"""
ecfp_feat, ecfp_val = zip(*ecfp)
return ecfp_feat, ecfp_val | 5925cda8d428fad5c9bfd46a7a26276e34256569 | 34,002 |
def CombineListResults(result1, result2):
"""Combines two outputs of list operations into one.
Either result can be None, or JSON dictionary representing result of list
operation.
Args:
result1: First list result to combine, or None
result2: Second list result to combine, or None
Returns:
Combined result containing resources from both result1 and result2.
"""
if result1 is None:
return result2
if result2 is None:
return result1
items = []
items.extend(result1.get('items', []))
items.extend(result2.get('items', []))
kind = result1.get('kind') or result2.get('kind')
return {'kind': kind, 'items': items} | 7b2cbced73fc39056fcf29ff299f578da4c646d3 | 409,197 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.