content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def is_ascii(byte_string):
"""Check if a byte string is ascii"""
try:
byte_string.decode('ascii')
except UnicodeEncodeError:
return False
return True | dbe637acf20877ba85d6db9fd05178f0f161f399 | 230,105 |
from functools import reduce
def every(args):
"""Return True if all elements of args are True."""
return reduce(lambda x, y: x and y, args, True) | 3ffbc3dc79f388a978dab0b74ff7da2afab5adb7 | 475,354 |
def reverse(text):
"""
Reverse text
"""
return text[::-1] | 8b95e7cf9d91e5e25117ecc87fb56a44f3f99760 | 567,706 |
def get_landing_url(sending_profile):
"""Get url for landing page."""
return f"http://{sending_profile['landing_page_domain']}" | 8d2724bb5c4b17d9a58f88d71fcf1135ea3fcd42 | 211,480 |
import torch
def convert_y_to_one_hot(y, nc):
"""Converts a tensor of labels to a one_hot encoded version"""
new_y = torch.zeros([len(y), nc], dtype=torch.uint8, device='cpu')
y = y.view(-1, 1)
new_y.scatter_(1, y, 1)
return new_y | 706f8dea4ae209bdd6097384aa530cd641de357d | 493,467 |
def git_line(*items):
"""Formats items into a space separated line."""
return b" ".join(items) + b"\n" | 750a207ef0b93fec633a6b08c5e7703893032f3e | 97,465 |
def uniquify_key(dict, key, template="{} ({})"):
"""
rename key so there are no duplicates with keys in dict
e.g. if there is already a key named "dog", the second key will be reformatted to "dog (2)"
"""
n = 1
new_key = key
while new_key in dict:
n += 1
new_key = template.format(key, n)
return new_key | eccf1659c674dc52af95ce4ba62b950e19645a26 | 395,620 |
def squared_error(x, y):
"""
Squared error, element wise
:param x: (B,d)
:param y: (B,d)
:return: (B,)
"""
d = x - y
z = d * d
z = z.view(z.shape[0], -1)
return z | 2267ada210c4e9cd071bfe593c13a29f8eceded3 | 355,291 |
from datetime import datetime
def is_sierra_export(file_handle: str) -> bool:
"""
Returns only file handles that follow Sierra export naming schema
Args:
file_handle: file handle
Returns:
boolean
"""
if not isinstance(file_handle, str):
return False
if len(file_handle) != 25:
return False
if file_handle[:11] not in ("BookOpsQCb.", "BookOpsQCn."):
return False
try:
datetime.strptime(file_handle[11:], "%Y%m%d%H%S%f")
except ValueError:
return False
return True | 762a3d1b09daa3c19c71cd7bec7c4801c25dec70 | 509,284 |
def next_perm_string(digits):
"""Generate next Lexographic permutation, digits is string"""
i = -1
for i_ in range(1, len(digits)):
if int(digits[i_-1]) < int(digits[i_]):
i = i_
if i == -1:
return False
suffix = digits[i:]
prefix = digits[:i-1]
pivot = digits[i-1]
j = 0
for j_ in range(i, len(digits)):
if int(digits[j_]) > int(pivot):
j = j_
suffix = suffix[:j-i] + pivot + suffix[j-i+1:]
pivot = digits[j]
new_digits = prefix + pivot + suffix[::-1]
return new_digits | 26eaff40fd33029d1b7f421560a1a83ae550323a | 420,506 |
def _coord_names(frame):
"""Name the coordinates based on the frame.
Examples
--------
>>> _coord_names('icrs')[0]
'ra'
>>> _coord_names('altaz')[0]
'delta_az'
>>> _coord_names('sun')[0]
'hpln'
>>> _coord_names('galactic')[0]
'glon'
>>> _coord_names('ecliptic')[0]
'elon'
>>> _coord_names('turuturu')[0]
Traceback (most recent call last):
...
ValueError: turuturu: Unknown frame
"""
if frame in ["icrs", "fk5"]:
hor, ver = "ra", "dec"
elif frame == "altaz":
hor, ver = "delta_az", "delta_el"
elif frame == "sun":
hor, ver = "hpln", "hplt"
elif frame == "galactic":
hor, ver = "glon", "glat"
elif frame == "ecliptic":
hor, ver = "elon", "elat"
else:
raise ValueError(f"{frame}: Unknown frame")
return hor, ver | 916132071835040811fa1d2f4313969fa9c5c686 | 153,022 |
def fmt_app_name(appname):
"""Format a sysl_pb2.AppName as a syntactically valid string."""
return ' :: '.join(appname.part) | 531f60a311136d7a97767287a64298dc2add59d4 | 590,788 |
def insert_term(c, term):
"""Inserts the term into the database and returns the ID. """
c.execute(
'INSERT OR IGNORE INTO search_term (term) VALUES (?);',
(term,)
)
c.execute('SELECT id FROM search_term WHERE term=?;', (term,))
search_id = c.fetchone()[0]
return search_id | f78ca2479586864531d16c92222474d4db1b61e7 | 129,128 |
def pipeline_upto_step_4(pipeline_upto_step_3):
"""
PyTest Fixture: returns a pipeline that executes once per session up to step 4.
"""
kaldi, ds, pd, m = pipeline_upto_step_3
# Step 4
# ======
# Make a transcription interface and transcribe unseen audio to elan.
t = kaldi.new_transcription('transcription_w')
t.link(m)
t.transcribe_algin('/recordings/untranscribed/audio.wav')
return (kaldi, ds, pd, m, t) | 2d76d512b73b9ba26e6afdc49e6886e0246f4f80 | 473,271 |
def flatten(inp):
"""
The function to flatten a nested list or tuple of lists, tuples or ranges,
with any number of nested levels.
From StackOverflow by James Brady (http://stackoverflow.com/users/29903/james-brady)
http://stackoverflow.com/questions/406121/flattening-a-shallow-list-in-python/406822#406822
"""
out = []
for el in inp:
if isinstance(el, (list, tuple, range)):
out.extend(flatten(el))
else:
out.append(el)
return out | bb0d28b5d070d36661faabe45352a2fd480774b7 | 514,820 |
def make_gain_db(conf):
"""Generate a db domain gain function
Args:
conf: a dict {'db': #float}
'db': the gaining value
Returns:
The db gain function, which could be applied on
a float amplitude value
"""
db = conf['db']
def gain_db(x):
return min(0.997, x * pow(10, db / 20))
return gain_db | 58f1763de67ff5f94b0cd897821e967a7cb59834 | 214,939 |
import time
def timeme(method):
"""@timeme decorator. Place before any function you want timed.
Example:
@timeme
def print_after_three(s):
time.sleep(3)
return s
print_after_three("testing timeme")
>> ('print_after_three', 3003, 'ms')
"""
def wrapper(*args, **kw):
startTime = int(round(time.time() * 1000))
result = method(*args, **kw)
endTime = int(round(time.time() * 1000))
print(method.__name__, endTime - startTime,'ms')
return result
return wrapper | 15bd7bc0b99f81cd3d61ec792f69ae8f0636ead4 | 549,890 |
def roll(*parts: str) -> str:
"""
formats parts of a roll into a string
Returns:
The string of the sum of the parts
"""
return " + ".join(parts) | 9b7dd8501a2d8a0af5452c8742ab956c8d511439 | 212,841 |
import ctypes
def _get_openblas_version(openblas_dynlib):
"""Return the OpenBLAS version
None means OpenBLAS is not loaded or version < 0.3.4, since OpenBLAS
did not expose its version before that.
"""
get_config = getattr(openblas_dynlib, "openblas_get_config")
get_config.restype = ctypes.c_char_p
config = get_config().split()
if config[0] == b"OpenBLAS":
return config[1].decode('utf-8')
return None | b53d1c03f7da36d5b2b62e3f7464d3e2ce89d197 | 101,734 |
def column_names(row, colnames):
"""
Pair items in row with corresponding column name.
Return dictionary keyed by the column names.
"""
mapped = {col_name: val for val, col_name in zip(row, colnames)}
return mapped | 73875baef09eb48b1ea9f8be7a7537bfa3dabfa7 | 289,831 |
import re
def framework_name_from_image(image_name):
"""Extract the framework and Python version from the image name.
Args:
image_name (str): Image URI, which should take the form
'<account>.dkr.ecr.<region>.amazonaws.com/sagemaker-<framework>-<py_ver>-<device>:<tag>'
Returns:
tuple: A tuple containing:
str: The framework name
str: The Python version
"""
# image name format: <account>.dkr.ecr.<region>.amazonaws.com/sagemaker-<framework>-<py_ver>-<device>:<tag>
sagemaker_pattern = re.compile('^(\d+)(\.)dkr(\.)ecr(\.)(.+)(\.)amazonaws.com(/)(.*)(:)(.*)$')
sagemaker_match = sagemaker_pattern.match(image_name)
if sagemaker_match is None:
return None, None
else:
# extract framework and python version
name_pattern = re.compile('^sagemaker-(tensorflow|mxnet)-(py2|py3)-(cpu|gpu)$')
name_match = name_pattern.match(sagemaker_match.group(8))
if name_match is None:
return None, None
else:
return name_match.group(1), name_match.group(2) | d464b7ff4f2c3ad3f521baf7667b5391d816298f | 351,603 |
def context_get(stack, name):
"""
Find and return a name from a ContextStack instance.
"""
return stack.get(name) | a5a9a50c54e8f0f685e0cf21991e5c71aee0c3d6 | 703,501 |
def validate_graph_colors(graph):
"""
Validates that each graph node has a color distinct from the colors of its neighbors.
:param graph: the graph to examine
:return: boolean indicating whether the graph nodes have valid colors
"""
for graph_node in graph:
print(graph_node.color + ': ' + ', '.join(str(o.color) for o in graph_node.neighbors))
if graph_node.color in (o.color for o in graph_node.neighbors):
return False
return True | e2c3add1621027fd263d8466161ddc832a27f640 | 129,134 |
from typing import Union
def _get_address_from_instance_response(instance_response: dict) -> Union[str, None]:
"""
Extracts the instance's IP address (public if possible, private if not) from the boto3 response dict
:param instance_response: Boto3 response dict
:return: IP address of the instance (public if possible, private if not)
"""
if instance_response['Reservations']:
instance = instance_response['Reservations'][0]['Instances'][0]
return instance['PublicIpAddress'] if 'PublicIpAddress' in instance else instance['PrivateIpAddress']
else:
return None | 08c7623ec2d1e0af8a36b3fafdf8439ae818c80f | 646,160 |
from typing import Dict
from typing import List
def _get_status_dict(status: str) -> Dict[str, str]:
"""Return status dict from status message."""
status_list: List[List[str]] = []
for line in status.splitlines():
line = line.lstrip()
line = line.replace(". ", ";")
line = line.replace(".", "")
lines: List[str] = line.split(";")
if len(lines) > 1:
status_list.append(lines)
return {k[0]: k[1] for k in status_list} | 013ac69613983f481c76c12b5de0e9617d4d54be | 233,221 |
from typing import OrderedDict
def eliminate_except_param(loaded_param, not_eliminate):
"""
Ex:
loaded2 = torch.load(os.path.join('model2-baseline', 'checkpoint.pth'))
loaded2 = eliminate_except_param(loaded2, ['net.1.weight', 'net.1.bias'])
loaded.update(loaded2)
:param loaded_param: An OrderedDict.
:param not_eliminate: A list of key.
:return adict: OrderedDict with keys in not_eliminate and their values.
"""
assert type(not_eliminate) == list
keep_key = []
keep_value = []
for key, value in loaded_param.items():
if key in not_eliminate:
keep_key.append(key)
keep_value.append(value)
adict = OrderedDict()
for i, j in zip(keep_key, keep_value):
adict[i] = j
return adict | d6c6cb562376921392dd3caf20648fa0a69df7fc | 174,149 |
import itertools
from typing import MutableSequence
from typing import Sequence
from typing import Hashable
def is_matrix(item: object) -> bool:
"""Returns whether 'item' is an adjacency matrix.
Args:
item (object): instance to test.
Returns:
bool: whether 'item' is an adjacency matrix.
"""
if isinstance(item, tuple) and len(item) == 2:
matrix = item[0]
labels = item[1]
connections = list(itertools.chain(matrix))
return (
isinstance(matrix, MutableSequence)
and isinstance(labels, Sequence)
and not isinstance(labels, str)
and all(isinstance(i, MutableSequence) for i in matrix)
and all(isinstance(n, Hashable) for n in labels)
and all(isinstance(e, int) for e in connections))
else:
return False | 81b3d58e4b7eb24d254470cb7b77280eac49a24d | 380,322 |
import csv
def read_scores(input, delimiter, score_index=3):
"""
Reads the scores from a bed file into a list of floats
:param input: Input file object
:param delimiter: delimiter character, e.g. tab, comma, or space
:param score_index: column index of the score value
:return: A list of scores (still strings)
"""
scores = list()
reader = csv.reader(input, delimiter=delimiter)
for row in reader:
scores.append(row[score_index])
return scores | a000bdfe87ae58f203f1b360baa040541cd00f47 | 213,950 |
def init_field(height=20, width=20):
"""Creates a field by filling a nested list with zeros."""
field = []
for y in range(height):
row = []
for x in range(width):
row.append(0)
field.append(row)
return field | 0b61b12bec1ad506da357715139bef37b407b576 | 659,400 |
import asyncio
import functools
def call_later(delay, fn, *args, **kwargs) -> asyncio.Handle:
"""
Call a function after a delay (in seconds).
"""
loop = asyncio.get_event_loop()
callback = functools.partial(fn, *args, **kwargs)
handle = loop.call_later(delay, callback)
return handle | 86d157ed0f5f8dc7f806af9871a71057dc36222c | 9,959 |
def _get_course_id(store, course_data):
"""Returns the course ID."""
return store.make_course_key(course_data['org'], course_data['number'], course_data['run']) | 9ae140da648e9d85469bdfee2779fb6562343d47 | 563,451 |
def compute_leading_dashes_y(alignment, ind_x, seq_x, seq_y, scoring_matrix, alignment_matrix):
""" int, str, str, int, str, str, dict of dict, list of list -> int, str, str, int, int
Helper function that takes the current alignment strings and score and then
computes the next pair in the alignment with the remaining values in the y
alignment string being dashes. Returns the current position in seq_x and
seq_y as well as the current score and alignment strings.
"""
alignment[1] = seq_x[ind_x - 1] + alignment[1]
alignment[2] = '-' + alignment[2]
ind_x -= 1
alignment[0] += scoring_matrix[alignment[1][0]][alignment[2][0]]
return alignment[0], alignment[1], alignment[2], ind_x | 87033b508505fd5ea57e9af7135d8b2f4145d93d | 597,063 |
def sort_string(string: str) -> str:
"""Sort a string into alphabetical order."""
return "".join(sorted(string)) | f6ef6c20bb48e39253c14f9cafff692d75d47916 | 348,645 |
def parse_line(line):
"""
Parse each line of the file to get age and number of friends
:param line: a line form the file
:return: a Tuple with age and number of friends
"""
fields = line.split(',')
age = int(fields[2])
num_friends = int(fields[3])
return age, num_friends | 40f858101388c7212033c9d1ab64363c49b8366d | 333,633 |
def _checkshape(shape, maxshape):
"""Return True if the shape is consistent with the maximum allowed shape.
Each element of shape must be less than or equal to the
corresponding element of maxshape, unless the latter is set to None, in
which case the value of the shape element is unlimited.
Parameters
----------
shape : tuple of int
Shape to be checked.
maxshape : tuple of int
Maximum allowed shape
Returns
-------
bool
True if the shape is consistent.
"""
for i, j in [(_i, _j) for _i, _j in zip(maxshape, shape)]:
if i is not None and i < j:
return False
return True | 31a1c438598b895e0c660e39ca92a1bfbf92474f | 166,539 |
from typing import Any
import pickle
def pickle_load(file_name: str) -> Any:
"""
Load the pickle file
Args:
file_name (str): file name
Returns:
Any: python object type
"""
with open(file_name, 'rb') as file:
return pickle.load(file) | 28942a1d8724628790dc2145cfce36913a481bdf | 529,095 |
def _ssl_cn(server_hostname):
"""
Return the common name (fully qualified host name) from the SERVER_HOSTNAME.
"""
host_port = server_hostname.rsplit(":", 1)
# SERVER_HOSTNAME includes the port
if len(host_port) == 2:
if host_port[-1].isdigit():
return host_port[-2]
return server_hostname | 428c7623b282caef5bd23e76cdce0bbf663837ea | 608,697 |
def rquicksort(arr):
"""Recursive quicksort"""
if len(arr) <= 1: return arr
return rquicksort([i for i in arr[1:] if i < arr[0]]) + \
[arr[0]] + \
rquicksort([i for i in arr[1:] if i > arr[0]]) | 8690739311a34d654eadb84b64184ce3576057b2 | 566,833 |
from typing import List
import re
def split_authors(authors: str) -> List:
"""
Split author string into authors entity lists.
Take an author line as a string and return a reference to a list of the
different name and affiliation blocks. While this does normalize spacing
and 'and', it is a key feature that the set of strings returned can be
concatenated to reproduce the original authors line. This code thus
provides a very graceful degredation for badly formatted authors lines, as
the text at least shows up.
"""
# split authors field into blocks with boundaries of ( and )
if not authors:
return []
aus = re.split(r'(\(|\))', authors)
aus = list(filter(lambda x: x != '', aus))
blocks = []
if len(aus) == 1:
blocks.append(authors)
else:
c = ''
depth = 0
for bit in aus:
if bit == '':
continue
if bit == '(': # track open parentheses
depth += 1
if depth == 1:
blocks.append(c)
c = '('
else:
c = c + bit
elif bit == ')': # track close parentheses
depth -= 1
c = c + bit
if depth == 0:
blocks.append(c)
c = ''
else: # haven't closed, so keep accumulating
continue
else:
c = c + bit
if c:
blocks.append(c)
listx = []
for block in blocks:
block = re.sub(r'\s+', ' ', block)
if re.match(r'^\(', block): # it is a comment
listx.append(block)
else: # it is a name
block = re.sub(r',?\s+(and|\&)\s', ',', block)
names = re.split(r'(,|:)\s*', block)
for name in names:
if not name:
continue
name = name.rstrip().lstrip()
if name:
listx.append(name)
# Recombine suffixes that were separated with a comma
parts: List[str] = []
for p in listx:
if re.match(r'^(Jr\.?|Sr\.?\[IV]{2,})$', p) \
and len(parts) >= 2 \
and parts[-1] == ',' \
and not re.match(r'\)$', parts[-2]):
separator = parts.pop()
last = parts.pop()
recomb = "{}{} {}".format(last, separator, p)
parts.append(recomb)
else:
parts.append(p)
return parts | f6c3952f2b8a2a06411d4acfcda97f55adcd1ba9 | 54,012 |
import asyncio
def swait(co):
"""Sync-wait for the given coroutine, and return the result."""
return asyncio.get_event_loop().run_until_complete(co) | 3fca650eadce043602a07c909a0988846e6405e0 | 675,574 |
import torch
def test_clf(args, model, test_loader, crit):
"""
Tests the classification model over the test set.
"""
model.eval()
loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(args.device), target.to(args.device)
output = model(data)
# loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
loss += crit(output, target).item() * data.shape[0] # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
loss /= len(test_loader.dataset)
acc = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)'.format(
loss, correct, len(test_loader.dataset), acc), flush=True)
return loss, acc | 036f86dba4165dba761bdb1bf13613fb40f184bd | 571,976 |
import torch
def gaussian_kld(mu_left, sigma_left, mu_right, sigma_right):
"""
Provided by @anirudh
Compute KL divergence between a bunch of univariate Gaussian distributions
with the given means and log-variances.
We do KL(N(mu_left, logvar_left) || N(mu_right, logvar_right)).
"""
logsigma_left = sigma_left.log()
logsigma_right = sigma_right.log()
logvar_left = 2 * logsigma_left
logvar_right = 2 * logsigma_right
gauss_klds = 0.5 * (logvar_right - logvar_left +
(torch.exp(logvar_left) / torch.exp(logvar_right)) +
((mu_left - mu_right) ** 2.0 / torch.exp(logvar_right)) - 1.0)
assert len(gauss_klds.size()) == 2
return gauss_klds
return torch.sum(gauss_klds, 1) | 9ddf9bc7dac2e40e169fd2f87bb782022ecfd12d | 362,946 |
def thousands_separated(number):
"""Separate an integer with thousands commas for presentation."""
return f"{number:,}" | b853bb8a14b9f24ac13dc3def6c87ed8ab985831 | 411,001 |
def AND_nobias(x1: int, x2: int) -> int:
"""
[summary] AND operator wituout bias term
Args:
x1 (int): 1st input for AND
x2 (int): 2nd input for AND
Returns:
int: result of AND operator
"""
(w1, w2, theta) = (0.5, 0.5, 0.7)
tmp = w1 * x1 + w2 * x2
if tmp <= theta:
return 0
else:
return 1 | e58a125a9c21233b8de7a044e5c0acdfdb29d1fa | 18,009 |
def _tag_block(block, tag):
"""Add the open and close tags to an input block."""
return f'<{tag}\n' + block + f'\n{tag}>\n' | bdd53897ec782b37e150592838ea11c58ae1d793 | 102,048 |
def sql_name(raw_name):
""" Cleaned column name.
Args:
raw_name: raw column name
Returns:
cleaned name suitable for SQL column
"""
sql_name = raw_name
for to_replace in ['"', ' ', '\\', '/', '(', ')', '.']:
sql_name = sql_name.replace(to_replace, '_')
return sql_name.strip() | faa72162ed8e048833972f93a155dc002f44a1a8 | 647,135 |
import torch
def batch_unpadding(_input, lens, right=True):
"""
:param: _input: m x n tensor
:param: lens: list with size of m
:param: right: eliminate padding from right if true
"""
if right:
return torch.cat([x[:lens[i]] for i, x in enumerate(_input) if lens[i] > 0 ])
else:
return torch.cat([x[-lens[i]:] for i, x in enumerate(_input) if lens[i] > 0 ]) | 143077351e69ba3b4662ef5d30616169def7219f | 538,397 |
import torch
def image_pt_to_np(image):
"""
Convert a PyTorch image to a NumPy image (in the OpenCV format).
"""
image = image.cpu().clone()
image = image.permute(1, 2, 0)
image_mean = torch.tensor([0.485, 0.456, 0.406])
image_sd = torch.tensor([0.229, 0.224, 0.225])
image = image * image_sd + image_mean
image = image.clip(0, 1)
return image | 4a7a83bf604c17df728b5c9f1d7ced2d3c2bef41 | 246,637 |
import random
def generate_tag_info() -> dict:
""" Generates metadata used for creating a tag record
Returns:
Tag metadata (dict)
"""
def simulate_tag():
dataset_name = "test_dataset"
dataset_set = f"set_{str(random.randint(0, 10))}"
version = f"version_{str(random.randint(0, 10))}"
return [dataset_name, dataset_set, version]
return {
meta: [simulate_tag() for _ in range(random.randint(1, 10))]
for meta in ["train", "evaluate", "predict"]
} | cc847bd62d9767af94ed868040077c215a66e04d | 518,883 |
import six
def _bytes(*vals):
"""
This is a private utility function which takes a list of byte values
and creates a binary string appropriate for the current Python version.
It will return a `str` type in Python 2, but a `bytes` value in Python 3.
Values should be in byte range, (0x00-0xff)::
_bytes(1, 2, 3) == six.b('\\x01\\x02\\x03')
:param vals: arguments are a list of unsigned bytes.
:return: a `str` in Python 2, or `bytes` in Python 3
"""
return six.b('').join(six.int2byte(v) for v in vals) | 49d3648ed733b1d80824d97695b32486d0e6d8b3 | 75,057 |
from typing import Any
def safe_lower(obj: Any) -> Any:
"""Return lowercase string if the provided obj is a string, otherwise return the object itself.
:return: Any
"""
if isinstance(obj, str):
return obj.lower()
return obj | a1487fa3ac686feeb2c6cf1d5cc67a9036b25ca8 | 408,739 |
def to_bytes(value) :
"""
Decodes value to bytes.
Args:
value : Value to decode to bytes
Returns:
:obj:`bytes` : Return the value as bytes:
if type(value) is :obj:`bytes`, return value;
if type(value) is :obj:`str`, return the string encoded with UTF-8;
otherwise, returns bytes(value).
"""
if value is None :
return value
elif type(value) is bytes :
return value
elif type(value) is str :
return value.encode('utf-8')
else :
return bytes(value) | e38b7348c84d570caa2891b1d3be8fa789eda615 | 73,180 |
def my_add(a, b):
"""Adds two inputs
Parameters
----------
a : int, float
b : int, float
Returns
-------
sum : int, float
Sum of a and b
"""
if not isinstance(a, (int, float)) or not isinstance(b, (int, float)):
raise TypeError('Input to my_add should be either integers or floats')
return a + b | 55d7133ee33aec9a5ac2cc891de4be5ec7f8140a | 519,550 |
import requests
def get_swapi_resource(url, params=None, timeout=10):
"""Returns a response object decoded into a dictionary. If query string < params > are
provided the response object body is returned in the form on an "envelope" with the data
payload of one or more SWAPI entities to be found in ['results'] list; otherwise, response
object body is returned as a single dictionary representation of the SWAPI entity.
Parameters:
url (str): a url that specifies the resource.
params (dict): optional dictionary of querystring arguments.
timeout (int): timeout value in seconds
Returns:
dict: dictionary representation of the decoded JSON.
"""
if params:
return requests.get(url, params, timeout=timeout).json()
else:
return requests.get(url, timeout=timeout).json() | fbf3e163c153ad5d362aef2fe4d245c275da45f4 | 557,768 |
def config_dict_changed(module):
"""
return true if 'config' dict in hash is different
between desired and current config
"""
current_config = module.custom_current_config.get('config')
desired_config = module.custom_desired_config.get('config')
return current_config != desired_config | 29c15e5ade086fcb443698f3df941c1278d578f2 | 344,262 |
def positive_integer(anon, obj, field, val):
"""
Returns a random positive integer (for a Django PositiveIntegerField)
"""
return anon.faker.positive_integer(field=field) | f6dc73ea33731d4788e72598f266df9c3436d322 | 85,864 |
def nthwords2int(nthword):
"""Takes an "nth-word" (eg 3rd, 21st, 28th) strips off the ordinal ending
and returns the pure number."""
ordinal_ending_chars = 'stndrh' # from 'st', 'nd', 'rd', 'th'
try:
int_output = int(nthword.strip(ordinal_ending_chars))
except Exception as e:
raise Exception('Illegal nth-word: ' + nthword)
return int_output | 10338beff5fdafb612efc090e6d0edd39c757c1b | 486,925 |
def falsy_to_none_callback(ctx, param, value): # noqa: U100
"""Convert falsy object to ``None``.
Some click arguments accept multiple inputs and instead of ``None`` as a default if
no information is passed, they return empty lists or tuples.
Since pytask uses ``None`` as a placeholder value for skippable inputs, convert the
values.
Examples
--------
>>> falsy_to_none_callback(None, None, ()) is None
True
>>> falsy_to_none_callback(None, None, []) is None
True
>>> falsy_to_none_callback(None, None, 1)
1
"""
return value if value else None | 9168083987696f7749ca8444356d32f08bde7e91 | 19,122 |
import io
def make_buffer(cls=io.BytesIO, initial_value=None, name=None, noclose=False):
"""
Construct a new in-memory file object aka "buf".
:param cls: Class of the file object. Meaningful values are BytesIO and StringIO.
:param initial_value: Passed directly to the constructor, this is the content of the returned buffer.
:param name: Associated file path. Not assigned if is None (default).
:param noclose: If True, disables the .close function.
:return: Instance of `cls`.
"""
buf = cls(initial_value) if initial_value else cls()
if name is not None:
buf.name = name
if noclose:
buf.close = lambda: None
return buf | 925d027fffea3c229d74971369a406ed78af3805 | 451,202 |
def __toCurveString(c):
"""
Returns the string description of the curve.
:param c: The curve
:type c: Curve
:return: str -- The curve's name if not empty, otherwise, the curve's plotname
"""
if c.name:
return c.name
return c.plotname | f54ddc1d5fe96a034c8eb83f7a54b6c1e37de5c0 | 602,987 |
def getChunks(dsets,nbchunks):
""" Splits dataset object into smaller chunks
Parameters:
* dsets (dict): dataset
* nbchunks (int): number of data chunks to be created
Returns:
* dict: chunks from dataset stored as dictionaries
"""
ret = []
for ichunk in range(nbchunks):
datagrp = {}
for groupnm in dsets:
alldata = dsets[groupnm]
surveys = {}
for inp in alldata:
datalist = alldata[inp]
nrpts = len(datalist)
start = int(ichunk * nrpts / nbchunks)
end = int((ichunk+1) * nrpts / nbchunks)
datalist = datalist[start:end]
surveys.update({inp: datalist})
datagrp.update({groupnm: surveys})
ret.append(datagrp)
return ret | d693ad68b142816b5d43bde37f01d757ced60298 | 670,579 |
def is_supdict(X, Y):
"""
checks whether X contains Y, i.e., whether X is a "super-dictionary" of Y.
returns bool.
"""
return set(X.items()).issuperset(set(Y.items())) | 214bc3f6727f5c13239c6c4409b572d1de021176 | 493,042 |
import requests
from typing import Any
def tid_repo_prompt(image_data_url: str):
"""
Prompt for TID repo image selection
:param image_data_url: base url of the TID repo imaegs
:return: download link of the image or None
"""
entry_number: int = int(input("Please enter image number: ")) - 1
try:
response: requests.Response = requests.get(image_data_url)
except Exception as error:
print("[red]Perhaps you are not connected to the internet. Mind checking it again?")
else:
if not response.ok:
print(f"[red]Oops, something went wrong {response.status_code}")
return
image_data: Any = response.json()
if entry_number >= len(image_data):
entry_number: int = 1
file_name = image_data[entry_number]["image_name"]
file_type = image_data[entry_number]["file_type"]
return f"https://raw.githubusercontent.com/Muhimen123/TID/main/images/{file_name}.{file_type}" | 049bd987d8f10bee0e01a7c660bd2bf949846de7 | 66,134 |
def checkDecimal(string):
"""Checks if the string has a decimal place"""
for i in string:
if i == '.':
return True
return False | 63e8e10f320bd88b1e0e19839112af889d5f5189 | 183,239 |
def _ParseChannelData(data):
"""Parse a CSV string containing Chrome channel data from omahaproxy.
Args:
data: A string of CSV data from omahaproxy.
Returns:
A list of dictionaries. Each dictionary represents a channel
release and contains information about that release.
"""
data = data.strip()
rows = data.split('\n')
keys = rows[0].split(',')
rows = rows[1:]
results = []
for row in rows:
entries = row.split(',')
channel_data = {}
for i in range(len(keys)):
channel_data[keys[i]] = entries[i]
results.append(channel_data)
return results | f20dbd9708f4f4b14d6a3d34599f6bf2ccde0354 | 264,758 |
from typing import Tuple
def _get_middle_tunes(qx: float, qy: float) -> Tuple[float, float]:
""" Get the tunes with the factional part in the middle
between the qx and qy fractional parts, but with the same integer part. """
qx_frac, qy_frac = qx % 1, qy % 1
qmid_frac = 0.5 * (qx_frac + qy_frac)
qx_mid = int(qx) + qmid_frac
qy_mid = int(qy) + qmid_frac
return qx_mid, qy_mid | 0f954bed6f3ee61aae94bd3629a050f46ea8b0d8 | 509,206 |
def format_usage(usage, rate):
"""format the resource usage to show integer if greater than the rate, otherwise
show one decimal place."""
usage = float(usage) / rate
if usage < 1:
usage = round(usage, 1)
else:
usage = int(round(usage, 0))
return usage | 109f94d98882d16adb080154bae8c3f295664616 | 417,178 |
import hashlib
def get_hash(path):
""" Returns the SHA256 hash of a file.
# Arguments
path: str. Path to the file to produce a hash for.
# Return value
64-character lowercase string of hexadecimal digits representing the
32-byte SHA256 hash of the file content.
"""
with open(path, 'rb') as fh:
data = fh.read()
sha = hashlib.sha256()
sha.update(data)
return sha.hexdigest() | 6ba9733fa97872a7885b71773f04501113ae36e3 | 395,488 |
def get_prob_from_odds( odds, outcome ):
""" Get the probability of `outcome` given the `odds` """
oddFor = odds[ outcome ]
oddAgn = odds[ 1-outcome ]
return oddFor / (oddFor + oddAgn) | b4507dde8285c357cb17c1b749657a2c634efa63 | 656,305 |
def fill_class_weights(weights, max_id=-1):
"""
Gets a dictionary of labels with their weights and creates a list with size of the labels filled with those weights.
Missing labels in the dictionary would get value 1.
Args:
weights: dictionary of weights for labels, labels as keys and weights are their values
max_id: the largest label id in the dataset, default=-1 would consider the largest label in the weights dictionary as max_id
Returns:
weights_list: list of weights for labels
"""
if max_id < 0:
max_id = 0
for l in weights.keys():
max_id = max(max_id, l)
all_weights = [1.0] * (max_id + 1)
for i in range(len(all_weights)):
if i in weights:
all_weights[i] = weights[i]
return all_weights | edc47e8ce74460d32848a88ecc34d99a27fc83a8 | 147,478 |
def compute_flesch_reading_ease(total_syllables, total_words, total_sentences):
"""
Computes readability score from summary statistics
:param total_syllables: number of syllables in input text
:param total_words: number of words in input text
:param total_sentences: number of sentences in input text
:return: A readability score: the lower the score, the more complex the text is deemed to be
"""
return (
206.85
- 1.015 * (total_words / total_sentences)
- 84.6 * (total_syllables / total_words)
) | 8b0bc43274766dd0f2e3f7b585f79bf1ccd427dc | 44,609 |
def cleaner(f): # Wrapper function
"""Makes printed text easier to read by creating border around the text"""
def wrap(*args, **kwargs):
print("==" * 20)
f(*args, **kwargs)
print("==" * 20)
print("\n")
return wrap | d6aee194cb96b293425e43729abf67432976d220 | 489,565 |
def tokenize_sentence(untokenized_str):
""" Returns a tokenized string
Args:
untokenized_str : a given sentence
Returns: list of words from the given sentence
"""
return [word for word in untokenized_str.split(" ")] | 144b345db971d02a53124ae6705f1cfcb1c7d130 | 162,110 |
def convert_to_string(argument):
"""
Args:
argument (bool or None): O bool que vai ser convertido para string
Returns:
str: Vai retornar sim/não ou nulo de acordo com o parâmetro
"""
if argument is None:
return 'nulo'
elif argument:
return 'sim'
else:
return 'não' | 572c8bb23a05ef9ebfcd97cd236ce734ad86ce87 | 205,723 |
def clang_is_loc_in_range(location, source_range):
"""Returns whether a given Clang location is part of a source file range."""
if source_range is None or location is None:
return False
start = source_range.start
stop = source_range.end
file = location.file
if file != start.file or file != stop.file:
return False
line = location.line
if line < start.line or stop.line < line:
return False
return start.column <= location.column <= stop.column | fcbbef53fd320200a95d3a09a2c07b53b59ef079 | 318,193 |
from datetime import datetime
import pytz
def parse_datetime(x):
"""
Parses datetime with timezone formatted as:
`[day/month/year:hour:minute:second zone]`
Example:
`>>> parse_datetime('13/Nov/2015:11:45:42 +0000')`
`datetime.datetime(2015, 11, 3, 11, 45, 4, tzinfo=<UTC>)`
Due to problems parsing the timezone (`%z`) with `datetime.strptime`, the
timezone will be obtained using the `pytz` library.
"""
dt = datetime.strptime(x[1:-7], "%d/%b/%Y:%H:%M:%S")
dt_tz = int(x[-6:-3]) * 60 + int(x[-3:-1])
return dt.replace(tzinfo=pytz.FixedOffset(dt_tz)) | 784f2b43363f9c70f4eee4ee7bf8ad5ede835d3e | 498,687 |
def yatch(dice):
"""
Score the dice based on rules for YACHT.
"""
points = 0
if dice.count(dice[0]) == len(dice):
points = 50
return points | 2606336c162f97d5c0a6a53ae905cf410395de03 | 86,466 |
def jsonapi_errors(jsonapi_errors):
"""Construct api error according to jsonapi 1.0
:param iterable jsonapi_errors: an iterable of jsonapi error
:return dict: a dict of errors according to jsonapi 1.0
"""
return {'errors': [jsonapi_error for jsonapi_error in jsonapi_errors],
'jsonapi': {'version': '1.0'}} | 6e357794ebd952d8f51fd350b8ad36521c50973d | 260,628 |
import base64
def _urlsafe_b64encode(s: bytes) -> bytes:
"""
Base 64 URL safe encoding with no padding.
:param s: input str to be encoded
:return: encoded bytes
"""
return base64.urlsafe_b64encode(s).rstrip(b"=") | 50b007c54f516b4ccc3b48ca89b10bed3853517a | 640,153 |
import torch
import math
def rand_sphere(size):
"""
Randomly sample on the sphere uniformly
See http://corysimon.github.io/articles/uniformdistn-on-sphere/
Our convention is 0 < theta < pi ; -pi < phi < pi
:param size: torch.size or list of ints, size of returned tensors
:return: theta, phi
"""
theta = torch.acos(1 - 2 * torch.rand(size))
phi = 2 * math.pi * torch.rand(size) - math.pi
return theta, phi | fe8a54da47c13b736e5b46839969b9899bbc6769 | 107,442 |
def _run_patched(mover, patches, inputs):
"""Run the move with the given patches for the given inputs"""
for p in patches:
p.start()
change = mover.move(inputs)
for p in patches:
p.stop()
return change | 5875244e1310dcfd2e22889c36029c872d0c4eb8 | 106,487 |
def random_walk_step(r, p0, W, pt):
"""
r = probability of restart
p0 = initial probability vector
W = column-normalized adjacency matrix
pt = probability vector at time step t
pt = probability vector at time step t + 1
"""
#print 'r', r
#print 'W', W
#print 'pt', pt
#print 'p0', p0
#pt1 = (1 - r) * W.dot(pt) + r * p0
pt1 = (1 - r) * W * pt + r * p0
return pt1 | 047ae6ff08a1a6f0bef579ab026a46c747de5953 | 646,099 |
def count_hosts(facts):
"""Count the number of unique hosts"""
hosts = set([fact['certname'] for fact in facts])
return len(hosts) | 40e1dc335b864fdd66f9d83e11a27418890a0c00 | 146,599 |
def from_c_string(addr):
"""utf-8 decode a C string into a python string"""
if addr is None:
return None
if type(addr) == str:
return addr
return addr.decode('utf-8') | df5b4da226c2cdb35bc4490233f10c04b559c111 | 404,522 |
def is_proto_only_paramater(parameter: dict):
"""Whether the parameter is only included in the proto file and not the driver API."""
return parameter.get("proto_only", False) | c14660f235937078a4c0a3e87a824752244b316d | 501,594 |
from typing import List
def _read_get_graph_source_citation_section(jcamp_dict: dict) -> List[str]:
"""
Extract and translate from the JCAMP-DX dictionary the SciData JSON-LD
citations in the 'sources' section from the '@graph' scection.
:param jcamp_dict: JCAMP-DX dictionary to extract citations from
:return: List for citation from SciData JSON-LD
"""
citation = []
if "$ref author" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref author"]} :')
if "$ref title" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref title"]}.')
if "$ref journal" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref journal"]}')
if "$ref volume" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref volume"]}')
if "$ref date" in jcamp_dict:
citation.append(f'({jcamp_dict["$ref date"]})')
if "$ref page" in jcamp_dict:
citation.append(f'{jcamp_dict["$ref page"]}')
return citation | dafe4fd793dd0e47b690d6c1fd745ca89265de39 | 701,610 |
def pde_string(w, rhs_description, ut = 'u_t', print_imag=False):
"""
Prints a pde based on:
w: weights vector
rhs_description: a list of strings corresponding to the entries in w
ut: string descriptor of the time derivative
print_imag: whether to print the imaginary part of the weights
Returns:
pde: string with the pde
"""
pde = ut + ' = '
first = True
for i in range(len(w)):
if w[i] != 0:
if not first:
pde = pde + ' + '
if print_imag==False:
pde = pde + "(%.5f)" % (w[i].real) + rhs_description[i] + "\n "
else:
pde = pde + "(%.5f %0.5fi)" % (w[i].real, w[i].imag) + rhs_description[i] + "\n "
first = False
return pde | 965f06d335bc9daa700fd85fa5450d1713f04e6d | 265,482 |
def binary_search(lis, elem, start, end):
"""
Return index of matched position of elem in lis between index start and end (inclusive) or return -1
:param lis: Sorted list
:param elem: element to search
"""
assert 0 <= start <= end < len(lis)
if end == start:
# If there is only one element to search, check that element only
if lis[start] == elem:
return start
return -1
mid = (start + end) // 2
mid_elem = lis[mid]
if mid_elem == elem:
return mid
if mid_elem < elem:
# If middle element is less than our required element then search in the right of array
if end > mid:
return binary_search(lis, elem, mid + 1, end)
return -1
if mid_elem > elem:
# If middle element is larger than our required element then search in the left of array
if start < mid:
return binary_search(lis, elem, start, mid - 1)
return -1 | 7b903803b38aa23b2c124a6e23dc14b9bb1c8e28 | 601,259 |
import torch
def generate_deck_matrix(deck, card_index, v):
"""
Generate a binary matrix of shape len(deck) * V * V, where
row c in the i_th channel represents the i_th card is of
color c
"""
matrix = torch.zeros((len(deck), v, v))
for i in range(card_index, len(deck)):
c = deck[i]
for j in range(v):
matrix[i][c][j] = 1
return matrix | a7a81b7c066df17306fa1ce6970c4f4f14602979 | 477,033 |
def signed_int_str(input_int: int):
"""
Converts an integer into a string that includes the integer's sign, + or -
:param int input_int: the input integer to convert to a signed integer string
:return str signed_int_str: the signed integer string
"""
if input_int >= 0:
return '+' + str(input_int)
else:
return str(input_int) | b6ea5e9ccdb8a30273d3bb790a4c9bc663daedcc | 653,256 |
def parse_ins_string(string):
""" split up an instruction file line to get the observation names
Parameters
----------
string : str
instruction file line
Returns
-------
obs_names : list
list of observation names
"""
istart_markers = ["[","(","!"]
iend_markers = ["]",")","!"]
obs_names = []
idx = 0
while True:
if idx >= len(string) - 1:
break
char = string[idx]
if char in istart_markers:
em = iend_markers[istart_markers.index(char)]
# print("\n",idx)
# print(string)
# print(string[idx+1:])
# print(string[idx+1:].index(em))
# print(string[idx+1:].index(em)+idx+1)
eidx = min(len(string),string[idx+1:].index(em)+idx+1)
obs_name = string[idx+1:eidx]
if obs_name.lower() != "dum":
obs_names.append(obs_name)
idx = eidx + 1
else:
idx += 1
return obs_names | 73a2cc8395e65df116eabad3d5f2a7fbb1e6f52b | 470,660 |
def is_substring_in_list(needle, haystack):
"""
Determine if any string in haystack:list contains the specified
needle:string as a substring.
"""
for e in haystack:
if needle in e:
return True
return False | f85ac189ec622aa91d543b5a2d82bc4edcbf0802 | 650,081 |
from typing import OrderedDict
def aks_get_versions_table_format(result):
"""Format get-versions upgrade results as a summary for display with "-o table"."""
master = result.get('controlPlaneProfile', {})
result['masterVersion'] = master.get('kubernetesVersion', 'unknown')
master_upgrades = master.get('upgrades', [])
result['masterUpgrades'] = ', '.join(master_upgrades) if master_upgrades else 'None available'
agents = result.get('agentPoolProfiles', [])
versions, upgrades = [], []
for agent in agents:
version = agent.get('kubernetesVersion', 'unknown')
agent_upgrades = agent.get('upgrades', [])
upgrade = ', '.join(agent_upgrades) if agent_upgrades else 'None available'
name = agent.get('name')
if name: # multiple agent pools, presumably
version = "{}: {}".format(name, version)
upgrade = "{}: {}".format(name, upgrades)
versions.append(version)
upgrades.append(upgrade)
result['nodePoolVersion'] = ', '.join(versions)
result['nodePoolUpgrades'] = ', '.join(upgrades)
# put results in an ordered dict so the headers are predictable
table_row = OrderedDict()
for k in ['name', 'resourceGroup', 'masterVersion', 'masterUpgrades', 'nodePoolVersion', 'nodePoolUpgrades']:
table_row[k] = result.get(k)
return [table_row] | d2614ce9c40b5e59c070fc9123e85c05f358fc77 | 157,244 |
from datetime import datetime
def get_age(year_of_birth):
""" Returns the age of the person. """
return datetime.now().year - year_of_birth | 0934a2ab17592055418e353f65ee189996f5bbab | 55,517 |
from datetime import datetime
def ms_since_epoch(dt):
"""
Get the milliseconds since epoch until specific a date and time.
Args:
dt (datetime): date and time limit.
Returns:
int: number of milliseconds.
"""
return (dt - datetime(1970, 1, 1)).total_seconds() * 1000 | 3a7630c0930949f06573292729156c2e881107bd | 676,086 |
import io
import zipfile
def zip_dict(data, **kwargs):
"""
Zips a dictionary ``{ str: bytes }``.
@param data dictionary
@param kwargs see :epkg:`*py:zipfile:ZipFile`
@return bytes
"""
if not isinstance(data, dict):
raise TypeError("data must be a dictionary")
buffer = io.BytesIO()
with zipfile.ZipFile(buffer, "w", **kwargs) as fz:
for k, v in sorted(data.items()):
if not isinstance(k, str):
raise TypeError("Keys must be a string.")
if not isinstance(v, bytes):
raise TypeError("Values must be bytes.")
fz.writestr(k, v)
return buffer.getvalue() | b344c169c19da3cebeb97768f0f880068d7dd947 | 636,222 |
def maptosequence(fseq,iseq):
"""
Map a sequence of floats, each element in range 0.0-1.0,
to an another sequence of values, find the elements whose indexes are
equivalent to a relative position in a range 0-1.0.
:param fseq: A list of float values
:param iseq: A list of target values
:return: A list of integer values equivalent to range of floats.
"""
equiv_seq = []
folds = len(iseq)-1
for i in fseq:
if i<0 or i>1.0:
print("Error: Sequence of floats should be only values "
"between 0.0 and 1.0")
return None
equiv_seq.append(iseq[round(float(i)*folds)])
return(equiv_seq) | 1573527b5717650cb1211d4e536c5fe819a17312 | 276,489 |
def _determinant_3d(H):
"""
Returns the determinants of a batched 3-D matrix
"""
detH = (H[..., 0, 0] * (H[..., 1, 1] * H[..., 2, 2] - H[..., 2, 1] * H[..., 1, 2]) +
H[..., 0, 1] * (H[..., 1, 2] * H[..., 2, 0] - H[..., 1, 0] * H[..., 2, 2]) +
H[..., 0, 2] * (H[..., 1, 0] * H[..., 2, 1] - H[..., 2, 0] * H[..., 1, 1]))
return detH | d5945135567e1691039fa54e184a1058244f1b9b | 329,986 |
from typing import List
import copy
def selection_sort(x: List) -> List:
"""Selection sort repeatedly swaps the minimum element of a list with the left-most unsorted element, building up
a new list that's fully sorted. It has an average time complexity of Θ(n^2) due to the nesting of its two loops.
Time complexity for the worst case, when the list is sorted in reverse order, is O(n^2). Time complexity for the
best case, when the list is already sorted in the correct order, is Ω(n^2).
>>> selection_sort([4, 2, 3, 1, 0, 5])
[0, 1, 2, 3, 4, 5]
:param x: list to be sorted
:return: new sorted list
"""
a_list = copy.deepcopy(x) # To avoid modifying the original list
length = len(a_list)
for i in range(length):
unsorted_min_idx = i
for idx, element in enumerate(a_list[i:]):
if element < a_list[unsorted_min_idx]:
unsorted_min_idx += idx
a_list[i], a_list[unsorted_min_idx] = a_list[unsorted_min_idx], a_list[i]
return a_list | 182de87b38bb4dedb2d8798841e12e8bf550e6b5 | 452,005 |
import unicodedata
def normalized_name(text):
"""
Strip umlauts and accents from names.
Convert input strings to lowercase,
convert umlauts, strip accents,
replace hyphens with whitespace
and remove redundant whitespace.
:param text: The input string.
:type text: String.
:returns: The processed string.
:rtype: String.
"""
text = text.lower()
text = text.replace('ß', 'ss')
text = text.replace('ä', 'ae')
text = text.replace('ö', 'oe')
text = text.replace('ü', 'ue')
text = text.replace('-', ' ')
text = ' '.join(text.split())
text = unicodedata.normalize('NFD', text)
text = text.encode('ascii', 'ignore')
text = text.decode('utf-8')
return text | 4aac4f6a086c1dd65cbfa53d820c0880eeb6e447 | 314,666 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.