content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def factorial_recursive(n): """ Return the factorial of the given int """ # base case if n < 2: return 1 else: return n * factorial_recursive(n-1)
380ede9b10871ba8ccfc7855d260af145e2df66d
490,791
def build_histogram(text): """Builds a distribution of the word types and numbers of word tokens.""" histogram = {} words = text.split() # make a distribution of word types and count of tokens for word in words: word = word.lower() if word not in histogram: histogram[word] = 1 else: # word type already seen before in histogram histogram[word] += 1 return histogram
32a9c6a53536104ca2bfed12bf0faedbd60b5731
554,654
def slice2limits(slices): """ Create a tuple of minimum, maximum limits from a set of slices. Parameters ---------- slices : list List of slice objects which return points between limits Returns ------- limits: tuple, (ndarray, ndarray) Two tuple consisting of array of the minimum and maximum indices. See Also -------- limits2slice : Find a list of slices given minimum and maximum limits. """ mins = [s.start for s in slices] maxs = [s.stop - 1 for s in slices] return mins, maxs
052eedc7edf181fa29e14c50bb07f3e673170b93
501,549
def get_8kfilings(df): """Extract 8-K filings only from documents.""" return df.loc[df.seq == 1].copy()
5295b4427175284dfd4cb3fae8a539cd92352938
418,145
import math def distance(point1, point2): """ Calculates distance between two points. :param point1: tuple (x, y) with coordinates of the first point :param point2: tuple (x, y) with coordinates of the second point :return: distance between two points in pixels """ return math.sqrt(math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
e38be3e5cc3418ab8c5edefb560e95e583dede21
691,082
def largeur_image(image): """ Retourne la largeur de l'image ``image`` (en pixels). Arguments : img : nom de la variable Python contenant l'image """ return image.size[0]
e16f9a5927b11d8b752eb53fba39691997b6e764
596,262
import mimetypes def is_video(file_path): """ Checks whether the file is a video. """ type = mimetypes.guess_type(file_path)[0] return type and type.startswith('video')
93c44492816f3156d1b899750ec1551379ae4bef
125,591
def de_itemparser(line): """return a dict of {OfficalName: str, Synonyms: [str,]} from a de_item The description item is a str, always starts with the proposed official name of the protein. Synonyms are indicated between brackets. Examples below 'Annexin A5 (Annexin V) (Lipocortin V) (Endonexin II)' """ fieldnames = ["OfficalName", "Synonyms"] fields = [e.strip(") ") for e in line.split("(")] # if no '(', fields[1:] will be [] return dict(list(zip(fieldnames, [fields[0], fields[1:]])))
b5417b7d047d16462051c889117bf0b0177157a8
63,407
def min_by(f, x, y): """Takes a function and two values, and returns whichever value produces the smaller result when passed to the provided function""" return x if f(x) < f(y) else y
95aca87a35cf5795a4586a4162728fd3c5907ef9
390,157
def get_group_size_and_start(total_items, total_groups, group_id): """ Calculate group size and start index. """ base_size = total_items // total_groups rem = total_items % total_groups start = base_size * (group_id - 1) + min(group_id - 1, rem) size = base_size + 1 if group_id <= rem else base_size return (start, size)
841b82db970bca60e34a72587c016e721a2b4bad
273,311
def find_columns_by_key(df, keys): """ Find all Dataframe column names containing any of the keys Parameters ---------- df : Dataframe Dataframe keys : array_like List of keys of `str` type Returns ------- list List of column names """ col = [c for c in df.columns if any([k.lower() in c.lower() for k in keys])] return col
38765c14e8ea7be43623314192924971ee3f9906
406,387
import math def compute_shannon(data): """ Calculate Shannon entropy value for a given byte array. Keyword arguments: data -- data bytes """ entropy = 0 for x in range(256): it = float(data.count(x))/len(data) if it > 0: entropy += - it * math.log(it, 2) return entropy
3be2cdd3a3f7bea43cdcd4175b3d1717859379af
594,984
import random def null_boolean_field_data(field, **kwargs): """ Return random value for NullBooleanField >>> result = any_form_field(forms.NullBooleanField()) >>> type(result) <type 'unicode'> >>> result in [u'1', u'2', u'3'] True """ return random.choice(['None', 'True', 'False'])
5e36b2ac7a6a30a849f618162216f463d9e08a61
201,958
def curried(func): """curried(func) takes function with signature: func(self, *args) and makes it: curried_func(*args) --> func(self, *args) That is, it makes the self implicit """ def curried_func(self, *args): return func(self, *args) curried_func.__doc__ = """Curried version of:\n%s""" % func.__doc__ return curried_func
95d19e92747bbae18b3795fd79518cdae70906b1
160,508
import torch def masked_precision(pred: torch.Tensor, target: torch.Tensor, eps: float=1e-6) -> torch.Tensor: """ Function to calculate the masked precision. Like precision, but with usability mask in channel in the first channel of the target, i.e. target should have one more channel than prediction. :param pred: (torch.Tensor) predictions, logits or binary :param target: (torch.Tensor) target, logits or binary :param eps: (eps) epsilon for numerical stability :returns precision: (torch.Tensor) """ mask = (target[:, 0] > 0.).float() mask = mask[:, None] pred = mask*(pred > 0).float() target = mask*(target[:, 1:] > 0).float() tp = ((pred == 1) * (target == 1)).float() return tp.sum() / (pred.sum() + eps)
f5951e1afc822ff82e39ed1d4ad9ef02643b2d93
359,813
import re def contains_domain(address, domain): """Returns True if the email address contains the given,domain,in the domain position, false if not.""" domain = r'[\w\.-]+@'+domain+'$' if re.match(domain,address): return True return False
8ca7352995fe9b25e6c7e0094a4af89b65d10147
612,599
import re def normalize(value): """ Normalizes string, converts to lowercase, removes non-alpha characters, and converts spaces to hyphens. :param value: string. String. :return: string. Cleaned string. """ value = re.sub('[^\w\s-]', '', value).strip() value = re.sub('[-\s]+', '-', value) return value
629245ceb18fdf3b93adc20d434fc072c26e259d
338,174
def readPhraseIndexFromFiles (filenames): """Takes a list of files; reads phrases from them, with one phrase per line, ignoring blank lines and lines starting with '#'. Returns a map from words to the list of phrases they are the first word of.""" phraseIndex = dict() for filename in filenames: with open(filename,"r") as instream: for line in instream: line = line.strip() if (line != "" and not line.startswith("#")): line = line.lower() phrase = line.split() firstWord = phrase[0] phraseList = phraseIndex.get(firstWord) if (phraseList == None): phraseList = [] phraseIndex[firstWord] = phraseList phraseList.append(phrase) # Sort each list of phrases in decreasing order of phrase length for phrases in phraseIndex.values(): phrases.sort(key=lambda p: len(p),reverse=True) return phraseIndex
c2968c8d7613c501c7c6bd37ead7017ded57be09
663,845
def bool_to_yes_no(value, color_enabled=False, color_no=None, color_yes=None): """Convert a boolean (or ``None``) to a yes/no string. :param value: The value to be converted. :type value: bool :param color_enabled: Whether to enable color callbacks. Useful for controlling color at run time. :type color_enabled: bool :param color_no: Color the word "no". :type color_no: callable :param color_yes: Color the word "yes". :type color_yes: callable :rtype: str .. versionadded:: 0.27.0-d """ if value is True: if callable(color_yes) and color_enabled: return color_yes("yes") else: return "yes" else: if callable(color_no) and color_enabled: return color_no("no") else: return "no"
4a4432fc62c7fcd42d82fadd60d76dd79567a829
393,412
import torch def _create_1d_regression_dataset(n: int = 100, seed: int = 0) -> torch.Tensor: """Creates a simple 1-D dataset of a noisy linear function. :param n: The number of datapoints to generate, defaults to 100 :param seed: Random number generator seed, defaults to 0 :return: A tensor that contains X values in [:, 0] and Y values in [:, 1] """ torch.manual_seed(seed) x = torch.rand((n, 1)) * 10 y = 0.2 * x + 0.1 * torch.randn(x.size()) xy = torch.cat((x, y), dim=1) return xy
1534c7a968dfb3663c1f4d953e3088225af54b5f
690,702
def format_tags(tags): """Formats tags as comma-separated list of urls to tags index.""" return ", ".join([f'<a href="tags.html#{tag}">{tag}</a>' for tag in tags])
5371cc166650eb51bc94a23fcb4b2e2709c7d9d8
605,435
def time_to_str(time): """Convert time into 4 char string""" time_str = str(time) return "0"*(4-len(time_str))+time_str
04049ff7eb263a0179b22c2e38aceb1b2a45f01a
225,846
def get_samples(mcmc): """Get samples from variables in MCMC.""" return {k: v for k, v in mcmc.get_samples().items()}
d29761ac64cf079d21cee3099f63dd6439577a56
490,190
import csv def parse_csv(csv_file): """Parses an individual CSV file into a set of data points Args: csv_file (File): a csv file Returns: List[List[int,int,float]]: A list of data points. Each data points consist of 0: 1 if is a transmission, 1: 1 if is a retransmission, 2: time in seconds """ data_points = [] csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 previous_bytes = 0 start_time = None for row in csv_reader: if line_count == 0: pass else: if "130.215.28." in row[4]: if start_time == None: start_time = sum(x * float(t) for x, t in zip([3600, 60, 1], row[11][12:30].split(":"))) data_points.append([0,0,0]) elif int(row[8]) > previous_bytes: data_points.append([1,0,sum(x * float(t) for x, t in zip([3600, 60, 1], row[11][12:30].split(":"))) - start_time]) previous_bytes = int(row[8]) elif int(row[8]) <= previous_bytes and int(row[8]) > 10: data_points.append([0,1,sum(x * float(t) for x, t in zip([3600, 60, 1], row[11][12:30].split(":"))) - start_time]) line_count += 1 return data_points
e2040af9ab9ff2036fb402484450d447f38de310
623,180
def gettext_getfunc( lang ): """ Returns a function used to translate to a specific catalog. """ # Note: you would get the gettext catalog here and install it in the # closure. def tr( s ): # Note: we do not really translate here, we just prepend the # language, but you get the idea. return '[%s] %s' % (lang, s) return tr
c303505812581a8101511bc23abfe8be8c390088
63,603
def convert_detector(old_detector): """ Convert an old detector string into a new string. NOTE: Only exists to support old data formats. """ if old_detector: old_detector = old_detector.strip() # Strip off superfluous white space if old_detector == 'IM': return 'MIRIMAGE' elif old_detector == 'LW': return 'MIRIFULONG' elif old_detector == 'SW': return 'MIRIFUSHORT' else: # For any other value, return the same string return old_detector
b52d2299d411f5cb228b747e62ea8ec357607788
388,739
import re def remove_number_from_cols(df): """ Remove number ahead of column names, e.g. [[1]col1, [2]col2] --> [col1, col2] """ df = df.rename(columns={col:re.sub("\[\d+\]", "", col) for col in df.columns}) return df
7de2f4495641bf1ee43a0cf1a839af2684c653e1
453,547
def flatten_voting_method(method): """Flatten a voting method data structure. The incoming ``method`` data structure is as follows. At the time of writing, all elections have an identical structure. In practice. the None values could be different scalars. :: { "instructions": { "voting-id": { "en_US": None, }, }, "excuse-required": None, "start": None, "end": None, "primary": None, "type": None, } This function flattens the US English voting ID instructions to become a top level item like all of the others. Args: method (dict): A nested voting method data structure. Returns: dict: A flat voting method data structure. """ flat_method = {k: v for k, v in method.items() if k != "instructions"} flat_method["instructions"] = method["instructions"]["voting-id"]["en_US"] return flat_method
14095dc027ea011d4a28df85cf0f1113d04f88e5
654,325
import requests def get_public_key(repo): """ Get a public key for the repository from travis. """ url = 'https://api.travis-ci.org/repos/%s' % repo response = requests.get(url) public_key = response.json().get('public_key', '') return public_key.replace('RSA PUBLIC', 'PUBLIC')
fe370a08beb8e9b2f6ae84388865f994e45de0fc
170,997
def get_state_dict(model): """Return model state dictionary whether or not distributed training was used""" if hasattr(model, "module"): return model.module.state_dict() return model.state_dict()
fe1f22c63dac3b7d96b0f0485c9a010e98bae2f5
51,367
from pathlib import Path import shutil def copy(src: Path, dest: Path): """Copy backup from `src` to `dest`. Args: src (Path): the source to copy from dest (Path): the destination to copy to Returns: bool: True if successful """ shutil.copy(str(src), str(dest)) print(f'Backed up {src.name} to {dest}!') return True
bb3d4e4dabdb56761d3776d3d67b2653a54a7e7f
377,695
def getNamespace(modelName): """Get the name space from rig root Args: modelName (str): Rig top node name Returns: str: Namespace """ if not modelName: return "" if len(modelName.split(":")) >= 2: nameSpace = ":".join(modelName.split(":")[:-1]) else: nameSpace = "" return nameSpace
abfb4c54f2dd1b54563f6c7c84e902ed4ee77b01
5,018
def non_zero_mean(vals): """Gives the non-zero mean of the values.""" return vals[vals > 0].mean()
650f2083812e046f833a1412bb1ced8b9ed94a8c
124,573
def to_tag(name): """ Creates a XML tag from a given string. """ temp = name.lower().replace(' ', '_') temp = temp.replace('fir_', 'FIR_') temp = temp.replace('a0_', 'A0_') return temp
3db295e1132467519437243a32eb50754998ee25
508,750
from typing import List def to_lines(s: str) -> List[str]: """ Like `str.splitlines()`, except that an empty string results in a one-element list and a trailing newline results in a trailing empty string (and all without re-implementing Python's changing line-splitting algorithm). """ lines = s.splitlines(True) if not lines: return [""] if lines[-1].splitlines() != [lines[-1]]: lines.append("") for i, ln in enumerate(lines): l2 = ln.splitlines() assert len(l2) in (0, 1) lines[i] = l2[0] if l2 else "" return lines
90fac21f535537a731a4e3a3573a2f2cf548f161
569,316
def get_countN(x,n): """Count the number of nucleotide n in the string.""" return x.upper().count(n.upper())
7e5577dcf2a5666f77a915dd943cd5f59e2bd260
25,124
def is_unexpected_exception(exc_type: Exception) -> bool: """Check if exception type is unexpected (any exception except AssertionError, pytest.block.Exception, pytest.skip.Exception).""" if exc_type and (isinstance(exc_type, (Exception, BaseException)) or issubclass(exc_type, (Exception, BaseException))): return exc_type not in (None, FailedAssumption, AssertionError, pytest.block.Exception, pytest.skip.Exception) # type: ignore return False
d23f6e76ffec26fe7be8bce5e9b9a6dc07532845
285,227
def roundstr(size): """ Perform round-up processing Round up and return as string """ return str(round(size, 1))
47f120a919637b5845be6db66f9884a5b1bf4333
416,649
def get_city_byname(cities, name): """ Retorna o município cujo o nome foi especificado. Retorna um objeto do tipo city ou None caso não seja encontrado. Parâmetros: - cities : lista de municípios. - name : nome do município desejado. """ for city in cities: if city.name == name: return city return None
ebe6ef1b064ae560dab9e55e977039df912b8ea4
306,617
def magnify_contents(contents, features): """ Create additional features in each entry by replicating some column of the original data. In order for the colums to differ from the original data append a suffix different for each new additional artificial column. """ magnified_contents = [] for entry in contents: magnified_entry = entry[:-1] + [entry[feature]+str(i) for i, feature in enumerate(features)] + [entry[-1]] magnified_contents.append(magnified_entry) return magnified_contents
ec2a43cdb280da74b44a6fec96d0708c90d03f18
27,978
def traverse_graph(graph, rules, domains, classifiers=None): """Traverses a rule graph and classifies a collection of domains. Each node is a dictionary with the schema: { "title": "Rule name", "children": [ { "title": Rule name", "children": [ ... ], }, ... ] } Rules are evaluated in order. If a rule is successfully evaluated, this function will recurse into any child rules, if any exist. Finally a classification list, containing the path of rules satisfied by the given domains, is returned. Args: graph (list, dict): Rule graph to traverse. rules (dict): Rule objects to evaluate on domains. domains (list): Domain objects to classify. classifiers (list): Current classifiers for a Domain collection. Returns: classifiers """ if not classifiers: classifiers = [] for node in graph: title = node["title"] rule = rules[title] if not rule.satisfied_by(domains): continue classifiers.append(title) children = node.get("children") if children: classifiers = traverse_graph(children, rules, domains, classifiers) rule.rename_domains(domains) return classifiers return classifiers
7df0553793f4f8380b6d7af31653c68eeaf16486
465,864
import inspect import re def _getdoc(object): """Get the doc string or comments for an object.""" result = inspect.getdoc(object) or inspect.getcomments(object) return result and re.sub('^ *\n', '', result.rstrip()) or ''
b5a2c526530910ec6f4cb498fa365ddcaec0f429
272,692
from typing import Tuple def calc_pad_value(src_value: int, dst_value: int) -> Tuple[int, int]: """ Calculate a padding values for a pair of source and destination numbers. Parameters: ---------- src_value : int Source number. dst_value : int Destination number. Returns: ------- tuple of 2 int Left and right paddings. """ assert (dst_value >= src_value) if src_value == dst_value: pad_left = 0 pad_right = 0 else: pad_value = dst_value - src_value pad_left = pad_value // 2 pad_right = pad_value - pad_left return pad_left, pad_right
6231eae061c3a534f0b2fe4a313987dc3d4eed98
626,808
def find_last_in_flow_child(children): """Find and return the last in-flow child of given ``children``.""" for child in reversed(children): if child.is_in_normal_flow(): return child
ad141fad32148b7ecb8dfd73f1d53026423e8e74
473,795
def extract_modified_bs_sequence(sax_sequence): """ This functions extracts the modified Behaviour Subsequence (BS) sequence list, which is the original sax word sequence where every consecutive pairs of sax words are equal are fused into the same sax word. :param sax_sequence: list of original sax words :type sax_sequence: list of str :return: - bs_sequence (:py:class:`list of str`) - list of modified sax words - bs_lengths (:py:class:`list of int`) - list of lengths of each modified sax word """ bs_sequence = [] bs_lengths = [] curr_len = 1 for i in range(len(sax_sequence)): curr_bs = sax_sequence[i] if i < len(sax_sequence)-1: next_bs = sax_sequence[i+1] else: next_bs = '' if curr_bs == next_bs: curr_len = curr_len + 1 else: bs_sequence.append(curr_bs) bs_lengths.append(curr_len) curr_len = 1 return bs_sequence, bs_lengths
3a26278a478789032d35f994902440db3f879c9d
653,610
def render_group(path, prefix): """Renders test_groups which represents a set of CI results. Follows this format: test_group('test-group-name', 'gcs-path') """ return 'test_group(\n \'%s\',\n \'%s/%s\'),' % ( path, prefix, path)
44ecaa47ec137edfc2a67cbee509a9f912f0fb9a
68,257
def find_category_dc(value): """Find the category of a dc value :param value: Value for which we want the category :type value: int :return: Category corresponding to the value :rtype: int """ if value == 0: return 0 if 1 <= abs(value) <= 5: return 1 if 6 <= abs(value) <= 17: return 2 if 18 <= abs(value) <= 82: return 3 if 83 <= abs(value) <= 375: return 4 if 376 <= abs(value) <= 1263: return 5 if 1264 <= abs(value) <= 5262: return 6 if 5263 <= abs(value) <= 17579: return 7 if 17580 <= abs(value) <= 72909: return 8 return -1
eaa8731658ce5a51eb0b5415fae4a3d0cdd60473
357,515
def stanardize_numeric_values(df, list_of_clms, ref_df): """ Use the median and interquartile range to standardize the numeric variables value = (value – median) / (p75 – p25) """ for code in list_of_clms: median = ref_df[code]['50%'] p25 = ref_df[code]['25%'] p75 = ref_df[code]['75%'] df[code] = (df[code] - median) / (p75 - p25) # Subset relevant columns columns = ['hadm_id'] + list_of_clms df = df[columns].copy() return df
ff15caf1ae438401b5252f7bc5cb6ba784e2f8b1
192,268
def convert_error_code(error_code): """Convert error code from the format returned by pywin32 to the format that Microsoft documents everything in.""" return error_code % 2 ** 32
40197987e46fab5082b7ccad308edbefd472b852
663,692
def result_pks(response, cast=None): """ returns ids from wagtail admin search result :param cast: cast pks to a type, default int :param response: webtest response :return: ids list """ cast = cast or int result_rows = response.lxml.xpath('.//tr[@data-object-pk]/@data-object-pk') return [ cast(r) for r in result_rows ]
c46373733cf1451ccb7dbadd842726445112c9f2
33,450
def ensure_keys_defined(header, needed_keys=(), define_as="UNDEFINED"): """Define any keywords from `needed_keys` which are missing in `header`, or defined as 'UNDEFINED', as `default`. Normally this defines missing keys as UNDEFINED. It can be used to redefine UNDEFINED as something else, like N/A. """ header = dict(header) for key in needed_keys: if key not in header or header[key] in ["UNDEFINED", None]: header[key] = define_as return header
cbb0fb2134745d6aa50af927f00687e0a5949608
375,131
def _create_ad_schedule_info(client, day_of_week, start_hour, start_minute, end_hour, end_minute): """Create a new ad schedule info with the specified parameters.""" ad_schedule_info = client.get_type('AdScheduleInfo', version='v2') ad_schedule_info.day_of_week = day_of_week ad_schedule_info.start_hour.value = start_hour ad_schedule_info.start_minute = start_minute ad_schedule_info.end_hour.value = end_hour ad_schedule_info.end_minute = end_minute return ad_schedule_info
b4acefa48ea1f3174ec71993dcd3c9e354c042be
217,851
def ensure_bytes(s, encoding): """ Ensure *s* is a bytes string. Encode using *encoding* if it isn't. """ if isinstance(s, bytes): return s return s.encode(encoding)
f82f0ca37bd29c1b856ce9ff79b1bf92d00ea3d5
534,160
def validate_all(*validators): """ returns a validator that evaluates to true only if all validators passed through the argument validators also evaluate to true :param validators: validators to be chained :return: a validator function """ def validator(value): return all(v(value) for v in validators) return validator
cc025212a5084ac7af41760f86b87b9b74ada54b
485,829
def get_api_title(specs): """Fetch the API title :param: specs: the JSON smartapi specs """ return specs['info']['title']
ef54167d97a6835622aa5e1ce6a34f1e736df202
452,899
def formatNumber(number, billions="B", spacer=" ", isMoney = False): """ Format the number to a string with max 3 sig figs, and appropriate unit multipliers Args: number (float or int): The number to format. billions (str): Default "G". The unit multiplier to use for billions. "B" is also common. spacer (str): Default " ". A spacer to insert between the number and the unit multiplier. Empty string also common. isMoney (bool): If True, a number less than 0.005 will always be 0.00, and a number will never be formatted with just one decimal place. """ if number == 0: return "0%s" % spacer absVal = float(abs(number)) flt = float(number) if absVal >= 1e12: # >= 1 trillion return "%.2e" % flt if absVal >= 10e9: # > 10 billion return "%.1f%s%s" % (flt/1e9, spacer, billions) if absVal >= 1e9: # > 1 billion return "%.2f%s%s" % (flt/1e9, spacer, billions) if absVal >= 100e6: # > 100 million return "%i%sM" % (int(round(flt/1e6)), spacer) if absVal >= 10e6: # > 10 million return "%.1f%sM" % (flt/1e6, spacer) if absVal >= 1e6: # > 1 million return "%.2f%sM" % (flt/1e6, spacer) if absVal >= 100e3: # > 100 thousand return "%i%sk" % (int(round(flt/1e3)), spacer) if absVal >= 10e3: # > 10 thousand return "%.1f%sk" % (flt/1e3, spacer) if absVal >= 1e3: # > 1 thousand return "%.2f%sk" % (flt/1e3, spacer) if isinstance(number, int): return "%i" % number if absVal >= 100: return "%i%s" % (flt, spacer) if absVal >= 10: if isMoney: return "%.2f%s" % (flt, spacer) # Extra degree of precision here because otherwise money looks funny. return "%.1f%s" % (flt, spacer) # Extra degree of precision here because otherwise money looks funny. # if absVal > 1: # return "%.2f%s" % (absVal, spacer) if absVal > 0.01: return "%.2f%s" % (flt, spacer) if isMoney: return "0.00%s" % spacer return ("%.2e%s" % (flt, spacer)).replace("e-0", "e-")
c4d6bfd97df7bb69e451eb9a8a20626f69ed12cb
343,881
from datetime import datetime from typing import Optional def get_epoch_time(time_as_str: Optional[str] = None, fmt: str = '%d-%m-%Y %H:%M:%S.%f') -> int: """ >>> get_epoch_time('04-09-2020 17:13:40.162') 1599239620162 """ fmt_time = datetime.now() if time_as_str is None else datetime.strptime( time_as_str, fmt) epoch = datetime.utcfromtimestamp(0) return int((fmt_time - epoch).total_seconds() * 1000)
ed48c044c4ef3505766f5f669a10a2281fc1589b
288,998
def get_levelized_cost(solution, cost_class='monetary', carrier='power', group=None, locations=None, unit_multiplier=1.0): """ Get the levelized cost per unit of energy produced for the given ``cost_class`` and ``carrier``, optionally for a subset of technologies given by ``group`` and a subset of ``locations``. Parameters ---------- solution : solution container cost_class : str, default 'monetary' carrier : str, default 'power' group : str, default None Limit the computation to members of the given group (see the groups table in the solution for valid groups). locations : str or iterable, default None Limit the computation to the given location or locations. unit_multiplier : float or int, default 1.0 Adjust unit of the returned cost value. For example, if model units are kW and kWh, ``unit_multiplier=1.0`` will return cost per kWh, and ``unit_multiplier=0.001`` will return cost per MWh. """ if group is None: group = 'supply' members = solution.groups.to_pandas().at[group, 'members'].split('|') if locations is None: locations_slice = slice(None) elif isinstance(locations, (str, float, int)): # Make sure that locations is a list if it's a single value locations_slice = [locations] else: locations_slice = locations cost = solution['costs'].loc[dict(k=cost_class, x=locations_slice, y=members)] ec_prod = solution['ec_prod'].loc[dict(c=carrier, x=locations_slice, y=members)] if locations is None: cost = cost.sum(dim='x').to_pandas() ec_prod = ec_prod.sum(dim='x').to_pandas() else: cost = cost.to_pandas() ec_prod = ec_prod.to_pandas() return (cost / ec_prod) * unit_multiplier
96b8f9a9fceaa932bcee72033e73ad8b9551759d
5,954
def getChildren(self): """Returns a Python list of the egg node's children.""" result = [] child = self.getFirstChild() while (child != None): result.append(child) child = self.getNextChild() return result
ae896bc923f62bbe4f06ebcdad748d6c1e628265
513,295
from pathlib import Path def this_version() -> str: """Read the variable `__version__` from the module itself.""" contents = Path('monoclparse/_version.py').read_text() *_, version = contents.strip().split() return version.strip('\'')
fb10b229cca9c1b322d0af833a4ee994643109f4
471,040
def load_file(uri): """ Load file from given uri. """ with open(uri, encoding='utf-8') as file: return file.read()
4c7ddd733f93ab1b491d8c31f2b64d42f29ecbd1
533,386
def _clean_2007_text(s): """Replace special 2007 formatting strings (XML escaped, etc.) with actual text. @param s (str) The string to clean. @return (str) The cleaned string. """ s = s.replace("&amp;", "&")\ .replace("&gt;", ">")\ .replace("&lt;", "<")\ .replace("&apos;", "'")\ .replace("&quot;", '"')\ .replace("_x000d_", "\r") return s
fdd94198a1d1b7562ca388aa316e17324c09bce9
485,284
def _get_annotations(cls): """ Get annotations for *cls*. """ anns = getattr(cls, "__annotations__", None) if anns is None: return {} # Verify that the annotations aren't merely inherited. for base_cls in cls.__mro__[1:]: if anns is getattr(base_cls, "__annotations__", None): return {} return anns
bfa3dde6ac6e3a3d124336cabd1dfe7f74decf28
484,483
import itertools def _powerset(iterable, minsize=0): """From the itertools recipes.""" s = list(iterable) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(minsize, len(s) + 1) )
41c5576ae031288957d827d82231eab43f1ce70b
73,679
import math def quadratic_equation(num1, num2, num3): """Solve quadratic equation""" delta = (num2 ** 2) - (4 * num1 * num3) if delta < 0: return None elif delta > 0: return (-num2 + math.sqrt(delta)) / 2 * num1, (-num2 - math.sqrt(delta)) / 2 * num1 else: return -num2 / 2 * num1, None
672c3b4158db58f1975058a8827b1871d52949d2
60,657
def copy_stimuli(stimuli): """ Return a copy of a list of stimuli. The returned copy can be modified without affecting the original. """ new_list = [] for stim in stimuli: stim_copy = stim.create_copy() new_list.append(stim_copy) return new_list
58a3fc7b8bdb23088ad0bdda83db8d96ebca46f4
487,383
def sum_digits(num: int) -> int: """ Returns the sum of every digit in num. >>> sum_digits(1) 1 >>> sum_digits(12345) 15 >>> sum_digits(999001) 28 """ digit_sum = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum
78680a648dbef0e4220f1628e275e5e84c2b28bb
437,489
def flatten(data): """ Given a batch of N-D tensors, reshapes them into 1-Dim flat tensor. """ B = data.size(0) return data.view(B, -1)
dd434241a8f3a491e39094f485e12973e6ef4c4a
84,126
from datetime import datetime def get_week_from_ts(ts: datetime) -> int: """Returns the integer value of the week for the given time slot""" return ts.isocalendar()[1]
a589e366fa9fa360c4e8e41fae3832d22340900b
292,065
def make_s3_raw_record(bucket, key, size=100): """Helper for creating the s3 raw record""" return { 's3': { 'configurationId': 'testConfigRule', 'object': { 'eTag': '0123456789abcdef0123456789abcdef', 'sequencer': '0A1B2C3D4E5F678901', 'key': key, 'size': size }, 'bucket': { 'arn': 'arn:aws:s3:::mybucket', 'name': bucket, 'ownerIdentity': { 'principalId': 'EXAMPLE' } } }, 'awsRegion': 'us-east-1' }
f6b82c8815da11af1898f1cb2445983220107f7a
415,835
def fasta_name_seq(s): """ Interprets a string as a FASTA record. Does not make any assumptions about wrapping of the sequence string. """ DELIMITER = ">" try: lines = s.splitlines() assert len(lines) > 1 assert lines[0][0] == DELIMITER name = lines[0][1:] sequence = "".join(lines[1:]) return (name, sequence) except AssertionError: raise ValueError("String not recognized as a valid FASTA record")
e450455710a945df25ad2cf4cc3c7f9ad662e7d3
9,676
import math def deg2rad(angle): """Converts value in degrees to radians.""" return angle * math.pi / 180.0
6bc69b7ad8d99d554b4a7854f0a7aa9753addae9
509,271
import json import collections def textToJSON(text, orderedDict=True, showErrors=False): """ Turn a JSON object stored as text into a Python object. Will be forced to a Python collections.OrderedDict if orderedDict argument is True. """ try: if orderedDict: return json.loads(text, object_pairs_hook=collections.OrderedDict) else: return json.loads(text) except: if showErrors: raise else: return None
4fe816435f47fb445538f5165e742478aaf59273
358,526
def resolve_relative_name(package, module, relative): """Convert a relative import path into an absolute one. :param str package: The ``__package__`` that we are in. :param str module: The ``__name__`` of the module we are in. :param str relative: The module name to resolve. Absolute names are passed through untouched. """ if relative.startswith('.'): # Add a dummy module onto the end if this is a package. It will be # pulled off in the loop below. if package == module: module += '.dummy' parts = module.split('.') while relative.startswith('.'): relative = relative[1:] parts.pop(-1) relative = '.'.join(parts) + ('.' if relative else '') + relative return relative
04af75a3d0e8f18d54573af06f5e087e1804db24
284,993
def token_identity(it, token_payload=None): """ Echo back what it gets. """ return (it, token_payload)
6fe367d1e908a8812c8372e5909b54c8bb7b17f5
681,096
def int32(x): """Force conversion of x to 32-bit signed integer""" x = int(x) maxint = int(2**31-1) minint = int(-2**31) if x > maxint: x = maxint if x < minint: x = minint return x
854338b7fd748ba5ddbbbd8c697288c6331995c4
697,941
def is_primary(row : dict): """ Determines if a row is in the Primary inbox. These are emails that are in the Inbox, but aren't in Spam, Promotions, or Trash. """ try: if ( not row.get('Spam') and not row.get('Category Promotions') and not row.get('Trash') and row['Inbox'] ): return 1 except Exception as e: print(e) print(row) return 0
7c0b05333edfe734519c18b4732a3ce2b1cffe50
307,962
def _is_neighbor_ipaddress(config_db, ipaddress): """Returns True if a neighbor has the IP address <ipaddress>, False if not """ entry = config_db.get_entry('BGP_NEIGHBOR', ipaddress) return True if entry else False
8ccd3aad0390bf9a80fe6861d8c1ca3e42242485
146,715
import torch def euclidean_distances(X, Y, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. Parameters ---------- X : {tensor-like}, shape (n_samples_1, n_features) Y : {tensor-like}, shape (n_samples_2, n_features) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {Tensor}, shape (n_samples_1, n_samples_2) """ X_col = X.unsqueeze(1) Y_lin = Y.unsqueeze(0) if squared == True: c = torch.sum((torch.abs(X_col - Y_lin)) ** 2, 2).sqrt_() else: c = torch.sum((torch.abs(X_col - Y_lin)) ** 2, 2) return c
4f02bc0d1f60fd7916954dab1c07ad57fae7682e
285,554
import math def mod_one(x): """ Reduce a number modulo 1. INPUT: - ``x`` - an instance of Integer, int, RealNumber, etc.; the number to reduce OUTPUT: - a float EXAMPLES:: sage: from sage.plot.colors import mod_one sage: mod_one(1) 1.0 sage: mod_one(7.0) 0.0 sage: mod_one(-11/7) 0.4285714285714286 sage: mod_one(pi) + mod_one(-pi) 1.0 """ x = float(x) if x != 1: x = math.modf(x)[0] if x < 0: x += 1 return x
2f76d32ffbcda62cae459a45d82139e6b36b8ca4
358,161
def filter_nuc_variants(nuc_variants): """ Transforms nucleotide variants of type SUB longer than 1 in multiple variants of length 1. Ignore insertions or substitutions of alternative sequence 'n'. Removes duplicated variant impacts. """ new_nuc_variants = [] for n in nuc_variants: seq_original = n['sequence_original'] seq_alternative = n['sequence_alternative'] start_original = int(n['start_original']) start_alternative = int(n['start_alternative']) variant_length = int(n['variant_length']) variant_type = n['variant_type'] impacts = n['annotations'] impacts_set = set(tuple(values) for values in impacts if not values[0].startswith('GU280')) # split substituions into single point mutations + ignore SUBs or INS to 'n' if (variant_type == 'SUB' and variant_length > 1) or seq_alternative.lower() == 'n': for i in range(variant_length): if seq_alternative[i].lower() != 'n': new_nuc_variants.append({ 'sequence_original': seq_original[i], 'sequence_alternative': seq_alternative[i], 'start_original': start_original + i, 'start_alternative': start_alternative + i, 'variant_length': 1, 'variant_type': variant_type, 'annotations': impacts_set }) else: n['annotations'] = impacts_set new_nuc_variants.append(n) return new_nuc_variants
4bdc507de783ba4d536352fc8144dc3b7ffc2737
582,860
def uri_scheme_behind_proxy(request, url): """ Fix uris with forwarded protocol. When behind a proxy, django is reached in http, so generated urls are using http too. """ if request.META.get("HTTP_X_FORWARDED_PROTO", "http") == "https": url = url.replace("http:", "https:", 1) return url
873ac1c70627fc8e8dd0cb2b86dec99246bb9344
40,949
from typing import Sequence from typing import Mapping def normalize_dist(dist, ndim): """Return a tuple containing dist-type for each dimension. Parameters ---------- dist : str, list, tuple, or dict ndim : int Returns ------- tuple of str Contains string distribution type for each dim. Examples -------- >>> normalize_dist({0: 'b', 3: 'c'}, 4) ('b', 'n', 'n', 'c') """ if isinstance(dist, Sequence): return tuple(dist) + ('n',) * (ndim - len(dist)) elif isinstance(dist, Mapping): return tuple(dist.get(i, 'n') for i in range(ndim)) else: raise TypeError("Dist must be a string, tuple, list or dict")
79c48d809d0c509039b93e8ea13a1934c9c04900
517,600
def convert(color): """Get (0-1, 0-1, 0-1) color code and converts it to (0-255, 0-255, 0-255). Parameters ---------- color : tuple RGB code in format (0-1, 0-1, 0-1) Returns ------- list a list representing RBG color code in format (0-255, 0-255, 0-255) """ return [int(x * 255) for x in color]
4e57b4c575ad9a8c6fe9cda077d07dc67e41df3b
643,746
def format_seconds(seconds): """ Format a floating point representing seconds into a nice readable string. Arguments: seconds The seconds to format. Returns: A formatted string as either seconds, minutes, or hours. """ output_time = seconds output_unit = "seconds" if output_time >= 60.: output_time /= 60. output_unit = "minutes" if output_time >= 60.: output_time /= 60. output_unit = "hours" return "{:.2f} {}".format(output_time, output_unit)
277279fb3c37ebbe9db1f6c4fb804391c3ab81e9
596,772
def geo_locate_multiple_ips( self, ip_address_list: list, ) -> dict: """Get geo-location information on multiple ip addresses from Cloud Portal .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - spPortal - POST - /spPortal/internetDb/geoLocateIp :param ip_address_list: List of 32-bit integer ip addresses, e.g. ``[167837953, 167837954, ...]`` :type ip_address_list: list :return: Dictionary of ip address geo-location information for all ip's \n * keyword **<ip_address>** (`int`): Nested dictionary of attributes \n * keyword **ip** (`int`): ip address of location calculated * keyword **rangeIpStart** (`int`): Start of subnet that geo-located IP falls under * keyword **rangeIpEnd** (`int`): End of subnet that geo-located IP falls under * keyword **isp** (`str`): ISP provider registered to address * keyword **org** (`str`): Organization registered to address * keyword **country** (`str`): Country * keyword **countryCode** (`str`): Country code * keyword **city** (`str`): City * keyword **postalCode** (`int`): Postal/Zip code * keyword **latitude** (`int`): Latitude coordinates of ip address * keyword **longitude** (`int`): Longitude coordinates of ip address :rtype: dict """ data = ip_address_list return self._post("/spPortal/internetDb/geoLocateIp", data=data)
e8b5bec744d3011d90885de79acee855415316d0
371,037
import json def is_jsonable(obj): """ Checks if obj is JSONable (can be converted to JSON object). Parameters ---------- obj : any The object/data-type we want to know if it is JSONable. Returns ----- boolean True if obj is JSONable, or False if it is not. """ try: json.dumps(obj) return True except TypeError: return False
50a568b898c9609206993372983d40add0be4603
693,922
def sqr(num): """ Computes the square of its argument. :param num: number :return: number """ return num*num
cb16d5638afeff0061415e45467b5fd4e644951f
20,935
import math def distance3D(loc3d1=tuple(), loc3d2=tuple()): """ get distance from (x1, y1, z1), (x2, y2, z2) loc3d1 : (x1, y1, z1) loc3d2 : (x2, y2, z2) return : distance """ return math.sqrt((loc3d1[0] - loc3d2[0])**2 + (loc3d1[1] - loc3d2[1])**2 + (loc3d1[2] - loc3d2[2])**2)
e780a5125a725f3d99a1f730d9ba4b2b9167e059
64,290
def rows2labels(rows): """Given a list of rows, return a map from subject to rdfs:label value.""" labels = {} for row in rows: if row["predicate"] == "rdfs:label": labels[row["subject"]] = row["value"] return labels
62637c530bf9fa769e470579496288b26fc0b355
322,149
from pathlib import Path def extract_name( filename: Path, max_length: int = 100, prefix: str = "", suffix: str = "", long_name: bool = False, ) -> str: """Extract the name from a file Parameters ---------- filename The input file max_length The maximum length of the name, by default 100 prefix The prefix to be added to the name, by default "" suffix The suffix to be added to the name, by default "" long_name Whether or not to use the full name, by default False Returns ------- The name """ name = Path(filename).stem if not long_name: name = name.split(".")[0] if len(name) > max_length: name = name[:max_length] + "..." name = prefix + name + suffix return name
f190ec38b8a5e57512d48b1f3c6a258005f7547f
440,783
from bs4 import BeautifulSoup def parse_html(html: str) -> BeautifulSoup: """Parse the HTML with Beautiful Soup""" return BeautifulSoup(html, features="html.parser")
8e10667747f24b9f9790b2b512bc9d5635ec7cd9
30,787
def cutout_subimage(image2d, startx=0, starty=0, width=100, height=200): """Cutout a subimage ot of a bigger image :param image2d: the original image :type image2d: NumPy.Array :param startx: startx, defaults to 0 :type startx: int, optional :param starty: starty, defaults to 0 :type starty: int, optional :param width: width, defaults to 100 :type width: int, optional :param height: height, defaults to 200 :type height: int, optional :return: image2d - subimage cutted out from original image2d :rtype: NumPy.Array """ image2d = image2d[starty:starty + height, startx:startx + width] return image2d
3e98bda2fc7eae0513a80cf699da60c6a7315e38
620,082
def _format_datetime_for_js(stamp): """Formats time stamp for Javascript.""" if not stamp: return None return stamp.strftime("%Y-%m-%d %H:%M:%S %Z")
a305c9c64f1ec9de0bd99181f14dedebae8cf940
34,182
def remove_angle(mol, a, b, c): """ utils.remove_angle Remove a specific angle in RDkit Mol object Args: mol: RDkit Mol object a, b, c: Atom index removing a specific angle (int) Returns: boolean """ if not hasattr(mol, 'angles'): return False for i, angle in enumerate(mol.angles): if ((angle.a == a and angle.b == b and angle.c == c) or (angle.c == a and angle.b == b and angle.a == c)): del mol.angles[i] break return True
9e54c283e84b767809d13f9ee807a1a97d0e5503
458,010
def _convert(value, conversion_function): """ Convert value using the optional conversion function. """ if conversion_function is not None: value = conversion_function(value) return value
ebb28156707d3d973ead5783ad9ee57c90319ee4
292,047
def matrix_to_board(matrix): """ Converts the matrix into a board. Args: matrix (np.array): The board in matrix representation. Returns: list: The board. """ return matrix.reshape(1, -1).tolist()[0]
8c337e815f1e7e4642086c1a6704cd943bf992ff
208,649
def get_binary_string(string_input): """ Generate binary string from input string :param string_input: user input string :return: binary_string: binary input string """ binary_str = "" for char in string_input: binary_str = binary_str + f'{ord(char):08b}' return binary_str
1154def212055cbb30c09cc1e4764f614784fb80
229,182
def _resize_row(array, new_len): """Alter the size of a list to match a specified length If the list is too long, trim it. If it is too short, pad it with Nones Args: array (list): The data set to pad or trim new_len int): The desired length for the data set Returns: list: A copy of the input `array` that has been extended or trimmed """ current_len = len(array) if current_len > new_len: return array[:new_len] else: # pad the row with Nones padding = [None] * (new_len - current_len) return array + padding
810be7f94234e428135598dc32eca99dd0d3fcca
48,738
def set_lat_lon_attrs(ds): """ Set CF latitude and longitude attributes""" ds["lon"] = ds.lon.assign_attrs({ 'axis' : 'X', 'long_name' : 'longitude', 'standard_name' : 'longitude', 'stored_direction' : 'increasing', 'type' : 'double', 'units' : 'degrees_east', 'valid_max' : 360.0, 'valid_min' : -180.0 }) ds["lat"] = ds.lat.assign_attrs({ 'axis' : 'Y', 'long_name' : 'latitude', 'standard_name' : 'latitude', 'stored_direction' : 'increasing', 'type' : 'double', 'units' : 'degrees_north', 'valid_max' : 90.0, 'valid_min' : -90.0 }) return ds
fe95bbd7bd698b7cc0d5d1a60713477ab36e909a
658,940