content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def chrange(start, stop):
"""
Construct an iterable of length-1 strings beginning with `start` and ending
with `stop`.
Parameters
----------
start : str
The first character.
stop : str
The last character.
Returns
-------
chars: iterable[str]
Iterable of strings beginning with start and ending with stop.
Examples
--------
>>> chrange('A', 'C')
['A', 'B', 'C']
"""
return list(map(chr, range(ord(start), ord(stop) + 1))) | 7d31406bd0920e2abe031f19f95dc728d7c64aba | 569,127 |
def format_name(name: str, depth: int = 0) -> str:
"""Format a string for nested data printing
Args:
name: input string
depth: depth of the nested information
Returns:
formatted string
"""
if depth == 0:
return name
elif depth == 1:
return f"├─{name}"
else:
return f"{'| ' * (depth - 1)}└─{name}" | 4787a36ac8ce92bce86797b9a318bafdef7ef64b | 357,110 |
def byte_str(s='', encoding='utf-8', input_encoding='utf-8', errors='strict'):
"""
Returns a bytestring version of 's', encoded as specified in 'encoding'.
Accepts str & unicode objects, interpreting non-unicode strings as byte
strings encoded using the given input encoding.
"""
assert isinstance(s, str)
if isinstance(s, str):
return s.encode(encoding, errors)
if s and encoding != input_encoding:
return s.decode(input_encoding, errors).encode(encoding, errors)
return s | f2fe37219d1cc3297bf107774775e6604406cb01 | 239,579 |
import string
def is_south(band):
"""
Return if band is in southern hemisphere
"""
alpha = {c: num for num, c in enumerate(string.ascii_uppercase)}
return alpha[band.upper()] < 12 | 8be5096b0f9d9fb69fbaa60b2205e5a0ce868777 | 549,665 |
import itertools
def pairwise(iterable):
"""
Iterate pairwise through an iterable.
pairwise([1,2,3,4]) -> (1,2),(2,3),(3,4)
"""
val, nextVal = itertools.tee(iterable)
next(nextVal, None)
return zip(val, nextVal) | 495fedbaf2046d66bd791dc78dea8525761e01b1 | 10,905 |
import re
def reorder(text):
"""reorder strings that are in format [title, The] to [The title]"""
m = re.match("(.+)(?:,|;) The(.*)", text)
return "The " + m.group(1) + m.group(2) if m else text | fe9ebd5fe657f0d55c73832b19fa40a7060202d2 | 263,762 |
def jetCollectionString(prefix='', algo='', type=''):
"""
------------------------------------------------------------------
return the string of the jet collection module depending on the
input vaules. The default return value will be 'patAK5CaloJets'.
algo : indicating the algorithm type of the jet [expected are
'AK5', 'IC5', 'SC7', ...]
type : indicating the type of constituents of the jet [expec-
ted are 'Calo', 'PFlow', 'JPT', ...]
prefix : prefix indicating the type of pat collection module (ex-
pected are '', 'selected', 'clean').
------------------------------------------------------------------
"""
if(prefix==''):
jetCollectionString ='pat'
else:
jetCollectionString =prefix
jetCollectionString+='Pat'
jetCollectionString+='Jets'
jetCollectionString+=algo
jetCollectionString+=type
return jetCollectionString | c77c2fd3afcccb1e62e1d92103ce677775fae0e4 | 696,952 |
def name_sort_key(name):
"""
Gets sort key for the given name, when sorting attribute, method, or such names.
Parameters
----------
name : `str`
Name of an attribute, method or class.
Returns
-------
key : `tuple` (`int`, `str`)
The generated key.
"""
if name.startswith('__'):
if name == '__new__':
prefix_count = 0
elif name == '__init__':
prefix_count = 1
elif name == '__call__':
prefix_count = 2
else:
prefix_count = 102
elif name.startswith('_'):
prefix_count = 101
else:
prefix_count = 100
return prefix_count, name | a72699cff7f8f70fcc750289fea3951f733f0fd2 | 177,360 |
def Large(rect):
"""
Inflate a rect by a standard amount
"""
return rect.Inflate(5, 5) | 34ed666edb53bf573916639736507664ceb28c63 | 295,750 |
def _n(value):
"""
Convert between an empty string and a None
This function is translates django's empty elements, which are stored
as empty strings into pyxb empty elements, which are stored as None.
"""
return None if value == '' else value | 6928a8f6b81051b80236475d028b1ece8624e7d0 | 348,770 |
def ixps(value, other):
"""
Returns all IXPs on which both AS are peering together.
"""
return value.get_internet_exchange_points(other) | 9e3e5f424cdee4ade40b9a8ff254a18e3237a9e5 | 505,074 |
def y(filen):
""" Returns the integer in the filename 'filen'. For example,
for 'image_13.npy', this function returns 13 as an integer
"""
cname = ''
for c in filen:
if c.isdigit():
cname += c
return int(cname) | 61809836717846f82ac36256bd4816691f56989f | 468,915 |
def gen_anytext(*args):
"""
Convenience function to create bag of words for anytext property
"""
bag = []
for term in args:
if term is not None:
if isinstance(term, list):
for term2 in term:
if term2 is not None:
bag.append(term2)
else:
bag.append(term)
return ' '.join(bag) | 54749b40142465c03a8ac19cb7a1175b7e7ee0e7 | 679,704 |
import math
def convert_local_to_global_vector(v: list, yaw: float):
"""
Converts the given vector in vehicle coordinate system to the global one under the given vehicle yaw.
"""
vx = math.cos(math.radians(yaw)) * v[0] - math.sin(math.radians(yaw)) * v[1]
vy = math.sin(math.radians(yaw)) * v[0] + math.cos(math.radians(yaw)) * v[1]
return [vx, vy] | 62f96a22c85f22125165e387bfeea76d78e5c519 | 10,958 |
def peek(c):
"""PEEK / [SP]"""
v = "c.m[0x%04X]" % c.sp
return v | 52b1dc587037eac2698bbc68380165a90e5f0021 | 535,049 |
def squeeze_list(listA, val=-1):
""" Compact a list of lists into a single list.
Squeezes (spaghettify) a list of lists into a single list.
The lists are concatenated into a single one, and to separate
them it is used a separating value to mark the split location
when unsqueezing the list.
Parameters
----------
listA : list
List of lists.
val : number, optional
Value to separate the lists.
Returns
-------
list
A list with all lists concatenated into one.
Examples
--------
Compact a list of lists into a single list.
>>> from dbcollection.utils.pad import squeeze_list
>>> squeeze_list([[1,2], [3], [4,5,6]], -1)
[1, 2, -1, 3, -1, 4, 5, 6]
"""
concatA = [l + [val] for l in listA]
out = [li for l in concatA for li in l]
return out[:-1] | 8504cdcb3126ae2a65691ad87fd4ef45557c1b8e | 538,858 |
import re
def npm_package(package):
"""Convert the npm package name to remove unsupported character"""
# Scoped package names (with the @) use the same naming convention
# as the 'npm pack' command.
if package.startswith("@"):
return re.sub("/", "-", package[1:])
return package | 51b27592c5fa390b179280ef5a68b30f84b6053a | 429,996 |
def get_nearest_coords(cube, latitude, longitude, iname, jname):
"""
Uses the iris cube method nearest_neighbour_index to find the nearest grid
points to a given latitude-longitude position.
Args:
cube (iris.cube.Cube):
Cube containing a representative grid.
latitude (float):
Latitude coordinates of spot data site of interest.
longitude (float):
Longitude coordinates of spot data site of interest.
iname (str):
String giving the name of the y coordinates to be searched.
jname (str):
String giving the names of the x coordinates to be searched.
Returns:
Tuple[int, int]: Grid coordinates of the nearest grid point to the
spot data site.
"""
i_latitude = cube.coord(iname).nearest_neighbour_index(latitude)
j_longitude = cube.coord(jname).nearest_neighbour_index(longitude)
return i_latitude, j_longitude | 711cb2a7bd1dd85fc69992df87c972b5557e79ce | 53,350 |
def transform_to_bytes(content: str):
"""
Transform a string to bytes
Parameters
----------
- content (str): The string to convert
Raises
------
ValueError: the string is not valid
Returns
-------
- bytes: the converted string in bytes
"""
if isinstance(content, bytes):
return content
if isinstance(content, str):
return content.encode(encoding='utf-8')
else:
raise ValueError(("In order to transform the object to bytes "
"you need to provide a string.")) | cc3084c84444519f04c42a4f721fdd2272852deb | 661,363 |
def mk_url(address, port, password):
""" construct the url call for the api states page """
url = ''
if address.startswith('http://'):
url += address
else:
url += 'http://' + address
url += ':' + port + '/api/states?'
if password is not None:
url += 'api_password=' + password
return url | ff2a5714d447407a0fa8192eb2f61c9148ca23cb | 248,015 |
def _group(template, resource, action, proid):
"""Render group template."""
return template.format(
resource=resource,
action=action,
proid=proid
) | 0719b662bfc444188d268f809b47f2b57187af60 | 469,356 |
def filter_single_end_samples(df):
"""Filter single end samples from a dataframe
Parameters
----------
df: DataFrame
Dataframe as obtained from SRAb.sra_convert()
Returns
-------
df: DataFrame
DataFrame with only single end samples
"""
df = df[~df["library_strategy"].str.contains("PAIRED")]
return df | f91107939e6e9b8d3618ee84b0097d1eb1bba218 | 308,644 |
def reverse_labels_to_dict(labels: str) -> dict:
"""
Converts labels to dict, mapping a number to label
Args:
labels:
Returns: dictionary of number -> label
"""
return dict([(i, c) for (i, c) in enumerate(labels)]) | 9a6d982f02796dece2f1ffbb13bf563e6211c1f1 | 328,629 |
def xor(_a_: bool, _b_: bool) -> bool:
"""XOR logical operation.
:param _a_: first argument
:param _b_: second argument
:return: xor-ed value
"""
#pylint: disable-msg=superfluous-parens
return bool((not(_a_) and _b_) or (_a_ and not(_b_))) | f13a98b29471e928b1758131639ea574be4ebb00 | 233,707 |
def expandtabs(s, tabstop=8, ignoring=None):
"""Expand tab characters `'\\\\t'` into spaces.
:param tabstop: number of space characters per tab
(defaults to the canonical 8)
:param ignoring: if not `None`, the expansion will be "smart" and
go from one tabstop to the next. In addition,
this parameter lists characters which can be
ignored when computing the indent.
"""
if '\t' not in s:
return s
if ignoring is None:
return s.expandtabs(tabstop)
outlines = []
for line in s.split('\n'):
if '\t' not in line:
outlines.append(line)
continue
p = 0
s = []
for c in line:
if c == '\t':
n = tabstop - p % tabstop
s.append(' ' * n)
p += n
elif not ignoring or c not in ignoring:
p += 1
s.append(c)
else:
s.append(c)
outlines.append(''.join(s))
return '\n'.join(outlines) | 90220575225518c6db0082c157901dfd19448b9f | 647,379 |
def phredqual_to_prob(phredqual):
"""
Turns a phred quality into an error probability
>>> '%.2f' % phredqual_to_prob(20)
'0.01'
"""
assert isinstance(phredqual, int)
#assert phredqual >= 0, ("Phred-quality must be >= 0, but is %s" % phredqual)
# also works for phredqual=0
return 10**(-phredqual/10.0) | e1367f01146ca86c6badd244c24a8b4e66f2e69c | 254,451 |
def unpack_uncertainty_parameter(u):
"""Unpack uncertainty parameter (integer or single character).
See:
https://www.minorplanetcenter.net/iau/info/MPOrbitFormat.html
Args:
u (str): Packed uncertainty parameter.
Returns:
int: Uncertainty parameter, or -1 if invalid.
str: Empty string or letter if uncertainty parameter was invalid.
"""
try:
u = int(u)
u_flag = ''
except ValueError:
u_flag = u
u = -1
return u, u_flag | 17260dc1ee0b1bddde52431d61cf4b8ea8197816 | 630,495 |
def _prepare_response_data(message, data=None):
"""Prepare response output.
Returns a simple dict containing a key `message` and optionally a key `data`.
"""
output = {"message": message}
if data is not None:
output["data"] = data
return output | 95b342dd13fb4a8be40b26c8291d9ece35378d43 | 405,328 |
def do_not_convert_internal(f):
"""Decorator that marks internal functions which do not need conversion."""
setattr(f, '__ag_compiled', True)
return f | dc7ec04d637b4a0a7a4b23a0f61da5824468dcbb | 170,499 |
import time
def write_generator_lines(conctimes, concaz, concel, concva, concve, az_flags, el_flags):
"""
Produces a list of lines in the format necessary to upload to the ACU to complete a
generated scan. Params are the outputs of generate.
Params:
conctimes (list): List of times starting at most recently used time for the ACU
to reach associated positions
concaz (list): List of azimuth positions associated with times
concel (list): List of elevation positions associated with times
concva (list): List of azimuth velocities associated with times
concve (list): List of elevation velocities associated with times
az_flags (list): List of flags associated with azimuth motions at associated times
el_flags (list): List of flags associated with elevation motions at associated times
"""
fmt = '%j, %H:%M:%S'
start_time = 10.
true_times = [start_time + i for i in conctimes]
fmt_times = [time.strftime(fmt, time.gmtime(t)) + ('%.6f' % (t%1.))[1:] for t in true_times]
all_lines = [('%s;%.4f;%.4f;%.4f;%.4f;%i;%i\r\n' % (fmt_times[n], concaz[n], concel[n], concva[n], concve[n], az_flags[n], el_flags[n])) for n in range(len(fmt_times))]
return all_lines | 2fb671e5111a9b8ee7ca7f64f107e69a69a4dc2c | 640,485 |
def read_file(f):
"""
Read an entire file and return the contents
"""
with open(f) as f:
return f.read() | 5fd04024806fc529df539d051ab15da88eaf6562 | 106,964 |
def _get_issue_tracker(obj):
"""Get issue_tracker dict from obj if dict is based on existing tracker"""
if not obj:
return None
ret = obj.issue_tracker
if not ret.get('_is_stub'):
return ret
return None | 8e8d490f48d51be88706bf83121c4055c46ac5fd | 679,039 |
import re
def find_clades_by_name(tree, terminal=True, contains=[], contains_all=False,
pattern=None):
"""Find clades by their name and whether or not they are terminal clades.
Parameters
----------
terminal : bool
If True, only the terminal nodes of the `tree` are searched.
If False, only the non-terminal nodes are searched.
If None, all nodes are searched.
contains : iterable of str
Collection of strings whose presence will be checked in a clade name.
If `contains` is given, then `pattern` should not be given.
contains_all: bool
If True, all str specified in `contains` must be present in the clade
name.
If False, any str specified in `contains` gives a name of interest.
pattern : str
Regular expression pattern to match the clade name.
If `pattern` is given then `contains` should not be given.
Returns
-------
generator expression
Iterating over the returned generator will yield clades whose names
match the given search criteria.
Notes
-----
Slightly faster implementation than BioPython's Phylo package find_clades
search functionality.
"""
if contains:
logic = all if contains_all else any
return (clade for clade in tree.find_clades(terminal=terminal) if
clade.name and
logic(x in clade.name for x in contains))
elif pattern:
pattern = re.compile(pattern)
return (clade for clade in tree.find_clades(terminal=terminal) if
clade.name and
pattern.match(clade.name))
else:
return (clade for clade in tree.find_clades(terminal=terminal)) | 66cf7e92502eaa6ba21d49a1741cc1759a5536a7 | 586,534 |
from typing import Dict
def flatten_outputs_paging(raw_response: Dict) -> Dict:
"""
flatten the paging section of the raw_response - i.e removes 'cursors' key.
Args:
raw_response: response of an API call
Returns: outputs dict
"""
paging: Dict
paging = raw_response.get('paging', {})
outputs = raw_response.copy()
cursor_before = paging.get('cursors', {}).get('before')
cursor_after = paging.get('cursors', {}).get('after')
outputs.pop('paging', None)
outputs['paging'] = {
'before': cursor_before,
'after': cursor_after,
}
return outputs | eacf69e8aacd5c8d65979ea3712b72edf3c8a28e | 273,333 |
import json
def get_current_version_directory(top_dir):
"""
The current version of the data parameters and models is
kept in the current_version file in the top directory.
This function reads this file and returns the
current version directories.
"""
f = open(top_dir + "current_version", "r")
directories = json.load(f)
f.close()
return directories | 3b71fe198480451fb7bdbb939f0aef3f16847854 | 463,988 |
def max_len_string_encoded(d_rev):
"""
Calculate maximum length of huffman encodings
Args:
d_rev: dict encoded --> element
Returns:
maximum number of characters
"""
maxs = 0
for x in d_rev:
len_bit = len(x)
if(len_bit > maxs):
maxs = len_bit
return maxs | 1d3989cb55ba1feda53a6ca1f1bd78ffa2596b32 | 524,951 |
import torch
def focal_loss(output, target, gamma=2, alpha=0.25):
"""Compute focal loss for label arrays.
See https://arxiv.org/abs/1708.02002
Args:
output: (tensor) with shape (num_labels, h, w). Each value is a logit
representing a label (ie. class).
target: (tensor) with same shape as target. Has one if label is present,
zero otherwise.
Returns: (tensor) with single float value
"""
# Add epsilon to avoid overflow when p is 0.0
epsilon = 0.00001
p = torch.sigmoid(output) + epsilon
pt = (1-target) * (1-p) + target * p
alphat = (1-target) * (1-alpha) + target * alpha
bce = -torch.log(pt)
weights = alphat * (1 - pt).pow(gamma)
loss_arr = weights * bce
return loss_arr.sum() | c2071e9c28ad21f5ddd3409d44efd013b0fa960b | 483,209 |
import math
def dist_2d(x1, y1, x2, y2):
"""Returns the distance between (x1,y1) and (x2,y2)."""
return math.sqrt(math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2)) | cea845bf7be56ad14fa5576a320685e260b0166e | 592,244 |
from typing import Dict
from typing import List
def _custom_text_tokenizer(text: str, lang: str,
dictionary_terms: Dict[str, str]) -> List[str]:
"""Helper function to split text by a comma."""
del lang
del dictionary_terms
return text.split(',') | 8489d1d02e06670938ae73ac650ee0c08c0892ec | 60,838 |
def _abberation_correction(R):
"""Calculate the abberation correction (delta_tau, in degrees) given the Earth Heliocentric Radius (in AU)"""
return -20.4898/(3600*R) | 7fea54c0bc6fffc9e8ab40057b011da327fe0bd7 | 651,479 |
def unanimous(seq):
""" Checks that all values in an iterable object
are the same
Args:
seq: Iterable object
Returns
bool: True if all values are the same
"""
it = iter(seq.values())
try:
first = next(it)
except StopIteration:
return True
else:
return all(i == first for i in it) | 57b3164e9c71bd450ba03fe6ff37a53852328b9a | 471,879 |
import tempfile
import tarfile
def extract_temporary_directory(file_path):
"""Extract the source tar archive contents to a temporary directory.
Positional arguments:
file_path (str) -- the file path to the source package tar file
"""
temporary_directory = tempfile.mkdtemp()
source = tarfile.open(file_path)
source.extractall(temporary_directory)
source.close()
return temporary_directory | de8edd5961cf42f13bb7eba31b504ea5ef5c5d73 | 187,461 |
def timedelta_seconds(delta):
"""
Converts the given timedelta to seconds.
:type delta: timedelta
:rtype: float
"""
return delta.days * 24 * 60 * 60 + delta.seconds + \
delta.microseconds / 1000000.0 | a43133a46bbafe1831024685cd1ed1aa40e755f6 | 170,382 |
def answer_yn(question=None):
"""Prints a simple yes or no question and returns bool"""
while True:
answer = input(question or 'Are you sure? Y/n').lower()
if answer == '' or answer == 'y' or answer == 'yes':
return True
elif answer == 'n' or answer == 'no':
return False
print('Please enter a valid answer (Y/n)') | a35d55101e72608de635e13e34edb90a73ba6696 | 620,924 |
def bounding_box(X):
"""
Calculates the boundaries of a given dataset on all sides
Parameters:
X - a data matrix where each row is a dimensional array of an item to be clustered
Returns:
Two tuples, where the first contains the minimum and maximum x values, and the
second contains the minimum and maximum y values
"""
xmin, xmax = min(X,key=lambda a:a[0])[0], max(X,key=lambda a:a[0])[0]
ymin, ymax = min(X,key=lambda a:a[1])[1], max(X,key=lambda a:a[1])[1]
return (xmin,xmax), (ymin,ymax) | 98b3b9d1e5f31a2e6375a34e6ba24d4b985ff0ec | 618,544 |
from pathlib import Path
def getSubdirs(path):
"""
Get all subdirectories
Args:
path (:class:`pathlib.Path`): path to get subdirectories from
Returns:
:class:`list`
"""
return [x for x in Path(path).iterdir() if x.is_dir()] | 90ad1a8e2c1b6da627ce0916565c3ed80f491dee | 536,098 |
def set_log_range(module, releases, earlier, later, releases_list):
"""
Set range to get logs for from parsed args or defaults if not given.
Args:
module(str): Module to get logs for
releases(list of str): Releases range
earlier(str): Specified start point
later(str): Specified end point
releases_list(list of str): List of releases from repository
Raises:
:class:`exception.ValueError`: Module <module> does not have a release
<start>/<end>
Returns:
str, str: Start and end point to list releases for
"""
if releases and len(releases) == 2:
start = releases[0]
end = releases[1]
elif earlier:
start = earlier
end = 'HEAD'
elif later:
start = ""
end = later
else:
start = ""
end = 'HEAD'
# Check that releases exist
if start not in releases_list and start != "":
raise ValueError("Module " + module + " does not have a release " +
start)
if end not in releases_list and end != 'HEAD':
raise ValueError("Module " + module + " does not have a release " +
end)
return start, end | 0a8e938c9cfb31c30f9dcc181bdf4ee8757cf6ad | 287,293 |
def convert_traces_mapping(traces_raw, mapping):
"""
Convert traces activity name using a given mapping
Parameters
-----------------------
traces: List,
List of traces
mapping: dict:
Dictionary containing activities mapping
Returns
-----------------------
List of converted traces
"""
traces = []
for trace in traces_raw:
current_trace = []
for act in trace:
current_trace.append(mapping[act])
traces.append(current_trace)
return traces | 13f6513cfc0054a96c3cb298c2551ba1f9871780 | 405,404 |
from typing import Dict
from typing import Any
from typing import List
def handle_foreign_rows(
card_data: Dict[str, Any], card_uuid: str
) -> List[Dict[str, Any]]:
"""
This method will take the card data and convert it, preparing
for SQLite insertion
:param card_data: Data to process
:param card_uuid: UUID to be used as a key
:return: List of dicts ready for insertion
"""
foreign_entries = []
for entry in card_data["foreignData"]:
foreign_entries.append(
{
"uuid": card_uuid,
"flavorText": entry.get("flavorText", ""),
"language": entry.get("language", ""),
"multiverseId": entry.get("multiverseId", ""),
"name": entry.get("name", ""),
"text": entry.get("text", ""),
"type": entry.get("type", ""),
}
)
return foreign_entries | b723cbe82d994be9a0102d8ee4da89d436bdbc93 | 453,972 |
from typing import Type
from typing import Any
from typing import Optional
from typing import Dict
import dataclasses
def _has_default_value(cls: Type[Any], field: str) -> Any:
"""Returns if the given field of a class has a default value (requires a
@dataclass-based class, others will silently return 'False')
"""
dataclass_fields: Optional[Dict] = getattr(
cls, "__dataclass_fields__", None)
if dataclass_fields:
field_entry: Optional[dataclasses.Field] = dataclass_fields.get(
field, None)
if field_entry:
has_value = field_entry.default is not dataclasses.MISSING
has_factory = field_entry.default_factory is not dataclasses.MISSING
return has_value or has_factory
return False | 96ab58e826abd3c35edb29ccae9eb3e612a62fbb | 150,478 |
def my_dummy_dir(tmpdir_factory):
"""An empty directory."""
dummy_dir = tmpdir_factory.mktemp('singlecell_dummy')
return dummy_dir | aef5a2ff31127eec2d7a76b1c3b8e2d9678ebe1f | 529,615 |
def register_car(registration, company, plate):
"""
Registers a new car.
NOTE: this function should not modify the registration dictionary that is
given, instead it should create a new dictionary.
NOTE: this function should not introduce duplicates in the registration
system. Specifically, if a car is already registered with the given
company it should return an identical registration information. If the car
is registered with a different company it should remove the first
registration.
NOTE: if the company is not listed in the dictionary, it should not
introduce it. Instead it should just return an identical registration.
E.g., register_car({'Stark Industries': ['IRNMN']}, 'Stark Industries',
'JARVIS')
is {'Stark Industries': ['IRNMN', 'JARVIS']}
E.g., register_car({'Stark Industries': ['IRNMN']}, 'Wayne Enterprises',
'IMBTMN')
is {'Stark Industries': ['IRNMN']}
:param registration: preexisting registration information
:param company: company to register the car for
:param plate: license plate of the car to register
:return: new registration information dictionary with added registration
:rtype: dict
"""
my_output_dict = {**registration}
my_company_list = []
my_plate_list = []
my_dual_list = []
for my_key, my_value in registration.items():
my_company_list.append(my_key)
my_plate_list.append(my_value)
my_dual_list.append([my_key, my_value])
my_plate_list = [x for sub in my_plate_list for x in sub]
if company in my_company_list and plate not in my_plate_list:
my_output_dict[company].append(plate)
elif company in my_company_list and plate in my_plate_list:
for my_list_item in my_dual_list:
if my_list_item[0] == company:
my_list_item[1].append(plate)
for my_list_item in my_dual_list:
if plate in my_list_item[1] and my_list_item[0] != company:
my_list_item[1].remove(plate)
for my_row in my_dual_list:
my_output_dict[my_row[0]] = list(set(my_row[1]))
return my_output_dict | a749c719152ead6c6cad83aa83c82f6efd1bf3c9 | 280,082 |
def convert_keys_to_string(dictionary):
"""Recursively converts dictionary keys to strings."""
if not isinstance(dictionary, dict):
return dictionary
return dict((str(k), convert_keys_to_string(v)) for k, v in dictionary.items()) | 8da7c34e48944b6f9c36e13e73f3cbf1406c3a0e | 524,325 |
def find_project(testrun_url):
"""
Find a project name from this Polarion testrun URL.
:param testrun_url: Polarion test run URL
:returns: project name eg "CEPH" or "ContainerNativeStorage"
"""
url_suffix = testrun_url[59:]
index = url_suffix.index('/')
return url_suffix[:index] | a19019846fa084398a4967cb99417e7aebc90499 | 5,230 |
import torch
def get_masks(slen, lengths, causal):
"""
Generate hidden states mask, and optionally an attention mask.
"""
assert lengths.max().item() <= slen
bs = lengths.size(0)
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
mask = alen < lengths[:, None]
# attention mask is the same as mask, or triangular inferior attention (causal)
if causal:
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
else:
attn_mask = mask
# sanity check
assert mask.size() == (bs, slen)
assert causal is False or attn_mask.size() == (bs, slen, slen)
return mask, attn_mask | f71942a5d089372e8bbff6d08b8dab9df86e375a | 668,238 |
from typing import Any
def minmax(val: Any, minval: Any, maxval: Any) -> Any:
"""Return bound for the value within min and max"""
return max(min(val, maxval), minval) | 2c92aa5845e633be747303a2546ef8f81f3c3551 | 130,654 |
from typing import Counter
def get_number_per_class_label(arr):
"""
Function that returns the total number of images per (cloud) class labels,
ignoring the missing entries.
Parameters
----------
arr : array-like
The Image_Label column of the training.csv (after dropping the missing
entries, where the entries are str dtype in the form "XXX.jpg_(class_name)".
Here class_name is {Fish, Flower, Gravel, Sugar}
Returns
-------
number_per_labels : Counter
A Counter object with the total number of images per (cloud) class labels.
Examples
--------
>>> arr = pd.DataFrame({'A': ["1.jpg_Fish", "1.jpg_Sugar", "2.jpg_Flower"]})
>>> get_number_per_class_label(arr.A)
Counter({'Fish': 1, 'Sugar': 1, 'Flower': 1})
"""
class_per_entries = arr.apply(lambda x: str.split(x, '_')[1])
number_per_labels = Counter(class_per_entries)
return number_per_labels | 08df218f786dcc5d1d6c90dcad0fee1e3d715540 | 346,659 |
import json
def is_blacklisted(address):
"""
Checks if a particular address is known to be Fraudulent
:param str address: Address to check for in blacklist
:return: Boolean of whether the address is in the black list
"""
with open('blacklist.json') as blacklist_f:
blacklist = json.load(blacklist_f)
for entry in blacklist:
if entry['address'] == address:
return True
return False | 3477a341b43e26a68f03a88385ab72959f59b78a | 415,008 |
def count_mismatches_before_variant(reference_prefix, cdna_prefix):
"""
Computes the number of mismatching nucleotides between two cDNA sequences before a variant
locus.
Parameters
----------
reference_prefix : str
cDNA sequence of a reference transcript before a variant locus
cdna_prefix : str
cDNA sequence detected from RNAseq before a variant locus
"""
if len(reference_prefix) != len(cdna_prefix):
raise ValueError(
"Expected reference prefix '%s' to be same length as %s" % (
reference_prefix, cdna_prefix))
return sum(xi != yi for (xi, yi) in zip(reference_prefix, cdna_prefix)) | 59754e259de5331f8b330bfa4b5651544ee0d3d4 | 654,788 |
def parse_u24le(data):
""" Parse a 24-bit little endian number """
return data[0] | (data[1] << 8) | (data[2] << 16) | fceed0c2e5ea717df3daee1cc652df0f8b9a7048 | 107,789 |
import re
def tokenize_per_cluster_args(args, nclusters):
"""
Seperate per cluster arguments so that parsing becomes easy
Params:
args: Combined arguments
nclusters(int): total number of clusters
Returns:
list of lists: Each cluster conf per list
ex: [[cluster1_conf], [cluster2_conf]...]
"""
per_cluster_argv = list()
multi_cluster_argv = list()
common_argv = list()
cluster_ctx = False
regexp = re.compile(r"--cluster[0-9]+")
index = 0
for i in range(1, nclusters + 1):
while index < len(args):
if args[index] == f"--cluster{i}":
cluster_ctx = True
elif regexp.search(args[index]):
cluster_ctx = False
break
if cluster_ctx:
per_cluster_argv.append(args[index])
else:
common_argv.append(args[index])
index = index + 1
multi_cluster_argv.append(per_cluster_argv)
per_cluster_argv = []
return multi_cluster_argv, common_argv | be4c8d0ef01a2d2431f46434bd1ca88127b75cb6 | 19,640 |
def integrate_euler_explicit(x_t, dx_dt, dt):
"""
Explicit euler integration
x(t+1) = x(t) + dx/dt * dt
:param x_t: known value at timestep t
:param dx_dt: derivative dx/dt
:param dt: timestep
:return: x(t+1); solution for the time t+1
"""
x_tp1 = x_t + dx_dt * dt
return x_tp1 | 862feb02512142da98929aedc97707853b41242a | 39,812 |
import itertools
def pairwise(iterable):
"""
Takes an Iterable and returns an iterable of tuples that pair each of the elements
with its respective successor.
pairwise(range(5)) becomes [(0, 1), (1, 2), (2, 3), (3, 4)]
"""
t1, t2 = itertools.tee(iterable, 2)
next(t2)
return zip(t1, t2) | b105ad54596b2f7238def69b2056e25470b75da9 | 392,079 |
def profile_likelihood(likelihood, *dims):
"""
Compute the profile (log)likelihood for
one or more parameters
Parameters
----------
likelihood : n-d array_like
(log)likelihood
grid_steps : 1-d array_like
the resolution (step length) of each
dimension of the regular grid
*dims : int, int, ...
parameters (grid dimensions) for which
to compute the profile (log)likelihood
Returns
-------
1-d or n-d array
values of the profile (log)likelihood
on the regular grid. The number of
dimensions depends on the number
of `*dims` arguments given.
"""
Lp = likelihood.copy()
ax = 0
for d in range(likelihood.ndim):
if d in dims:
ax += 1
continue
Lp = Lp.max(axis=ax)
return Lp | d6d7a305b41265041d1dbced095854ae76357d5d | 348,435 |
def binary_search(lst: list, value: object) -> int:
"""
Return the index <i> of the first occurance of <value>
in the list <lst>, else return -1.
Precondition: assume that the list is sorted
"""
start = 0
end = len(lst) - 1
while start <= end:
mid = (start + end) // 2
if lst[mid] < value:
start = mid + 1
else:
end = mid - 1
if start == len(lst) or lst[start] != value:
return -1
else:
return start | d9f5c0ebdf158a2639042a8238850c50e010a3e3 | 280,310 |
def _find_player(player_index, summary):
"""Find player in summary data."""
player = [player for player in summary['players'] if player['index'] == player_index]
if not player:
raise ValueError('player not found')
return player[0] | f821d3384986feb98aafb2f3f0cfaa6a056920c7 | 421,530 |
def BHS_standard(err):
"""
Computes the BHS Standard metric
Arguments:
err {array} -- array of absolute error
Returns:
tuple -- tuple of percentage of samples with <=5 mmHg, <=10 mmHg and <=15 mmHg error
"""
leq5 = 0
leq10 = 0
leq15 = 0
for i in range(len(err)):
if(abs(err[i])<=5):
leq5 += 1
leq10 += 1
leq15 += 1
elif(abs(err[i])<=10):
leq10 += 1
leq15 += 1
elif(abs(err[i])<=15):
leq15 += 1
return (leq5*100.0/len(err), leq10*100.0/len(err), leq15*100.0/len(err)) | a2a71a5fea63c7bc6965d54a7d7dcae7333e1838 | 53,596 |
def get_shape(obj):
"""
Get the shape of a :code:'numpy.ndarray' or of a nested list.
Parameters(obj):
obj: The object of which to determine the shape.
Returns:
A tuple describing the shape of the :code:`ndarray` or the
nested list or :code:`(1,)`` if obj is not an instance of either
of these types.
"""
if hasattr(obj, "shape"):
return obj.shape
elif type(obj) == list:
if obj == []:
return (0,)
else:
return (len(obj),) + get_shape(obj[0])
else:
return () | d02d755f4b9e4a4dbde6c87ddfe0b5729a8c158e | 705,152 |
from typing import Dict
from typing import List
def get_unique_relevant_docs_count(
question_id_to_docs: Dict[str, List[dict]], relevance_threshold: float
) -> float:
"""Given a dictionary mapping a question id to a list of docs, find the number of unique relevant docs."""
unique_relevant_docs = set()
for qid, docs in question_id_to_docs.items():
for doc in docs:
if len(doc['answer']) > 0 and doc['f1'] >= relevance_threshold:
unique_relevant_docs.add(doc['docid'])
return len(unique_relevant_docs) | 90df20570d18dc454eaf7265debe464f1cc3e6c2 | 297,145 |
def bubble_sort(arr):
"""
Passes over a list comparing two elements and repeats with a smaller,
sliced off end of the list each iteration until sorted.
"""
for i in range(len(arr)):
for j in range(len(arr) - i - 1):
# swap if left element is greater than right element
if (arr[j] > arr[j+1]):
tmp = arr[j]
arr[j] = arr[j+1]
arr[j+1] = tmp
return arr | ec4351cbf497623c60e283a3de0f9f29f3b20320 | 601,895 |
def read_file(file_name):
"""
This function returns the contents of the file named
file_name.
"""
with open(file_name,"r") as file:
return file.read() | c6a52b69c611f6d093a59b709968562093e438b1 | 548,412 |
def searchfile (jobs, machines, path = "../tests/"):
"""
Given a number of jobs and a number of machines that define
the complexity of a problem, this method looks for the file
with the correct benchmarks.
If the exactly specified number of jobs and machine is not found,
an exception is raised.
"""
try:
filename = f"t_j{jobs}_m{machines}.txt"
f = open(path + filename)
f.close()
return filename
except:
raise Exception("Bechmarks with required caracteristics not found.") | ead4284c6cee76028b144053797cd6403bf984b5 | 332,860 |
def base_content(seq: str, base: str) -> float:
"""
Compute the fraction of <base> in the <seq>
Args
seq:
DNA sequence
base:
'A' gives the A content; 'GC' gives the GC content
"""
seq = seq.upper()
base = base.upper()
ret = 0
for b in set(base):
ret += seq.count(b) / len(seq)
return ret | fa7ef460db8c86f1ffbe220496e6f325bc8e708c | 322,567 |
def _lookup_attributes(glyph_name, data):
"""Look up glyph attributes in data by glyph name, alternative name or
production name in order or return empty dictionary.
Look up by alternative and production names for legacy projects and
because of issue #232.
"""
attributes = (
data.names.get(glyph_name)
or data.alternative_names.get(glyph_name)
or data.production_names.get(glyph_name)
or {}
)
return attributes | 2706f0da8d1fc780c7afb8cf4251d24b09e0fe88 | 82,713 |
def _coo_gen_triples(A):
"""Converts a SciPy sparse matrix in **Coordinate** format to an iterable
of weighted edge triples.
"""
row, col, data = A.row, A.col, A.data
return zip(row, col, data) | 05cc7702e2f19379ead29149e9610b2ac1c95214 | 439,904 |
def _extract_match_id(match_json):
"""
Extract the match_id from json response.
{
"matches": [
{
"id": "0000...",
"match_id": 1313,
"similarity": "001000"
}
]
}
"""
matches = match_json.get('matches', [])
if len(matches) == 1:
return matches[0].get('match_id', None)
return None | 60109a70aceae4f5074338b268f498da56af65f0 | 635,362 |
import re
def quoted_str(x):
"""
Strips the string representation of ``x`` to make it suitable for
a ``dot2tex`` string, and especially a node label (``dot2tex``
gets confused by newlines, and braces)
EXAMPLES::
sage: sage.graphs.dot2tex_utils.quoted_str(matrix([[1,1],[0,1],[0,0]]))
'[1 1]\\n\\\n[0 1]\\n\\\n[0 0]'
sage: print(sage.graphs.dot2tex_utils.quoted_str(matrix([[1,1],[0,1],[0,0]])))
[1 1]\n\
[0 1]\n\
[0 0]
"""
return re.sub("\n",r"\\n\\"+"\n", re.sub("\"|\r|}|{","", str(x))) | e9e5ef1eedb8c669756606e2c771df5cc69b6c90 | 602,492 |
def mjpeg_info_cmp(x,y):
"""
Comparison function for sorting a list of (camera_name, camera_info) pairs.
"""
name_x = x[0]
name_y = y[0]
value_x = int(name_x.replace('camera_', ''))
value_y = int(name_y.replace('camera_', ''))
if value_x > value_y:
return 1
elif value_y > value_x:
return -1
else:
return 0 | 31d98998bd3ece11a591b841505d50e67af68182 | 62,060 |
import six
def is_valid(value):
"""Validation to ensure timestamp is a string.
"""
if not isinstance(value, six.string_types):
raise ValueError('Timestamp should be a String')
return True | 20079742e5cd169ce8c21d1799df36c76f774d4d | 343,707 |
def empty_table(unique_database, request):
"""Create an empty table within the test database before executing test.
The table will have the same name as the test_function itself. Setup and teardown
of the database is handled by the unique_database fixture.
Args:
unique_database: pytest fixture defined in conftest.py
request: standard pytest request fixture
Returns:
fq_table_name (str): the fully qualified name of the table: : dbname.table_name
"""
table_name = request.node.name
fq_table_name = '.'.join([unique_database, table_name])
stmt = "CREATE TABLE %s (i integer, s string)" % fq_table_name
request.instance.execute_query_expect_success(request.instance.client, stmt,
query_options={'sync_ddl': 1})
return fq_table_name | 5bbb079be2e2c1db2e55843937ac129e7317b3e3 | 679,238 |
def timedelta_to_hms(value):
"""
Return hours, minutes, seconds from a timedelta object
"""
hours, remainder = divmod(int(value.total_seconds()), 3600)
minutes, seconds = divmod(remainder, 60)
return hours, minutes, seconds | a9452da23670d7e5b8933c1728b956ea28aa8215 | 370,182 |
def get_fleet_instances(c, fleet_name):
"""Get all Spot Fleet instances for a Spot Fleet request."""
instances = []
next_token = None
while True:
if next_token is None:
resp = c.describe_spot_fleet_instances(SpotFleetRequestId=fleet_name)
else:
resp = c.describe_spot_fleet_instances(SpotFleetRequestId=fleet_name,
NextToken=next_token)
instances.extend(resp['ActiveInstances'])
next_token = resp.get('NextToken', None)
if next_token is None: break
return instances | 0379889f2aafbc8663b4ce204ff87f361f9df311 | 343,579 |
def _attachment() -> str:
"""Returns a query term matching messages that have attachments."""
return 'has:attachment' | 7a7882faf7b97e026da82379506ac71f6d2839e6 | 179,585 |
from typing import OrderedDict
def display(choices, value):
"""
Get the display value for the selected choice. ie. get_FIELD_display()
:type choices: dict|tuple
:param choices: FIELD_CHOICE
:param value: the value of the tuple
:return: string
"""
if not choices:
return value
if isinstance(choices, tuple):
choices = OrderedDict(choices)
return choices.get(value, value) | 728fd82cf6b6e9021b03842eef8e70940e30c734 | 152,488 |
import ipaddress
def is_ipv6_address(ip):
"""Returns True/False if a string is a valid IPv6 address."""
ip = str(ip)
try:
if ipaddress.ip_address(ip).version == 6:
return True
else:
return False
except ValueError as e:
print(f"{e}") | dc8a6bda250dbe8f3197577e7b93dc4cc58852d0 | 380,307 |
def memory_usage(job):
"""
Perform memory usage verification.
:param job: job object
:return: exit code (int), diagnostics (string).
"""
exit_code = 0
diagnostics = ""
return exit_code, diagnostics | 80ebee64aacd30a79a0a879933b9c49abf3066d0 | 359,893 |
def is_hidden_file(filename):
"""Does the filename start with a period?"""
return filename[0] == '.' | 534d3afe9b45393fb35866014b11eac55100d6ae | 667,143 |
import yaml
import json
def get_json_data_from_file(filename):
"""Return json object from a json or yaml file"""
if filename.lower().endswith(".yaml"):
with open(filename, "rb") as fp:
yaml_data = fp.read()
# io.BytesIO(json.dumps(yaml.load(yaml_data, Loader=yaml.FullLoader)).encode())
return yaml.load(yaml_data, Loader=yaml.FullLoader)
else:
with open(filename, "r") as f:
return json.load(f) | a685b9ec8c3c335944b1188970e3647ab4a545a3 | 144,383 |
from typing import Dict
import yaml
def read_config(path: str) -> Dict:
"""Load config based on provided filepath.
Param
---------
path: str
Path to provided file.
Returns
---------
Dict
configuration file in a dictionary form.
"""
with open(path, "rb") as confile:
config = yaml.safe_load(confile)
return config | 6df96effbdf3bf39f8309994b4c44cd8f1e4f5a7 | 114,661 |
def _maybeEncode(someStr):
"""
Encode `someStr` to ASCII if required.
"""
if isinstance(someStr, str):
return someStr.encode('ascii')
return someStr | 2b284e7aaa8fa2c2dcd0627a4b97e1fd5ca1bbfe | 376,845 |
def length(value):
"""
Find the length of a value
:type value: variable
:param value: The value to find the length of
"""
# Try to return the length
return len(value) | a7d842f432743eb8cbab137d19fb4a9937af7021 | 665,516 |
def ifstr(columnname, repls):
"""Returns a mipmap function string with encapsulated if statements
for replacing given values of a column with predefined ones.
This is used in a categorical/nominal column type
Arguments:
:param columnname: the column name(str)
:param repls: list with Replacement namedtuples
Replacement('source', 'target')
"""
local_repls = repls.copy()
if len(repls) == 1:
return 'if({} == \"{}\", \"{}\", null())'.format(columnname, repls[0].source, repls[0].target)
elif len(repls) > 1:
current = local_repls.pop(0)
return 'if({} == \"{}\", \"{}\", {})'.format(columnname,
current.source,
current.target,
ifstr(columnname, local_repls)) | 430103a764efe8bc4bb4a0d5c89b5dad9fdebe6e | 213,112 |
def _find_physio(subject, session, bids_path):
"""Get physilogy data from BIDS dataset."""
physio_path = list(
bids_path.glob(f"**/sub-{subject}_ses-{session}*_physio.tsv.gz")
)
if physio_path and len(physio_path) == 1:
return physio_path[0]
else:
raise ValueError("No associated physiology file") | a5938d6994f8898bdd204ac974f7e7d3374e3ebe | 687,961 |
import re
def delete_last_cell_if_empty(text: str) -> str:
"""Delete last cell in file if it contains no code and no comment.
--- before ---
# %%
some_code = 'here'
# %%
--- after ---
# %%
some_code = 'here'
"""
# \Z matches only at end of string
return re.sub(r"(?m)\s+^# %%\s*\Z", r"\n", text) | aae453c28d8784cfb5b91ca33d1a4ab91fd4501f | 439,316 |
from urllib.request import urlopen
import gzip
def tomso_open(filename, *args, **kwargs):
"""Wrapper function to open files ending with `.gz` with built-in
`gzip` module or paths starting with `http` using
`urllib.request.urlopen`, otherwise use normal open. `.gz` and
normal modes take the same arguments as `open` and `gzip.open` and
return a file object."""
if filename.startswith('http'):
return urlopen(filename)
elif filename.lower().endswith('.gz'):
return gzip.open(filename, *args, **kwargs)
else:
return open(filename, *args, **kwargs) | 73e27a7e2b6ac928f3f368b129c115efb3c9ec15 | 121,680 |
def read_secret(session, *, secret_id):
"""
Retrieve a secret from Secrets Manager.
"""
secrets_client = session.client("secretsmanager")
return secrets_client.get_secret_value(SecretId=secret_id)["SecretString"] | 74d388f58c1778bd30fb9b2d991161d0600a68d6 | 467,846 |
def is_string_int(string):
"""
Checks if the string is a valid representation of an integer
Examples
--------
> is_string_int('12')
> True
>
> is_string_int('a')
> False
"""
try:
int(string)
return True
except ValueError:
return False | f857ae0ed69d6f12ce1a6f5984811b822bd94fe2 | 503,386 |
def add_matrices2D(mat1, mat2):
"""Adds two matrices element-wise"""
rowLen1 = len(mat1)
colLen1 = len(mat1[0])
rowLen2 = len(mat2)
colLen2 = len(mat2[0])
if (rowLen1 != rowLen2) or (colLen1 != colLen2):
return None
ans = [[0] * colLen1 for i in range(rowLen1)]
for i in range(rowLen1):
for j in range(colLen1):
ans[i][j] = mat1[i][j] + mat2[i][j]
return ans | fc0feb4eaec2e856ff4a25fc763d130487e14fda | 455,941 |
def to_resp_array(*parts: bytes):
"""Builds a RESP request"""
request = bytearray(b'*%d\r\n' % len(parts))
for part in parts:
request += b'$%d\r\n' % len(part)
request += b'%b\r\n' % part
return bytes(request) | 9b0368da6de82a4c2f280fb64d3bc4974c87ff94 | 306,969 |
def city_country(name, country):
"""Return neatly formatted city's name and country it is in."""
return f"{name.title()}, {country.title()}" | a313372109deb25595f1e3428b725c030390d763 | 468,822 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.