content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def quick_sort(nums): """ 快速排序: 从数组中找出一个基准,把数组与基准比较分成大小两组,递归排序 时间复杂度: O(n^2) @param nums: 无序数组 @return: 升序数组 >>> import random >>> nums = random.sample(range(-50, 50), 50) >>> quick_sort(nums) == sorted(nums) True >>> quick_sort([0, 5, 2, 3, 2]) == sorted([0, 5, 2, 3, 2]) True >>> quick_sort([]) [] """ if len(nums) < 2: return nums # cur = nums.pop() cur = nums[0] low_list = [] high_list = [] for num in nums[1:]: (high_list if num > cur else low_list).append(num) # if num > cur: # high_list.append(num) # else: # low_list.append(num) return quick_sort(low_list) + [cur] + quick_sort(high_list)
447470d5bcd372958df82514dc20750a8fef56d4
211,717
def get_program_frames(command_dicts): """ Parces command_dicts to produce a list of frames that represent the programs timestep :param command_dicts: list formatted by mimic_program containing dicts of program info at each program timestep :return frames: list """ frames = [] for command in command_dicts: frames.append(command['Frame']) return frames
8203b043752fad3ba379f21fa5114e2dcc98e830
484,543
def code() -> str: """ Example G-code module, a drawing of the number "5". Please simulate first, before milling. """ return """ G90 G17 G00 X0 Y0 G00 X0 Y12.5 G02 I7.5 J0 X7.5 Y20 G00 X17.5 Y20 G02 I0 J-7.5 X25.001 Y12.5 G00 X25.001 Y0 G00 X45 Y0 G00 X45 Y20 """
5c84c5fdca6a3fce959a11f47716fde4db199edb
85,781
def widget_type(field): """Determine a field's widget type on the fly. :rtype: str Example: .. code:: {% if field|widget_type == "Textarea" %} ... {% endif %} """ try: return field.field.widget.__class__.__name__ except AttributeError: return field.widget.__class__.__name__
f53cdef299b2f945c98d30607abaeeab4307e912
65,461
def _boundaries_to_sizes(a, boundaries, axis): """Converting boundaries of splits to sizes of splits. Args: a: the array to be split. boundaries: the boundaries, as in np.split. axis: the axis along which to split. Returns: A list of sizes of the splits, as in tf.split. """ if axis >= len(a.shape): raise ValueError('axis %s is out of bound for shape %s' % (axis, a.shape)) total_size = a.shape[axis] sizes = [] sizes_sum = 0 prev = 0 for i, b in enumerate(boundaries): size = b - prev if size < 0: raise ValueError('The %s-th boundary %s is smaller than the previous ' 'boundary %s' % (i, b, prev)) size = min(size, max(0, total_size - sizes_sum)) sizes.append(size) sizes_sum += size prev = b sizes.append(max(0, total_size - sizes_sum)) return sizes
7aedf75a6431be5d613eea74f65677858cd5be70
289,006
def format_nmmpmat(denmat): """ Format a given 7x7 complex numpy array into the format for the n_mmp_mat file Results in list of 14 strings. Every 2 lines correspond to one row in array Real and imaginary parts are formatted with 20.13f in alternating order :param denmat: numpy array (7x7) and complex for formatting :raises ValueError: If denmat has wrong shape or datatype :returns: list of str formatted in lines for the n_mmp_mat file """ if denmat.shape != (7, 7): raise ValueError(f'Matrix has wrong shape for formatting: {denmat.shape}') if denmat.dtype != complex: raise ValueError(f'Matrix has wrong dtype for formatting: {denmat.dtype}') #Now we generate the text in the format expected in the n_mmp_mat file nmmp_lines = [] for row in denmat: nmmp_lines.append(''.join([f'{x.real:20.13f}{x.imag:20.13f}' for x in row[:3]]) + f'{row[3].real:20.13f}') nmmp_lines.append(f'{row[3].imag:20.13f}' + ''.join([f'{x.real:20.13f}{x.imag:20.13f}' for x in row[4:]])) return nmmp_lines
a39dfac693e4acd7632deebef416d27cf18df71e
691,392
import torch def normalized_columns_initializer(weights, std=1.0): """ Weights are normalized over their column. Also, allows control over std which is useful for initialising action logit output so that all actions have similar likelihood """ out = torch.randn(weights.size()) out *= std / torch.sqrt(out.pow(2).sum(1, keepdim=True)) return out
14a648d2060aab510794b957c1d672f1c91b88ae
261,593
import torch def safe_cholesky(A, epsilon=1.0e-8): """ Equivalent of torch.linalg.cholesky that progressively adds diagonal jitter to avoid cholesky errors. """ if A.shape == (1, 1): return A.sqrt() try: return torch.linalg.cholesky(A) except RuntimeError as e: Aprime = A.clone() jitter_prev = 0.0 for i in range(5): jitter_new = epsilon * (10 ** i) Aprime.diagonal(dim1=-2, dim2=-1).add_(jitter_new - jitter_prev) jitter_prev = jitter_new try: return torch.linalg.cholesky(Aprime) except RuntimeError: continue raise e
baf05fdb9da0f576b8973345cad5e96dae3c2b24
244,933
def convert_string_to_bool(value): """ Converts the string values "True" or "False" to their boolean representation. :param value: The string. :type value: str. :returns: True, False """ if(value != None) and ((value == True) or (value == "True") or (value == "true")): return True else: return False
e9bd0b7139b26d7efb54124cd20c87de8e571174
251,891
def build_v07_spec(config_spec, project, email, zone, setup_project): """Create a v0.7 or later KFDef spec.""" gcp_plugin = None for p in config_spec["spec"]["plugins"]: if p["kind"] != "KfGcpPlugin": continue gcp_plugin = p if not gcp_plugin: raise ValueError("No gcpplugin found in spec") gcp_plugin["spec"]["project"] = project gcp_plugin["spec"]["email"] = email gcp_plugin["spec"]["zone"] = zone gcp_plugin["spec"]["skipInitProject"] = not setup_project return config_spec
1aa43bc9c167559548ede1eb94a24a86e5b33baa
268,493
def string_edit_distance(s1, s2): """ Calculate the Levenshtein edit-distance between two strings. The edit distance is the number of characters that need to be substituted, inserted, or deleted, to transform s1 into s2. For example, transforming "rain" to "shine" requires three steps, consisting of two substitutions and one insertion: "rain" -> "sain" -> "shin" -> "shine". These operations could have been done in other orders, but at least three steps are needed. :param s1, s2: The strings to be analysed :type s1: str :type s2: str :rtype int """ def _edit_dist_init(len1, len2): lev = [] for i in range(len1): lev.append([0] * len2) # initialize 2-D array to zero for i in range(len1): lev[i][0] = i # column 0: 0,1,2,3,4,... for j in range(len2): lev[0][j] = j # row 0: 0,1,2,3,4,... return lev def _edit_dist_step(lev, i, j, c1, c2): a = lev[i - 1][j] + 1 # skipping s1[i] b = lev[i - 1][j - 1] + (c1 != c2) # matching s1[i] with s2[j] c = lev[i][j - 1] + 1 # skipping s2[j] lev[i][j] = min(a, b, c) # pick the cheapest # set up a 2-D array len1 = len(s1) len2 = len(s2) lev = _edit_dist_init(len1 + 1, len2 + 1) # iterate over the array for i in range(len1): for j in range(len2): _edit_dist_step(lev, i + 1, j + 1, s1[i], s2[j]) return lev[len1][len2]
59c32d67558b76201457827c0251c10cc097f6be
133,382
def list(conn): """ Given an connection, return a list of providers. """ try: return conn.get(url='/auth-providers')['providers'] except SystemError as e: raise e
afc14be81cddc1492e7c095ffb94f3d55ff34acb
274,649
def format_int(n: int) -> bytes: """Format an integer using a variable-length binary encoding.""" if n < 128: a = [n] else: a = [] while n > 0: a.insert(0, n & 0x7f) n >>= 7 for i in range(len(a) - 1): # If the highest bit is set, more 7-bit digits follow a[i] |= 0x80 return bytes(a)
f9599fc66ab16a6285c5f0fc7f7a9ab5dc0080f3
491,443
def read_xml_schema(xml_schema): """ returns xml_schema (XSD) file as a string """ with open(xml_schema, 'r') as schema_file: schema = schema_file.read() return schema
86ef8651a0efb3c86aeed80964bc96a2d0485f82
350,034
import pytz from datetime import datetime def convert_unix_ts(timestamp, timezone = "Europe/Berlin"): """Utility function to help converting flespi utc unix time output to human readable. Parameters: ----------- timestamp: int Unix time generated py flespi platform. timezone: str Time zone of the user. Defaoults to: Europe/Berlin Returns: -------- date: str Human readable time with a following format: %Y-%m-%d %H:%M:%S """ timezone = pytz.timezone(timezone) date = datetime.fromtimestamp(timestamp, timezone) return date.strftime('%Y-%m-%d %H:%M:%S')
0f869f311e41b26cc897c2c63611b9a09e4ddcb2
660,519
def tokenize(tokenizer, data, max_length = 128): """ Iterate over the data and tokenize it. Sequences longer than max_length are trimmed. :param tokenizer: tokenizer to use for tokenization :param data: list of sentences :return: a list of the entire tokenized data """ tokenized_data = [] for sent in data: tokens = tokenizer.encode(sent, add_special_tokens=True) # keeping a maximum length of bert tokens: 512 tokenized_data.append(tokens[:max_length]) return tokenized_data
30b3786c1299bc42cd2698eae83ce1c6bdc3cfbe
15,834
def is_in_polygon(point, polygon): """ :param point: (lat, lng) :param polygon: [point1, point2, point3, point4](points are ordered) :return: True if point is in the polygon else False """ point_num = len(polygon) if point_num < 3: return False result = False for i in range(0, point_num): point_one = polygon[i] point_two = polygon[i - 1] if (point_one[0] < point[0] <= point_two[0]) or ( point_two[0] < point[0] <= point_one[0]): if (point_one[1] + (point[0] - point_one[0]) / ( point_two[0] - point_one[0]) * ( point_two[1] - point_one[1]) < point[1]): result = not result return result
d708becdd74ea11c495132dd8f474ccb47227b4c
151,479
def string_rotate(line: str, num_of_symbol: int) -> str: """ Function make left rotate for string :param line: Line to rotate :param num_of_symbol: Number of symbol to rotate :return: Rotating line """ return line[num_of_symbol:] + line[:num_of_symbol]
f7cd8aa6979f8991714e4b82c95246f380e2e7af
325,224
def get_nyquist_frequency(timedata): """returns the Nyquist frequency from time data""" return (abs(0.5 * len(timedata) / timedata[-1] - timedata[0]))
9b6a4a657b8586caf550455a284c506ec747e0af
597,114
def order_synapses_by_section_number(cur,stype='chemical'): """ Returns synapses ordered by section number. Row format [pre,post,sections,mid obj,continNum,IMG_Number,IMG_SectionNumber,X,Y] Parameters ---------- cur : MySQLdb cursor stype : str synapse type : 'chemical' or 'electrical' """ sql = ("select pre,post,sections,mid,continNum," "object.IMG_Number,image.IMG_SectionNumber, " "object.OBJ_X,object.OBJ_Y " "from synapsecombined " "join object on synapsecombined.mid = object.OBJ_Name " "join image on image.IMG_Number = object.IMG_Number " "where synapsecombined.type = '%s' " "order by image.IMG_SectionNumber" %stype) cur.execute(sql) return cur.fetchall()
9323206be61a0e013a869d7d2fd1bf68a99a7109
373,953
def split_sample(labels): """ Split the 'Sample' column of a DataFrame into a list. Parameters ---------- labels: DataFrame The Dataframe should contain a 'Sample' column for splitting. Returns ------- DataFrame Updated DataFrame has 'Sample' column with a list of strings. """ sample_names = labels["Sample"].str.split(" ", n=1, expand=False) labels['Sample'] = sample_names return labels
483f1b78e07a2156aa3e48ae6c1f5ce41f5e60fe
706,320
import json def build_gh_issue_body(submission): """ Build the body of a GitHub issue for the submission of a simulator Args: submission (:obj:`SimulatorSubmission`): simulator Returns: :obj:`str`: body for a GitHub issue for the submission of a simulator """ return "\n".join([ "---", "id: {}".format(submission.id), "version: {}".format(submission.version), "specificationsUrl: {}".format(submission.specifications_url), "specificationsPatch: {}".format(json.dumps(submission.specifications_patch)), "validateImage: {}".format(submission.validate_image), "commitSimulator: {}".format(submission.commit_simulator), "", "---", ])
430ec1007f0cd8b5b4a7c26f526ddb09d2ae8eb8
192,048
def get_attributes(message): """ Return a dictionary of the message attributes. """ return {key: value['string_value'] for key, value in message[0].message_attributes.iteritems()}
df6668560a74a7b49b936e89cb0c11f20de630b0
149,309
def _trim_bounds(arr): """ Returns the bounds which would be used in numpy.trim_zeros """ first = 0 for i in arr: if i != 0.0: break else: first = first + 1 last = len(arr) for i in arr[::-1]: if i != 0.0: break else: last = last - 1 return first, last
27c3dfab5fd111303b6df9d02bca9c9a7ff8720f
181,979
def cstr2str(cs, encoding='utf8'): """Convert a null-terminated C-string bytes to a Python string""" return cs.split(b'\0', 1)[0].decode(encoding)
fe9d94b8ec7474c369c0b50a11f94f76f6f161d4
443,313
def splitValues(txt, sep=",", lq='"<', rq='">'): """ Helper function returns list of delimited values in a string, where delimiters in quotes are protected. sep is string of separator lq is string of opening quotes for strings within which separators are not recognized rq is string of corresponding closing quotes """ result = [] cursor = 0 begseg = cursor while cursor < len(txt): if txt[cursor] in lq: # Skip quoted or bracketed string eq = rq[lq.index(txt[cursor])] # End quote/bracket character cursor += 1 while cursor < len(txt) and txt[cursor] != eq: if txt[cursor] == '\\': cursor += 1 # skip '\' quoted-pair cursor += 1 if cursor < len(txt): cursor += 1 # Skip closing quote/bracket elif txt[cursor] in sep: result.append(txt[begseg:cursor]) cursor += 1 begseg = cursor else: cursor += 1 # append final segment result.append(txt[begseg:cursor]) return result
78e383d1a80910e9849767e992bf54c4cf72630a
63,448
def is_array_of(thing): """ Is thing an Array? """ return hasattr(thing.type_(), "is_array_of")
d0f7e59e0113d2cd13b4585e1d7a5a0a9c2b3a6d
180,121
def aggregate_ravens(data, sub_num): """ Aggregate data from the Raven's Matrices task. Calculates various summary statistics for the Raven's Matrices task for a given subject. Parameters ---------- data : dataframe Pandas dataframe containing a single subjects trial data for the task. sub_num : str Subject number to which the data file belongs. Returns ------- stats : list List containing the calculated data for the subject. """ ravens_rt = data["RT"].mean() ravens_count = data["correct"].sum() ravens_num_items = data.shape[0] ravens_prop = ravens_count / ravens_num_items return [sub_num, ravens_rt, ravens_count, ravens_prop, ravens_num_items]
35a4f2d1b080d8ddec77e9d42c84eae0463d20d0
616,718
import json def _add_to_entrypoint(cmd): """Return command to add `cmd` to the container's entrypoint.""" base_cmd = "sed -i '$i{}' $ND_ENTRYPOINT" escaped_bash_cmd = json.dumps(cmd)[1:-1] return base_cmd.format(escaped_bash_cmd)
bfff78dec9c904bdf98f3dd600e4f40105e2601f
343,491
def is_end(connectivity): """ Returns True if connectivity corresponds to an endpoint (is one). :param connectivity: Scalar or matrix :return: Boolean or matrix of boolean """ return connectivity == 1
db0999e86376d4415638bda9bf344038a40a0b2b
294,275
import io def util_load_txt(path: str): """ Utility to load text data from a local folder. """ with io.open(path, mode='r', encoding='utf-8') as file: return file.read()
bfd40809fcd207a036b8675bb9e97e8c4677217a
336,132
def _app_id(app_id): """ Make sure the app_id is in the correct format. """ if app_id[0] != "/": app_id = "/{}".format(app_id) return app_id
5aa54cc06584380d8a99cd5abea06d79324b72c3
532,620
def modevaltohex(mode_val): """ convert mode_val value that can be either xeh string or int to a hex string """ if isinstance(mode_val, int): return (hex(mode_val)[2:]).upper() if isinstance(mode_val, str): return mode_val return None
1b8341f3b096dcbba9a14ad225cca7732296650b
532,095
def curvature_mean(curvatures_per_phase): """ Given the curvatures along pp for each phase, calculate mean curvature """ # Mean curvature per phase (1 value per phase) mean_curvature_per_phase = [] for curvatures in curvatures_per_phase: mean_curvature_per_phase.append(float(curvatures.mean())) # stats mean_curvature_phase_min = min(mean_curvature_per_phase) mean_curvature_phase_max = max(mean_curvature_per_phase) mean_curvature_phase_change = mean_curvature_phase_max - mean_curvature_phase_min return (mean_curvature_per_phase, mean_curvature_phase_min, mean_curvature_phase_max, mean_curvature_phase_change )
d6c6c48555ee76fe5f26c72d860ac0c0594456c5
410,855
def pprEvent(e): """Pretty print an event""" return e.event
8c91f124b3f4bffa2ea20d1f0bc2385cd99c2e52
491,329
import json def read_dict(filepath, encoding='utf-8'): """ Read a dictonary from a JSON file. :param str filepath: Path to file :param str encoding: File encoding to use :returns: The dictionary :rtype: dict """ with open(filepath, mode='r', encoding=encoding) as f: return json.loads(f.read())
d57320a42ad2f37420479868eec45c79a9241284
198,951
def scale_simulation_fit(simulated_value, actual_value, number_individuals, total_individuals): """ Calculates goodness of fit for the provided values, and scales based on the total number of individuals that exist. The calculation is 1 - (abs(x - y)/max(x, y)) * n/n_tot for x, y simulated and actual values, n, n_tot for metric and total number of individuals. :param simulated_value: the simulated value of the metric :param actual_value: the actual value of the metric :param number_individuals: the number of individuals this metric relates to :param total_individuals: the total number of individuals across all sites for this metric :return: the scaled fit value """ return ( (1 - (abs(simulated_value - actual_value)) / max(simulated_value, actual_value)) * number_individuals / total_individuals )
04f6364012c044387ab4007941321a655450e232
57,684
def infer(runner, input_tensors): """ Run loaded subgraphs. Args: runner: an instance of Runner. input_tensors: Input tensors. Format: {name: value}. Returns: Output tensors. Format: {name: value}. """ return runner.infer(input_tensors)
a8f497052be34ffc9191ae072f2d9355214c4fbe
593,387
def isabs(s): """Test whether a path is absolute""" return s.startswith('/')
41d69b168a47829f8fd4b213624fca7f8682b022
671,252
def _IsLongMacro(command): """Checks whether a command is a long macro.""" if len(command) == 3 and command[0] == "LONG" and command[1] == "MACRO": return True return False
2962e1b892214c28d5a44110d9c787ac7429be12
178,489
def node_to_internal_type(node): """ Use the internal_type property of a node (bblfsh.Node) as its final path representation :param node: base_node :return: node's internal_type or the string itself (in case its UP/DOWN token or a leaf) """ if type(node) == str: return node return node.internal_type
b692b21889bb48c6f014c4c1749e76b9e27c6e41
339,571
def keyval_list_to_dict(l): """ Converts a list of key=value strings to a dictionary. :param l: the list :return: the dictionary """ stripped = lambda s: s.strip('"').strip("'") d = {} for e in l: keyval = e.split("=", 2) if len(keyval) == 2: d[stripped(keyval[0])] = stripped(keyval[1]) return d
1bb778f9c67ca2606b9acbf75625102fef8f664a
264,863
def get_enabled_connection_subnets(connection): """Retrieve configured as enabled subnets for given connection. Args: connection (dict): A connection object that has agent_connection_services injected. Returns: set: A set of enabled agent service subnet ids """ return { subnet["agent_service_subnet_id"] for subnet in connection.get("agent_connection_services", {}).get( "agent_connection_subnets", [] ) if subnet["agent_connection_subnet_is_enabled"] }
000170dc640d8f429b1ff807308e117bec2c12c9
448,711
def project(atts, row, renaming={}): """Create a new dictionary with a subset of the attributes. Arguments: - atts is a sequence of attributes in row that should be copied to the new result row. - row is the original dictionary to copy data from. - renaming is a mapping of names such that for each k in atts, the following holds: - If k in renaming then result[k] = row[renaming[k]]. - If k not in renaming then result[k] = row[k]. - renaming defaults to {} """ res = {} for c in atts: if c in renaming: res[c] = row[renaming[c]] else: res[c] = row[c] return res
ccc07b789ff510b3bdddfccc95d6e29721c15786
350,661
def sizeof_fmt(num): """ Return a human readable string describing the size of something. :param num: the number in machine-readble form :type num: int :param base: base of each unit (e.g. 1024 for KiB -> MiB) :type base: int :param suffix: suffix to add. By default, the string returned by sizeof_fmt() does not contain a suffix other than 'K', 'M', ... :type suffix: str """ for unit in ['B', 'KiB', 'MiB', 'GiB']: if num < 1024: return "%3.1f%s" % (num, unit) num /= 1024.0 return "%3.1f%s" % (num, 'Ti')
1812ffc70897fcfac420479419fd75aca61ccc2e
280,196
def is_valid_cord(x, y, w, h): """ Tell whether the 2D coordinate (x, y) is valid or not. If valid, it should be on an h x w image """ return x >=0 and x < w and y >= 0 and y < h
9dff108ffd3f6baf16eb729c9acb672ed1f93e9b
600,101
def median(data): """Calculate the median of a list.""" data.sort() num_values = len(data) half = num_values // 2 if num_values % 2: return data[half] return 0.5 * (data[half-1] + data[half])
740255e4873459dbbbab3de6bba908eecc2b1837
535,877
def compare_languge(language, lang_list): """ Check if language is found """ found = False for l in lang_list: if language == l.lower(): found = True break return found
bd9f95167e719e490fb770ba62668a313ece8f0e
358,581
def to_instance_format(hub: str, group: str, project: str) -> str: """Convert input to hub/group/project format.""" return f"{hub}/{group}/{project}"
40c979c1791b6fb8078738eeac1a1907377962b6
117,981
def titles(posts): """Get a set of post titles from a list of posts.""" return set(p["title"] for p in posts)
389b5f85028c57773a68d95fd357ddea7b3ea4ca
564,044
def distance(dna_strand1, dna_strand2): """Calculate hamming distance between two DNA strands.""" if len(dna_strand1) != len(dna_strand2): raise ValueError counter = 0 for i in range(len(dna_strand1)): if dna_strand1[i] != dna_strand2[i]: counter += 1 return counter
e4546d0d0e06c67347d013880ded3431db2c3c60
214,911
from typing import List def check_urls_in_file(filename: str, urls: List[str]) -> List[List[str]]: """Get any occurrence of the specified URLs in the specified file :param filename: The file to scan :param urls: The URLs to find in the file :return: List of URLs found and in which file, e.g. [['https://test.com', '/source/hello.md']] """ found = [] with open(filename) as f: contents = f.read() for url in urls: if contents.find(url) != -1: found.append([url, filename]) return found
452ba80bd2c1c0fef41b80388610c37d86547ab0
522,152
def make_rnn_for_scan(rnn, params): """Scan requires f(h, x) -> h, h, in this application. Args: rnn : f with sig (params, h, x) -> h params: params in f() sig. Returns: f adapted for scan """ def rnn_for_scan(h, x): h = rnn(params, h, x) return h, h return rnn_for_scan
98b29d4814ab8404ac80b1dfcc09d96e10b92feb
189,921
import uuid def gen_token(max_length=5): """ Generate a random token. """ return uuid.uuid4().hex[:max_length]
97eb9e90c62495939a95587daf1812cbde713cd9
598,154
import re def filter_vowel_cons_ratio(word, ratio=0.5): """Return True if the ratio of vowels to consonants is > `ratio`. This can be used as an ad-hoc pronunciation filter. :param word (str): The word :param ratio (float, optional): The ratio :rtype: int """ vowels = re.compile(r'[aeiouy]') consonants = re.compile(r'[^aeyiuo]') vmatch = re.findall(vowels, word.lower()) cmatch = re.findall(consonants, word.lower()) _ratio = float(len(vmatch)) / float(len(cmatch)) return _ratio > ratio
0bb87d6b6d40f83c9826eb0988888a9c1105db3b
19,728
import torch from warnings import warn def device_available(device: str) -> bool: """ Check if the given device is available to use. If it is not available, a warning is given. :param device: device on that the training should run :type device: str :return: True, if the device is available, False otherwise :rtype: bool """ if "cuda" in device and not torch.cuda.is_available(): warn("CUDA device cannot be found.") return False return True
98d2a45a89730fab6003004bc8f0160268f4321e
355,301
from typing import Set def select_define(defines: Set[str], family_header: str) -> str: """Selects valid define from set of potential defines. Looks for the defines in the family header to pick the correct one. Args: defines: set of defines provided by `parse_product_str` family_header: `{family}.h` read into a string Returns: A single valid define Raises: ValueError if exactly one define is not found. """ valid_defines = list( filter( lambda x: f'defined({x})' in family_header or f'defined ({x})' in family_header, defines)) if len(valid_defines) != 1: raise ValueError("Unable to select a valid define") return valid_defines[0]
fafd14907ad98f84c2f019441a181afc54855c24
70,388
def to_bytestring (s): """Convert the given unicode string to a bytestring, using the standard encoding, unless it's already a bytestring""" if s: if isinstance(s, str): return s else: return s.encode('utf-8')
26be74aac5ef8d18ce512e535b2acfe633577548
572,313
def linearly_increasing_force(t_start, t_end, f_max): """ Returns a linearly increasing force: f_max at t_end ------------- / / | / | / | ---- |__ t_end |__ t_start Parameters ---------- t_start: float time where linear force starts to raise t_end: float time where force reaches maximum f_max: float maximum value of force Returns ------- f: callable function f(t) """ def f(t): if t <= t_start: return 0.0 elif t_start < t <= t_end: return f_max * (t-t_start) / (t_end-t_start) else: return f_max return f
ee4c541662cee2f72280b1d039993a172c0fa7f8
119,554
def clamp(number: int, max_value: int, min_value: int) -> int: """ Clamp value into a range """ return max(min(number, max_value), min_value)
addfdea377cdf40501ef3aeabbb421316b0083d8
109,950
import hashlib def md5_hash(data_bytes): """ Hash the specified byte array with the MD5 algorithm :param data_bytes: The byte array to hash :return: The hash of the byte array """ return hashlib.md5(data_bytes).hexdigest()
f03c84c8ffcfbd79266f9e17d25b36b3db2b1985
475,895
def unpack3(var, struct_var, buff): """ Create an unpack call on the ``struct.Struct`` object with the name ``struct_var``. :param var: variable the stores the result of unpack call, ``str`` :param str struct_var: name of the struct variable used to unpack ``buff`` :param buff: buffer that the unpack reads from, ``StringIO`` """ return '%s = %s.unpack(%s)' % (var, struct_var, buff)
64af84415b6ea6a97bab0797ad5e44923d457fcb
636,181
def parse_benchmark_name(name: str): """ Parses a template benchmark name with a size >>> parse_benchmark_name('BM_Insert_Random<int64_t, int64_t, std::unordered_map>/1000') ('BM_Insert_Random', ['int64_t', 'int64_t', 'std::unordered_map'], 1000) """ base_name = name[0 : name.find('<')] t_params = [ x.strip() for x in name[name.find('<') + 1 : name.find('>')].split(',')] size = int(name[name.find('/') + 1:]) return base_name, t_params, size
1628d67272a33078dd9b2c5b105f530552bd1776
118,768
def cat_matrices2D(mat1, mat2, axis=0): """Concatenates two matrices along a specific axis""" ans = [] if axis == 0 and len(mat1[0]) == len(mat2[0]): return mat1 + mat2 elif axis == 1 and len(mat1) == len(mat2): for i in range(len(mat1)): ans.append(mat1[i] + mat2[i]) return ans return None
88b5ebe9079e8fbf2e9b6da3ed2c8db2227e7719
160,606
import itertools def flatten(iterable): """Concatenate several iterables.""" return itertools.chain.from_iterable(iterable)
868ef9e0bd02d7c0c67d096c74c8eb69d87b2bfa
642,461
def parse_mime_type(mime_type): """Carves up a mime-type and returns a tuple of the (type, subtype, params) where 'params' is a dictionary of all the parameters for the media range. For example, the media range 'application/xhtml;q=0.5' would get parsed into: ('application', 'xhtml', {'q', '0.5'}) """ parts = mime_type.split(";") params = dict([tuple([s.strip() for s in param.split("=")]) for param in parts[1:]]) full_type = parts[0].strip() # Java URLConnection class sends an Accept header that includes a single "*" # Turn it into a legal wildcard. if full_type == "*": full_type = "*/*" (type, subtype) = full_type.split("/") return (type.strip(), subtype.strip(), params)
746153d8f6b14b403a2f36bbce18417305d95ee0
538,123
def median(x): """Finds the median value of data set x""" x_sorted = sorted(x) mid = len(x) // 2 if len(x) % 2 == 1: return x_sorted[mid] else: l = mid - 1 h = mid return (x_sorted[l] + x_sorted[h]) / 2
87395bcbc1bc4800318a61cf7c4d3dbdc925486a
62,531
def from_gm_timestamp(timestamp): """Convert timestamp in microseconds to timestamp in seconds.""" return int(timestamp) // 1000000
7ce61f6435f832efc1224ea39fb66aca1d829c24
186,023
def _fmt_unique_name(appname, app_uniqueid): """Format app data into a unique app name. """ return '{app}-{id:>013s}'.format( app=appname.replace('#', '-'), id=app_uniqueid, )
ebbc78dd656065acf94d212a5f6e2badbd466b39
177,811
def gpfInfo(fileName): """ Get information on a gpc/gpf file. :Arguments: - fileName: name of the file to read :Returns: - contours: number of contours - holes: number of holes (if contained) - points: total number of points - withHoles: file contains hole-flags """ f = open(fileName, 'r') contours = int(f.readline()) holes = 0 points = 0 withHoles = True for c in range(contours): pp = int(f.readline()) x = 0 if c == 0: # check for hole-flags try: holes += int(f.readline()) except: withHoles = False x = 1 else: if withHoles: holes += int(f.readline()) [ f.readline() for p in range(pp-x) ] points += pp f.close() return contours, holes, points, withHoles
8d88eda19ed783337eff2ad7497b773ca08c4566
500,472
def is_core_type(type_): """Returns "true" if the type is considered a core type""" return type_.lower() in { 'int', 'long', 'int128', 'int256', 'double', 'vector', 'string', 'bool', 'true', 'bytes', 'date' }
3ef8c43869c0eb717cca04defd69a569a38f4afa
217,102
import requests import logging def get_data_from_url(url, timeout=10): """Get data from URL""" try: response = requests.get(url, timeout=timeout) return response.text except requests.exceptions.RequestException as ex: logging.error(ex)
0da66c91dc8208696a890027c92d5d9381db98a6
353,985
import collections import torch def imdict_to_img(img_dict, n_per_row=8, n_rows=1): """Returns an image where each row corresponds to a key in the dictionary. Values are expected to be of format BxCxHxW. """ od = collections.OrderedDict(sorted(img_dict.items())) imgs = torch.stack(list(od.values()), dim=0) # AxBxCxHxW # make the rows imgs = torch.stack([imgs[:, i*n_per_row:(i+1)*n_per_row] for i in range(n_rows)], dim=0) # n_rows x A x n_per_row x CxHxW imgs = imgs.flatten(0,2) return imgs
44f852da172089994d7c0b6a070d4df3686efbfa
230,997
from typing import Iterable def write_vocab(vocab: Iterable[str], fname: str) -> str: """ Write the vocabulary to the fname, one entry per line Mostly for compatibility with transformer BertTokenizer """ with open(fname, "w") as sink: for v in vocab: sink.write(v + "\n") return fname
768a62193b4e0dc2f646d07a9898041128a254d8
514,293
def get_range_to_list(range_str): """ Takes a range string (e.g. 123-125) and return the list """ start = int(range_str.split('-')[0]) end = int(range_str.split('-')[1]) if start > end: print("Your range string is wrong, the start is larger than the end!", range_str) return range(start, end+1)
a88d9780ac2eba1d85ae70c1861f6a3c74991e5c
399
import base64 import bz2 def encode(payload): """Encode a string for tranmission over the network using base64 encoding of the bz2 compressed string. We bz2 compress because we can and also to counteract the inefficiency of the base64 encoding. Args: payload(str): string we want to transmit over the wire Returns: str: base64 encoded, bz2 compressed string """ return base64.urlsafe_b64encode(bz2.compress(payload.encode('utf-8'))).decode('utf-8')
098f65b18bb127e3414ec37267e010f5d927c059
528,338
def strip_tsv(path): """ Strip unnecesaty lines from the given result TSV file. """ def keep(line): """ Returns false if the given line should be stripped. """ if line.startswith("Files already downloaded"): return False elif line.startswith("Train: epoch = ") : return False else : return True # Create stripped text. text = "\n".join([line.rstrip() for line in path.open("rt") if keep(line)]) # Overwrite to the file. path.write_text(text) print(path, "done")
35c79df28a12342fc99071d1c2876e090f5e147b
530,727
def fill(lst, mold, subs): """For every <mold> element in <lst>, substitute for the according <subs> value (indexically). """ nlst = list(lst).copy() j = 0 for i, elem in enumerate(lst): if elem == mold: nlst[i] = subs[j] j += 1 return nlst
359b278899da936c15c6a8fe63e34649204ff7f7
591,678
def alphabetize(value): """Lowercases, then alphabetizes, a list of strings""" if isinstance(value, list) and all(isinstance(s, str) for s in value): return sorted([s.lower() for s in value]) else: raise TypeError("Argument must be a list of strings")
636bec3db5966020549b0a5e73132c3bab6d7a37
255,136
def get_source(cell): """Gets the source code of a cell in a way that works for both nbformat and JSON Args: cell (``nbformat.NotebookNode``): notebook cell Returns: ``list`` of ``str``: each line of the cell source """ source = cell['source'] if isinstance(source, str): return cell['source'].split("\n") elif isinstance(source, list): return [l.strip() for l in source] assert False, f'unknown source type: {type(source)}'
ed404a944c1c606967c2dc8c73d615c6a6256778
389,319
def exception_models_to_message(exceptions: list) -> str: """Formats a list of exception models into a single string """ message = "" for exception in exceptions: if message: message += "\n\n" message += f"Code: {exception.code}" \ f"\nMessage: {exception.message}" \ f"\nSeverity: {exception.severity}" \ f"\nData: {exception.data}" return message
56f40ab1fe0d1a03abeaa08d1f9898c7abdb0552
15,205
def _compat_compare_digest(a, b): """Implementation of hmac.compare_digest for python < 2.7.7. This function uses an approach designed to prevent timing analysis by avoiding content-based short circuiting behaviour, making it appropriate for cryptography. """ if len(a) != len(b): return False # Computes the bitwise difference of all characters in the two strings # before returning whether or not they are equal. difference = 0 for (a_char, b_char) in zip(a, b): difference |= ord(a_char) ^ ord(b_char) return difference == 0
4eac07f6cf3c02f79ee7361edbf503ecab4d4526
548,411
def ones_list(n): """Return a list of n ones.""" l = [1 for x in range(n)] return l
75ae14cdacaf5ee96850df9854079854d8b7b5d0
330,330
import copy import random def strategy_func_random(zmws): """ >>> random.seed(12345); strategy_func_random([]) [] >>> random.seed(12345); strategy_func_random([('synthetic/1', 9)]) [('synthetic/1', 9)] >>> random.seed(12345); strategy_func_random([('synthetic/1', 9), ('synthetic/2', 21), ('synthetic/3', 9), ('synthetic/4', 15), ('synthetic/5', 20)]) [('synthetic/5', 20), ('synthetic/3', 9), ('synthetic/2', 21), ('synthetic/1', 9), ('synthetic/4', 15)] """ ret = copy.deepcopy(zmws) random.shuffle(ret) return ret
8fe4bca9239d9da68db5c3bd8f40f1b42175d0cc
592,111
def select_from(items, indexes): """ :param items: a list of items. :param indexes: an iterable of indexes within `items`. :returns: a list of the items corresponding to the indexes. """ return [items[i] for i in indexes]
91edeb1cfdeaa2e57abbf0bb3f599c6855953b37
56,571
def get_submodule_by_path(module, path): """ Return a sub-module by its name. The path may refer to any nested node using '/' as the path delimiter. """ # Separate out the next module's name parts = path.split('/', 1) name = parts[0] sub_path = parts[1] if len(parts) == 2 else None if hasattr(module, name): submodule = getattr(module, name) if sub_path is None: return submodule return get_submodule_by_path(module=submodule, path=sub_path) raise KeyError(f'No module named "{name}" found.')
9e115fe2c1992474a771a53bf65bc43aaf93b72a
504,167
def S_crop_values(_data_list, _max, _min): """ Returns a filtered data where values are discarded according to max, min limits. """ f_data = [] ds = len(_data_list) i = 0 while i < ds: if _data_list[i] >= _max: f_data.append(_max) elif _data_list[i] <= _min: f_data.append(_min) else: f_data.append(_data_list[i]) i += 1 return f_data
2e5eac918d16c9a25009d368308782fdb300eea0
607,376
def video_sort(videos, key, keyType=str, reverse=False): """ Given a list of video records that are dotty dictionaries return back a sorted version that is sorted based on the provided key. The keys will be converted using the given key type during the sort for comparison purposes. This is a very simple wrapper on a standard function, but the plan is to also implement filtering at some point in the future as well. """ return sorted(videos, key=lambda k: keyType(k[key]), reverse=reverse)
6cee2fa9c332b7a3601ce63aa959424167a9065a
78,708
def to_tuple(collection): """ Return a tuple of basic Python values by recursively converting a mapping and all its sub-mappings. For example:: >>> to_tuple({7: [1,2,3], 9: {1: [2,6,8]}}) ((7, (1, 2, 3)), (9, ((1, (2, 6, 8)),))) """ if isinstance(collection, dict): collection = tuple(collection.items()) assert isinstance(collection, (tuple, list)) results = [] for item in collection: if isinstance(item, (list, tuple, dict)): results.append(to_tuple(item)) else: results.append(item) return tuple(results)
45aae0c4b3e7c5f2c0e3c0b19a7eb897b4875c35
275,407
def schema(schema_id): """ Decorator to assign a schema name to an endpoint handler. """ def decorator(handler): handler.__schema_id__ = schema_id return handler return decorator
f12acaef56405be83755fd01a50a821b7e7c227e
236,058
def expected_win(theirs, mine): """Compute the expected win rate of my strategy given theirs""" assert abs(theirs.r + theirs.p + theirs.s - 1) < 0.001 assert abs(mine.r + mine.p + mine.s - 1) < 0.001 wins = theirs.r * mine.p + theirs.p * mine.s + theirs.s * mine.r losses = theirs.r * mine.s + theirs.p * mine.r + theirs.s * mine.p return wins - losses
92de2010287e0c027cb18c3dd01d95353e4653c4
2,144
def axis_converter(total_axis: int, axis: int): """ Calculate axis using `total_axis`. For axis less than 0, and greater than 0. Parameters ---------- total_axis : int Total axis num. axis : int Current axis num. Returns ------- int Calculated current axis. """ if axis < 0: return total_axis + axis else: return axis
16af5dd91111a91a5cd3e0eb2c9709493d341384
377,646
def calc_sos(x,y): """ Calculate the sum-of-squared error for two lists of numbers, x and y. returns sos = ∑(x-y)² """ xy = list(zip(*[x,y])) sos = sum([(x-y)**2 for x,y in xy]) return sos
d882f8980416f04158df2286a020268ebe9a8d7f
287,365
def gauss_fill(std): """Gaussian fill helper to reduce verbosity.""" return ('GaussianFill', {'std': std})
afa06a76157cf287e669fbe3be4757dc3d823c17
612,309
def popular_articles_query(limit=None): """Return an SQL string to query for popular articles. Args: limit (int): The maximum number of results to query for. If ommited, query for all matching results. Returns: str: An SQL string. When used in a query, the result will contain two columns: - str: The article's name. - str: The number of page visits (e.g. "1337 views"). """ return """ SELECT title, format('%s views', count(*)) AS views FROM log JOIN articles ON log.path = ('/article/' || articles.slug) GROUP BY articles.title ORDER BY count(*) DESC LIMIT {number}; """.format(number=limit or 'ALL')
baa5ed8e7ee50ab5e3d58c8a4b9b7571298353f8
304,981
def somatorio(n): """ Função recursiva que recebe um valor inteiro n >= 0, e devolve o somatório de 0 até n. Exemplos: ------------ somatorio(0) deve devolver 0; somatorio(2) deve devolver 3, pois 0+1+2 = 3; somatorio(5) deve devolver 15, pois 0+1+2+3+4+5 = 15; Retorno: ----------- int: soma dos números inteiros de 0 até n. """ if n == 0: return 0 else: return n + somatorio(n-1)
4a3852afa1f04d77fbd6b1581802ed47a9ff1950
76,438
def XYZ_to_xy(XYZ): """Convert XYZ to xy Args: XYZ ([float, float, float]: X, Y, Z input values Returns: .[float, float] """ X, Y, Z = XYZ divider = (X + Y + Z) x = X / divider y = Y / divider return [x, y]
cc41bd7dda4339c813619171d2a885c420a276a5
19,770
def flatten(nested): """ flattens a nested list >>> flatten([['wer', 234, 'brdt5'], ['dfg'], [[21, 34,5], ['fhg', 4]]]) ['wer', 234, 'brdt5', 'dfg', 21, 34, 5, 'fhg', 4] """ result = [] try: # dont iterate over string-like objects: try: nested + '' except(TypeError): pass else: raise TypeError for sublist in nested: for element in flatten(sublist): result.append(element) except(TypeError): result.append(nested) return result
3634057e2dbae0ef98fd215cd810ff314667dc80
670,552
def manageSource(cursor, ref_citation, ref_link): """ Testing whether one source and its associated link exist in the database, if not insert it in the database Parameters ----------- cursor: psycopg2 cursor cursor for the current operations in the database ref_citation: str complete text describing the reference ref_link URL link to the reference ressources Returns ------------ return the cd_ref to the reference """ # Does the source exist if ref_link == ' ': ref_link = None SQL = "SELECT count(*) FROM refer WHERE citation = %s" cursor.execute(SQL, [ref_citation]) nb, = cursor.fetchone() cit_exists = bool(nb) if cit_exists: SQL = "SELECT cd_ref FROM refer WHERE citation = %s" cursor.execute(SQL, [ref_citation]) cdRef, = cursor.fetchone() else: # insertion of the source if it does not exist SQL = "INSERT INTO refer(citation,link) VALUES(%s,%s) RETURNING cd_ref" cursor.execute(SQL,[ref_citation, ref_link]) cdRef, = cursor.fetchone() # it should return the id of the source in the database return cdRef
6ace5ec1bf30b73ec1fff0f43a3e17ee3c5bfec7
420,697
import click def prepare_instance_authentication(ctx, session, public_key): """ Sends an ephemeral public key to the target instance used to authenticate the SSH session. """ click.echo("sending public key to target instance...") client = session.client("ec2-instance-connect") return client.send_ssh_public_key( InstanceId=ctx.obj["ssh_instance_id"], InstanceOSUser=ctx.obj["ssh_instance_user"], SSHPublicKey=public_key, AvailabilityZone=ctx.obj["ssh_instance_az"], )
53c2a51f6715bed4729598c61170f80d415f3f72
584,401