content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def check_if_only_decoys(sequences): """ Check if the sequences to consolidate are composed only of decoys """ only_decoys = True for sequence in sequences: if 'decoy' not in sequence.split()[2]: only_decoys = False break return only_decoys
aeb65a261bcea6db80cd7a81b566463ad3d0414f
31,934
import logging def set_up_logger(name, file_path, level=logging.INFO, verbose=True): """ Creates basic logger object that optionally also logs to command-line. :param name: (string) Name of the logger. Should be called with __name__. :param file_path: (string) File location of the output handler. :param level: (logging.LEVEL) Specifies the logging level which is output. :param verbose: (boolean) If set to True, will also log with the appropriate level to stdout. :return: logging.Logger object with the specified properties. """ # create base logger logger = logging.getLogger(name) logger.setLevel(level) # format the date accordingly formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s \t: %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') # add handler for write to file fh = logging.FileHandler(file_path) fh.setLevel(level) fh.setFormatter(formatter) logger.addHandler(fh) # add handler for stream output if wanted if verbose: sh = logging.StreamHandler() sh.setLevel(level) sh.setFormatter(formatter) logger.addHandler(sh) return logger
05c74e21390f704f4e89332e24696ad4f10599a1
466,093
def to_from(arr): """Convert two elements list into dictionary 'to-from'. """ try: return {'from':arr[0], 'to':arr[1]} except IndexError: return None
b9c632b2a57121cb094a0cdbf443d838d93130ac
294,829
def cli(ctx): """Get the search tools available Output: dictionary containing the search tools and their metadata. For example:: { "sequence_search_tools": { "blat_prot": { "name": "Blat protein", "search_class": "org.bbop.apollo.sequence.search.blat.BlatCommandLineProteinToNucleotide", "params": "", "search_exe": "/usr/local/bin/blat" }, "blat_nuc": { "name": "Blat nucleotide", "search_class": "org.bbop.apollo.sequence.search.blat.BlatCommandLineNucleotideToNucleotide", "params": "", "search_exe": "/usr/local/bin/blat" } } } """ return ctx.gi.annotations.get_search_tools()
c2e27d34147bdd7b33c4e8e76a0cfac6d0a1a678
507,866
def rowvec(vec): """ Convert to row vector """ return vec.reshape(1, -1)
4f4735d479ea0565513fb14cd76a4a2e8bc54c95
235,067
def get_nonzero_LV_coverage(dict_genes, LV_matrix): """ This function counts the number of LVs that each gene is present in (i.e. has a nonzero contribution). This function returns a dictionary [gene id]: number of LVs Arguments --------- dict_genes: dict Dictionary mapping gene ids to label="generic", "other" LV_matrix: df Dataframe containing contribution of gene to LV (gene x LV matrix) """ dict_nonzero_coverage = {} for gene_label, ls_genes in dict_genes.items(): LV_series = (LV_matrix.loc[ls_genes] != 0).sum(axis=1) dict_nonzero_coverage[gene_label] = LV_series return dict_nonzero_coverage
20b257f2bccb7cb23b72b8a649942998b8041624
433,858
def image_dialogs(context, request, image=None, image_name_id='', landingpage=False, deregister_form=None, snapshot_images_registered=0): """ Modal dialogs for Image landing and detail page.""" return dict( image=image, image_name_id=image_name_id, landingpage=landingpage, deregister_form=deregister_form, snapshot_images_registered=snapshot_images_registered, )
5eae78609ca832422c2fea61ad02f2f111df33f4
441,837
def read_file(filename): """ Given a filename, read the entire thing into a string """ with open(filename, encoding='utf-8') as file: return file.read()
6e5a9f900dfe0d0ce71350ae8bfd1d69b1864e19
481,410
def get_oldest(fromlist): """ get_oldest(fromlist) where fromlist is a list of DataObjects Get the oldest timestamp out of all the timestamps in the DataObject list. """ oldest_timestamp = fromlist[0].data[0][1] #take the first timestamp from the first DataObject in the fromlist list for obj in fromlist: if obj.oldest_sample < oldest_timestamp: oldest_timestamp = obj.oldest_sample return oldest_timestamp
0593c1a529e6d4191661d40a88b2d9b5467ef130
102,818
from datetime import datetime def parse_date(date_str) : """ Converts a date-time string into a datetime object. """ if len(date_str) > 19: return datetime.strptime(date_str, '%Y-%m-%dT%H:%M:%S.%f') else : return datetime.strptime(date_str, '%Y-%m-%dT%H:%M:%S')
68e2089b24e8fca06b2bedb5df6a68f7630466f4
374,528
def _propertyset_is_map(ps): """Helper function to determine if the given PropertySet should be handled like a map or like a sequence""" return len(ps.keys) > 0 or len(ps.values) == 0
b9136076dcfaa18fdfee481973aa6ae72549febc
297,747
def _dtree_filter_comp(dtree_data, filter_key, bin_class_type): """ List comprehension filter helper function to filter the data from the `get_tree_data` function output Parameters ---------- dtree_data : dictionary Summary dictionary output after calling `get_tree_data` on a scikit learn decision tree object filter_key : str The specific variable from the summary dictionary i.e. `dtree_data` which we want to filter based on leaf class_names bin class type : int Takes a {0,1} class-value depending on the class to be filtered Returns ------- tree_data : list Return a list containing specific tree metrics from the input fitted Classifier object """ # Decision Tree values to filter dtree_values = dtree_data[filter_key] # Filter based on the specific value of the leaf node classes leaf_node_classes = dtree_data['all_leaf_node_classes'] # perform the filtering and return list return [i for i, j in zip(dtree_values, leaf_node_classes) if bin_class_type is None or j == bin_class_type]
b73584081332dd0eabda9109561ff9bcf96060d7
297,668
def get_lang_probability(lang_prob): """ Takes a string with the format lang:probability and returns a tuple (lang, probability) Args: lang_prob: str """ lang, probability = lang_prob.split(":") try: probability = float(probability) except Exception as e: print("Cound not convert probability to float") print(e) return (lang, probability)
0f29f42e42832c9f8a187e3e4cbc0c6dca806b60
233,331
import itertools def is_it_a_partition(all_nodes, partitions): """ test if partitions is a partition of all_nodes. Parameters ---------- * all_nodes : list of nodes * partitions : list of list of nodes Returns ------- True if 'partitions' is a partitions of all_nodes, False otherwise """ for nodes_subset in partitions: for node in nodes_subset: if node not in all_nodes: return False for nodes_subset1, nodes_subset2 in itertools.combinations(partitions, 2): if len(set.intersection(set(nodes_subset1), set(nodes_subset2))) > 0: return False s = set() for nodes_subset in partitions: s = set.union(s, set(nodes_subset)) if s != set(all_nodes): return False return True
6969554844ac4656c11d7989fa9061fbcb871b64
293,037
def elementWise(A, B, operation): """ execute an operate element wise and return result A and B are lists of lists (all lists of same lengths) operation is a function of two arguments and one return value """ return [[operation(x, y) for x, y in zip(rowA, rowB)] for rowA, rowB in zip(A, B)]
39e78ca7730bf8367daf3a55aeb617b2c0707a44
9,981
def tname(x): """-> name of type of x""" return type(x).__name__
79f8cbd066e921c9172e6588bbe46d1873df9f24
325,082
def modify_tuple(obj, positions, new_values): """ Modify the tuple object at certain positions by certain value >>> modify_tuple((1,2,3), [0,1,2], [3,2,1]) (3, 2, 1) """ assert isinstance(obj, tuple) assert len(positions) == len(new_values) alt = list(obj) for pos, val in zip(positions, new_values): alt[pos] = val return tuple(alt)
a74c59f3dc2cb7d590ef59a1f838693eae0d624f
157,582
def rwh_primes1(n): # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188 """ Returns a list of primes < n """ sieve = [True] * (n//2) for i in range(3, int(n**0.5)+1, 2): if sieve[i//2]: sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1) return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]
67a3de7e8b25b5ce77e1c3faa136a410f86cd042
419,652
def revrange(a,b): """ Returns the tuple (b-1, b-2, ..., a) Note that this tuple is the reverse of tuple(range(a,b)) Parameter a: the "start" of the range Precondition: a is an int <= b Parameter b: the "end" of the range Precondition: b is an int >= a """ assert type(a) == int and a <= b assert type(b) == int tup1 = tuple(range(a,b)) tup2 = tup1[::-1] tup = () result = tup for i in tup2: if a < b: result = tup2 else: result = tup return result #pass
28c0de37d354401f45db33f83d0397b6cde8ed80
98,829
import struct def get_slicer_info(mod_file): """ Open an IMOD .mod file and retrieve the Slicer information Args: mod_file: The .mod file path Returns: A list of Slicer point objects with keys {"angles", "coords"} """ results = [] with open(mod_file, "rb") as file: token = file.read(4) if token != b"IMOD": print( "ID of .mod file is not 'IMOD'. This does not seem to be an IMOD MOD file!" ) exit(1) # Read past rest of ID and file header file.read(236) while token != b"IEOF": file.seek(-3, 1) token = file.read(4) if token == b"SLAN": # Read past SLAN object size and time file.read(8) angles = struct.unpack(">" + ("f" * 3), file.read(4 * 3)) xyz = struct.unpack(">" + ("f" * 3), file.read(4 * 3)) results.append({"angles": angles, "coords": xyz}) file.read(32) # Read forward a little so next iteration of while loop starts at end of SLAN object file.read(3) elif token == b"OBJT": # Objects are 176 bytes; skip path to make reading faster file.read(176) # Read forward a little so next iteration of while loop starts at end of object file.read(3) if len(results) == 0: print("Reached end of MOD file without finding slicer angles!") exit(1) return results
522278eceab40d7741b22de63d01022266eaeeb4
606,006
def _convert_track(track, state_types, media, attribute_mapping, localizations): """ Converts a Tator Native track into a State spec. """ spec = {'type': state_types['Localization'].id, 'media_id': media.id, 'frame': int(track['frame_added'])} spec['localization_ids'] = localizations[int(track['id'])] spec['media_ids'] = [media.id] for src_name in attribute_mapping: if src_name in track: spec[attribute_mapping[src_name]] = track[src_name] return spec
017d1f5620d67ddaf70b3f3cf97fd318fa8bae73
519,342
def R_from_r(r): """ Calculate reflected power R from the reflection amplitude r of the Fresnel equations. Parameters ---------- r : array like Fresnel reflection coefficients Returns ------- R : array like Reflectivity """ return abs(r)**2
c3ad6ef150008248b0c0fb00f11215a354e6883e
428,450
def format_(string): """dos2unix and add newline to end if missing.""" string = string.replace('\r\n', '\n').replace('\r', '\n') if not string.endswith('\n'): string = string + '\n' return string
1579554445aa0b13cd8f445adecf6e789cb875c4
527,089
def _urpc_test_func_5(arg_types, args): """! @brief u-RPC variable signature test function. @param arg_types Types of u-RPC arguments @param args u-RPC arguments @return Argument types and arguments without any change """ return arg_types, args
9da9e0a149a4b46d975ea9016532b5f15c77b4cc
135,976
from typing import Iterable def all_elements_are_instances(iterable: Iterable, Class) -> bool: """Returns ``True`` if all elements of iterable are instances of Class. False otherwise. """ return all([isinstance(e, Class) for e in iterable])
747e4b518789a7843fb46f37a4a473706ce8fd63
57,765
def identifier(value): """An identifier.""" return value
54e93bb41f893e85715969264062d0b546c31d6d
399,469
import math def calculate_distance(p1, p2): """ Calculate distance between two points param p1: tuple (x,y) point1 param p2: tuple (x,y) point2 return: distance between two points """ x1, y1 = p1 x2, y2 = p2 d = math.sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2)) return d
756b609a91e17299eb879e27e83cd663800e46dd
4,528
def minimum_absolute_difference(arr): """Hackerrank Problem: https://www.hackerrank.com/challenges/minimum-absolute-difference-in-an-array/problem Given an array of integers, find and print the minimum absolute difference between any two elements in the array. Solve: Sort the array, and then compare the different between each two adjacent values. After sorting, we know that the minimum absolute difference has to be between two values that are stored sequentially in the list so we simply find the smallest difference and return that Args: arr: Array of integers to check Returns: int: The minimum absolute difference between two elements of the array """ arr.sort() min_diff = arr[-1] - arr[0] for i in range(len(arr)-1): if arr[i+1] - arr[i] < min_diff: min_diff = arr[i+1] - arr[i] return min_diff
00dc3ce179282b669407ea3a94fea07538a404d9
696,686
def ufmt(base, n): """return a string representing a unit to a power n.""" if n == 0: return '' if n == 1: return '-'+base if n == -1: return '/'+base if n > 0: return '-'+base+str(n) if n < 0: return '/'+base+str(-n)
90a478eb6c649d423cc254d3b96c6afadb5dd8f3
480,176
def time_overlap(ts0,ts1,valid=True): """Check for overlapping time coverage between series Returns a tuple of start and end of overlapping periods. Only considers the time stamps of the start/end, possibly ignoring NaNs at the beginning if valid=True, does not check for actual time stamp alignment """ if valid: start = max(ts0.first_valid_index(),ts1.first_valid_index()) end = min(ts0.last_valid_index(),ts1.last_valid_index()) else: start = max(ts0.index[0],ts1.index[0]) end = min(ts0.index[-1], ts1.index[-1]) return (start,end) if end > start else None
58fa5220cbc0c016ae258343f86b98889a7ed17f
439,518
def public_key_path(config): """ Path where this framework saves the public test key. """ return "%s/%s" % (config.get_state_dir(), "id_rsa_test.pub")
1876da6fcd398a5445023f815617465060ae2cee
413,245
def tuple_as_atom(atom:tuple) -> str: """Return readable version of given atom. >>> tuple_as_atom(('a', (3,))) 'a(3)' >>> tuple_as_atom(('bcd', ('bcd',12))) 'bcd(bcd,12)' """ assert len(atom) == 2 return '{}({})'.format(atom[0], ','.join(map(str, atom[1])))
5c18f34733d839865eef35509f95c2d4d198a903
12,465
def get_num_ways(N,Coins): """ This fuction will return the number of ways to make the amount with those denominations. https://www.youtube.com/watch?v=jgiZlGzXMBw https://www.geeksforgeeks.org/understanding-the-coin-change-problem-with-dynamic-programming/ Args: N: an amount of money Coins: a list of coin denominations Returns: the number of ways to make the amount of money with coins of the available denominations. Example: for amount=44 (44¢) and denominations=[1,2,3] (1¢, 2¢ and 3¢), your program would output 4—the number of ways to make 44¢ with those denominations: 1¢, 1¢, 1¢, 1¢ 1¢, 1¢, 2¢ 1¢, 3¢ 2¢, 2¢ To test this function: >>> get_num_ways(4,[1,2,3]) 4 """ # create an array to store the number of ways for each amount from 1 to the amount # Index of Array of ways: [0, 1, 2, 3, 4] # Array of ways: [0, 1, 2, 3, 4] ways = [0] * (N + 1); # if the amount is zero, there is 1 way to make 0 with 0 coins! ways[0]=1 # traverse through the coins for i in range(len(Coins)): # compare coin value with the amount, which is also the index of the array ways for j in range(len(ways)): # update the ways array if the coin value is less than the amount if(Coins[i] <= j): ways[j] += ways[int((j-Coins[i]))] # return the number of ways at the Nth position return ways[N]
bafc37b9a3e457e30b49ddecdd316310b4a10a01
336,682
def fixture_pg_test_orm(pg_test_db): """ Gets the test Orm handle for Postgres. Returns: (PostgresOrm): The test Postgres Orm object. """ # This also tests init works and Postgres is properly integrated return pg_test_db._orm
dbd9bedee752c41e840c254aee9ecf5ba5727760
465,478
import warnings def valid_first_cell(sheet, data): """Return boolean if first cell in worksheet is not ``skip``.""" try: return hasattr(data[0][0], "lower") and data[0][0].lower() != "skip" except: warnings.warn("Invalid first cell (A1) in worksheet {}".format(sheet)) return False
89bdfb12f76d62f6df6d04d2856f10d09ec8d83c
338,912
import torch def dot_products(tensor: torch.Tensor) -> torch.Tensor: """ Computes the dot product between each pair of rows in the given Tensor. :param tensor: the Tensor to compute the dot products between the rows of. Size [N, D]. :return: the computed dot products, where result[i, j] = tensor[i, :] * tensor[j, :]. Size [N, N]. """ products = tensor[:, None, :] * tensor[None, :, :] # [N, N, D] return torch.sum(products, dim=2)
860f3051b04a3b12c2884ed9ef51c50cb390ab91
442,465
def snap_value(input, snap_value): """ Returns snap value given an input and a base snap value :param input: float :param snap_value: float :return: float """ return round((float(input) / snap_value)) * snap_value
1b2f967ecca2a151c5229cbb9eb57d6c67853925
22,680
def get_account_key_change_count(self) -> dict: """Get number of times account key has been changed. .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - spPortal - GET - /spPortal/account/key/changeCount .. note:: If never been changed, will return an HTTP 500 with no content. :return: Returns dictionary of account key changes \n * keyword **count** (`int`): Integer number of times account key has been changed :rtype: dict """ return self._get("/spPortal/account/key/changeCount")
101a88c1537ee459427bfbd5a6343489bc134f3a
440,127
import aiohttp def is_image(r: aiohttp.ClientResponse): """ Checks whether the supplied URL is a proper image """ return r.content_type.startswith('image')
60454772ebfd9cdae4d54e601388afefdd479b02
411,765
import random def get_best_move(board, scores): """ returns the best move tuple (row, col) that has the highest score in scores """ max_squares = [] empty_squares = board.get_empty_squares() # find max score max_score = -999 for square in empty_squares: if scores[square[0]][square[1]] >= max_score: max_score = scores[square[0]][square[1]] # find empty squares with max scores for square in empty_squares: if scores[square[0]][square[1]] == max_score: max_squares.append((square[0], square[1])) return random.choice(max_squares)
35424b7cad953693bb96eac47a0b4bed4714a72f
163,205
import torch def compute_accuracy_multitask(output, target): """ Calculates the classification accuracy. :param target: Tensor of correct labels of size [batch_size, numClasses] :param output: Predicted scores (logits) by the model. It should have the same dimensions as target :return: accuracy: average accuracy over the samples of the current batch for each condition """ num_samples = target.size(0) correct_pred = target.eq(output.round().long()) accuracy = torch.sum(correct_pred, dim=0) return accuracy.cpu().numpy() * (100. / num_samples)
b2549c12ef2b6e63eccd1c42a344b2c9a219ba61
458,763
def flip_ctrlpts_u(ctrlpts, size_u, size_v): """ Flips a list of 1-dimensional control points in u-row order to v-row order. **u-row order**: each row corresponds to a list of u values (in 2-dimensions, an array of [v][u]) **v-row order**: each row corresponds to a list of v values (in 2-dimensions, an array of [u][v]) :param ctrlpts: control points in u-row order :type ctrlpts: list, tuple :param size_u: size in u-direction :type size_u: int :param size_v: size in v-direction :type size_v: int :return: control points in v-row order :rtype: list """ new_ctrlpts = [] for i in range(0, size_u): for j in range(0, size_v): temp = [float(c) for c in ctrlpts[i + (j * size_u)]] new_ctrlpts.append(temp) return new_ctrlpts
6c28a487b05de5490d244a04d19d25c575ebdd75
689,472
def parse_phonemes(phonemes): """Parse mimic phoneme string into a list of phone, duration pairs. Arguments phonemes (bytes): phoneme output from mimic Returns: (list) list of phoneme duration pairs """ phon_str = phonemes.decode() pairs = phon_str.split(' ') return [pair.split(':') for pair in pairs if ':' in pair]
0d78d31fe369e193b18478119707e8b9de6159fd
56,151
from typing import Mapping from typing import Any def _get_headers_from_http_request_headers(headers: "Mapping[str, Any]", key: str): """Return headers that matches this key. Must comply to opentelemetry.context.propagation.httptextformat.Getter: Getter = typing.Callable[[_T, str], typing.List[str]] """ return [headers.get(key, "")]
cbb49a1fc062bff1685615f4cc481bc35729490c
291,919
def binarize_ic50(ic50, ic50_threshold): """ Binarize ic50 based on a threshold """ if ic50 <= ic50_threshold: return 1 return 0
d1512f790dfad4fb3f85f4757184ceb7d21fc56a
23,725
import pathlib import csv from typing import OrderedDict def read_csv_file_with_header_to_hashed_odict_of_odicts(path_csv_file: pathlib.Path, hash_by_fieldname: str, encoding: str = "ISO-8859-1", delimiter: str = ";", quotechar: str = '"', quoting: int = csv.QUOTE_MINIMAL) -> 'OrderedDict[str, OrderedDict[str, str]]': """ reads the csv file into an ordered dict of ordered dicts returns: {'indexfield':{fieldname1:value, fieldname2:value}, 'indexfield2':{fieldname1:value, fieldname2:value}} >>> # setup >>> test_directory = pathlib.Path(__file__).absolute().parent.parent / 'tests' >>> testfile1 = test_directory / '2018-04-26_alle_Navision_Artikel.csv' >>> testfile2 = test_directory / '0001_aktive_preis_qty.csv' >>> csv_file_broken_less_fields_than_header = test_directory / 'csv_file_broken_less_fields_than_header.csv' >>> r_csv = read_csv_file_with_header_to_hashed_odict_of_odicts >>> # Test Fieldname for hashing not existent in the header >>> r_csv(path_csv_file=testfile1, hash_by_fieldname='not_existing') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: Field "not_existing" is not available, or the csv file does not have header information >>> # Test OK, Fieldname for hashing is unique >>> r_csv(path_csv_file=testfile1, hash_by_fieldname='Nr.') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE OrderedDict([('HUB025', OrderedDict([('HTMLpublish', 'Nein'), ('Artikel Nicht Verfügbar', 'Nein'), ('Sperre Angebot', 'Nein'), ... >>> # Test Fieldname for hashing is not unique >>> r_csv(path_csv_file=testfile2, hash_by_fieldname='CustomLabel') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: Index is not unique, field: "CustomLabel", value: "HUB179" >>> # Test Number of Fields is smaller than the header >>> r_csv(path_csv_file=csv_file_broken_less_fields_than_header, hash_by_fieldname='a') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: Row has length 3 instead of 4 : "['1', '2', '3']" """ with open(str(path_csv_file), 'r', encoding=encoding) as f_csv_file: is_first_row = True fieldnames = [] index_of_hash_field = 0 number_of_rows = 0 dict_result = OrderedDict() my_csv_reader = csv.reader(f_csv_file, delimiter=delimiter, quotechar=quotechar, quoting=quoting) for row in my_csv_reader: if is_first_row: is_first_row = False fieldnames = row if hash_by_fieldname not in fieldnames: raise ValueError('Field "{}" is not available, or the csv file does not have header information'.format(hash_by_fieldname)) index_of_hash_field = fieldnames.index(hash_by_fieldname) number_of_rows = len(fieldnames) continue if len(row) != number_of_rows: raise ValueError('Row has length {} instead of {} : "{}"'.format(len(row), number_of_rows, row)) dict_row = OrderedDict() for index, value in enumerate(row): dict_row[fieldnames[index]] = value index_value = row[index_of_hash_field] if index_value not in dict_result: dict_result[index_value] = dict_row else: raise ValueError('Index is not unique, field: "{}", value: "{}"'.format(hash_by_fieldname, index_value)) return dict_result
153b80c49fc2b07de3886d70365dbdd92f252de6
294,104
def info2lists(info, in_place=False): """ Return info with: 1) `packages` dict replaced by a 'packages' list with indexes removed 2) `releases` dict replaced by a 'releases' list with indexes removed info2list(info2dicts(info)) == info """ if 'packages' not in info and 'releases' not in info: return info if in_place: info_lists = info else: info_lists = info.copy() packages = info.get('packages') if packages: info_lists['packages'] = list(packages.values()) releases = info.get('releases') if releases: info_lists['releases'] = list(releases.values()) return info_lists
313fda757d386332e16a0a91bb4408fe3cb8c070
706,560
from functools import reduce from operator import add def sum(xs): """ A "sum" implementation that can take advantage of operator overloading """ return reduce(add, xs)
5e436016b96e7a858b7be4fb0ee481d66db17b1c
544,910
def remaining_balance(loan: float, interest_rate: float, years: int, payments: int) -> float: """ Calculate the remaining loan balance :param loan: initial loan amount :param interest_rate: interest rate :param years: loan term in years :param payments: total number of payments made :return: remaning balance """ r = interest_rate / 1200 # monthly interest rate m = r + 1 n = years * 12 remaining = loan * (((m ** n) - (m ** payments)) / ((m ** n) - 1)) return remaining
a02501e5b859cbd7c5efe6393dca5003197c30b0
77,088
def format_document(document): """Formats the given document Args: document (obj): The json object containing the document metadata. Returns: obj: the formatted document object. """ languages = [lang.strip().capitalize() for lang in document["_source"]["languages"]] if document["_source"]["languages"] else None return { "score": document["_score"], "document_id": document["_source"]["document_id"], "title": document["_source"]["title"], "abstract": document["_source"]["abstract"], "link": document["_source"]["link"], "date": document["_source"]["date"], "celex": document["_source"]["celex"], "keywords": document["_source"]["keywords"], "source": document["_source"]["source"], "informea": document["_source"]["informea"], "languages": languages, "subjects": document["_source"]["subjects"], "areas": document["_source"]["areas"] }
d208c161903ea249c6b781f00f9d4cf0e6c0d62d
340,898
def convert_enum_list_to_delimited_string(enumlist, delimiter=','): """ Converts a list of enums into a delimited string using the enum values E.g., [PlayerActionEnum.FLYBALL, PlayerActionEnum.HOMERUN, PlayerActionEnum.WALK] = 'FLYBALL,HOMERUN,WALK' :param enumlist: :param delimiter: :return: """ return delimiter.join([listitem.value for listitem in enumlist])
5fb4064b27d8050c11de89e4fca4c9d849d1c1be
381,512
import itertools import fnmatch def ignore_rules_for_url(spider, url): """ Returns a list of ignore rules from the given spider, that are relevant to the given URL. """ ignore_rules = getattr(spider, "pa11y_ignore_rules", {}) or {} return itertools.chain.from_iterable( rule_list for url_glob, rule_list in ignore_rules.items() if fnmatch.fnmatch(url, url_glob) )
1f225b175cf412df063e161ef5f4c824a93e65fc
646,736
import re def unsub_emails(unsub_list, email_list): """ Takes the list of plex user email address and filters out the members of the unsubscribe list. """ excludes = re.split(r",|,\s", unsub_list) email_list = list(set(email_list)^set(excludes)) return email_list
5acdc6472fad2b75244234c646612d2b0f38c727
663,793
import torch def validate(metric, net, val_data, use_cuda): """ Core validation/testing routine. Parameters: ---------- metric : EvalMetric Metric object instance. net : Module Model. val_data : DataLoader Data loader. use_cuda : bool Whether to use CUDA. Returns ------- EvalMetric Metric object instance. """ net.eval() metric.reset() with torch.no_grad(): for data, target in val_data: if use_cuda: target = target.cuda(non_blocking=True) output = net(data) metric.update(target, output) return metric
e9612e861cc82c03eb3d0121fa9915b20bdd90de
464,930
def o_to_matsubara_idx_f(o): """ Convert index in "o" convension to fermionic Matsubara index Parameters ---------- o 2*n+1 Returns n ------- """ assert o%2 == 1 return int((o-1)/2)
b1626d94fb9ad00316338242f704e72d6dd62e0e
154,836
import itertools def combinations_of_all_lengths(it): """ Return an iterable with all possible combinations of items from ``it``: >>> for comb in combinations_of_all_lengths('ABC'): ... print("".join(comb)) A B C AB AC BC ABC """ return itertools.chain( *(itertools.combinations(it, num+1) for num in range(len(it))) )
e2700c4ea6f35c9aa39b6b0e6674ccfeb7394eed
265,065
def wait_for_event(bidi_session, event_loop): """Wait until the BiDi session emits an event and resolve the event data.""" def wait_for_event(event_name: str): future = event_loop.create_future() async def on_event(method, data): remove_listener() future.set_result(data) remove_listener = bidi_session.add_event_listener(event_name, on_event) return future return wait_for_event
45fd51e0271b2ed8af010f18c3835e57a3979669
94,954
import yaml def configMap(name, **kwargs): """ >>> import nuvolaris.kube as kube, nuvolaris.testutil as tu >>> tu.grep(kube.configMap("hello", value="world"), "kind:|name:|value:", sort=True) kind: ConfigMap name: hello value: world >>> tu.grep(kube.configMap("hello", **{"file.js":"function", "file.py": "def"}), "file.", sort=True) file.js: function file.py: def """ out = yaml.safe_load("""apiVersion: v1 kind: ConfigMap metadata: name: %s data: {} """% name) for key, value in kwargs.items(): out['data'][key] = value return yaml.dump(out)
fdae8ac67a068946cf320aeb49b3753e6c26487e
57,665
def strategy_cheap(cookies, cps, history, time_left, build_info): """ Always buy the cheapest item you can afford in the time left. """ items = build_info.build_items() costs = {} for item in items: cost = build_info.get_cost(item) costs[cost] = item cheapest = min(costs) if cheapest > cps * time_left: return None return costs[cheapest]
725512e43f8aa0c8222ffd0e5021226ae131adf4
593,966
def get_author_book_ratings(book_tr): """Get the ratings ``<span>`` element from a table ``<tr>`` element from an author page. Args: book_tr (bs4.element.Tag): ``<tr>`` book element. Returns: bs4.element.Tag: ratings ``<span>`` element. Examples:: >>> for book_tr in scrape_author_books(soup): ... ratings_span = get_author_book_ratings(book_tr) ... print(ratings_span.contents[-1]) 4.55 avg rating — 2,414 ratings 3.77 avg rating — 1,689 ratings 4.28 avg rating — 892 ratings 4.54 avg rating — 490 ratings ... """ return book_tr.find('span', attrs={'class': 'minirating'})
8bfbfafb0f42db0a7e49f03a4316ef7a0bacc7dc
248,648
def get_2comp(val_int, val_size=16): """Get the 2's complement of Python int val_int :param val_int: int value to apply 2's complement :type val_int: int :param val_size: bit size of int value (word = 16, long = 32) (optional) :type val_size: int :returns: 2's complement result :rtype: int """ # test MSBit (1 for negative) if (val_int&(1<<(val_size-1))): # do complement val_int = val_int - (1<<val_size) return val_int
ca558b938d5ea9027adcdf4379dd403f1eb3965d
557,657
def get_header_version(args, dat_root, parser): """Return the version from the <dat_root> header version, or the -header_version argument""" if not args.header_version: header_version = dat_root.find('header').find('version').text if not header_version: print('Version not found in ClrMame Pro XML dat. Please specify with -header_version') print('') parser.print_help() parser.exit() raise SystemExit() else: header_version = args.header_version return header_version
571806b8b143d80dd8fa6116cbe5fef8187a781e
274,569
import configparser def retrieve_config(arg_list, default_config): """ Retrieve a dictionary from a config file """ if len(arg_list) > 1: config_file = arg_list[-1] else: config_file = default_config # Convert config file config = configparser.ConfigParser() config.read(config_file) return {s: dict(config.items(s)) for s in config.sections()}
21c805754af372026c9fdc6e9ad8c7b34ae386a5
355,248
def BrokenLinksChecks(input_api, output_api): # pragma: no cover """Complains if there are broken committed symlinks.""" stdout = input_api.subprocess.check_output(['git', 'ls-files']) files = stdout.splitlines() output = [] infra_root = input_api.PresubmitLocalPath() for filename in files: fullname = input_api.os_path.join(infra_root, filename) if (input_api.os_path.lexists(fullname) and not input_api.os_path.exists(fullname)): output.append(output_api.PresubmitError('Broken symbolic link: %s' % filename)) return output
2818f5a9952b47a7aaf5a177394297b84511831a
292,678
def return_polynomial_factory(net_principal, returns, return_days): """Factory for a callable with point evaluation of the return polynomial. The return polynomial for a loan with net principal :math:`s_\circ`, returns :math:`r_1,r_2,\ldots,r_k` to be paid :math:`n_1,n_2,\ldots,n_k` days after the loan is granted, respectively, is given by .. math:: f(c) = s_\\circ (1 + c)^{n_k} - r_1 (1 + c)^{n_k-n_1} - \\cdots - r_{k-1} (1 + c)^{n_k-n_{k-1}} - r_k. This function builds and returns a callable implementing such polynomial. Parameters ---------- net_principal : float, required The net principal of a grossed up loan. returns : list of floats, required Due payments that completely pay off the grossed up principal when respectively applied for the given return days. return_days : list of ints, required List with the number of days since the taxable event (which is usually a "loan granted" event) happened. Returns ------- Callable Python callable implementing the return polynomial for the given parameters """ coefficients_vec = [net_principal] + [-1 * r for r in returns] def return_polynomial(irr_): powers_vec = [ (1 + irr_) ** (return_days[-1] - n) for n in [0] + return_days ] return sum( coef * power for coef, power in zip(coefficients_vec, powers_vec) ) return return_polynomial
d1eca5e2e6c4ce5e4460510900cc5819bf268f54
246,352
def compute_cell_next_state(current, neighbours): """Return the next state of the cell on position (i, j) in alive_matrix. Parameters ---------- current: int The state of the cell, 1 or 0 (live or dead) neighbours: array The number of alive cells around the cell. Returns ------- new_state: int The new state of the cell, 1 or 0 (live or dead) """ new_state = 0 if current > 0: if neighbours == 2 or neighbours == 3: new_state = 1 elif neighbours == 3: new_state = 1 return new_state
39fb17954e65d7467dd32d26fd539fd394331fcb
507,908
def bytes2str(bstr): """Convert a bytes into string.""" if type(bstr) is bytes: return bstr.decode('utf-8') elif type(bstr) is str: return bstr else: raise TypeError( bstr, ' should be a bytes or str but got ', type(bstr), ' instead')
7bb33c3e73907e35a258e7af3921461e1657d4f7
506,044
def get_profiles(argv): """Method gets module profiles Args: argv (list): input arguments Returns: list: profiles """ profiles = ['full'] for arg in argv: if ('--profile' in arg): profiles = arg.split('=')[1].split(',') argv.remove(arg) break return profiles
b4f4dbaa4c68d1c0ba9b1f57f5e2471fae4e2445
134,426
def __top_frond_right(dfs_data): """Returns the frond at the top of the RF stack.""" return dfs_data['RF'][-1]
faf59ef6af0ea2bd4045fa7de46b67e4ff3e9410
42,971
def ses(path, b): """ Returns an edit script for a given match grid path. The edit script transforms sequence A of the match grid into sequence B via deletions ("D", index) and inserations ("I", A index, B value). """ patch = [] for i in range(len(path) - 1): x, y = path[i] nx, ny = path[i + 1] dx, dy = nx - x, ny - y if dx == 1 and dy == 1: pass #match elif dx == 1: patch.append(("D", x)) else: #dy == 1: patch.append(("I", x, b[y])) return patch
47a62e75bb003478ca231c73b2fd0e0370a0aaf8
275,344
import re def IsGCESlave(slavename): """Returns (bool): Whether |slavename| is hosted on GCE. Args: slavename: The hostname of the slave. """ # The "-c2" suffix indicates that a builder is in GCE (as opposed to # in the Chrome Golo, which has a -m2 suffix). return bool(re.search(r'-c\d+$', slavename))
613569120fd4390608ba6173ef3686bb1ef1b01f
638,400
def TTD_TTDS_rule(M, i, j, w, t): """ Coordinate TourTypeDayShift and TourTypeDay variables for each day of each week :param M: Model :param i: window :param j: day :param w: week :param t: tour type :return: Constraint rule """ return sum(M.TourTypeDayShift[i, t, k, j, w] for k in M.tt_length_x[t] if (i, t, k, j) in M.okTourTypeDayShift) == M.TourTypeDay[i, t, j, w]
a7e03543d2ca4e782ca4b12e136eeb65c6968efb
569,959
def name_matches(name,pattern): """Simple wildcard matching of project and sample names Matching options are: - exact match of a single name e.g. pattern 'PJB' matches 'PJB' - match start of a name using trailing '*' e.g. pattern 'PJ*' matches 'PJB','PJBriggs' etc - match using multiple patterns by separating with comma e.g. pattern 'PJB,IJD' matches 'PJB' or 'IJD'. Subpatterns can include trailing '*' character to match more names. Arguments name: text to match against pattern pattern: simple 'glob'-like pattern to match against Returns True if name matches pattern; False otherwise. """ for subpattern in pattern.split(','): if not subpattern.endswith('*'): # Exact match required if name == subpattern: return True else: if name.startswith(subpattern.rstrip('*')): return True else: return False
eb8ceead45cc0766af0aec92ca02b37f387c3311
26,177
from typing import List from typing import Any def n_chunks(items: List[Any], n_groups: int) -> List[List[Any]]: """Returns a list of `n_groups` slices of the original list, guaranteed to contain all of the original items. """ return [items[i::n_groups] for i in range(n_groups)]
16d0336394b6bff220e1063da0221dae1072e39c
410,206
def translate_attribute(metasra_attribute: dict) -> dict: """Translate a MetaSRA attribute that looks like this: { "property_id": "EFO:0000246", "unit_id": "missing", "value": 31.0 } into our representation documented here: https://github.com/AlexsLemonade/refinebio/issues/2127#issuecomment-591651893 """ attribute = {"value": metasra_attribute["value"]} if metasra_attribute["unit_id"] != "missing": attribute["unit"] = metasra_attribute["unit_id"] return {metasra_attribute["property_id"]: attribute}
4471581dac43916991f9dfcae1df7b1113bc062f
255,788
def tweets_to_text_strings(tweets): """Converts list of tweets to list of tweet text strings.""" return [tweet.GetText() for tweet in tweets]
5f277ad0b95a0bbef9e370d2e54e9ed146c263b5
438,603
from typing import OrderedDict def vanilla_sgd(params, grads, learning_rate): """ Update rules for vanilla SGD. Based on the update functions from Lasagne (https://github.com/Lasagne/Lasagne) The update is computed as param := param - learning_rate * gradient Parameters ---------- params : list of shared varaibles that will be updated grads : list of symbolic expressions that produce the gradients learning_rate : step size Returns ------- A dictionary mapping each parameter in params to their update expression """ updates = OrderedDict() for param, grad in zip(params, grads): updates[param] = param - learning_rate * grad return updates
b1622602dccc10673b54788d09bac554cb5dec3e
516,526
def is_eligible_file( filename ): """ Based on the file name, decide whether the file is likely to contain image data """ eligible = False if ( filename.endswith( '.png' ) or filename.endswith( '.jpg' ) ): eligible = True return eligible
75988428ce9078f8de1f95c97dba4f2e77bdbe3b
22,412
def encrypt(plaintext, rails): """ Rail fence cipher. Encrypts plaintext by given number of rails. :param plaintext: plaintext to encrypt. :param rails: number of rails to use to encrypt. :returns: encrypted plaintext (ciphertext). See https://en.wikipedia.org/wiki/Rail_fence_cipher Example: >>> encrypt("DANGEROUS", 2) 'DNEOS AGRU' >>> encrypt("DANGEROUS", 3) 'DGO AEU NRS' """ data = [""] * rails for index, character in enumerate(plaintext): data[index % rails] += character return " ".join(data)
57b4cf3b71d8ef33f041326d90032beda4da48a9
109,339
import re def alphanum_sort(l): """Sort the given list in ascending order the way that humans expect. i.e For a list l containing `["5", "24", "10"]`, the function sorts it as `["5", "10", "24"]` instead of `["10", "24", "5"]` as would Python List sort() method. """ # key to use for the sort def convert(text): return int(text) if text.isdigit() else text def alphanum_key(key): return [convert(c) for c in re.split("([0-9]+)", key)] l.sort(key=alphanum_key)
15b0c5dc44d841538896b4ec841c33ce54d7fdcb
638,188
def for_all_test_methods(decorator, *args, **kwargs): """Generate class-level decorator from given method-level decorator. It is expected for the given decorator to take some arguments and return a method that is then called on the test method to produce a decorated method. Args: decorator: The decorator to apply. *args: Positional arguments **kwargs: Keyword arguments Returns: Function that will decorate a given classes test methods with the decorator. """ def all_test_methods_impl(cls): """Apply decorator to all test methods in class.""" for name in dir(cls): value = getattr(cls, name) if callable(value) and name.startswith( "test") and (name != "test_session"): setattr(cls, name, decorator(*args, **kwargs)(value)) return cls return all_test_methods_impl
6878d8f6d613aa5e7267930edfe0896d54af89b6
599,251
def parse_genome_size(txt_file): """Pull out the genome size used for analysis.""" with open(txt_file, 'rt') as txt_fh: return txt_fh.readline().rstrip()
f386898478393596e28e6e6d47a7da372a8f6b98
678,979
def build_request(nQs, category, difficulty, token, q_type = 'any'): """[summary] Arguments: nQs {int} -- number of questions category {int} -- integer corresponding to category difficulty {str} -- "easy", "medium", or "hard" Keyword Arguments: q_type {str} -- ["multiple", "boolean", or "any"] (default: {'any'}) Returns: [str] -- output to send to requests """ if q_type == "any": s = f'https://opentdb.com/api.php?amount={nQs}&category={category}&difficulty={difficulty}&encode=base64&token={token}' else: s = f'https://opentdb.com/api.php?amount={nQs}&category={category}&difficulty={difficulty}&type={q_type}&encode=base64&token={token}' return s
84d442ddf5e146e91c03121c5443d655e26a4f93
158,666
def clean_data(data): """Clean up unwanted markup in data""" data = data.strip() data = data.replace('\n', ' ') return data
17b3861d99cffcd1db771da4ea5a91aaace1015e
272,690
import torch def extract_ampl_phase(fft_im): """ Extracts amplitude and phase from the image Args: fft_im (Tensor): size should be bx3xhxwx2 Returns: tuple: (amplitude, phase) """ # fft_im: size should be bx3xhxwx2 fft_amp = fft_im[:, :, :, :, 0]**2 + fft_im[:, :, :, :, 1]**2 fft_amp = torch.sqrt(fft_amp) fft_pha = torch.atan2(fft_im[:, :, :, :, 1], fft_im[:, :, :, :, 0]) return fft_amp, fft_pha
59d14c950530228262a712427496be9d99840a1c
630,278
import calendar def GetFirstSundayOfMonth(year, month): """Returns the first sunday of the given month of the given year. >>> GetFirstSundayOfMonth(2016, 2) 7 >>> GetFirstSundayOfMonth(2016, 3) 6 >>> GetFirstSundayOfMonth(2000, 1) 2 """ weeks = calendar.Calendar().monthdays2calendar(year, month) # Return the first day in the first week that is a Sunday. return [date_day[0] for date_day in weeks[0] if date_day[1] == 6][0]
d2bca510d03840969a6513686e2e69607c254d8d
513,667
def distinct(not_distinct_list: list): """ Returns a list with no duplicate elements """ return list(set(not_distinct_list))
87dfa260b7882e28ada5803db30f12275968f44d
656,840
import numbers import ast def is_numeric(obj): """ Check if the given object represents a number :param obj: input object :return: True if obj is a number, else False """ if isinstance(obj, numbers.Number): return True elif isinstance(obj, str): try: nodes = list(ast.walk(ast.parse(obj)))[1:] except SyntaxError: return False if not isinstance(nodes[0], ast.Expr): return False if not isinstance(nodes[-1], ast.Num): return False nodes = nodes[1:-1] for i in range(len(nodes)): if i % 2 == 0: if not isinstance(nodes[i], ast.UnaryOp): return False else: if not isinstance(nodes[i], (ast.USub, ast.UAdd)): return False return True else: return False
fa3e43c3eb750ee0c958fd8c654c3d38c03c682e
234,216
def split_list(xs): """Split a list into two lists of equal length.""" midpoint, remainder = divmod(len(xs), 2) if remainder: xs = xs[:-1] return xs[:midpoint], xs[midpoint:]
2209d8e01b620341195c1221141ab6c6c98250f6
134,201
from datetime import datetime def timestamp(time_only=False): """ Get the current time. :param time_only: bool; exclude year, month, and date or not :return: str; the current time """ if time_only: formatter = '%H:%M:%S' else: formatter = '%Y-%m-%d %H:%M:%S' return datetime.now().strftime(formatter)
ae30e08e5efd0d939c66b642383dd208caf5fa65
565,581
import yaml def load_config() -> dict: """ Loads the config.yml file to memory and returns it as dictionary. :return: Dictionary containing the config. """ with open('config.yml', 'r') as ymlfile: return yaml.load(ymlfile, Loader=yaml.FullLoader)
6e05aa4eb6a7d9862814f595ecdc89ffab145ee5
707,782
def parse_parameters(config): """ Compile the microbenchmark parameters used when running the test """ return { 'threads': config.num_threads, 'min_runtime': config.min_time }
22f65d22616013ccf650befda416e55d3064eff6
609,952
def _get_kernel(kernel): """Return the requested kernel function. """ return globals()['kernel_' + kernel]
3a931d97149ab8a693c07fdc51a1fecc6d903f45
149,235
def get_normalised_context(manifest): """ normalises context as a list :param: manifest - IIIF Manifest :return: normalised @context always return an `list` """ context = manifest['@context'] return [context] if type(context) == str else context
7374f3e56f79de776efab11fd8ef1bddfb2a2840
430,698
from typing import Set def load_vocab(file: str) -> Set[str]: """ Loads the vocabulary into a set. :param file: Path to vocabulary file :return: set of tokens in the vocabulary """ vocab = set() with open(file, encoding="utf-8") as f_in: for token in f_in: token = token.strip() if token == "": continue vocab.add(token) return vocab
1b15631985eb308f1a392f72aa8c7c22cfbc22e6
434,861
import torch def set_model_for_retrain(model_path, retrain_fraction, map_location, reset=True): """Set model for transfer learning. The first layers (defined by 1-retrain_fraction) are frozen (i.e. requires_grad=False). The weights of the last layers (defined by retrain_fraction) are reset unless reset option is False. Args: model_path (str): Pretrained model path. retrain_fraction (float): Fraction of the model that will be retrained, between 0 and 1. If set to 0.3, then the 30% last fraction of the model will be re-initalised and retrained. map_location (str): Device. reset (bool): if the un-frozen weight should be reset or kept as loaded. Returns: torch.Module: Model ready for retrain. """ # Load pretrained model model = torch.load(model_path, map_location=map_location) # Get number of layers with learnt parameters layer_names = [name for name, layer in model.named_modules() if hasattr(layer, 'reset_parameters')] n_layers = len(layer_names) # Compute the number of these layers we want to freeze n_freeze = int(round(n_layers * (1 - retrain_fraction))) # Last frozen layer last_frozen_layer = layer_names[n_freeze] # Set freeze first layers for name, layer in model.named_parameters(): if not name.startswith(last_frozen_layer): layer.requires_grad = False else: break # Reset weights of the last layers if reset: for name, layer in model.named_modules(): if name in layer_names[n_freeze:]: layer.reset_parameters() return model
d8aed311ca01518a7817cbdc26a559fffbf0f1a2
413,333
def ffs(n): """find first set bit in a 32-bit number""" r = 0 while r < 32: if (1<<r)&n: return r r = r+1 return -1
f401f708058508401b56d013898bced14428ad3f
109,518
def read_loss_data(loss_file): """Read loss classification file.""" proj_to_status = {} f = open(loss_file, "r") for line in f: line_data = line.rstrip().split("\t") entry_type = line_data[0] if entry_type != "PROJECTION": continue proj = line_data[1] status = line_data[2] proj_to_status[proj] = status f.close() return proj_to_status
f03a15537c4fb351a929cc95be9da44860700310
561,481
def from_str(s): """ generate genotype from string e.g. "Genotype( normal=[[('sep_conv_3x3', 0), ('sep_conv_3x3', 1)], [('sep_conv_3x3', 1), ('dil_conv_3x3', 2)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 2)], [('sep_conv_3x3', 1), ('dil_conv_3x3', 4)]], normal_concat=range(2, 6), reduce=[[('max_pool_3x3', 0), ('max_pool_3x3', 1)], [('max_pool_3x3', 0), ('skip_connect', 2)], [('max_pool_3x3', 0), ('skip_connect', 2)], [('max_pool_3x3', 0), ('skip_connect', 2)]], reduce_concat=range(2, 6))" """ genotype = eval(s) return genotype
4c6878e8ade2f9641849eda62f77fbd3006965a9
463,532
def _check_rect(n_x, n_y, dx, dy, symbol, M): """ Check that for a rectangle defined by two of its sides, every element \ within it is the same. .. note:: This method is called once the main script has reached the \ limits of a rectangle. :param n_x: Starting position of the rectangle (top left corner abscissa). :param n_y: Starting position of the rectangle (top left corner ordonate). :param dx: Width of the rectangle. :param dy: Height of the rectangle. :param symbol: Symbol which should be in the rectangle. :param M: Input matrix, as a list of strings. :returns: Boolean indicated whether the rectangle is correct or not. """ for x in range(dx): for y in range(dy): if M[n_y + y][n_x + x] != symbol: return False return True
d2819d29659dc103391f8af3e44e89af2bdbe738
421,998