content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
from typing import AnyStr import codecs def auto_encode(string: AnyStr, encoding: str = "utf-8", errors: str = "strict") -> bytes: """Lookup a encoder and encode the string if it is bytes, else return it untouched if it's already in bytes (for utf). If its an int, etc, it'll try to wrap it in bytes for you. :param string: The text to encode :param encoding: The encoding-type to use; default is `utf-8` :param errors: optional; pass `replace` or `namereplace` if you don't want the default `strict` for how to process errors :return: The encoded text """ encoder = codecs.getencoder(encoding=encoding) if isinstance(string, bytes): return string elif isinstance(string, str): return encoder(string)[0] else: return encoder(str(string))[0]
ff5854e843f718adaec728ac11083cfa22604e9e
73,544
def merge_pages(key, pages): """Merge boto3 paginated results into single list. Args: key (str): the key used to gather results from each page. pages (list): a list of pages of typically description dictionaries. Returns: list: a single flat list containing results of all pages. """ return [item for page in pages for item in page[key]]
56ffe16f66e6a4d98c7e742d582f62a88d00a4e3
395,783
def convert_points_from_homogeneous(points): """Converts 3D points from the homogeneous coordinate Args: points (numpy.ndarray): The points to convert. It should a 2D array with shape 4 x num_points. Returns: numpy.ndarray: Non-homogeneous points. A 2D array with shape 3 x num_points. """ return points[:3, :]
96a21ae2d03f96f459e29978bb04ec779cbc5194
432,798
def parsemsg(s): """ Breaks a message from an IRC server into its prefix, command, and arguments. """ prefix = '' trailing = [] if s[0] == ':': prefix, s = s[1:].split(' ', 1) if s.find(' :') != -1: s, trailing = s.split(' :', 1) args = s.split() args.append(trailing) else: args = s.split() command = args.pop(0) return prefix, command, args
0c553a57c82547ea68d9978580d657c8d432f5d2
327,768
def get_elements_by(xmldoc, *args, **kwargs): """Searches xml for nodes with provided tag, attributes (args) and attribute key-val pairs (kwargs) Args: xmldoc (xml.dom.minidom): minidom object (returned by minidom.parse()) tag (str, optional): name of tag to search for *args (str, optional): attribute names to check element has **kwargs (str=str, optional): attributeName=attributeValue to check element has Returns: list: returns list of xml.Elements that have given tag, attribute(s) and/or attribute key-val(s) """ if 'tag' in kwargs.keys(): tag = kwargs.pop('tag') else: tag = None if tag is None: # Get all elements tag = '*' elements = xmldoc.getElementsByTagName(tag) if len(args): for a in args: elements = [e for e in elements if e.hasAttribute(a)] if len(kwargs): for k in kwargs.keys(): elements = [e for e in elements if e.hasAttribute(k) and e.attributes[k].value == kwargs[k]] return elements
f9dc65fd48c5911430489adfef06b9943e562e83
397,072
def get_events(headers, data): """ Build a list of dictionaries that have the detail and what that detail "contains". Args: headers (list): Headers for these type of events (Provides the order and expected output) data (dict): Event data to lookup Returns: list: list of dictionary objects that maps the data to what is contained. """ # Map header names to what is contained in each. contains_map = { 'source_addr': ['ip'], 'destination_ip': ['ip'], 'username': ['user name'], 'process_table_id': ['threatresponse process table id'], 'process_name': ['file path', 'file name'], 'process_id': ['pid'], 'process_command_line': ['file name'], 'file': ['file path'], 'domain': ['domain'], 'ImageLoaded': ['file path', 'file name'], 'Hashes': ['md5'] } events = [] for event in data: event_details = [] for head in headers: data = event.get(head, None) event_details.append({ 'data': data, 'contains': contains_map.get(head, None) if data else None }) events.append(event_details) return events
3b4ea233fa48deb193c26b74cd53352d6e5c875c
392,467
def parse_plot_set(plot_set_string): """ Given one of the string arguments to the --plot-sets option, parse out a data structure representing which conditions ought to be compared against each other, and what those comparison plots/tables should be called. The syntax of a plot set is [title:]condition[,condition[,condition...]]. The first condition is the comparison baseline, when applicable. Returns a tuple of a plot set title, or None if unspecified, and a list of condition names. """ colon_pos = plot_set_string.find(':') if colon_pos != -1: # Pull out the title before the colon title = plot_set_string[0:colon_pos] # And the rest of the specifier after it plot_set_string = plot_set_string[colon_pos + 1:] else: # No title given title = None # Return the title and condition list tuple return (title, plot_set_string.split(','))
1df83681aa3110dfd9302bd7918f15dfbfa497ab
706,518
def check_for_security_updates_using_scheduled_task(api, configuration, api_version, api_exception): """ Creates a scheduled task that checks for security updates. The scheduled task runs immediately after it is created, and is deleted thereafter. :param api: The Deep Security API modules. :param configuration: Configuration object to pass to the api client. :param api_version: The version of the API to use. :param api_exception: The Deep Security API exception module. :return: The ID of the scheduled task. """ # Set the name and task type check_for_security_updates = api.ScheduledTask() check_for_security_updates.name = "Check For Security Updates" check_for_security_updates.type = "check-for-security-updates" # Run when the scheduled task is created check_for_security_updates.run_now = True # Use a once-only recurrence schedule_details = api.ScheduleDetails() schedule_details.recurrence_type = 'none' # Set the recurrence count to 1 so that the task is deleted after running schedule_details.recurrence_count = 1 schedule_parameters = api.OnceOnlyScheduleParameters() # The start time is not important because it is deleted after running schedule_parameters.start_time = 0 schedule_details.once_only_schedule_parameters = schedule_parameters check_for_security_updates.schedule_details = schedule_details # Scan all computers computer_filter = api.ComputerFilter() computer_filter.type = "all-computers" # Create the task parameters object and add the computer filter task_parameters = api.CheckForSecurityUpdatesTaskParameters() task_parameters.computer_filter = computer_filter check_for_security_updates.check_for_security_updates_task_parameters = task_parameters # Create the scheduled task on Deep Security Manager scheduled_tasks_api = api.ScheduledTasksApi(api.ApiClient(configuration)) scheduled_task = scheduled_tasks_api.create_scheduled_task(check_for_security_updates, api_version) return scheduled_task.id
06b77568781624075fb8d8b4ad765d3e9b616bce
196,087
def name_and_age(name, age): """Returns a string stating the person's age.""" if age >= 0: return name + " is " + str(age) + " years old." else: return "Error: Invalid age"
87e3320324261cf56c3dbb8150d01d95846c7454
360,582
def table_name(table, column): """Compute the table name table (string) : the originate table's name column : the column name return : string """ return "{0}__{1}_agg".format(table, column)
3d247d424f558d22559df2dbc9ac9e5e0fa2768f
118,664
def to_hex_string(string: str) -> str: """Converts UTF-8 string into its hex representation :param string: str The string to convert to hex :return: Hex representation of the given string """ return string.encode('utf-8').hex()
62b9b71af31bccdde136aa6d2dabbb2ee3df2ea7
25,169
from typing import List def group_anagrams(strs: List[str]) -> List[List[str]]: """ LeetCode 49: Group Anagrams Given an array of strings, group anagrams together. """ str_map = {} res = [] for s in strs: temp = ''.join(sorted(s)) if temp not in str_map: str_map[temp] = len(res) res.append([s]) else: res[str_map[temp]].append(s) return res
847b448f194d798bbc5f201c2864cd1dd0d6c40c
586,147
def generate_dot(dc): """ Generates a dot format graph of docker-compose depends_on between services :param dict dc: Docker comppose configuration loaded as a python dict :rtype: string """ lines = [] lines.append("digraph docker {") for service_name, service in dc["services"].items(): lines.append( f' "{service_name}" [label="{service_name}",shape=box,fillcolor="paleturquoise",style="filled,rounded"];' ) for dep in service.get("depends_on", []): lines.append(f' "{service_name}" -> "{dep}" [label = "depends_on"]') lines.append("}") return "\n".join(lines)
6b9fcfbb939e779593b1e559065ab7daa1a4ba28
654,919
def set_search_csrf(session): """Extract the required CSRF token. LinkedIn's search function requires a CSRF token equal to the JSESSIONID. """ csrf_token = session.cookies['JSESSIONID'].replace('"', '') session.headers.update({'Csrf-Token': csrf_token}) return session
1c506f6c7039b4908cadd772c2e7a289b7d18ae3
598,727
from typing import List def str_in_list_non_case_sensitive(string: str, list_of_strings: List[str]) -> bool: """ >>> str_in_list_non_case_sensitive('aba',['abc','cde']) False >>> str_in_list_non_case_sensitive('aBa',['abc','Aba']) True """ string = string.lower() list_of_strings = [my_string.lower() for my_string in list_of_strings] if string in list_of_strings: return True else: return False
dd71eec9b75feb3b81ee4458a94a94b9a21cd398
403,757
def getattribute(objeto, name: str): """Returns the attribute matching passed name.""" # Get internal dict value matching name. value = objeto.__dict__.get(name) if not value: # Raise AttributeError if attribute value not found. return None # Return attribute value. return value
8235c0c7440d0712d2978cfd72ca9529ba7b80b6
528,587
def quick_exponent_with_mod(base, power, modulo): """Compute quickly the exponent within a given modulo range. Will apply a modulo with the specified base at every iteration of the exponentiation algorithm, making sure the result is in the given range.""" # 'powers' will be a list of the base with powers of two applied, i.e.: # with base==3, powers==[3, 3^2, 3^4, 3^8, 3^16, ...] powers = [base] # for each power of two i = 2 while i <= power: # compute base^(2^i) and add it to the list powers.append((powers[-1] * powers[-1]) % modulo) # next power of two i *= 2 # list of booleans corresponding to which powers of two to include to make # up the whole exponent powers_to_include = list(bool(int(digit)) for digit in bin(power)[2:][::-1]) # accumulator for the product accumulator = 1 # for each factor==base^(2^index) for index, factor in enumerate(powers): # if this power should be included if powers_to_include[index]: # multiply and apply modulo accumulator *= factor accumulator %= modulo # return the product accumulator return accumulator
404373115f14b3d751c9bb7fb77b101aa7a7bd70
55,160
def get_schc_conf(config): """Return a dict of which values are taken from the config instance.""" dict_config = {} for n in config.__dir__(): dict_config[n] = getattr(config, n) return dict_config
9f66d470dde02c0c1c2a12425bc976f03c5392ba
193,795
def _calculate_pycls_momentum( alpha: float, total_batch_size: int, max_epoch: int, update_period: int ): """pycls style momentum calculation which uses a relative model_ema to decouple momentum with other training hyper-parameters e.g. * training epochs * interval to update ema * batch sizes Usually the alpha is a tiny positive floating number, e.g. 1e-4 or 1e-5, with ``max_epoch=100``, ``total_batch_size=1024`` and ``update_period=32``, the ema momentum should be 0.996723175, which has roughly same behavior to the default setting. i.e. ``momentum=0.9999`` together with ``update_period=1`` """ return max(0, 1 - alpha * (total_batch_size / max_epoch * update_period))
1928ac4d50e1e2f3acd5b187ef31639e309dfa21
518,279
def format_numeric_column(column): """ Format fn for simple numeric columns. Returns column (zero-indexed) +1 to give 1-indexed label. """ return column + 1
ff8393d4fb13d9742d3bc636d4720237596b26fe
595,692
import itertools def flatten(list2d): """ flatten nested lists into a single list """ return list(itertools.chain.from_iterable(list2d))
4df26e37e252c8ddc9bc6794ac66612aa005ef87
203,880
from typing import Iterable from typing import Generator def flatten(collection: Iterable[Iterable]) -> Generator: """Flatten list of lists in one plane list""" return (item for sublist in collection for item in sublist)
4ae959b5e8446209a3156bfe62e4c46ef4dc55db
341,692
def gen_new_coordinates_from_change_in_coordinates(old_coordinates, change_in_coordinates): """Calculate new coordinates given coordinates(lat,lon) and change_in_coordinates(lat,lon).""" return tuple(map(lambda x, y: x + y, old_coordinates, change_in_coordinates))
cb12e51e7f7526038758bb1229c6fc8a815949e1
432,364
def _gt_get_all_nodes(self): """ Get all the nodes in this tree """ return self.tree.get_all_nodes()
92793d01b0f4a0c347a7e5a717d3bf760b27288b
59,960
import random def choice(seq): """ Choose a random element from a non-empty sequence. (Based on the Python 2.x code for random.choice, and used for deterministic results across platforms as Python 3.x changed the way random.choice worked.) """ return seq[int(random.random() * len(seq))]
d7fe586187bd873e62f2b25b43491ff2d28544ca
325,701
import traceback def _extract_stack(count=5): """ Helper function to extract the function stack. :param count: Number of stack(last most) to extract. :return: function names as string. """ result = '' for t in traceback.extract_stack()[:count]: result += '{0}->'.format(t[2]) return result
ca507781ad4a63fbc7d9f567135a1c797990272d
279,964
def order_cols(df, cols): """Put columns in cols first, followed by rest of columns""" rest = [col for col in df.columns if col not in cols] df = df[cols + rest] return df
269e9ecaf976e89af0784daf7052cfd3fe494e27
575,667
def check_error(http): """ Checks for http errors (400 series) and returns True if an error exists. Parameters ---------- http : addinfourl whose fp is a socket._fileobject Returns ------- has_error : bool """ err = http.code if 400<= err < 500: print("HTTP error {}. Make sure your PV exists.".format(err)) return True return False
20ba1426758e68b196708ec3260ff1f3a86c2820
684,573
def max_lt(seq, val): """ Return greatest item in seq for which item < val applies. None is returned if seq was empty or all items in seq were >= val. >>> max_lt([3, 6, 7, 11], 10) 7 >>> max_lt((5, 9, 12, 13), 12) 9 """ idx = len(seq)-1 while idx >= 0: if seq[idx] < val: return seq[idx] idx -= 1 return None
0a6152a852c5e2c1421214d876ec6945ac42512b
532,484
def f(value): """Format a float value to have 4 digits after the decimal point""" return "{0:.4f}".format(value)
1c4107a8f9c6a3b8e450a0c45647dc51816160ba
195,667
def neighbour_coordinates(grid, point_coords): """Returns list of coordinates for neighbours of the given point, within the bounds of the grid""" grid_width = len(grid[0]) grid_height = len(grid) point_row, point_col = point_coords neighbour_coords = [ (point_row, point_col - 1), (point_row, point_col + 1), (point_row - 1, point_col), (point_row + 1, point_col), ] in_grid_neighbours = [ (row_n, col_n) for row_n, col_n in neighbour_coords if row_n >= 0 and row_n < grid_height and col_n >= 0 and col_n < grid_width ] return in_grid_neighbours
614e936c0992b734ec47c61405fda64b2a0ad348
604,418
def format_line(data, linestyle): """Formats a list of elements using the given line style""" return linestyle.begin + linestyle.sep.join(data) + linestyle.end
6a49a80f876ffe8a8f38e6e987051a0247858c6c
19,148
from pathlib import Path from typing import Optional def resolve_absolute_offset( dataset_path: Path, offset: str, target_path: Optional[Path] = None ) -> str: """ Expand a filename (offset) relative to the dataset. >>> external_metadata_loc = Path('/tmp/target-metadata.yaml') >>> resolve_absolute_offset( ... Path('/tmp/great_test_dataset'), ... 'band/my_great_band.jpg', ... external_metadata_loc, ... ) '/tmp/great_test_dataset/band/my_great_band.jpg' >>> resolve_absolute_offset( ... Path('/tmp/great_test_dataset.tar.gz'), ... 'band/my_great_band.jpg', ... external_metadata_loc, ... ) 'tar:/tmp/great_test_dataset.tar.gz!band/my_great_band.jpg' >>> resolve_absolute_offset( ... Path('/tmp/great_test_dataset.tar'), ... 'band/my_great_band.jpg', ... ) 'tar:/tmp/great_test_dataset.tar!band/my_great_band.jpg' >>> resolve_absolute_offset( ... Path('/tmp/great_test_dataset.zip'), ... 'band/other/my_great_band.jpg', ... ) 'zip:/tmp/great_test_dataset.zip!band/other/my_great_band.jpg' >>> resolve_absolute_offset( ... Path('/tmp/MY_DATASET'), ... 'band/my_great_band.jpg', ... Path('/tmp/MY_DATASET/ga-metadata.yaml'), ... ) 'band/my_great_band.jpg' """ dataset_path = dataset_path.absolute() if target_path: # If metadata is stored inside the dataset, keep paths relative. if str(target_path.absolute()).startswith(str(dataset_path)): return offset # Bands are inside a tar file if ".tar" in dataset_path.suffixes: return "tar:{}!{}".format(dataset_path, offset) elif ".zip" in dataset_path.suffixes: return "zip:{}!{}".format(dataset_path, offset) else: return str(dataset_path / offset)
cbeb2dfb6fea41d5a995ada529d964357c4e9fb9
653,737
def find_single_number(arr: list[int]) -> int: """Finds the single number in a non-empty array of integers where every number appears exactly twice, except for one which appears exactly once. Complexity: Time: O(n) Space: O(1) Args: arr: array of numbers with all but a single element appearing exactly twice, the single element that does not appear two times appears exactly once Returns: the single element that appears exactly once Examples: >>> find_single_number([1, 4, 2, 1, 3, 2, 3]) 4 """ """ALGORITHM""" ## INITIALIZE VARS ## single_number = 0 # XOR of all values in arr: # all duplicate elements will cancel out # leaving `single_number ^ 0` = `single_number` for num in arr: # REDUCE single_number ^= num return single_number
a10f5f8cbb49968073c4a28d4eca883c128fb542
642,233
def num_active_calls(log, ad): """Get the count of current active calls. Args: log: Log object. ad: Android Device Object. Returns: Count of current active calls. """ calls = ad.droid.telecomCallGetCallIds() return len(calls) if calls else 0
a6674df1e8e539478db6ab1a640fbce1cf0b6b4c
701,482
def string_repr(source_string): """Return a nice visual representation of the given SourceString and all its properties. Any property that isn't populated (e.g. tags or developer comment) will be omitted. """ return ( '[green]"{string}"[end]\n' '{key}' '{context}' '{comment}' '{charlimit}' '{tags}' ' [high]occurrences:[end] [file]{occurrences}[end]\n' ).format( string=source_string.string, key=( ' [high]key:[end] "[yel]{}[end]"\n'.format( source_string.key ) ), context=( ' [high]context:[end] {}\n'.format( u', '.join(source_string.context) ) if source_string.context else '' ), comment=( ' [high]comment:[end] {}\n'.format( source_string.developer_comment ) if source_string.developer_comment else '' ), charlimit=( ' [high]character limit:[end] {}\n'.format( source_string.character_limit ) if source_string.character_limit else '' ), tags=( ' [high]tags:[end] {}\n'.format( u', '.join(source_string.tags) ) if source_string.tags else '' ), occurrences=u', '.join(source_string.occurrences), )
b3261e9731445819173ab4a12e4f189a157660b8
232,209
def dice_similarity_coefficient(inter, union): """Computes the dice similarity coefficient. Args: inter (iterable): iterable of the intersections union (iterable): iterable of the unions """ return 2 * sum(inter) / (sum(union) + sum(inter))
ae58310528b7c24b7289cb3bcf76c72745c8bacc
678,115
def get_local_node_mapping(tree, last_tree, spr): """ Determine the mapping between nodes in local trees across ARG. A maps across local trees until it is broken (parent of recomb node). This method assumes tree and last_tree share the same node naming and do not contain intermediary nodes (i.e. single lineages). """ if last_tree is None: # no mapping if last_tree is None return None else: (rname, rtime), (cname, ctime) = spr # assert ARG is SMC-style (no bubbles) assert rname != cname # recomb_parent is broken and does not map to anyone recomb_parent = last_tree[rname].parents[0] mapping = dict((node.name, node.name) for node in last_tree) mapping[recomb_parent.name] = None return mapping
b30a95bb0c23fc00005de9474da19e781bc0485e
26,043
import math def computePairN(att_name, att_value, data): """ Sub-function to compute number of pairs that input value > * used in Pairwise oracle Attributes: att_name: sensitive attribute name att_value: value of protected group of above attribute data: dataframe that stored the data Return: number of pairs of att_value > * in input data, number of pairs of att_value > * estimated using proportion, and proportion of group with att_value """ # input checked_atts includes names of checked sensitive attributes total_N = len(data) # get the unique value of this sensitive attribute values_att = list (data[att_name].unique()) # for each value, compute the current pairs and estimated fair pairs position_lists_val = data[data[att_name]==att_value].index+1 size_vi = len(position_lists_val) count_vi_prefered_pairs = 0 for i in range(len(position_lists_val)): cur_position = position_lists_val[i] left_vi = size_vi - (i + 1) count_vi_prefered_pairs = count_vi_prefered_pairs + (total_N - cur_position - left_vi) # compute estimated fair pairs total_pairs_vi = size_vi*(total_N-size_vi) estimated_vi_pair = math.ceil((size_vi / total_N) * total_pairs_vi) return int(count_vi_prefered_pairs),int(estimated_vi_pair),int(size_vi)
495fdc105ab0aebf39464dffc50aa1a641973394
117,806
import json def load_mapping(filename): """ Load mapping dict from file. :param filename: mapping file name :return: dictionary of key to one-hot encoding; number of keys """ f = open(filename) mapping = json.load(f) return mapping, len(mapping)
e87b9c968bf12e9eb6a8480e56b06256f4496bef
269,694
def pvct(pv: float, compr_total: float): """ Pore Volume times Total Compressibility Parameters --- pv : float pore volume compr_total : float total compressibility Return pvct : float pore volume total compressibility """ return pv*compr_total
31c84e4dc94cb2f1c78c9e26ba02cec4c81f0800
38,022
def s_and(*args): """Logical and.""" result = True for i in args: result = result and i if not result: break return result
022f3a14e0430210a636828daf2056c653107c58
107,088
from typing import OrderedDict def dictify(od): """Recursively replace OrderedDict with dict""" if isinstance(od, OrderedDict): return dict((k, dictify(v)) for k, v in od.items()) else: return od
886fc727dba02f9029945d5efa947d7573c3df19
624,913
def simple_format(num): """Takes a number and returns the simplest format for the number removing all trailing 0's and the '.' if it's the trailing character. >>> simple_format(123) '123' >>> simple_format(123.0) '123' >>> simple_format(123.01100) '123.011' """ return ('%f' % num).rstrip('0').rstrip('.')
1c8b27aa2f2d5059babe440a40fa1aeb067a59ec
446,350
from typing import OrderedDict def dict_sort(in_dict: dict)-> OrderedDict: """ sort dict by values, 给字典排序(依据值大小) Args: in_dict: dict, eg. {"游戏:132, "旅游":32} Returns: OrderedDict """ in_dict_sort = sorted(in_dict.items(), key=lambda x:x[1], reverse=True) return OrderedDict(in_dict_sort)
b32187f78861c2f04c377030ecc45b1892ace708
674,947
import math def mutual_information(co_oc, oi, oj, n): """ :param co_oc: Number of co occurrences of the terms oi and oj in the corpus :param oi: Number of occurrences of the term oi in the corpus :param oj: Number of occurrences of the term oi in the corpus :param n: Total number of words in the corpus :return: """ e = (oi * oj)/n return math.log2(co_oc/e)
76c27295c7e757282573eab71f2bb7cfd3df74cb
2,906
def apply_rot_to_vec(rot, vec, unstack=False): """Multiply rotation matrix by a vector.""" if unstack: x, y, z = [vec[:, i] for i in range(3)] else: x, y, z = vec return [rot[0][0] * x + rot[0][1] * y + rot[0][2] * z, rot[1][0] * x + rot[1][1] * y + rot[1][2] * z, rot[2][0] * x + rot[2][1] * y + rot[2][2] * z]
6e119bbac62f1ced346f6ac46abd69058aedf698
557,893
def get_cutoff_class(sample): """ Identify which set of cutoffs to use when classifying a given variant call Arguments --------- sample : namedtuple('Metrics') Row from variant metrics table Returns ------- (source, svtype) : (str, str) Key to cutoffs table """ if sample.sources == 'depth' and sample.svtype == 'DEL': return ('depth', 'DEL') elif sample.sources == 'depth' and sample.svtype == 'DUP': return ('depth', 'DUP') elif (sample.svtype in 'DEL DUP'.split() and sample.svsize >= 1000): return ('pesr', 'CNV') else: return ('pesr', 'SV')
f4b6f37f912c638bf9fd70644658a699a4c051b6
564,072
import re def original_image_extender(pipeline_index, finder_image_urls, extender_image_urls=[], *args, **kwargs): """ Example: http://media-cache-ec0.pinimg.com/70x/50/9b/bd/509bbd5c6543d473bc2b49befe75f4c6.jpg http://media-cache-ec0.pinimg.com/236x/50/9b/bd/509bbd5c6543d473bc2b49befe75f4c6.jpg http://media-cache-ec0.pinimg.com/736x/50/9b/bd/509bbd5c6543d473bc2b49befe75f4c6.jpg to http://media-cache-ec0.pinimg.com/originals/50/9b/bd/509bbd5c6543d473bc2b49befe75f4c6.jpg """ now_extender_image_urls = [] search_re = re.compile(r'.com/\d+x/', re.IGNORECASE) for image_url in finder_image_urls: if 'pinimg.com/' in image_url.lower(): if search_re.search(image_url): extender_image_url = search_re.sub('.com/originals/', image_url, count=1) now_extender_image_urls.append(extender_image_url) output = {} output['extender_image_urls'] = extender_image_urls + now_extender_image_urls return output
19c4c2f61cf027acbb5ffc75cd72bd2cc802cfab
650,595
def read_to_whitespace(fptr, track): """ Read, skipping over white space. Then read all non-whitespace until one character of white space is consumed. Return the non-whitespace that was read. If the end of the file is encountered, return any non-whitespace if available, or an empty bytes string. Enter: fptr: file-like object to read from. track: a dictionary used to hold temporary values Exit: val: non-whitespace string """ if 'data' in track: if track['next'] < len(track['data']) - 1: out = track['data'][track['next']] track['next'] += 1 return out data = track['data'][-1][:-1] else: data = b'' track['data'] = (data + fptr.read(1024 * 1024) + b'X').split() out = track['data'][0] track['next'] = 1 return out
80d246f578af932830169306816acb5f0d6bfffb
670,190
def field_add(field, vector): """ Add the vector to the field. Parameters ---------- field: array (x, y, z, 3) an image of vectors. vector: array (3, ) the vector that will be added to the field. Returns ------- field: array (x, y, z, 3) the incremented image of vectors. """ field[..., 0] += vector[0] field[..., 1] += vector[1] field[..., 2] += vector[2] return field
06387b1c72b97a926c3e72a83f3c033921d013d7
97,439
from typing import Tuple from typing import Mapping from typing import Counter def create_mappings(dataset_path: str) -> Tuple[Mapping, Mapping]: """Creates separate mappings to indices for entities and relations.""" # counters to have entities/relations sorted from most frequent entity_counter = Counter() relation_counter = Counter() with open(dataset_path, "r") as f: for line in f: # -1 to remove newline sign head, relation, tail = line[:-1].split("\t") entity_counter.update([head, tail]) relation_counter.update([relation]) entity2id = {} relation2id = {} for idx, (mid, _) in enumerate(entity_counter.most_common()): entity2id[mid] = idx for idx, (relation, _) in enumerate(relation_counter.most_common()): relation2id[relation] = idx return entity2id, relation2id
e1724c485a4cef659d27f75b6e597892f54201af
192,694
import json def response(message, status_code): """Returns a dictionary object for an API Gateway Lambda integration response. :param message: Message for JSON body of response :type message: str or dict :param int status_code: HTTP status code of response :rtype: dict """ if isinstance(message, str): message = {'message': message} return { 'isBase64Encoded': False, 'statusCode': status_code, 'body': json.dumps(message), 'headers': {'Content-Type': 'application/json'} }
4928c22b409e7d81f6b287758eb36e7583ba029d
494,603
import math def _estimate_group_size(encoding_size): """ Given an encoding size (e.g. 128 B), estimate the number of encodings that will likely be under 100MiB in data including blocks. Note this is hopefully very conservative in estimating the average number of blocks each record is in. """ network_transaction_size = 104857600 # 100MiB blocks_per_record_estimate = 50 return math.ceil(network_transaction_size / ((blocks_per_record_estimate * 64) + (encoding_size + 4)))
7983795c0c6f21212882c888649596d028c6cecf
461,003
def nrow(data): """ Return the amount of rows in `data`. This is a useful shorthand for `data.nrow` in contexts where you don't have direct access to the data frame in question, e.g. in group-by-aggregate >>> data = di.DataFrame.read_csv("data/listings.csv") >>> data.group_by("hood").aggregate(n=di.nrow) """ return data.nrow
6246110df7ff356183258d5232e369ec632c1a1a
336,143
def find_ballot(ballot_num, unique_ballot_manifest): """ Find ballot among all the batches Input ----- ballot_num : int a ballot number that was sampled unique_ballot_manifest : dict ballot manifest with unique IDs across batches Returns ------- tuple : (original_ballot_label, batch_label, which_ballot_in_batch) """ for batch, ballots in unique_ballot_manifest.items(): if ballot_num in ballots: position = ballots.index(ballot_num) + 1 return (batch, position) print("Ballot %i not found" % ballot_num) return None
f7edb4e8d553d30684d608a44c58a675b10d7e9b
124,722
def mass_aspect(self, truncate_ell=max): """Compute the Bondi mass aspect of the AsymptoticBondiData. The Bondi mass aspect is given by M = -ℜ{ψ₂ + σ ∂ₜσ̄} Note that the last term is a product between two fields. If, for example, these both have ell_max=8, then their full product would have ell_max=16, meaning that we would go from tracking 81 modes to 289. This shows that deciding how to truncate the output ell is important, which is why this function has the extra argument that it does. Parameters ========== truncate_ell: int, or callable [defaults to `max`] Determines how the ell_max value of the output is determined. If an integer is passed, each term in the output is truncated to have at most that ell_max. (In particular, terms that will not be used in the output are simply not computed, without incurring any errors due to aliasing.) If a callable is passed, it is passed on to the spherical_functions.Modes.multiply method. See that function's docstring for details. The default behavior will result in the output having ell_max equal to the largest of any of the individual Modes objects in the equation for M above -- but not the product. """ if callable(truncate_ell): return -(self.psi2 + self.sigma.multiply(self.sigma.bar.dot, truncator=truncate_ell)).real elif truncate_ell: return -( self.psi2.truncate_ell(truncate_ell) + self.sigma.multiply(self.sigma.bar.dot, truncator=lambda tup: truncate_ell) ).real else: return -(self.psi2 + self.sigma * self.sigma.bar.dot).real
828a70adf812111ccd232a53e4947231e4da87d8
427,315
def itemize(x): """ Extract item from a list/tuple with only one item. >>> itemize([3]) 3 >>> itemize([3, 2, 1]) [3, 2, 1] >>> itemize([]) [] :param list|tuple x: An indexable collection :return: Return item in collection if there is only one, else returns the collection. :rtype: object|list|tuple """ return x[0] if len(x) == 1 else x
b88473b3ee5e417b9dd50bb066a08998790c09df
544,174
def aggregate(collection, pipeline): """Executes an aggregation on a collection. Args: collection: a `pymongo.collection.Collection` or `motor.motor_tornado.MotorCollection` pipeline: a MongoDB aggregation pipeline Returns: a `pymongo.command_cursor.CommandCursor` or `motor.motor_tornado.MotorCommandCursor` """ return collection.aggregate(pipeline, allowDiskUse=True)
03ea889ea23fb81c6a329ee270df2ac253e90d69
5,002
def invert_dictionary(aDict): """Transforms a dict so that keys become values and values become keys""" return {v: k for k, v in aDict.items()}
a4ec169b2f8d0857d4b22191c8823b17a03fc954
631,073
def phie_gaymard(phid, phin): """Estimate the effective porosity using Gaymard-Poupon [1]_ method. Parameters ---------- phid : array_like Density porosity (porosity calculated using density log) phin : int, float Neutron porosity (porosity calculated using neutron log) Returns ------- phie : array_like Effective porosity using Gaymard-Poupon method References ---------- .. [1] Gaymard, R., and A. Poupon. "Response Of Neutron And Formation Density Logs In Hydrocarbon Bearing Formations." The Log Analyst 9 (1968). """ phie = (0.5 * (phid*phid + phin*phin)) ** 0.5 return phie
57c59836310baa180b42b265112dc283774759d8
455,779
def as_flag(b): """Return bool b as a shell script flag '1' or '0'""" if b: return '1' return '0'
3caf3136b4845b7c6dec2e704744314101215399
268,543
from typing import OrderedDict import random def _downsample_dict(full_dict, num_samples): """Returns a down-sampled dictionary with a given number of samples in each value list. Args: full_dict: A dictionary with lists as values to down-sample. num_samples: The number of elements in each value list from full_dict to keep. Returns: A dictionary with value lengths of num_samples. """ downsampled_dict = OrderedDict() for key, value in full_dict.items(): if len(value) > num_samples: downsampled_dict[key] = random.sample(value, k=num_samples) else: downsampled_dict[key] = value return downsampled_dict
4072a0f3cd1755b65a9070089d618992f76a582f
194,810
from typing import Union import copy import collections def dls_sort(orig: Union[dict, list, set]) -> Union[dict, list]: """ Given a nested dictionary, set or list, return a sorted version. Note that lists aren't sorted (they merely retain their original order). Original data is unchanged. :param orig: original dict or list (may or may not be sorted) :return: sorted version of orig (note that we never return sets since they are unordered) """ orig = copy.deepcopy(orig) if isinstance(orig, list): return [dls_sort(e) for e in orig] elif isinstance(orig, set): # have to sort sets to be consistent since they have no order return sorted(list(orig)) elif isinstance(orig, dict) or isinstance(orig, collections.OrderedDict): sorted_dict = collections.OrderedDict() for k in sorted(orig): sorted_dict[k] = dls_sort(orig[k]) return sorted_dict return orig
5d77cf35b35d5f297ea16edfc472d87ce9030076
391,113
def get_util2d_shape_for_layer(model, layer=0): """ Define nrow and ncol for array (Util2d) shape of a given layer in structured and/or unstructured models. Parameters ---------- model : model object model for which Util2d shape is sought. layer : int layer (base 0) for which Util2d shape is sought. Returns --------- (nrow,ncol) : tuple of ints util2d shape for the given layer """ nr, nc, _, _ = model.get_nrow_ncol_nlay_nper() if nr is None: # unstructured nrow = 1 ncol = nc[layer] else: # structured nrow = nr ncol = nc return (nrow, ncol)
a56e00698b6d498800b895e83c84bed5b2ccc09d
686,234
import re def remove_pii_phone(text: str, replacement: str = '--PHONE--') -> str: """ Pass a string and return the text string with phone numbers removed Parameters ---------- text : str The text to replace phone numbers in replacement : str The text to replace phone numbers with Returns ------- replacement_text: str A text string with the phone numbers removed and replaced with specified text Example ------- text_with_phone = "Give me a call at 109-876-5432" print(remove_pii_phone(text_with_phone)) > Give me a call at --PHONE-- """ phone_regex_pattern = re.compile( # core components of a phone number r"(?:^|(?<=[^\w)]))(\+?1[ .-]?)?(\(?\d{3}\)?[ .-]?)?(\d{3}[ .-]?\d{4})" # extensions, etc. r"(\s?(?:ext\.?|[#x-])\s?\d{2,6})?(?:$|(?=\W))", flags=re.UNICODE | re.IGNORECASE) replacement_text = re.sub(phone_regex_pattern, replacement, text) return replacement_text
148b0564d2bcc0cae8de8d8f4e4c50fcdd221fc0
369,993
def normURLPath(path): """ Normalise the URL path by resolving segments of '.' and '..'. """ segs = [] pathSegs = path.split('/') for seg in pathSegs: if seg == '.': pass elif seg == '..': if segs: segs.pop() else: segs.append(seg) if pathSegs[-1:] in (['.'],['..']): segs.append('') return '/'.join(segs)
78abcc6c1cce17e5678baac10af96db508b3d57a
647,490
def requests_length(requests): """Total number of pageviews across all sessions.""" return len([r for r in requests if 'is_pageview' in r and r['is_pageview'] == 'true'])
8980ebdf8fe71aa5ffcf3bcc54920d1b0c83cf65
53,410
import io def write_pxi(filename, definitions): """ Write a cython include file (.pxi), `filename`, with the definitions in the `definitions` mapping. """ with io.open(filename, mode='w', encoding='utf-8') as pxi_file: for name, val in definitions.items(): pxi_file.write(u"DEF {name} = {val}\n".format(name=name, val=val)) return filename
0b2c892afc3d639b0d48169bfbe35917c5494110
265,485
def init_tdl(model, inputs, labels, device): """ Initialize TDLs using input and label data. :param model: NARX model :param inputs: inputs :param labels: labels :param device: device type :return: input, labels, input TDL, output TDL """ max_delay_size = max(model.input_delay_size, model.output_delay_size) # input tap-delay itdl = inputs[:, max_delay_size - model.input_delay_size: max_delay_size, :].to(device) # output tap-delay otdl = labels[:, max_delay_size - model.output_delay_size: max_delay_size, :].to(device) # input and label data input = inputs[:, max_delay_size:, :] label = labels[:, max_delay_size:, :] return input, label, itdl, otdl
fcec1fd661e8fe2ccf8cab76ae1399a0fe2b0b87
159,591
from typing import Any def is_num(num: Any) -> bool: """Function that tests if object can be converted to number A function that takes any input and detects if it is a number by attempting to convert the input to a float. This function catches convertable digit string cases. Source: https://stackoverflow.com/questions/354038 :param num: object data to determine if it is conceivably an number :type num: Any :return: a boolean determination if the input is a number :rtype: bool """ if isinstance(num, complex): if num.imag == 0: num = num.real else: return False elif isinstance(num, bool): return False try: float(num) return True except ValueError: return False
d74a40b1cf5c2dee6b8001b7fc937a546ea55bc0
593,359
def count_crickMAX(args): """Count the number of sequences in the Crick fasta file""" with open(args.crick, 'r') as crick_in: count = 0 for line in crick_in: if line.startswith('>'): count +=1 return count
c4937613b917107f74aa6658719d3e6e243eebd2
32,289
def _get_nn_layers(spec): """ Returns a list of neural network layers if the model contains any. Parameters ---------- spec: Model_pb A model protobuf specification. Returns ------- [NN layer] list of all layers (including layers from elements of a pipeline """ layers = [] if spec.WhichOneof('Type') == 'pipeline': layers = [] for model_spec in spec.pipeline.models: if not layers: return _get_nn_layers(model_spec) else: layers.extend(_get_nn_layers(model_spec)) elif spec.WhichOneof('Type') in ['pipelineClassifier', 'pipelineRegressor']: layers = [] for model_spec in spec.pipeline.models: if not layers: return _get_nn_layers(model_spec) else: layers.extend(_get_nn_layers(model_spec)) elif spec.neuralNetwork.layers: layers = spec.neuralNetwork.layers elif spec.neuralNetworkClassifier.layers: layers = spec.neuralNetworkClassifier.layers elif spec.neuralNetworkRegressor.layers: layers = spec.neuralNetworkRegressor.layers return layers
b992a9fab6b5e042fece06ae384f784f7ec38719
615,149
def get_func_id(func): """Get a quasi-identifier of a given function.""" return func.__qualname__
8aba6fdb53d5c1ba89e0e4443b919070516224fa
641,397
from typing import Dict def decode_internal_tx(raw_internal_tx: bytes) -> Dict: """ Decodes bytes representation of an internal transaction into a dictionary. Args: raw_internal_tx: Bytes representing an internal transaction. Returns: Internal transaction in dictionary form. """ internal_tx_items = raw_internal_tx.decode().split('\0') internal_tx = {} internal_tx['from'] = internal_tx_items[0] internal_tx['to'] = internal_tx_items[1] internal_tx['value'] = internal_tx_items[2] internal_tx['input'] = internal_tx_items[3] internal_tx['output'] = internal_tx_items[4] internal_tx['traceType'] = internal_tx_items[5] internal_tx['callType'] = internal_tx_items[6] internal_tx['rewardType'] = internal_tx_items[7] internal_tx['gas'] = internal_tx_items[8] internal_tx['gasUsed'] = internal_tx_items[9] internal_tx['transactionHash'] = internal_tx_items[10] internal_tx['timestamp'] = internal_tx_items[11] internal_tx['error'] = internal_tx_items[12] return internal_tx
44ab2b062d121f025a5bcde8ce48a49c576a758e
457,935
def _ros_plot_pos(row, censorship, cohn): """ ROS-specific plotting positions. Computes the plotting position for an observation based on its rank, censorship status, and detection limit index. Parameters ---------- row : pandas.Series or dict-like Full observation (row) from a censored dataset. Requires a 'rank', 'detection_limit', and `censorship` column. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) cohn : pandas.DataFrame Dataframe of Cohn numbers. Returns ------- plotting_position : float See also -------- cohn_numbers """ DL_index = row['det_limit_index'] rank = row['rank'] censored = row[censorship] dl_1 = cohn.iloc[DL_index] dl_2 = cohn.iloc[DL_index + 1] if censored: return (1 - dl_1['prob_exceedance']) * rank / (dl_1['ncen_equal']+1) else: return (1 - dl_1['prob_exceedance']) + (dl_1['prob_exceedance'] - dl_2['prob_exceedance']) * \ rank / (dl_1['nuncen_above']+1)
5111aa3223e1a2111c106b8711edc54cee9f878f
352,995
import re def is_requirements_txt(filename) -> bool: """Check if filename is of requirements.txt format :param filename: filename :return: True if filename is in requirements.txt format """ return True if re.match(r'.*requirements.*\.txt$', filename) else False
01a67f29b8da728ef21b17844a5eb2005b1e5b23
214,561
from typing import Dict from typing import List import random def get_shared_chores(chores: Dict, chore_group: List) -> List: """ Find chores that are shared and should be assigned to a pool of several users. :param chores: All chores :param chore_group: List of the categories that should be shared :return: A randomized list of chores to be assigned """ shared_chores = [] for group in chores: if group in chore_group: for chore in chores[group]: shared_chores.append((chore, group)) return random.sample(shared_chores, len(shared_chores))
c45c7c24517922082e9740dc31da2e27e083d46b
501,687
def A_tot_wkend_days_init(M, i, t, e): """ Initialize number of weekend days worked in the i'th pattern, tour type t, and weekend type e. :param M: Model :param i: weekend worked pattern :param t: tour type :param e: weekend type (1=Sun and Sat, 2=Fri and Sat) :return: number of weekend days worked over entire schedule cycle (int) """ if e == 1: return sum(M.A_wkend_days[i, 1, w, t, e] + M.A_wkend_days[i, 7, w, t, e] for w in M.WEEKS) else: return sum(M.A_wkend_days[i, 6, w, t, e] + M.A_wkend_days[i, 7, w, t, e] for w in M.WEEKS)
f1ee32a30bd4a89c30148c3d0cdf95da6c5836ed
620,954
def exc_info(space): """Return the (type, value, traceback) of the most recent exception caught by an except clause in the current stack frame or in an older stack frame.""" operror = space.getexecutioncontext().sys_exc_info() if operror is None: return space.newtuple([space.w_None,space.w_None,space.w_None]) else: return space.newtuple([operror.w_type, operror.w_value, space.wrap(operror.application_traceback)])
39a1515476267863832434ca738241bf40fa8812
282,290
def top_n_filter(peak_set, n=40): """Keep only the top `n` most abundant peaks in the spectrum. Parameters ---------- peak_set : :class:`Iterable` of :class:`~.PeakBase` The peaks to filter n : int, optional The maximum number of peaks to retain, by default 40 Returns ------- list """ reduced_peaks = sorted(peak_set, key=lambda x: x.intensity, reverse=True)[:n] reduced_peaks.sort(key=lambda x: x.mz) return reduced_peaks
fc12934ccfc6163903f6a8286a3dc9f5219ad484
487,481
def get_basic_authorization(request): """Gets basic auth username and password Parameters ---------- request : A django request obj Returns ------- auth_username : base64 decoded auth_password : base64 decoded """ http_auth = request.META.get('HTTP_AUTHORIZATION') if not http_auth: raise ValueError('http authorization missing') (auth_method, auth) = http_auth.split(None, 1) if auth_method.lower() != "basic": raise ValueError('bad http authorization method') try: auth_username, auth_password = auth.strip().decode('base64').split(':') except: raise ValueError('bad authorization encoding') return auth_username, auth_password
3ea69f5b8a296bce9e03397b279d88ae577f795b
423,394
def all_indices(s, substr): """ Find all indices in ``s`` where ``substr`` begins. Returns results in list. """ indices = [] i = s.find(substr) while i >= 0: indices.append(i) i = s.find(substr, i+1) return indices
93d199f07f923ff89c87a642edb6ec3cfb99dfbb
552,927
def ints_to_rgb(r, g=None, b=None): """Convert ints in the [0...255] range to the standard [0...1] range. Parameters: :r: The Red component value [0...255] :g: The Green component value [0...255] :b: The Blue component value [0...255] Returns: The color as an (r, g, b) tuple in the range: r[0...1], g[0...1], b[0...1] >>> '(%g, %g, %g)' % ints_to_rgb((255, 128, 0)) '(1, 0.501961, 0)' """ if type(r) in [list,tuple]: r, g, b = r return tuple(float(v) / 255.0 for v in [r, g, b])
d24e336f13beb3538428724ce56532f1efb8fb6f
618,197
def in_static_dir(filepath, static_dirs): """See if filepath is contained within a directory contained in static_dirs.""" for directory in static_dirs: if filepath.startswith(directory): return True else: return False
4f5c7357cefb6de3a3a5cd53fc8e154b12e7c418
490,857
def _create_query_dict(query_text): """ Create a dictionary with query key:value definitions query_text is a comma delimited key:value sequence """ query_dict = dict() if query_text: for arg_value_str in query_text.split(','): if ':' in arg_value_str: arg_value_list = arg_value_str.split(':') query_dict[arg_value_list[0].strip()] = arg_value_list[1].strip() return query_dict
2e4478bdf110911d4ca9fcc6c409aab3504a0b8a
8,510
import binascii def shinglify(clean_text): """ Generates list of 'shingles': crc sums of word subsequences of default length :param clean_text: cleaned text to calculate shingles sequence. :return: shingles sequence """ shingle_length = 3 result = [] for idx in range(len(clean_text) - shingle_length + 1): result.append( binascii.crc32( bytes( u' '.join( [word for word in clean_text[idx:idx+shingle_length]] ), 'utf-8' ) ) ) return result
aedd17f3eed48aaf1cbeb0bbe34103d594d6428b
669,687
def layer_sizes(X, Y): """ 设置网络结构 Args: X: 输入的数据 Y: 输出值 Return: n_x: 输入层节点数 n_h: 隐藏层节点数 n_y: 输出层节点数 """ n_x = X.shape[0] # 输入层大小(节点数) n_h = 4 n_y = Y.shape[0] # 输出层大小(节点数) return (n_x, n_h, n_y)
62f6d0f3a1cb772091fce3657d3f158bc86bd5a1
262,377
def label_continues_or_empty(seq, previous_label): """Returns True if seq continues previous_label or 'O' (that is no new tags starting).""" seq = list(seq) # copy if previous_label.startswith('B-'): continuation_label = 'I-' + previous_label[2:] elif previous_label.startswith('I-'): continuation_label = previous_label else: continuation_label = 'O' while seq and seq[0] == continuation_label: seq.pop(0) return all(x == 'O' for x in seq)
d3a3c198ff8ba1a6e9be60920ab0cff380f9a5e0
278,215
import socket def get_host_name() -> str: """Return the name of the current host""" return socket.gethostname()
70958a59576a20da2fc053f8ff1e8d7f81bf1ba4
143,575
def binary_scores_from_counts(ntp, nfp, ntn, nfn): """ Precision, recall, and F1 scores from counts of TP, FP, TN, FN. Example usage: p, r, f1 = binary_scores_from_counts(*map(len, error_sets)) """ prec = ntp / float(ntp + nfp) if ntp + nfp > 0 else 0.0 rec = ntp / float(ntp + nfn) if ntp + nfn > 0 else 0.0 f1 = (2 * prec * rec) / (prec + rec) if prec + rec > 0 else 0.0 return prec, rec, f1
cbdff276e5ee765c5154f2632b5a2edb35b72984
329,272
def plural(word: str, i: int) -> str: """Returns either "word" or "words" based on the number.""" return f"{word}{'' if i == 1 else 's'}"
14efa098cc0a3af809194a5a88b806e6fc9c7b1a
325,081
import random import string def rndstr(size=16, alphabet=""): """ Returns a string of random ascii characters or digits :param size: The length of the string :return: string """ rng = random.SystemRandom() if not alphabet: alphabet = string.ascii_letters[0:52] + string.digits return type(alphabet)().join(rng.choice(alphabet) for _ in range(size))
03325a4ff88300d42dcbd7b1b58ba001e3581b5a
392,941
def build_table(x, perceiver, cache, cache_emb, topk, return_images=False, index_dir=None): """ Maps each image to a linearized row in a table. Each entry in a row is delimited by "|". Each entry comes from the topk results in the cache as determined by cosine similarity in CLIP space. """ table = [] x = perceiver.encode_image(x).float() x /= x.norm(dim=-1, keepdim=True) if index_dir: indices = cache_emb.search(x.cpu().numpy(), topk)[1] for idx in range(len(x)): row = '' results = [cache[i] for i in indices[idx]] for r in results: row += r + ' | ' table.append(row) else: #print(x.shape) #print(cache_emb.shape) ipt = 100.0 * x.float() @ cache_emb.T.float() similarity = (ipt).softmax(dim=-1) for idx in range(len(x)): row = '' values, indices = similarity[idx].topk(topk) for _, index in zip(values, indices): row += cache[index] + ' | ' table.append(row) if return_images: return table, x return table
5822dbe6f54a0d582bc19785cf9b1d49a4ac5eda
677,960
def FindRecentBuilds(ab_client, branch, target, build_type='submitted', build_attempt_status=None, build_successful=None): """Queries for the latest build_ids from androidbuild. Args: ab_client: The androidbuild API client. branch: The name of the git branch. target: The name of the build target. build_type: (Optional) The type of the build, defaults to 'submitted'. build_attempt_status: (Optional) Status of attempt, use 'complete' to look for completed builds only. build_successful: (Optional) Whether to only return successful builds. Returns: A list of numeric build_ids, sorted from most recent to oldest (in reverse numerical order.) """ kwargs = { 'branch': branch, 'target': target, } if build_type is not None: kwargs['buildType'] = build_type if build_attempt_status is not None: kwargs['buildAttemptStatus'] = build_attempt_status if build_successful is not None: kwargs['successful'] = build_successful builds = ab_client.build().list(**kwargs).execute().get('builds') # Extract the build_ids, convert to int, arrange newest to oldest. return sorted((int(build['buildId']) for build in builds), reverse=True)
089dcb868be50d60dbebe912fe8f68dc73a28c40
102,366
import torch def monte_carlo_pose_loss(pose_sample_logweights, cost_target): """ Args: pose_sample_logweights: Shape (mc_samples, num_obj) cost_target: Shape (num_obj, ) Returns: Tensor: Shape (num_obj, ) """ loss_tgt = cost_target loss_pred = torch.logsumexp(pose_sample_logweights, dim=0) # (num_obj, ) loss_pose = loss_tgt + loss_pred # (num_obj, ) loss_pose[loss_pose.isnan()] = 0 return loss_pose
93f599ecc04178fe982d88ce39d0bd846534e4fb
152,970
def get_rules(view): """Get auto-popup scope rule.""" rules = view.settings().get("color_helper.scan") return rules if rules is not None and rules.get("enabled", False) else None
1e04d93514785af0bb569c6b7ea7a8b2458c0175
590,529
def count_bags_inside(bag_name, rules): """Count total number of bags in bag_name.""" if not rules[bag_name]: return 0 count = 0 for inside_bag, number_of_bags in rules[bag_name].items(): count += (number_of_bags + number_of_bags * count_bags_inside(inside_bag, rules)) return count
68dcc6e6b400e1d4bc9c8fdd6ecf71a24caedaee
171,272
def comma_separated_positions(text): """ Start and end positions of comma separated text items. Commas and trailing spaces should not be included. >>> comma_separated_positions("ABC, 2,3") [(0, 3), (5, 6), (7, 8)] """ chunks = [] start = 0 end = 0 for item in text.split(","): space_increment = 1 if item[0] == " " else 0 start += space_increment # Is there a space after the comma to ignore? ", " end += len(item.lstrip()) + space_increment chunks.append((start, end)) start += len(item.lstrip()) + 1 # Plus comma end = start return chunks
6203ac8839be7718742426474ec093cdce5b58c3
101,123
def geometry_mismatch(shape1, shape2): """Compute relative mismatch of two shapes""" return shape1.symmetric_difference(shape2).area / shape1.union(shape2).area
0e56b8c8d8d030dd63d2176ad3f336d85951244b
476,590