content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import numbers
def validate_float(datum, **kwargs):
"""
Check that the data value is a floating
point number or double precision.
conditional python types
(int, float, numbers.Real)
Parameters
----------
datum: Any
Data being validated
kwargs: Any
Unused kwargs
"""
return isinstance(datum, (int, float, numbers.Real)) and not isinstance(datum, bool) | 8ced3fd09f35dc485cc9848eb0c6bcac1e3e047b | 182,332 |
def _generate_location(location, items, techs):
"""
Returns a dict for a given location. Dict keys for permitted technologies
are the only ones that don't start with '_'.
Args:
location : (str) name of the location
items : (AttrDict) location settings
techs : (list) list of available technologies
"""
# Mandatory basics
within = items.get('within', None)
level = items.get('level', None)
d = {'_location': location, '_level': level,
'_within': str(within)}
# Override
if 'override' in items:
for k in items.override.keys_nested():
target_key = '_override.' + k
try:
d[target_key] = items.override.get_key(k)
except KeyError:
# Allow locations to not define 'within'
if k == 'within':
d[target_key] = None
# Permitted echnologies
for y in techs:
if y in items.techs:
d[y] = 1
else:
d[y] = 0
return d | 6e9f371379eeb8c827c2c8b26a3f4e442fc4b341 | 488,054 |
def get_single_rank(child_node):
"""
Extract MPI info from IPM XML child node (corresponding to one MPI rank)
child_node : xml.etree.ElementTree.Element
child of root node, i.e. ET.parse(filename).getroot()[i]
"""
i_regions = 6 # "regions" block under root.child
mpi_node = child_node[i_regions][0] # "region" block under root.child.regions
record_list = []
for leaf in mpi_node[1:]: # skip the first "modules" tag
record = {**leaf.attrib, 'time': float(leaf.text)}
record_list.append(record)
return record_list | a3352761baf6daef95830953cb5a2cdb7b302f11 | 271,561 |
def _arg_no_mixin(num):
"""Return FindArgNoMixin for num."""
class FindArgNoMixin(object): # suppress(too-few-public-methods)
"""Mixin that provides generate() for finding args by number."""
def generate(self, # suppress(no-self-use)
sub,
other_transform,
match_transform):
"""Generate argument list of num size."""
# A cheap hack to ensure that we generate a few extra in the
# list GET case
gen_num = abs(num - 1 if sub is not None else num)
args_before = (" ".join([other_transform("ARGUMENT")] *
gen_num))
match_arg = match_transform("VALUE")
subcommand = sub + " " if sub is not None else ""
return subcommand + " ".join([args_before, match_arg])
return FindArgNoMixin | f918a05183f265750490e62303173525134eb3ca | 634,961 |
import re
def _split_numeric_sortkey(
s, limit=10, reg=re.compile(r"[0-9][0-9]*\.?[0-9]*").search, join=" ".join
):
"""Separate numeric values from the string and convert to float, so
it can be used for human sorting. Also removes all extra whitespace."""
result = reg(s)
if not result or not limit:
text = join(s.split())
return (text,) if text else tuple()
else:
start, end = result.span()
return (
join(s[:start].split()),
float(result.group()),
_split_numeric_sortkey(s[end:], limit - 1),
) | 08023c180b74a066eaafe9726657e2c03d7d7c4c | 452,788 |
def add_shift_steps_unbalanced(
im_label_list_all, shift_step=0):
"""
Appends a fixed shift step to each large image (ROI)
Args:
im_label_list_all - list of tuples of [(impath, lblpath),]
Returns:
im_label_list_all but with an added element to each tuple (shift step)
"""
return [(j[0], j[1], shift_step) for j in im_label_list_all] | 63fc45bc14e54ec5af473ec955bd45602f3c7041 | 6,894 |
def parse_dhm_response(msg: str) -> int:
"""Parse server's DHM key exchange request
:param msg: server's DHMKE message
:return: number in the server's message
"""
return int(msg.split(':')[1]) | 065d16e8ae317d49ee2e29743b3004f8d79aadd2 | 587,132 |
def limit(value, limits):
"""
:param <float> value: value to limit
:param <list>/<tuple> limits: (min, max) limits to which restrict the value
:return <float>: value from within limits, if input value readily fits into the limits its left unchanged. If value exceeds limit on either boundary its set to that boundary.
"""
if value < limits[0]:
value = limits[0]
elif value > limits[1]:
value = limits[1]
else:
pass
return value | 55fb603edb478a26b238d7c90084e9c17c3113b8 | 6,485 |
from typing import Dict
from typing import Any
def keyword_format(**kwargs: Dict[str, Any]) -> str:
"""formats kwargs as comma joined key=value pairs.
Example:
>>> from torforce.utils.repr_utils import keyword_format
>>>
>>> keyword_format(a=1, b=2, c=3)
'a=1, b=2, c=3'
"""
return ', '.join([f'{k}={v}' for k, v in kwargs.items()]) | f87677ffdb57eadca873ee52ea7321ee1c196bad | 408,488 |
from typing import Union
from typing import List
def remove_prefix_suffix(
x: str, prefix: Union[str, List[str]], suffix: Union[str, List[str]]
) -> str:
"""
Remove the prefix and suffix from a string,
prefix and suffix can be a string or a list of strings.
:param x: input string
:param prefix: a string or a list of strings, will check prefix one by one
:param suffix: a string or a list of strings, will check suffix one by one
:return: the string without prefix/suffix
"""
if isinstance(prefix, str):
prefix = [prefix]
if isinstance(suffix, str):
suffix = [suffix]
for s in prefix:
if x.startswith(s):
x = x[len(s) :]
break
for s in suffix:
if x.endswith(s):
x = x[: -len(s)]
break
return x | 17e44f24a361eb4f821221b2bef8b4c429f443a5 | 214,885 |
def __wrap_string_vales(_where_value):
"""This function wraps values going in the WHERE clause in single-quotes if they are not integers.
:param _where_value: The value to be evaluated and potentially wrapped in single-quotes
:returns: The value in int or string format
"""
try:
_where_value = int(_where_value)
except (TypeError, ValueError):
_where_value = f"'{_where_value}'"
return _where_value | 7431cfd57caf3af9bc92ba8b559394136b21efe8 | 320,674 |
def is_float(value):
"""Check if value is a float."""
return isinstance(value, float) | a0b52166c42b6bceaffa18e8057f0408196acaab | 640,275 |
def mapify_iterable(iter_of_dict, field_name):
"""Convert an iterable of dicts into a big dict indexed by chosen field
I can't think of a better name. 'Tis catchy.
"""
acc = dict()
for item in iter_of_dict:
acc[item[field_name]] = item
return acc | e2b21fcd9bb311f467f81888becc2e8f1ad84444 | 79,852 |
def get_scope(scope):
"""Get scope for the labeler
Args:
scope (list): combination of issue_body, issue_comments, pull_requests or ["all"]
Returns:
list: list of scopes
"""
if "all" in scope:
scope = ["issue_body", "issue_comments", "pull_requests"]
return scope | 43467bc2d4ab6838dfa9a264b92e871119ec7ce3 | 433,289 |
def job(priority, properties):
"""Creates a new job with the given priority and properties."""
return {
"priority": priority,
"properties": properties,
} | 2ad8130d5a6c4c36f3010329b15f4e9f3e826e26 | 158,583 |
def converts(*args):
""" A convenient decorator for the ModelConverter used to mark which
method should be used to convert which MongoEngine field.
"""
def _inner(func):
func._converter_for = frozenset(args)
return func
return _inner | cd999d76c896630d9afa87244a195029dec75281 | 58,715 |
def rmod(denom, result, num_range):
"""
Calculates the inverse of a mod operation.
The *denom* parameter specifies the denominator of the original mod (%)
operation. In this implementation, *denom* must be greater than 0. The
*result* parameter specifies the result of the mod operation. For obvious
reasons this value must be in the range ``[0, denom)`` (greater than or
equal to zero and less than the denominator).
Finally, *num_range* specifies the range that the numerator of the original
mode operation can lie in. This must be an iterable sorted in ascending
order with unique values (e.g. most typically a :func:`range`).
The function returns the set of potential numerators (guaranteed to be a
subset of *num_range*).
"""
if denom <= 0:
raise ValueError('invalid denominator')
if not (0 <= result < denom):
return set()
if len(num_range) == 0:
return set()
assert num_range[-1] >= num_range[0]
start = num_range[0] + (result - num_range[0] % denom) % denom
stop = num_range.stop
return range(start, stop, denom) | f3f62f70802d6a62c17e0feabbcb56790a8b43aa | 195,256 |
def redis_string_to_list(value, sep=','):
"""convert a comma (or sep) separated string to list.
Args:
value: byte, a redis string.
sep: string, which separator is used to separator items
Return:
a list of strings. Could be empty list if original string is None or
empty.
"""
return value.decode('utf-8').split(sep) if value else [] | e81106294d1a87104e003ffe5827683c0c49036d | 561,694 |
import math
def calc_bragg_angle(d, energy_eV, n=1):
"""Calculate Bragg angle from the provided energy and d-spacing.
Args:
d (float): interplanar spacing (d-spacing) [A].
energy_eV (float): photon energy [eV].
n (int): number of diffraction peak.
Returns:
dict: the resulted dictionary with:
lamda (float): wavelength [nm].
bragg_angle (float): Bragg angle [rad].
bragg_angle_deg (float): Bragg angle [deg].
"""
# Check/convert types first:
d = float(d)
energy_eV = float(energy_eV)
n = int(n)
lamda = 1239.84193 / energy_eV # lamda in [nm]
bragg_angle = math.asin(n * lamda / (2 * d * 0.1)) # convert d from [A] to [nm].
bragg_angle_deg = 180. / math.pi * bragg_angle
return {
'lamda': lamda,
'bragg_angle': bragg_angle,
'bragg_angle_deg': bragg_angle_deg,
} | 2271fde28a30609dd41c1c3618132bfb368a122b | 470,384 |
def b_to_mb(byts: int, decimals: int = 1) -> float:
"""Convert a count of bytes into a count of megabytes.
Arguments:
byts {int} -- The count of bytes.
Keyword Arguments:
decimals {int} -- The number of decimal points to include in the count
of megabytes. (default: {1})
Returns:
float -- The count of megabytes.
"""
return round(byts / 1000 / 1000, decimals) | 412711c6db8e30701c3de5db251e9686cbf91aa2 | 510,067 |
def read_topology_file(data_path) -> str:
"""Reads the topology and returns the contents of the data file as a string."""
with open(data_path, "r") as f:
data_string = f.read()
return data_string | 6e3ea30cc11cb6f0e77ef3e3f34fe74bfbc59cfb | 469,808 |
def ocircle2(circle1, circle1_radius, circle2, circle2_radius):
"""
detects collision between two circles
"""
if (circle1.distance_to(circle2) <= (circle1_radius+circle2_radius)):
return True
else:
return False | a3811f83f99eeccedfea32bcbf99f1e518c644a4 | 80,604 |
import math
def obrien_fleming_cutoff(K, current_k, alpha):
""" Returns the cutoff value for O'Brien and Fleming's Test
Arguments:
K: An integer less than 10.
current_k: The current interm analysis number
alpha: The alpha level of the overall trial (0.01, 0.05 or 0.1).
Returns:
cutoff: The value of \(C_B(K, \alpha)\) for the study.
Note:
Since there is no closed source formula for the cutoff value, a lookup
table is used.
"""
if not isinstance(K, int) or K < 1 or K > 10:
raise ValueError('K must be an integer between 1 and 10.')
if not isinstance(current_k, int) or current_k < 1 or current_k > 10:
raise ValueError('current_k must be an integer between 1 and 10.')
if current_k > K:
raise ValueError('current_k must be less than k.')
if alpha not in [0.01, 0.05, 0.1]:
raise ValueError('alpha must be 0.01, 0.05, or 0.1.')
cutoffs = {
"0.01": [2.576, 2.580, 2.595, 2.939, 2.986, 3.023, 3.053, 3.078, 3.099, 3.117],
"0.05": [1.960, 2.178, 2.289, 2.361, 2.413, 2.453, 2.485, 2.512, 2.535, 2.555],
"0.1": [1.645, 1.875, 1.992, 2.067, 2.122, 2.164, 2.197, 2.225, 2.249, 2.270],
}
return cutoffs[str(alpha)][K - 1] * math.sqrt(K / current_k) | 411f91aa7d70265018f2e157cee22d31c90a0abb | 337,877 |
def expected(df, ts):
"""Modify *df* with the 'model' and 'scenario' name from *ts."""
return df.assign(model=ts.model, scenario=ts.scenario) | 742255d9b69d3ae27a0726402a46f8bdea525826 | 127,868 |
def readFile(fPath):
"""
Reads the Santander text file which is a bank statement file encoded in
ISO-8859-1.
:param fPath: The fPath to the input text file.
:return: A list containing all the lines of the file read correctly.
"""
with open(fPath, "r", encoding="ISO-8859-1") as inF:
# Replacing non-breaking space in Latin1 with a UTF-8 space
ls = inF.readlines()
ls = [l.replace("\xa0", " ") for l in ls]
return ls | 38af6361ff80557fd5cc1e5b0466394e6729b8c8 | 184,037 |
def factorial(n):
"""Calculate the factorial for N."""
t = 1
for i in range(1, n + 1):
t *= i
return t | 1cebbd139e1e7be177eb81455439913220775dc4 | 391,216 |
def calculate_curvature(fit, yeval, ym_per_pix):
"""
Calculate the curvature of the road given a fit to one
of the lane lines
"""
# Get the parameters of the fit
A = fit[0]
B = fit[1]
# calculate the curvature
curv = (1+(2*A*yeval*ym_per_pix+B)**2)**1.5/abs(2*A)
return curv | 20964502ca451408d3d5d4761321ad172e4b4989 | 229,819 |
from typing import Any
def index() -> Any:
"""Basic HTML response."""
return (
"<html>"
"<body style='padding: 10px;'>"
"<h1>Welcome to the API</h1>"
"<div>"
"Check the docs: <a href='/docs'>here</a>"
"</div>"
"</body>"
"</html>"
) | 03be914dc51ea9ae237ea71ff19daf0f5a0a936d | 211,164 |
def _create_signature_key(signature, rev):
"""Given a signature ID and revision, build the key we use to look up the signature in the redis db."""
return f'{signature}:{rev}' | d0c790bcd9a3ddfbbc45c5fc439513b310241685 | 245,260 |
def fst(xs):
"""Returns the first element from a list."""
return xs[0] | acbd8e6cacfd6b679621d14f5d959571dd4c1fdc | 487,314 |
import importlib
def import_modules(modules, path, attribute=None, fetch_attribute=False):
"""Import and return modules from a path if they have a given attribute
:param modules: Collection of modules to import or collection of tuples
containing (module, attribute).
:param path: import path to get modules from
:param attribute: attribute to filter modules by or None if tuples are used
:param fetch_attribute: True to create module, attribute tuples, False to
only return modules
:exception AttributeError: When attribute does not exist for a given module
:exception ImportError: If path + module does not exist
:return: Collection of imported modules or collection of
(module, attribute) tuples when fetch_attribute is True.
"""
imported_modules = []
# If attribute is not set modules should be collection of tuples
if not attribute:
module_filters = modules
else:
# Generate a list of tuples were each module_name is associated with
# the specified attribute.
module_filters = list()
for module_name in modules:
module_filters.append((module_name, attribute))
for modname, attrib in module_filters:
mod = importlib.import_module(path + '.' + modname)
if not hasattr(mod, attrib):
msg = "The module '%s.%s' should have a '%s' "\
"attribute." % (path, modname, attrib)
raise AttributeError(msg)
elif fetch_attribute:
imported_modules.append((mod, attrib))
else:
imported_modules.append(mod)
return imported_modules | 235734bdb293c1f4a8db8ceea47bdd447c38332e | 604,035 |
import warnings
def filt(signal, synapse, dt, axis=0, x0=None, copy=True):
"""Filter ``signal`` with ``synapse``.
.. note:: Deprecated in Nengo 2.1.0.
Use `.Synapse.filt` method instead.
"""
warnings.warn("Use ``synapse.filt`` instead", DeprecationWarning)
return synapse.filt(signal, dt=dt, axis=axis, y0=x0, copy=copy) | 8d2a8968599ebf70c23f0453a81427ce130a11c7 | 482,715 |
def filter_to_transform(filter_fn, df_name='atoms'):
"""Create transform function (which operates on dataset items) from filter function (which operates on dataframes). By default, applies filter_fn to ``atoms`` dataframe, but a different dataframe can be specified optionally.
:param filter_fn: Arbitrary filter function that takes in a dataframe and returns filtered dataframe
:type filter_fn: filter function
:param df_name: Name of dataframe to apply filter_fn to, defaults to 'atoms'
:type df_name: str, optional
"""
def transform_fn(item):
item[df_name] = filter_fn(item['atoms'])
return item
return transform_fn | a1435a495bcee19ee42985a653d6d8d18515a3e2 | 288,997 |
import math
def oersted_to_amps_per_meter(oersted):
"""Converts Oersted to \(\\frac{A}{m}\)"""
return (oersted*1e3)/(4*math.pi) | d964a86649da9fede19227f977af2384d6d84858 | 530,935 |
import re
def _version_from_tag(tag):
"""
Extracts the semver from the given tag (e.g: v0.1.0 -> 0.1.0)
:param tag:
:return:
"""
pattern = re.compile('v\d+.\d+.\d+')
if not pattern.match(tag):
raise Exception(f"{tag} is not valid semver")
return tag[1:] | f9364c189401673b9033ae38945b9e9c93adf005 | 516,672 |
def bitcount(num, length, value=1):
"""Counts the bits in num that are set to value (1 or 0, default 1)."""
one_count = 0
curr_length = length
while num and curr_length:
one_count += 1 & num
num >>= 1
curr_length -= 1
if value:
return one_count
else:
return length - one_count | 6666c3a42a24316bd2952cc32477f0141807277d | 258,265 |
def ieplc(mapping):
"""
Returns the statistics for the number of inter-process logical communications (IePLC).
:param mapping: process-to-node mapping
:return: IePLC statistics
"""
weights = [d['weight'] for u, v, d in mapping.process_graph.edges(data=True)]
return sum(weights), sum(weights)//len(weights) + 1, min(weights), max(weights) | 803846d2fdf3a1a696c53572a9019a18de6ebf9f | 560,238 |
def normalized_device_coordinates_to_image(image):
"""Map normalized value from [-1, 1] -> [0, 255].
"""
return (image + 1.0) * 127.5 | 39f244b32c18807f7eb87f529ebccf14adc895ad | 397,787 |
def keys_from_hash(hexdigest):
"""
Return a cache keys triple for a hash hexdigest string.
NOTE: since we use the first character and next two characters as directories, we
create at most 16 dir at the first level and 16 dir at the second level for each
first level directory for a maximum total of 16*16 = 256 directories. For a
million files we would have about 4000 files per directory on average with this
scheme which should keep most file systems happy and avoid some performance
issues when there are too many files in a single directory.
For example:
>>> expected = ('f', 'b', '87db2bb28e9501ac7fdc4812782118f4c94a0f')
>>> assert expected == keys_from_hash('fb87db2bb28e9501ac7fdc4812782118f4c94a0f')
"""
return hexdigest[0], hexdigest[1], hexdigest[2:] | ffa4a1685e92a1b9768ccf1efa206c4b7f8b0e85 | 617,115 |
def point_judge(center, bbox):
"""
用于将矩形框的边界按顺序排列
:param center: 矩形中心的坐标[x, y]
:param bbox: 矩形顶点坐标[[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
:return: 矩形顶点坐标,依次是 左下, 右下, 左上, 右上
"""
left = []
right = []
for i in range(4):
if bbox[i][0] > center[0]: # 只要是x坐标比中心点坐标大,一定是右边
right.append(bbox[i])
else:
left.append(bbox[i])
if right[0][1] > right[1][1]: # 如果y点坐标大,则是右上
right_down = right[1]
right_up = right[0]
else:
right_down = right[0]
right_up = right[1]
if left[0][1] > left[1][1]: # 如果y点坐标大,则是左上
left_down = left[1]
left_up = left[0]
else:
left_down = left[0]
left_up = left[1]
return left_down, right_down, left_up, right_up | bb0d8eb6c4b056f8dc95493aa35c775045e0df90 | 597,058 |
def traffic_light(load):
"""Returns green, amber or red depending on the value of load."""
if load < 0.7:
return "green"
elif load < 0.9:
return "amber"
else:
return "red" | 5a0b3f29052ee52ec260899dbe817af15b042ede | 334,640 |
def create_multi_feedforward_parser(parser):
"""Add the multi-agent policy hyperparameters to the parser."""
parser.add_argument(
"--shared",
action="store_true",
help="whether to use a shared policy for all agents")
parser.add_argument(
"--maddpg",
action="store_true",
help="whether to use an algorithm-specific variant of the MADDPG "
"algorithm")
return parser | 3d3f16c077e37d775764626f8f8a43bb8351441e | 379,589 |
def get_aggregation_func(path, aggregation_functions):
"""Lookup aggregation function for path, if any.
Defaults to 'mean'.
:param path: Path to lookup
:type path: str
:param aggregation_functions: Aggregation function configuration
:type aggregation_functions: dict(<pattern>: <compiled regex>)
"""
if not aggregation_functions:
return 'mean'
for pattern in aggregation_functions:
if pattern.search(path):
return aggregation_functions[pattern]
return 'mean' | c305e26e77fedd9b8b19845bb5fcd422be6f3542 | 441,154 |
def is_abs(field):
"""
Check if field is absolute value.
Parameters
----------
field : str
Field name.
Returns
-------
(bool, str)
Whether the field is absolute or not along with the basic field itself.
"""
if field[:4] == 'ABS(' and field[-1] == ')':
return field[4:-1], True
else:
return field, False | 808d2e7d5531be1aba57fd68e8c17de3116b3649 | 327,732 |
def make_readable_pythonic(value: int) -> str:
"""Make readable time (pythonic).
Examples:
>>> assert make_readable(359999) == "99:59:59"
"""
return f"{value / 3600:02d}:{value / 60 % 60:02d}:{value % 60:02d}" | a091ef99b94cb2b4c3e0d657805a9e7b6418dd3a | 656,404 |
import math
def smaller2k(n):
"""
Returns power of 2 which is smaller than n. Handles negative numbers.
"""
if n == 0: return 0
if n < 0:
return -2**math.ceil(math.log2(-n))
else:
return 2**math.floor(math.log2(n)) | 0d0bbbf95cb22bf1b9ffb29012075534bcc9646d | 709,493 |
def _get_excluded_pids(exclude_file):
"""Reads the exclusion list and returns a
dict of lists of excluded patients"""
exclude_pids = {
'NCP': [],
'CP': [],
'Normal': []
}
with open(exclude_file, 'r') as f:
for line in f.readlines():
cls, pid = line.strip('\n').split()
exclude_pids[cls].append(pid)
return exclude_pids | 7c07615231896120373a1723db6901857502a68c | 209,596 |
import requests
def get_dnb_token(username, password, url="https://maxcvservices.dnb.com/rest/Authentication"):
"""Get a new authentication token.
See http://developer.dnb.com/docs/2.0/common/authentication-process
:param username: D&B username
:type username: str
:param password: D&B password
:type password: str
:returns: authentication token or "INVALID CREDENTIALS"
:rtype: str
"""
r = requests.post(
url,
headers={
"x-dnb-user": username,
"x-dnb-pwd": password,
}
)
return r.headers["Authorization"] | b847c3e777811abc00aaf9fefce90784b90f6614 | 272,872 |
def runpath(tmp_path):
"""
Return a temporary runpath for testing. The path will not be automatically
removed after the test for easier investigation.
It takes a form like: /tmp/pytest-of-userid/pytest-151/test_sub_pub_unsub0
"""
return str(tmp_path) | df2d0caa4f4e834fb9f0577f143d79aa17649939 | 582,508 |
def _find_in_columncollection(columns, name):
""" Find a column in a column collection by name or _label"""
for col in columns:
if col.name == name or getattr(col, "_label", None) == name:
return col
return None | d7d72cb6b13a51b51770fcac13d8166c0a87ace3 | 371,008 |
from pathlib import Path
def input_custom_variables(string: str, dmvio_folder: str):
""" Replace the following environment variables in the given string.
if ${EVALPATH} is inside string it is replaced with the path to the evaltools (the folder where this file is
located).
${DMVIO_PATH} is replaced with the path to DM-VIO.
"""
return string.replace('${EVALPATH}', str(Path(__file__).parent.parent.resolve())).replace('${DMVIO_PATH}',
dmvio_folder) | 0766874154192a885e49f50f14b5ab9038788ced | 18,588 |
from typing import AnyStr
def re_url_repl(sre) -> AnyStr:
"""Add space at the begging of the given URL.
Argument sre is the result of re.match() and re.search()"""
return ' ' + sre.group(0) | be0da8b1e2ce4fef1015671ec4c0729c1ab4c478 | 501,285 |
def _get_lines_from_file(filename, lines=None):
"""
If lines is None read the lines from the file with the filename filename.
Args:
filename (str): file to read lines from
lines (list/ None): list of lines
Returns:
list: list of lines
"""
if lines is None:
with open(filename, "r") as f:
lines = f.readlines()
return lines | 4d4cf767bb5aaafc1ac2a396c1f4227e67268b99 | 336,870 |
import secrets
def secure_random(low: int, high: int) -> int:
"""Generates a random number from low (inclusive) to high (inclusive) using the secrets module.
DISCLAIMER: we are not security experts this may not be at all secure.
Parameters
----------
low : int
The inclusive lower bound
high : int
The inclusive upper bound
Returns
-------
int
The generated number
"""
return secrets.randbelow(high) + low | 8bb90113ef83382e5224637713ca5c860f419d70 | 399,344 |
def cost(candidate, grid, distances_mx):
"""
Calculate the cost of a (candidate) solution.
Args:
candidate: The solution (frozenset).
grid: A list of MapBox objects.
distances_mx: A NumPy array.
Returns:
The solution's cost (float).
"""
c = sorted(candidate)
c_cost = 0
for i, sq in enumerate(grid):
if i not in c and sq.demand > 0:
j = c[distances_mx[c, i].argmin()]
c_cost += sq.demand * distances_mx[j, i]
return c_cost | 636efedfb8b8751d09a55566c7d65223f85c36f8 | 157,264 |
def par2bool(s):
"""
Returns boolean (True, False) from given parameter.
Accepts booleans, strings or integers.
"""
if isinstance(s, str):
s = s.lower()
return s in ["true", "1", "on", True, 1] | 9f4d4c1e1de553b26cbfe0791d363fd00fc3b811 | 146,780 |
def get_last_id(file_name):
"""Retrieve last status ID from a file"""
try:
with open(file_name) as f:
last_id = int(f.read())
return last_id
except IOError:
return 0 | 0395cb0134c6c032a87b7370e0fcc47a3ab33619 | 283,908 |
def get_sql_dialect(session):
"""Return the active SqlAlchemy dialect.
Args:
session (object): the session to check for SqlAlchemy dialect
Returns:
str: name of the SqlAlchemy dialect
"""
return session.bind.dialect.name | f2de63abcfdf443893f230904ae72716b4a8fffa | 384,575 |
from typing import Dict
from typing import Any
import zlib
import base64
def _serialize_bytes(data: bytes, compress: bool = True) -> Dict[str, Any]:
"""Serialize binary data.
Args:
data: Data to be serialized.
compress: Whether to compress the serialized data.
Returns:
The serialized object value as a dict.
"""
if compress:
data = zlib.compress(data)
value = {
"encoded": base64.standard_b64encode(data).decode("utf-8"),
"compressed": compress,
}
return {"__type__": "b64encoded", "__value__": value} | c77236ef8d3e019d09d1c9de53627f87cb88b4b2 | 55,230 |
def visc(Tc, S, V = False):
"""
Calculate the viscosity of water or seawater
Reference:
Sharqawy et al. 2009
Thermophysical properties of seawater: a review of \
existing correlations and data
https://doi.org/10.5004/dwt.2010.1079
Eq 22 and Eq 23
viscosity unit in kg/m/s
Parameters
----------
Tc : scalar
Temperature in °C.
S : scalar
Salinity in per mil (g/kg).
V: Bool
whether or not return calculated viscosity, default is False
Returns
-------
Viscosity or Seawater to water ratio.
"""
Sref = S/1000 #reference salinity is written in kg/kg
A = 1.541 + 1.998e-2 * Tc - 9.52e-5 * Tc**2
B = 7.974 - 7.561e-2 * Tc + 4.724e-4 *Tc**2
Sw_w = 1 + A*Sref + B*Sref**2#seawater to water ratio
if V:
V_water = 4.2844e-5 + 1/( 0.157* (Tc+ 64.993)**2 -91.296)
#water viscosity
V_sw = V_water * Sw_w # seawater viscosity
Sw_w = (Sw_w, V_sw)
print("given viscosity is in kg/m/s, which is 1000 times of centipoise")
return Sw_w | b58ac72bd2454b05aa8facbc6132fc72456e13fe | 550,459 |
import hashlib
def checksum(fpath, hasher=None, asbytes=False):
"""Returns the checksum of the file at the given path as a hex string
(default) or as a bytes literal. Uses MD5 by default.
**Attribution**:
Based on code from
`Stack Overflow <https://stackoverflow.com/a/3431835/789078>`_."""
def blockiter(fpath, blocksize=0x1000):
with open(fpath, "rb") as afile:
block = afile.read(blocksize)
while len(block) > 0:
yield block
block = afile.read(blocksize)
try:
hasher = hasher or hashlib.md5()
for block in blockiter(fpath):
hasher.update(block)
return (hasher.digest() if asbytes else hasher.hexdigest())
except:
return None | 76d6ffb2c91a6706564cdbb269e256dae51e3139 | 224,112 |
from typing import Optional
import re
import click
def validate_version_string(ctx, param, value: Optional[str]) -> Optional[str]:
"""
Callback for click commands that checks that version string is valid
"""
if value is None:
return None
version_pattern = re.compile(r"\d+(?:\.\d+)+")
if not version_pattern.match(value):
raise click.BadParameter(value)
return value | 22e084403cfa2ff72c003de53fe6b17c5dc03319 | 629,587 |
def max_sequence(arr):
"""Find the largest sum of any contiguous subarray."""
best_sum = 0 # or: float('-inf')
current_sum = 0
for x in arr:
current_sum = max(0, current_sum + x)
best_sum = max(best_sum, current_sum)
return best_sum | d17f69534eda79649236438df7a1576ebbea789c | 78,330 |
def _transform(point, reference, projection):
"""Transform on point from local coords to a proj4 projection."""
lat, lon, altitude = reference.to_lla(point[0], point[1], point[2])
easting, northing = projection(lon, lat)
return [easting, northing, altitude] | 17dc2c1cc0ac1c0f01f09a790a8b9521d7d605ec | 467,617 |
from typing import List
import hashlib
def md5_hashsum(file_names: List[str]) -> str:
"""
Calculate md5 hash sum of files listed
Args:
file_names: list of file names
Returns:
hashsum string
"""
hash_md5 = hashlib.md5()
for file_name in file_names:
with open(file_name, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest() | f3a5b854af1dd89c33d9f129a1998df572d330b0 | 404,733 |
def make_keyword_html(keywords):
"""This function makes a section of HTML code for a list of keywords.
Args:
keywords: A list of strings where each string is a keyword.
Returns:
A string containing HTML code for displaying keywords, for example:
'<strong>Ausgangswörter:</strong> Nature, Plants, Fauna'
"""
res_html = '<strong>Ausgangswörter:</strong> '
for word in keywords[:-1]:
res_html += word + ', '
res_html += keywords[-1]
return res_html | 71e35245ad7b2fe2c67f6a4c27d53374945089bd | 5,031 |
import math
def sigmoid(x):
"""Sigmoid function f(x)=1/(1+e^(-x))
Args:
x: float, input of sigmoid function
Returns:
y: float, function value
"""
# for x which is to large, the sigmoid returns 1
if x > 100:
return 1.0
# for x which is very small, the sigmoid returns 0
if x < -100:
return 1e-6
return 1.0 / (1.0 + math.exp(-x)) | c65624784c34422ca41f14d118e3690990a05b47 | 688,818 |
from typing import List
def quick_sort(source) -> List[int]:
"""クイックソート. 計算量: O(n log n)"""
if len(source) <= 1:
return source
n = len(source)
# いったん中央の値を求める
median_value = source[n // 2]
# 分割する領域を作成
smalls, bigs, middles = [], [], []
# データソースの値を、3つの領域に振り分ける
for i in range(n):
if source[i] < median_value:
smalls.append(source[i])
elif source[i] > median_value:
bigs.append(source[i])
else:
middles.append(source[i])
# 大小が発生した領域を更に分割する
if smalls:
smalls = quick_sort(smalls)
if bigs:
bigs = quick_sort(bigs)
# 極限まで分割した各領域を合成する
return smalls + middles + bigs | 0ce4eb05e8073d56e5134f5464b71317d0f0756b | 165,026 |
def smooth_avg(data: list[int]) -> list[int]:
"""
Generate a smoothed version of a data set where each point is replaced by the average of itself and immeadiately adjacent points
Args:
data (list[int]): A list of continuous data points
Returns:
list[int]: A smoother list of continuous data points
"""
smoothed = []
for i, x in enumerate(data):
if i == 0:
smoothed.append((x + data[i + 1]) / 2)
elif i == len(data) - 1:
smoothed.append((x + data[i - 1]) / 2)
else:
smoothed.append((data[i - 1] + x + data[i + 1]) / 3)
return smoothed | 593d1b43216229874c7fb7148392d7c2c922640a | 150,905 |
import re
def get_active_port(flows):
"""Find the active port name based on knowledge that down stream traffic is only output to the 'nic' interface.
Args:
flows (dict): Open flow details of the mux, result returned from function get_flows
Returns:
string or None: Name of the active port or None if something is wrong.
"""
for in_port in flows.keys():
if not re.match(r"(m|mu|mux|muxy)-", in_port):
return in_port
return None | cfee2c86e0d22de37cf206249a91e565d328b875 | 81,394 |
from typing import Any
def to_str(obj: "Any") -> str:
"""
Convert any object to a string. This simply calls ``str`` on the object to produce a string
representation.
"""
return obj if isinstance(obj, str) else str(obj) | 3d069f3d444a454eda610729b37ca8c9a9c1dcf9 | 310,365 |
def getROI(img,x,y,ROI_size):
"""
crop square ROI from image with center x, y coordinate
Parameters:
-img: input image
-x,y: center coordinate of ROI
-ROI_size: size of ROI in pixel
Returns:
-imCrop: image of ROI
-x1,y1: coordinate of top left corner of the ROI
-x2,y2: coordinate of botton right corner of the ROI
"""
x1 = int(x-(ROI_size/2))
y1 = int(y-(ROI_size/2))
x2 = int(x+(ROI_size/2))
y2 = int(y+(ROI_size/2))
imCrop = img[y1:y2,x1:x2]
return imCrop,x1,y1,x2,y2 | a501944996a786fa16cfc1e0c41168178c9837d5 | 480,464 |
def default_selection(random, population, args):
"""Return the population.
This function acts as a default selection scheme for an evolutionary
computation. It simply returns the entire population as having been
selected.
.. Arguments:
random -- the random number generator object
population -- the population of individuals
args -- a dictionary of keyword arguments
"""
return population | b1aedf4ae4835c745128ef0c93689821ee5a671a | 191,242 |
def extract_qa_bits(band_data, bit_location):
"""Get bit information from given position.
Args:
band_data (numpy.ma.masked_array) - The QA Raster Data
bit_location (int) - The band bit value
"""
return band_data & (1 << bit_location) | d911e75230e46f8571a0926b11c92a74e5da5496 | 270,363 |
def halt_after_time(time,at_node,node_data,max_time=100):
"""
Halts after a fixed duration of time.
"""
return time>=max_time | c1d2b82d5a8b2019be8ea845bf5b135ed7c5209f | 690,127 |
import copy
def revise_unanswerable(preds, na_probs, na_prob_thresh):
"""
Revise the predictions results and return a null string for unanswerable question
whose unanswerable probability above the threshold.
Parameters
----------
preds: dict
A dictionary of full prediction of spans
na_probs: dict
A dictionary of unanswerable probabilities
na_prob_thresh: float
threshold of the unanswerable probability
Returns
-------
revised: dict
A dictionary of revised prediction
"""
revised = copy.deepcopy(preds)
for q_id in na_probs.keys():
if na_probs[q_id] > na_prob_thresh:
revised[q_id] = ""
return revised | e8e6b008445421b3b226db56d8b61113d46d1ac5 | 238,943 |
def snake2camel(snake_str):
"""Convert a string from snake case to camel case."""
first, *others = snake_str.split('_')
return ''.join([first.lower(), *map(str.title, others)]) | 428cb49438bacb44f4fcfb05a3b0ea82cb5b65de | 141,028 |
import re
def countMultiQuestionMarks(text):
""" Count repetitions of question marks """
return len(re.findall(r"(\?)\1+", text)) | 5c0a1dd3838e414aae9a537add7fb120b29adf0b | 551,835 |
def join_host_port(host, port):
"""Joins a host and port"""
if ":" in host or "%" in host:
host = "[" + host + "]"
return "%s:%d" % (host, port) | bc1b7d76cbc61910402f1187c9723d6d23d03b3a | 601,280 |
def makeWennerArray(numElectrodes=32, id0=0):
"""
creates a schedule (A,B,M, N) for a Wenner array of length numElectrodes
"""
schedule=[]
for a in range(1, (numElectrodes+2)//3):
for k in range(0, numElectrodes-3*a):
schedule.append((k+id0, k+3*a+id0, k+1*a+id0, k+2*a+id0))
return schedule | d95adba2679d812fed4b6d2a46b46a8a93868d34 | 512,526 |
def merge_var(*a):
"""Return a sorted list of the symbols in the arguments"""
result = []
for var in a:
for sym in var:
if not sym in result:
result.append(sym)
result.sort()
return result | aac4d02b63f3d02cf97e2f479c5c831b5174d208 | 170,868 |
def get_byte(buffer: bytes, offset: int) -> int:
"""
Gets the byte at the given offset.
:param buffer: The buffer to get from.
:param offset: The offset from the start of the buffer.
:return: The byte value.
"""
return buffer[offset] | ab37cc2dfa28669dca3e2b4482423bfad009994a | 396,352 |
def reverse_edge(edge):
"""Switches u and v in an edge tuple.
"""
reverse = list(edge)
reverse[0] = edge[1]
reverse[1] = edge[0]
return tuple(reverse) | 0690bac37188a38baf5cb56fe73dfff8187ff12a | 544,326 |
import requests
from bs4 import BeautifulSoup
def get_ansible_modules(url):
""" This function returns a dictionary which each key is the name of an ansible module and the value is its description """
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
span_list = soup.find_all('span', class_='std std-ref')
module_dict = {}
for span in span_list:
span_text = span.text
split_text = span_text.split(' – ', 1)
key = split_text[0]
value = split_text[1]
module_dict[key] = value
return module_dict | 453163c3fa01895ec8ed04331fd57c717f5454a9 | 575,265 |
def bytes_to_hex_str(bytes_hex: bytes, prefix="") -> str:
"""Convert bytes to hex string."""
return prefix + bytes_hex.hex() | 2ef7e57cbe0e96465543b966def31f5ce36bcbbe | 62,513 |
def solution(l):
"""
Solution 4 again passes all but the last test case. Try to speed things
up some using a dynamic programming-like approach.
This solution wound up passing all of the test cases -- the key here is to
uses a memorization/dynamic programming approach. A core component of this
problem involves finding all multiples of a number after a given number in
the list. In the brute force approach, we do the following:
0: for each li:
1: for each lj such that j > i:
2: if li divides lj:
3: for each lk such that k > j:
4: if lj divides lk:
(li, lj, lk) is a valid solution
Note that steps 3 and 4 involve counting the number of valid values of lk
for a given lj. Since we are evaluating all possible values of lj for each
possible value of li, this means that we would potentially repeat steps 3
and 4 multiple times for the *same value of lj*.
Take the example:
l = [1, 1, 1, 1, 3]
In this case we would evaluate the number of valid lks for the final '1'
3 times. In the worst case, where l is of length N and consists of
all 1's, we would be finding the valid lks for the penultimate lj (N-2)
times.
To improve on this, we can cache/memorize the values as we compute them.
We'll store the smallest computation -- the number of possible values of lk
for a given lj. Then, as we traverse the list, if we have already
computed the values of lk for a given lj, we just use the value that we
previously computed. This touches on the concept of Dynamic Programming.
"""
# Make sure no numbers are less than 1 or greater than 999999
for li in l:
if li > 999999 or li < 1:
return 0
# Get number of elements in the list
n_l = len(l)
# If there are fewer than 3 elements in the list, then there
# can't be any lucky triples, so return 0
if n_l < 3 or n_l > 2000:
return 0
# Initialize counts -- d_cts[j] corresponds to the number of valid values
# of l[k] for l[j].
d_cts = [-1] * n_l
ctr = 0
# First iterate over i
for i in range(n_l-2):
for j in range(i+1, n_l-1):
if l[j] % l[i] == 0:
# Check to see if we already computed this
if d_cts[j] == -1:
# Count the number of valid divisors for l[j]
d_ctr = 0
for k in range(j+1, n_l):
if l[k] % l[j] == 0:
d_ctr += 1
d_cts[j] = d_ctr
# Add the pre-computed value
ctr += d_cts[j]
return ctr | 0387a39e6d087f381aece01db2718a9e90ba642c | 50,836 |
from string import punctuation
import re
def normalize_text(text, method='str'):
"""
Parameters
----------
text : str
method : {'str', 'regex'}, default 'str'
str: cleans digits and puntuations only ('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~')
regex : clean digits and all special characters
Returns
-------
text : str
"""
# Conver to lower case
text = text.lower()
if method=='str':
# Remove digits
text = ''.join(c for c in text if not c.isdigit())
# Remove punctuation
text = ''.join(c for c in text if c not in punctuation)
# Remove extra spaces
text = " ".join(text.split())
elif method=='regex':
# Remove digits
text = re.sub(r'\d+', ' ', text)
# Remove all special characters
text = re.sub(r'\W+', ' ', text)
# Remove extra spaces
text = re.sub('\s\s+', ' ', text)
return text | 6baae1a8e352b4d2ec608fe3091d3f11a20f5d5d | 78,325 |
def isPrime(n: int)->bool:
"""
Give an Integer 'n'. Check if 'n' is Prime or Not
:param n:
:return: bool - True or False
A no. is prime if it is divisible only by 1 & itself.
1- is neither Prime nor Composite
We will use Naive approach.
. Check Divisibity of n with all numbers smaller than n. within range 2 to sqrt(n).
All divisors of n comes as pairs. Thus if n is not divisible by any no. within range 2 to sqrt(n), then it is Prime.
WE reduce range from 2 to n to 2 to sqrt(n)
"""
if n==1 :
return False
i = 2
while (i * i <= n ):
if ( n % i ==0):
return False
i = i+1
return True | 57eddd0aba0d53faa6ee1f4f5ff566a1c3b3ef85 | 63,172 |
def modify_pred_classes(y_pred_proba, y_pred_classes, thresh=.9):
"""
Modifies predicted classes to account for words not in command words set. Based on prediction confidence.
y_pred_proba: array of prediction probability output from Keras model
y_pred_classes: array of prediction classes from Keras model
thresh: threshold to predict anything less confident than as "unknown"
"""
probs = y_pred_proba.max(axis=1)
is_unknown = probs < thresh
y_pred_modified = y_pred_classes.copy()
y_pred_modified[is_unknown] = 11
return y_pred_modified | 137b1435a2cebe0d7d2169b0d6f1904ba6606fda | 531,363 |
def unique_group(groups):
"""Find unique groups in list not including None."""
ugroups = set(groups)
ugroups -= set((None,))
ugroups = list(ugroups)
ugroups.sort()
return ugroups | ef147e4bbccf32f8e9d85954aced914f13b5ba06 | 253,147 |
import textwrap
def ftl(code):
"""Nicer indentation for FTL code.
The code returned by this function is meant to be compared against the
output of the FTL Serializer. The input code will be UTF8-decoded and will
end with a newline to match the output of the serializer.
"""
# The FTL Serializer returns Unicode data so we use it as the baseline.
code = code.decode('utf8')
# The code might be triple-quoted.
code = code.lstrip('\n')
return textwrap.dedent(code) | 94b5b0aff62cf91afd1831db2e83a07fe4d197d2 | 488,167 |
def string_to_array(str_val, separator):
"""
Args
str_val : string value
separator : string separator
Return
List as splitted string by separator after stripping whitespaces from each element
"""
if not str_val:
return []
res = str_val.split(separator)
return res | 925e369c578b8aeb4943e02f1371c53c846cf888 | 131,575 |
def ms_to_htk(ms_time):
"""
Convert time in ms to HTK (100 ns) units
"""
if type(ms_time)==type("string"):
ms_time = float(ms_time)
return int(ms_time * 10000.0) | fe3854dedddbed8ddb31cd4f5a8b8f77c9afb1e2 | 594,507 |
def flatten_processes_response(response):
"""Helper function to extract only pids and paths from the list processes command"""
return [{item['process_pid']: item['process_path']} for item in response] | bafa9b0368f78e69c6a40bf2234f585f24ec08c2 | 340,927 |
import requests
def read_in_s3_json(url):
"""Reads in a json file from S3 and returns a Python object"""
response = requests.get(url)
return response.json() | c697889a03d20b07b248e770e3ee828ce7e120a5 | 154,685 |
import math
def insertArrayShift(input_list, val):
"""Takes a list and a value and returns a new list with the value inserted at the middle index.
The input list is sliced into its left half, then the value is appended, then the right half is
added to the end.
"""
mid = math.ceil(len(input_list) / 2)
return input_list[:mid] + [val] + input_list[mid:] | b6d5c5e583033a350ba7f8b4507244d66d504fc9 | 295,421 |
import math
def lrs_round(floatNumber):
"""
rounding floats to integers in a way that python 2 did
e.g. lrs_round(4.5) results in 5
:Parameters:
floatNumber: float to be rounded to integer
:Returns:
rounded number
"""
return floatNumber/abs(floatNumber) * math.floor(abs(floatNumber)+0.5) | 6c4ce0035d2d14f016fd17df8153edc6a3527071 | 527,955 |
import logging
def metrics(time_dur, extremes, count, mean_hr, list_of_times,
time, voltages):
"""Create a dictionary with the specified metrics
Once all of the metrics have been determined, it is necessary to compile
them all together. This is done through the generation of a dictionary.
In the assignment, it is specified that the dictionary should contain
the following information:
duration: time duration of the ECG strip
voltage_extremes: tuple in the form (min, max) where min and max are
the minimum and maximum lead voltages found in the data file.
num_beats: number of detected beats in the strip, as a numeric
variable type.
mean_hr_bpm: estimated average heart rate over the length of the strip
beats: list of times when a beat occurred
This function reads in each of these metrics and places each one into their
respective keys as mentioned above. Then, once all of the information
has been added to the dictionary, it is returned.
Parameters
----------
time_dur : float
Contains duration of ECG strip in seconds
extremes : tuple
Contains the minimum and maximum voltages from the ECG strip
count : int
Value containing the number of peaks present
mean_hr : float
Contains the average heart rate (beats per minute)
list_of_times : list
Contains floats that match the times at which peaks occurred
Returns
-------
dictionary
Contains all of the metrics necessary
"""
logging.info("Dictionary being established")
metrics_dict = {"duration": time_dur,
"voltage_extremes": extremes,
"num_beats": count,
"mean_hr_bpm": mean_hr,
"beats": list_of_times,
"times": time,
"voltages": voltages}
logging.info("Dictionary filled")
return metrics_dict | e9188d3b6119c44463a3403c570f6f1d567c50f7 | 31,196 |
from typing import Sequence
def timestamp_to_ms(groups: Sequence[str]):
"""
Convert groups from :data:`pysubs2.time.TIMESTAMP` match to milliseconds.
Example:
>>> timestamp_to_ms(TIMESTAMP.match("0:00:00.42").groups())
420
"""
h, m, s, frac = map(int, groups)
ms = frac * 10**(3 - len(groups[-1]))
ms += s * 1000
ms += m * 60000
ms += h * 3600000
return ms | 2928a0b14876e3b14ad8056bafbab5d540ead686 | 631,067 |
def _collect_providers(provider, *all_deps):
"""Collects the requested providers from the given list of deps."""
providers = []
for deps in all_deps:
for dep in deps:
if provider in dep:
providers.append(dep[provider])
return providers | 98855ea9f4997202b3462a941c06508c42f93c5d | 482,058 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.