content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def split_namespace(ident): """ Splits an identifier into its namespace and its bare identifier. >>> split_namespace('foo') (None, 'foo') >>> split_namespace('foo:bar') ('foo', 'bar') """ if ':' not in ident: return (None, ident) else: result = ident.split(':', 1) if len(result) == 1: return ('', ident) else: return tuple(result)
ac5161a978edefdd421555173cdfd56c86f57190
458,828
def capitalize_names(ds): """ Capitalize the 'long_name' attribute for plotting purposes """ for var in ds.variables.values(): if "long_name" in var.attrs: var.attrs["long_name"] = var.attrs["long_name"].capitalize() return ds
7d511e5d29e95f2bf2af4b3357f1b296cb538dc6
302,251
import torch def look_at(eye, center, world_up): """Compute camera viewing matrices. Functionality mimes gluLookAt (external/GL/glu/include/GLU/glu.h). Args: eye: 2D float32 tensor with shape [batch_size, 3] containing the XYZ world space position of the camera. center: 2D float32 tensor with shape [batch_size, 3] containing a position along the center of the camera's gaze line. world_up: 2D float32 tensor with shape [batch_size, 3] specifying the world's up direction; the output camera will have no tilt with respect to this direction. Returns: A [batch_size, 4, 4] float tensor containing a right-handed camera extrinsics matrix that maps points from world space to points in eye space. """ batch_size = center.shape[0] forward = center - eye forward = torch.nn.functional.normalize(forward, dim=1, p=2) to_side = torch.cross(forward, world_up) to_side = torch.nn.functional.normalize(to_side, dim=1, p=2) cam_up = torch.cross(to_side, forward) w_column = torch.tensor(batch_size * [[0., 0., 0., 1.]], device=eye.device) w_column = torch.reshape(w_column, [batch_size, 4, 1]) view_rotation = torch.stack([to_side, cam_up, -forward, torch.zeros_like(to_side)], dim=1) # [batch_size, 4, 3] matrix view_rotation = torch.cat([view_rotation, w_column], dim=2) # [batch_size, 4, 4] identity_batch = torch.unsqueeze(torch.eye(3, device=center.device), 0,).repeat([batch_size, 1, 1]) view_translation = torch.cat([identity_batch, torch.unsqueeze(-eye, 2)], 2) view_translation = torch.cat([view_translation, torch.reshape(w_column, [batch_size, 1, 4])], 1) camera_matrices = torch.matmul(view_rotation, view_translation) return camera_matrices
ffc7a402bd13430c3d69096306d93f4fde803673
262,370
def calculate(num1, num2, symbol): """ 操作数的计算 :param num1:操作数1 :param num2:操作数2 :param symbol:操作符 :return:计算后的结果 """ if symbol == '+': return num1 + num2 if symbol == '-': return num1 - num2 if symbol == '*': return num1 * num2 if symbol == '/': return num1 / num2 else: return None
de76a370ea3091dbb328a2f70bdc0ef425ce0167
395,707
from typing import Union from typing import List def encode_with_vocab(x: Union[list, str], VOCAB: List[str], unkid: int) -> Union[list, int]: """Encode all elements of x that are strings. x: Union[list, str] Encoding happens if type(x)==str. If type(x)=list then a recursive call on each list element is triggered. VOCAB : List[str] vocabulary list unkid : int Index of the UKNOWN token, e.g. unkid=VOCAB.index("[UNK]") Returns: -------- Union[list, int] The final result (after all recursions) has the same structure as x but with integer encoded elements. Example: -------- import kshingle as ks data = ['abc d abc de abc def', 'abc defg abc def gh abc def ghi'] shingled = [ks.shingling_k(s, k=9) for s in data] VOCAB = ks.identify_vocab(shingled, n_max_vocab=10) VOCAB, unkid = ks.upsert_word_to_vocab(VOCAB, "[UNK]") encoded = ks.encode_with_vocab(shingled, VOCAB, unkid) """ if isinstance(x, str): try: return VOCAB.index(x) except Exception: return unkid else: return [encode_with_vocab(e, VOCAB, unkid) for e in x]
e4373791460b735910d867c761dcea499074a95f
146,485
def _row_norm(df): """ >>> df = pd.DataFrame({ ... 'cell-1': {'a':8, 'b':1, 'c': 7}, ... 'cell-2': {'a':1, 'b':1, 'c': 1}, ... 'cell-3': {'a':10, 'b':1, 'c': 10} ... }) >>> _row_norm(df) cell-1 cell-2 cell-3 a 0.8 0.1 1.0 b 1.0 1.0 1.0 c 0.7 0.1 1.0 """ t = df.T return (t / t.max()).T
096e03b189d206417524a1baafc32ffadc4f8e6b
572,494
def get_standard(obj, standard): """ A function that allows to return a standard value for an object, if the object is None. :param obj: Object to check if it's None. :param standard: Standard value for the object :return: return the object or the standard value """ if obj is None: return standard return obj
b52f67a69c452f1e84f3f42bd4438960d04ba736
497,367
def GenerateConfig(_): """Returns empty string.""" return ''
ed42eb1c320ca1df25603a53d4abf4a1b14215f3
707,906
import re def word_filter(word): """ The filter used for deleting the noisy words in changed code. Here is the method: 1. Delete character except for digit, alphabet, '_'. 2. the word shouldn't be all digit. 3. the length should large than 2. Args: word Returns: True for not filtering, False for filtering. """ if word[:2] == '0x': return False if '=' in word: return False if '/' in word: return False if '.' in word: return False if '$' in word: return False word = re.sub("[^0-9A-Za-z_]", "", word) if(word.isdigit()): return False if(len(word) <= 2): return False return True
c29e80c7e6839a576b95ee99b18e81a31b95a020
689,774
def _gate_sequence_product_with_expansion(U_list, left_to_right=True): """ Calculate the overall unitary matrix for a given list of unitary operations. Parameters ---------- U_list : list List of gates(unitaries) implementing the quantum circuit. left_to_right : Boolean Check if multiplication is to be done from left to right. Returns ------- U_overall : qobj Unitary matrix corresponding to U_list. """ U_overall = 1 for U in U_list: if left_to_right: U_overall = U * U_overall else: U_overall = U_overall * U return U_overall
45038b9e9a09924dfc0cbee4d5605160f3d862b9
75,660
def get_event_name(dictionary: dict): """Gets value from dictionary for key `name` otherwise returns None""" try: return dictionary.get('name', None) except AttributeError: return None
49e2e3ef3c4ae29b5d2edec280b3673e90853b35
280,036
from datetime import datetime def read_daily_line(line): """ Parses one line from a DailyFile and returns a dictionary containing the parameters by name. One line is parsed such that Daily(**read_daily_line(line)) creates a Daily instance successfully. Values are all returned as floats. :param str line: the line to be read, including whitespace since it will be parsed by splitting on tabs :return: dict """ dailydata = {} ls = line.split('\t') try: dailydata['date'] = datetime.strptime(line.split('\t')[0].split('.')[0], '%y%j%H%M') dailydata['ads_xfer_temp'] = float(ls[1]) dailydata['valves_temp'] = float(ls[2]) dailydata['gc_xfer_temp'] = float(ls[3]) dailydata['ebox_temp'] = float(ls[4]) dailydata['catalyst_temp'] = float(ls[5]) dailydata['molsieve_a_temp'] = float(ls[6]) dailydata['molsieve_b_temp'] = float(ls[7]) dailydata['inlet_temp'] = float(ls[8]) dailydata['room_temp'] = float(ls[9]) dailydata['v5'] = float(ls[10]) dailydata['mfc1'] = float(ls[11]) dailydata['mfc2'] = float(ls[12]) dailydata['mfc3'] = float(ls[13]) dailydata['he_pressure'] = float(ls[14]) dailydata['linep'] = float(ls[15]) dailydata['zerop'] = float(ls[16]) except ValueError: print('ValueError while reading line from DailyFile.') return dailydata
08eb0733734b45ed4ba5a9fe70f74453e45a467a
463,472
def _get_bikes_available(sta): """Given a GBFS station status blob, return the number of bikes""" # 'num_ebikes_available" is not part of the GBFS spec, but it appears # in the Divvy API response return sta['num_bikes_available'] + sta.get('num_ebikes_available', 0)
39c4b79a09efc5ff30d9fb20a7038546fc201fbb
278,672
def nside2npix(nside): """ Convert healpix resolution (nside) to the number of healpix pixels in a full-sky map. """ return 12 * nside * nside
c90305b624a1c6ae57815f9a34e48c8415c05055
325,729
def num_as_bytes(n): """ Encodes an integer in UTF-8 bytes. """ return str(n).encode("utf-8")
a4df4a7e815eee11a4dc6939323115f1f4953b49
328,338
def galeshapley(suitor_pref_dict, reviewer_pref_dict, max_iteration): """ The Gale-Shapley algorithm. This is known to provide a unique, stable suitor-optimal matching. The algorithm is as follows: (1) Assign all suitors and reviewers to be unmatched. (2) Take any unmatched suitor, s, and their most preferred reviewer, r. - If r is unmatched, match s to r. - Else, if r is matched, consider their current partner, r_partner. - If r prefers s to r_partner, unmatch r_partner from r and match s to r. - Else, leave s unmatched and remove r from their preference list. (3) Go to (2) until all suitors are matched, then end. Parameters ---------- suitor_pref_dict : dict A dictionary with suitors as keys and their respective preference lists as values reviewer_pref_dict : dict A dictionary with reviewers as keys and their respective preference lists as values max_iteration : int An integer as the maximum iterations Returns ------- matching : dict The suitor-optimal (stable) matching with suitors as keys and the reviewer they are matched with as values """ suitors = list(suitor_pref_dict.keys()) matching = dict() rev_matching = dict() for i in range(max_iteration): if len(suitors) <= 0: break for s in suitors: r = suitor_pref_dict[s][0] if r not in matching.values(): matching[s] = r rev_matching[r] = s else: r_partner = rev_matching.get(r) if reviewer_pref_dict[r].index(s) < reviewer_pref_dict[r].index(r_partner): del matching[r_partner] matching[s] = r rev_matching[r] = s else: suitor_pref_dict[s].remove(r) suitors = list(set(suitor_pref_dict.keys()) - set(matching.keys())) return matching
5b52cb165d15a0992b58c38958daf222d8d642cd
704,166
def config_desc(config): """A one-line text string describing the configuration of a run.""" return ( "len:{len_train} " "win:{window_len} " "str:{use_string} " "page:{use_page} " "geom:{use_geom} " "amt:{use_amount} " "voc:{vocab_size} " "emb:{vocab_embed_size} " "steps:{steps_per_epoch}" ).format(**config)
2898cb75bb0cc240559f00478624249b7f9b3366
277,099
from typing import Optional import json def get_auth_token() -> Optional[str]: """Returns the saved auth token. :return: The auth token saved in :code:`.frost` :rtype: Optional[str] """ with open('.frost', 'r') as f: return json.load(f).get('token')
f58241ac8ee8791468170f01453bccab513b10c6
413,458
from typing import Type from typing import Any def typed_property(name: str, expected_type: Type[Any]) -> property: """Avoids definition of repetitive property class methods. Simplifies type assertions on class attributes values. Illustrates an important feature of inner functions or closures. Args: name (str): attribute name expected_type (Type[Any]): expected type of class attribute Example: >>> class Person: ... name: property = typed_property("name", str) ... age: property = typed_property("age", int) ... ... def __init__(self, name: str, age: int) -> None: ... self._name = name ... self._age = age ... >>> person: Person = Person(name="Luke", age=22) >>> person.age = None # raise `TypeError` """ to_private_name: str = f"_{name}" @property # type: ignore def prop(self: Any) -> Any: """Returns value of an instance. Args: self (Any): an instance """ return getattr(self, to_private_name) @prop.setter def prop(self: Any, value: Any) -> None: """Returns value to instance attribute. Args: self (Any): an instance value (Any): value to be set Raises: `TypeError` if attribute value does not match with expected type """ if not isinstance(value, expected_type): raise TypeError( f"'{name}' argument must be a '{expected_type}' type" ) setattr(self, to_private_name, value) return prop
2f704ae0fe0e6fae60bbc05917ee73b790d77a68
637,076
import torch def focal_loss(yhat, ytrue, alpha=0.75, gamma=2): """ Computes α-balanced focal loss from FAIR https://arxiv.org/pdf/1708.02002v2.pdf Args: yhat (Tensor): predicted masks ytrue (Tensor): targets masks alpha (Float): weight to balance Cross entropy value gamma (Float): focal parameter output: loss value with `mean` reduction """ # compute the actual focal loss focal = -alpha * torch.pow(1. - yhat, gamma) * torch.log(yhat) f_loss = torch.sum(ytrue * focal, dim=1) return torch.mean(f_loss)
1dcdf9d53c4deae88a4246dee445cc37a90e09e6
551,009
def _parseAccept(header): """ Parses an Accept header. Returns an iterable of 2-tuples with the content type and the matching parameters. The parameters is a dictionary with the key-value pairs of the parameters. This dictionary should either be empty or contain a single key (``"q"``). The matching value determines the preference of the client for that content type. """ accepted = [] for part in header.strip(".").split(","): part = part.strip() if not part: continue # Begone, vile hellspawn! elements = part.split(";") contentType, rawParams = elements[0].strip(), elements[1:] params = {} for param in rawParams: key, value = map(str.strip, param.split("=", 1)) params[key] = value accepted.append((contentType, params)) return accepted
b792002ed8dc56a8bbaa69f3d137e4819d441320
424,848
from typing import Iterable from typing import Hashable from typing import Callable from typing import Dict def _count( values: Iterable[Hashable], filter_: Callable = lambda value: True ) -> Dict[Hashable, int]: """ Returns dictionary where keys are unique `values` and values there are entry counters. Adding condition can be specified by `filter_` argument which `lambda value: True` by default. """ counted = {} for value in values: if filter_(value): if value in counted: counted[value] += 1 else: counted[value] = 1 return counted
d97735cdbface56fbecabc789ab854a71ee18bf0
311,258
def get_wordlist(stanzas): """ Get an iterable of all final words in all stanzas """ return sorted(list(set().union(*[stanza.words for stanza in stanzas])))
a2c610c90aae76276a6b5cc345f9537e1c131464
99,920
def safe_convert(s, default=0): """ Converts something to a float. If an error occurs, returns the default value. """ try: v = float(s) except ValueError: v = default return v
47afd68bb36d47dfd173c8630581cbd1f427884e
131,615
def Mass_function1(asini, porb): """ Returns the mass function of a binary star. asini: Projected semi-major axis in light-second. porb: Orbital period in second. """ mfunc = 8015123.37129 * asini**3 / porb**2 return mfunc
13273846fb6d20f943e5740e014fe1fb2a85a6a3
276,092
def dtime2a(dtime): """Converts time in seconds to 'HH:MM:SS'""" dtime = int(dtime) sec = dtime % 60 dtime /= 60 minute = dtime % 60 dtime /= 60 hour = dtime return "%d:%02d:%02d" % (hour, minute, sec)
5f7186a931f009a34b512a5e82789035e91af6eb
198,563
def getintervalsingle(stimulus, td, kind): """ get the interval list for a single stimulus input: stimulus struct; trackdata; kind of stimulus output: list of (t1, t2) intervals """ tmin, tmax = td.findtimerange() stimonset = stimulus.onset stimduration = stimulus.duration stimoffset = stimonset + stimduration offsetduration = tmax - (stimonset + stimduration) if kind == "basic stats": intervallist = [ (0.0, stimonset), (stimonset + 1, stimonset + 4), (stimonset, stimonset + 0.5 * stimduration), (stimonset + 0.5 * stimduration, stimoffset), (stimoffset, stimoffset + 0.5 * offsetduration), (stimoffset + 0.5 * offsetduration, tmax), ] elif kind == "line fits": intervallist = [ (stimonset, stimonset + 2.0), (stimonset + 2.0, stimonset + 4.0), (stimonset + 0.5 * stimduration, stimoffset), (stimoffset, tmax), (stimonset + 0.5 * stimduration, tmax), ] # this interval is only valid for long enough durations: if stimonset + 4.0 < stimonset + 0.5 * stimduration: intervallist.append((stimonset + 4.0, stimonset + 0.5 * stimduration)) elif kind == "xy-motion": intervallist = [ (0.0, stimonset), (stimonset, stimoffset), (stimonset, stimonset + 30), (stimonset + 30, tmax), ] else: raise ValueError("unknown interval kind %s" % kind) return intervallist # end getintervalsingle()
ba2d2ae0e814e1139b60eaad2e64276c7219bea0
408,266
def max(x): """Find maximal of array elements and corresponding indices along axis = 1 Args: x: array-like Returns: max_vals_along_axis and max_indices_along_array """ if len(x.shape) != 2: raise ValueError('The size of x shape must be 2 dimension') max_vals = x.max(1) max_inds = x.argmax(1) return max_vals, max_inds
11cea43653a600d65d074374fec3ca2228dea98b
80,715
def _fast_copy_probs_table(table): """ Copy a dictionary representation of a probability table faster than the standard deepcopy. :param dict table: A dictionary with the tuples of ints as keys and floats as values. :return: The copied table. """ table_copy = {tuple(assign): value for assign, value in table.items()} return table_copy
f825cb7e36c71c7395feb4e50051ee127c0beea4
524,056
import math def bound_value(value, minimum=-math.inf, maximum=math.inf, to_int=False): """ Bounds a value between a minimum and maximum :param value: the value to bound :type value: int/float :param minimum: the lower bound :type minimum: int/float :param maximum: the upper bound :type maximum: int/float :param to_int: whether or not to cast the result to an int :type to_int: bool :returns: the bounded value """ if minimum is None: # in case None is passed in minimum = -math.inf if maximum is None: maximum = math.inf if to_int: if isinstance(minimum, float) and minimum != -math.inf: return int(min(max(value, math.ceil(minimum)), maximum)) return int(min(max(value, minimum), maximum)) return min(max(value, minimum), maximum)
1176bf1ad4514923c1b733062a3c336e38a8f0a4
243,290
import codecs import json def load(path): """Loads a single Zeppelin notebook. For now just a wrapper around json.load""" with codecs.open(path, mode="r", encoding="UTF-8") as fr: try: return json.load(fr) except json.JSONDecodeError: return {}
b88ee6454dc603d6b324a91f879dc167e433f442
648,073
def fill_zeros(s,n): """ Add zeros to a string s until it reaches length n. """ while len(s) < n: s= ''.join(('0',s)) return s
0b25353954070668d4bdb3450287b2291008d019
655,934
def mse(original_data, degradated_data): """ This calculates the Mean Squared Error (MSE) :param original_data: As Pillow gives it with getdata :param degradated_data: As Pillow gives it with getdata :return: List containing the MSE in Y, U, V and average of those 3 """ error_y = 0 error_cb = 0 error_cr = 0 for i in range(0, len(original_data)): dif_y = abs(original_data[i][0] - degradated_data[i][0]) dif_cb = abs(original_data[i][1] - degradated_data[i][1]) dif_cr = abs(original_data[i][2] - degradated_data[i][2]) error_y += dif_y * dif_y error_cb += dif_cb * dif_cb error_cr += dif_cr * dif_cr mse_y = error_y / len(original_data) mse_cb = error_cb / len(original_data) mse_cr = error_cr / len(original_data) mse_avg = (mse_y*4 + mse_cb + mse_cr)/6 return [mse_y, mse_cb, mse_cr, mse_avg] """ Obtains the PSNR for a list of MSE values :param mse_list: A list of mse quantities :return: List containing the PSNR. If MSE is 0 the output PSNR is infinite """
aaf80905df77dc8e4ec5be361b2227ff419237c1
576,208
def tokenize_timeperiod(timeperiod): """ method breaks given timeperiod into 4 parts: (year, month, day, hour) for instance: daily 2015031400 -> ('2013', '03', '14', '00') hourly 2015031413 -> ('2013', '03', '14', '13') monthly 2015030000 -> ('2013', '03', '00', '00') yearly 2015000000 -> ('2015', '00', '00', '00') :return: tuple of four values """ assert len(timeperiod) == 10, 'timeperiod {0} does not match accepted format YYYYMMDDHH'.format(timeperiod) return timeperiod[:4], timeperiod[4: 6], timeperiod[6: 8], timeperiod[8:],
2c5208d825566426076043f3100699649b968d35
597,653
import time def time_str(epoch_time, output_format="%F %T %Z"): """ Return epoch_time as a GMT time string. """ return time.strftime(output_format, time.gmtime(epoch_time))
e83e6c15869554733a3f16fcd2d6bf4a5135090e
349,924
def _get_all_issue_tracker_keys(all_issue_trackers): """Collect all keys in all dicts.""" ret = set() for dct in all_issue_trackers: ret.update(dct.keys()) return ret
192d1ea9a1d191b2529f5e94beb524802ec20851
117,491
def readDirective(s): """Reads a directive line from forcefield, itp, or rtp file.""" # Remove comments, then split normally sline = s.split(';')[0].split() if len(sline) == 3 and sline[0] == '[' and sline[2] == ']': return sline[1] else: return ''
0daea2a92fc509761bebf97830a819781fd6df42
209,861
def is_empirical(var_type): """ Checks whether the variable type for the variable of interest is to be taken as a constant value or as numerical values. """ return var_type == "empirical"
b421857d8000d63a782cc1205580c7226147d760
470,929
def clip(val, lower=0.0, upper=1.0): """ Clips val between lower and upper. >>> clip(1, 0, 2) 1 >>> clip(2, 3, 6) 3 >>> clip(5, 1, 2) 2 Works recursively on lists. >>> clip([-0.2, 0.5, 1.4, 0.7]) [0.0, 0.5, 1.0, 0.7] :param val: value to be clipped :param lower: lower bound :param upper: upper bound :return: val clipped between lower and upper """ if isinstance(val, list): return [clip(v, lower, upper) for v in val] return max(lower, min(upper, val))
f77fad2fadc17c3fb7a881e869e33ae195255410
91,866
def adapt_PEPformat(x): """ PEPred-Suite jar input format :param x: id that starts with '>' :return: id that starts with '>' and ends with '|0' """ if '|' not in x: x = x + '|0' return x
4d51ed43f1fdb207232f81c2e5211be0efa2d389
174,231
def get_serial_numbers(path): """ Reads the serial number from .BIN file Args: path (str): route to file Returns: sn (int): the serial number found in the header of the file """ file = open(path, 'rb') header_block = file.read() sn_bytes = header_block[416:420] sn = int.from_bytes(sn_bytes, byteorder='little') return sn
52cdf1001dcac1570ac6c51406ac04879c08972e
334,630
import csv def load_csv(filename, label_col): """ Loads a csv file containin the data, parses it and returns numpy arrays the containing the training and testing data along with their labels. :param filename: the filename :return: tuple containing train, test data np arrays and labels """ X_train = [] X_test = [] num = 0 with open(filename,'rt') as f: reader = csv.reader(f, delimiter=',') for row in reader: row1 = [float(item) for item in row if item != '\0'] last_ele = row1.pop(label_col) X_train.append(row1) X_test.append(int(last_ele)) num+=1 if num > 1000: break f.close() return X_train, X_test
30b4b6dcbeaa33fee40cdea81a063dbb3354eb16
648,044
def pseudo_input(lines): """Return a function that acts like raw_input but feeds the input list.""" ilines = iter(lines) def raw_in(prompt): try: return next(ilines) except StopIteration: return '' return raw_in
aa43f8732109ec0873a7793d7c11fbfb813aefca
331,345
def color_rgb(red, green, blue): """ Given three intensities red, green, blue, all from 0 to 255, returns the corresponding CSS color string e.g. '#ff00cc' """ return f"#{red*256**2 + green*256 + blue:06x}"
be02aea5a0fc04f7bbedce4b3fc18fb5cdfff862
646,878
def get_yelp(zipcode, page_num): """get yelp address for given zipcode and page number.""" return 'https://www.yelp.com/search?find_loc={}&start={}&cflt=restaurants'.format( zipcode, page_num)
f11bc5dd07940677725337779a91c8d868535989
477,438
def distance_to_edge(coordinate, grid_size): """Calculate the maximum distance to the edge for this coordinate.""" half_point = (grid_size + 1) / 2 return int(round(abs(coordinate - half_point + 1) + half_point, 0))
b1284c2e0f61e56232f55e5be381e6c8eac97fa7
188,424
import re def check_password(password): """Checks if the password is safe enough (At least 1 number, 1 capital letter and 1 special character).""" cap_letter_regex = re.compile(r"[A-Z]+") cap_letter_found = re.search(cap_letter_regex, password) number_regex = re.compile(r"\d+") number_found = re.search(number_regex, password) spec_charac_regex = re.compile(r"\W+") spec_charac_found = re.search(spec_charac_regex, password) if cap_letter_found and number_found and spec_charac_found: return True else: return False
8db1f9b2cfede8eaa249b50950cc2e93b3cca176
212,188
def eqn_of_line(x1: float, y1: float, x2: float, y2: float) -> str: """ Finds equation of a line passing through two given points. Parameters: x1, y1 : The x and y coordinates of first point x2, y2 : The x and y coordinates of second point Returns: Equation of the line as a string. """ a = y2 - y1 b = x1 - x2 c = a*(x1) + b*(y1) if b<0: s=( f"{a}x - {abs(b)}y = {c}") else: s=( f"{a}x + {b}y = {c}") return s
721225fce41fd0d985f9e1aef351ef7751a8db49
485,093
import math def sum_more_cosines(m, n): """ What comes in: Integers m and n, with m <= n. What goes out: Returns the sum cos(m) + cos(m+1) + cos(m+2) + ... cos(n) Side effects: None. Examples: -- sum_more_cosines(0, 3) returns cos(0) + cos(1) + cos(2) + cos(3) which is approximately 0.13416 -- sum_more_cosines(-4, 1) returns cos(-4) + cos(-3) + cos(-2) + cos(-1) + cos(0) + cos(1) which is approximately 0.02082. """ # ------------------------------------------------------------------------- # DONE: 3. Implement and test this function. # Note that you should write its TEST function first (above). # That is called TEST-DRIVEN DEVELOPMENT (TDD). # # IMPORTANT: In this and all other problems in this session, # you must NOT use the 2 or 3-parameter versions # of the RANGE expression, if you happen to know them. # That is, no fair using range(m, n) or anything like that. # Just range(blah) where blah is a single variable. # Reason: To ensure that you get more practice using expressions. # ------------------------------------------------------------------------- answer = 0 for k in range((n + 1) - m): answer = answer + math.cos(m + k) return answer
cee71d79acd52aa73e1b4a3369d2b27e805339f3
258,817
import math def getTotalIterations(tile_size, shape): """ Returns the number of tile iterations. """ num_dims = len(shape) iters = 1 for i in range(num_dims): iters *= math.ceil(float(tile_size[i])/shape[i]) return iters
9578c5fb0f9b6d8dbca895cc17989f1e8059326d
190,143
def geo_name(year, release, summary_level): """Resolve a year, release and summar level number into a URL geography group name""" if int(summary_level) in (140, 150): return 'Tracts_Block_Groups_Only' else: return 'All_Geographies_Not_Tracts_Block_Groups'
c4e72ea3f3bcfea456679d0e7255224e2105311f
589,289
def get_account_id(role_arn): """ Returns the account ID for a given role ARN. """ # The format of an IAM role ARN is # # arn:partition:service:region:account:resource # # Where: # # - 'arn' is a literal string # - 'service' is always 'iam' for IAM resources # - 'region' is always blank for IAM resources # - 'account' is the AWS account ID with no hyphens # # See https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns try: arn, _, service, region, account, _ = role_arn.split(":") except ValueError: raise ValueError(f"Is this a valid AWS ARN? {role_arn}") if arn != "arn": raise ValueError(f"Is this a valid AWS ARN? {role_arn}") if service != "iam" or region != "" or not account.isnumeric(): raise ValueError(f"Is this an IAM role ARN? {role_arn}") return account
623eb66eefd59b9416deb478c527062ae4454df7
704,778
import random import string def generate_random_filename_safe_text(length: int = 4) -> str: """ Generates a (not cryptographically safe) random filename-safe string. Args: length: Length of the random text. Returns: Generated text. """ return "".join([ random.choice(string.ascii_letters + string.digits) for _ in range(length) ])
f333fb715e0e2834c263271c1b7f25e1ddcb80dd
606,155
import shutil def concatenate_files(*paths: str, out_path: str): """Concatenates an arbitrary number of files into one file. Args: *paths: An arbitrary number of paths to files out_path: Path to place concatenated file Returns: Path to concatenated file """ with open(out_path, 'wb') as out: for path in paths: with open(path, 'rb') as f: shutil.copyfileobj(f, out) return out_path
976eb2820706ea3977b4bd4f0dcbef8065bae308
187,585
def soma_radius(morph): """Get the radius of a morphology's soma.""" return morph.soma.radius
2f9991a2f9240965bdb69a1a14814ed99bf60f86
709,471
def silent(obj): """ Mark view method or class as "silent" so events won't be fired. Should be used as decorator on view classes or methods. :param obj: Any object that allows attributes assignment. Should be either view method or view class. """ obj._silent = True return obj
916a66634eeaa78f3223590cbb2ec2c88748ad9b
605,592
def generate_diff(old_list, new_list): """Returns 2 lists of added, deleted and unchanged elements. Added elements are elements presents in new_list but not in old_list. Deleted elements are elements presents in old_list but not in new_list. Args: old_list (list): Old list. new_list (list): New list. Returns: tuple: Contains 2 elements: - A list of added elements; - A list of deleted elements. - A list of unchanged elements. """ old_set = set(old_list) new_set = set(new_list) added = new_set - old_set deleted = old_set - new_set unchanged = old_set.intersection(new_set) return list(added), list(deleted), list(unchanged)
f915c0ca33b6f9fa53450dc3d40b042271ca3fc2
23,551
def get_cycle_start(year): """Round year down to the first year of the two-year election cycle. Used when filtering original data for election cycle. """ return year if year % 2 == 1 else year - 1
df6d7c809ee332b74f03f17b023f4159206fccda
182,295
def replace_ssh_keys(input_dict, original_string, secret_name): """ Replace each SSH key path entry (original_string) in the top level of a dict with the secret. """ changed = False for k in input_dict: if input_dict[k] == original_string: input_dict[k] = {'get_secret': secret_name} changed = True return changed
7fef8720452c93c1fe3be5e4d89c322271b39018
167,530
from datetime import datetime def time_delta(t1: str, t2: str, fmt='%a %d %b %Y %X %z') -> int: """ >>> time_delta('Sun 10 May 2015 13:54:36 -0700', ... 'Sun 10 May 2015 13:54:36 -0000') 25200 >>> time_delta('Sat 02 May 2015 19:54:36 +0530', ... 'Fri 01 May 2015 13:54:36 -0000') 88200 >>> time_delta('Wed 12 May 2269 23:22:15 -0500', ... 'Tue 05 Oct 2269 02:12:07 -0200') 12527392 """ dt1, dt2 = datetime.strptime(t1, fmt), datetime.strptime(t2, fmt) delta = dt1 - dt2 return abs(int(delta.total_seconds()))
0583e955b8b84cfbc27da57259753fb0ba3b102a
221,741
def wilight_to_hass_hue(value): """Convert wilight hue 1..255 to hass 0..360 scale.""" return min(360, round((value * 360) / 255, 3))
5a9021185f7bbb9bf1351b2df55207063ee49f9a
20,407
def calc_oil_drainage_area(oil_produced=2.5, res_height=20, porosity=0.25, avg_water_saturation=0.25, oil_vol_factor=1.2, recoveryfactor=0.10): """Returns the estimate for drainage area (Acres) given the oil produced (MBO), reservoir height (ft), porosity (fraction), average water saturation (fraction), the oil formation volume factor (RBBL/STB), and the recovery factor.""" return ((oil_produced*10**(3))*oil_vol_factor)/(7758*res_height*porosity*(1-avg_water_saturation)*recoveryfactor)
83c11a407489a20a88bfc4bbdd6478305efa3103
287,229
import math def z_axis_angle(x1: float, y1: float, x2: float, y2: float) -> float: """Calulates that angle in degrees [0, 360] that the slope of the provided points form with rotation about the z axis.""" angle = math.degrees(math.atan2(y2 - y1, x2 - x1)) # Wrap angle to bound it between 0 and 360. if angle < 0: angle += 360 if angle > 360: angle -= 360 return angle
cb376ebd57af93968084abfddedcaf53bb277821
325,415
def plot_continuation_points(ax, lmbda_saddle, u_saddle, lmbda_hopf, u_hopf): """ Plot the saddle and Hopf bifurcation points from the continuation results INPUT ax: matplotlib axes lmbda_saddle: array of the bifurcation parameter values corresponding to saddle points u_saddle: array of the infinite norms of the variable corresponding to saddle points lmbda_hopf: array of the bifurcation parameter values corresponding to Hopf points u_hopf: array of the infinite norms of the variable corresponding to Hopf points""" ax.plot(lmbda_saddle, u_saddle, "o", color="blue") ax.plot(lmbda_hopf, u_hopf, "o", color="red") return None
c61cb0a6ab32ec2dac7b08fdf94045cc53468ed5
342,564
from functools import reduce def get_eqns_unk (eqns, knowns): """Returns the list of unknowns, given the knowns, from a list of equations""" if not isinstance(eqns, (list, tuple)): eqns = [eqns] atoms = reduce(lambda acc, eqn: acc.union(eqn.atoms()), eqns, set()) return filter(lambda x: not x.is_Number, atoms - set(knowns))
565a5a2bedd1453aa7f15f651fbecb7dc21b1237
585,859
def obter_pos_l(pos): # posicao -> str """ Permite obter a linha de uma posicao. :param pos: posicao :return: linha da posicao """ if pos[1] == 0: return '1' elif pos[1] == 1: return '2' elif pos[1] == 2: return '3' else: raise ValueError('obter_pos_c: argumento invalido')
e03da8e5ed6dd839994f3194ad123a9b0de2a7d2
332,827
import pathlib from typing import Optional def get_file_contents(path: pathlib.Path) -> Optional[str]: """ Helper function to read the contents of a file. """ contents = None with path.open() as f: contents = f.read() return contents
c797bb19e00e65e8d534740863310753ad52f4e6
258,113
def microlisp_decode_atom(s): """ Convert string atom to corresponding type Support: boolean `true' `false', integer, float """ if s == 'true': return True if s == 'false': return False try: return int(s) except: pass try: return float(s) except: pass return s
27f02ad2021c5c0bee8bb7756f10f22c9f4cdf86
335,974
def _remove_empty_entries(entries): """Remove empty entries in a list""" valid_entries = [] for entry in set(entries): if entry: valid_entries.append(entry) return sorted(valid_entries)
fd931ca05ae777ede70e729993b0d2a60eb06b87
408,455
def _get_uid_to_db_object_map(model_class, unique_uid_set, query_kwargs={}): """Queries the database for the given list of uids, returning a map from uid to Python object. """ uid_to_obj_map = {} query_set = model_class.objects.filter(**query_kwargs).filter( uid__in=unique_uid_set) for obj in query_set: uid_to_obj_map[obj.uid] = obj return uid_to_obj_map
6de0bcec1aaacda7ba33b7be1dedb1bce55c5fb4
408,355
def is_iterable(maybe_iter, unless=(dict)): """ Return whether ``maybe_iter`` is an iterable, unless it's an instance of one of the base class, or tuple of base classes, given in ``unless``. Example:: >>> is_iterable('foo') False >>> is_iterable(['foo']) True >>> is_iterable(['foo'], unless=list) False >>> is_iterable(xrange(5)) True """ if isinstance(maybe_iter, str): return False try: # pragma: no cover iter(maybe_iter) except TypeError: # pragma: no cover return False return not isinstance(maybe_iter, unless)
5b547e51f6c109673e9a4a4cc236a48d6ae5f198
351,785
from typing import Tuple def complete_index(index: Tuple, n_dims: int) -> Tuple: """ Complete the index with empty slices. This will expand ellipses if present, or pad at the end if not. Args: index: The index in which to replace ellipses n_dims: The number of dimensions of the sliced object This fills in missing dimensions shown with ellipsis with full slices. Examples: >>> complete_index((5, 3), 4) (5, 3, slice(None, None, None), slice(None, None, None)) >>> complete_index((5, Ellipsis, 3), 4) (5, slice(None, None, None), slice(None, None, None), 3) >>> complete_index((5, 3), 2) (5, 3) >>> complete_index((Ellipsis,), 2) (slice(None, None, None), slice(None, None, None)) >>> complete_index((1, None, 2), 2) (1, None, 2) >>> complete_index((Ellipsis, None), 2) (slice(None, None, None), slice(None, None, None), None) """ n_ellipses = sum(ix is Ellipsis for ix in index) if n_ellipses > 1: raise IndexError("an index can only have a single ellipsis ('...')") if n_ellipses == 0: if n_dims == len(index): return index else: index = (*index, Ellipsis) ixix = index.index(Ellipsis) extra_dims = 1 + n_dims + sum(ix is None for ix in index) - len(index) fill = (slice(None, None, None),) * extra_dims return (*index[:ixix], *fill, *index[1 + ixix :])
d268c7abf9680842dab38f407fed0498c6164b18
629,295
def add_start_end(tokens, start_word="<START>", end_word="<END>"): """ Add start and end words for a caption string Args: tokens: original tokenized caption start_word: word to indicate start of a caption sentence end_word: word to indicate end of a caption sentence Returns: token_caption: tokenized caption """ token_caption = [start_word] token_caption.extend(tokens) token_caption.append(end_word) return token_caption
565beac0d1439a3079f2f6202e7b25e34c219013
470,338
def _escape_filename(filename): """Escapes spaces in the given filename, Unix-style.""" return filename.replace(" ", "\\ ")
9bb22a7ab928cbe88bfa3c9b48b2b33faa657fc9
662,933
def rubygems_api_url(name, version=None, repo='https://rubygems.org/api'): """ Return a package API data URL given a name, an optional version and a base repo API URL. For instance: https://rubygems.org/api/v2/rubygems/action_tracker/versions/1.0.2.json If no version, we return: https://rubygems.org/api/v1/versions/turbolinks.json Unused: https://rubygems.org/api/v1/gems/mqlight.json """ repo = repo.rstrip('/') if version: api_url = '{repo}/v2/rubygems/{name}/versions/{version}.json' else: api_url = '{repo}/v1/versions/{name}.json' return api_url.format(**locals())
578cc8cc346ffe8868bb8700904cab6e437d4a23
134,820
import re def untorontoify(term): """Return a version of the term with "Toronto" removed. Useful if the name in OSM is something like "Union Square (Toronto)" or "Toronto City Hall". """ return re.sub(r'^Toronto ', '', re.sub(r' \(Toronto\)', '', term))
6e33506137a411c8e7e35e46a5121c388b2fed33
349,240
def get_bd(r, a): """ Converts turnover and relative extinction to birth and death rates. Args: r (float): turnover or net diversification (birth - death) a (float): relative extinction (death / birth) Returns: (float, float): birth, death """ return -r / (a - 1), -a * r / (a - 1)
473b92c31724978fcdb435c697a7e3b2bf8ebf28
250,124
import torch def flatten_padded_batch(batch, nwords): """ Inverse of pad_flat_batch Parameters =========== batch : tensor(seq_len, batch, encoding_size), output of the encoder nwords : tensor(batch), lengths of the sequence (without padding) Returns ======== tensor(nwords, encoding_size) >>> batch = [[[0], [3], [4]], [[1], [0], [5]], [[2], [0], [0]]] >>> nwords = [3, 1, 2] >>> flatten_padded_batch(torch.tensor(batch), torch.tensor(nwords)).tolist() [[0], [1], [2], [3], [4], [5]] """ with torch.no_grad(): output = [] for sent, sentlen in zip(batch.transpose(0, 1), nwords): output.extend(list(sent[:sentlen].chunk(sentlen))) # remove <eos> return torch.cat(output, dim=0)
08e02a789ccb6422f9e905b36d61a886ee0ea310
438,666
def groupByThree(lst): """ Given input [1,2,3,4,5,6,7,8,9] outputs: [(1,2,3),(4,5,6),(7,8,9)] """ return zip(*[lst[x::3] for x in (0, 1, 2)])
7e2f80d3e27b0a75bcfd3507c4f9580b4c2cf1be
101,824
def union(x, y=None): """ Return the union of x and y, as a list. The resulting list need not be sorted and can change from call to call. INPUT: - ``x`` - iterable - ``y`` - iterable (may optionally omitted) OUTPUT: list EXAMPLES:: sage: answer = union([1,2,3,4], [5,6]); answer [1, 2, 3, 4, 5, 6] sage: union([1,2,3,4,5,6], [5,6]) == answer True sage: union((1,2,3,4,5,6), [5,6]) == answer True sage: union((1,2,3,4,5,6), set([5,6])) == answer True """ if y is None: return list(set(x)) return list(set(x).union(y))
67b20db26081c05a8c706d5529897bc753726f6a
30,153
from typing import Union def non_negative(diff: Union[float, int]) -> Union[float, int]: """Returns 0 if diff is negative or positive value.""" return 0 if diff < 0 else diff
c0ef7f7661633e48558e6066e0b1cac4c4e89f62
80,699
import hashlib def md5_matches(expected_md5: str, filepath: str) -> bool: """Checks the MD5 hash for a given filename and compares with the expected value. Args: expected_md5: expected MD5 hash. filepath: file for which MD5 will be computed. Returns: True if MD5 matches, False otherwise. """ with open(filepath, "rb") as f: current_md5 = hashlib.md5(f.read()).hexdigest() return expected_md5 == current_md5
a28197cb3237b27e70998a05886e738055bd6417
144,881
def parameter_tuple_parser(parameter_tuple, code_list, relative_base): """ Accepts parameter_tuple, code_list, and relative_base. Returns parameter for use in intcode operation. """ if parameter_tuple[0] == 0: return code_list[parameter_tuple[1]] elif parameter_tuple[0] == 1: return parameter_tuple[1] elif parameter_tuple[0] == 2: return code_list[parameter_tuple[1] + relative_base] else: print('And I oop.... parameter_tuple_parser')
f869240666f2adca0551a3620644023b88930a5a
11,417
def dict_with_keys(dictionary, keys): """ Returns a new dictionary including only the specified keys Args: dictionary(dict): dictionary to filter keys keys(iterable): iterable of keys to filter to Returns: dict: copy of original dictionary inclusive only of specified keys """ return {key: dictionary[key] for key in keys}
e93d547b515269c9e2320e41d15ab39ae363c209
50,862
def y_position(coldstart_status): """Returns a hardcoded y-position for text depending on coldstart status.""" if coldstart_status == 'warm': return 0.8 elif coldstart_status == 'partial': return 0.6 elif coldstart_status == 'cold': return 0.4 else: return 0.1
860ec47eb05b96cd68d2af71bae9692dc1612693
574,128
def get_color(val, trendType): """Determine if evolution is positive or negative. From trend type - determined in config.toml for each KPIs, picking right color to return """ if(val > 0): if(trendType == 'normal'): color = 'red' else: color = 'green' elif(val < 0): if(trendType == 'normal'): color = 'green' else: color = 'red' else: color = 'blue' return color
edbf842824363f183fe2d612383323e7a62f4ab5
353,311
def Rder(x, alpha , beta, gamma): """Calculates the derivative with respect x1 of the first dimension of the function R() Parameters ------- x : array of shape (N,) first dimension of state at a single timepoint alpha, beta, gamma : floats parameter of sigle FutzHugh-Nagumo nodes Returns ------- R : array of shape (N,) d/dx1 ( -alpha* x1**3 + beta *x1**2 - gamma* x1 ) """ return -3*alpha* x**2 + 2*beta*x - gamma
2d3c776623a2469d9f42a180ae71e9798dbda579
493,289
import base64 import six def serialize(obj): """Serialize the given object :param obj: string representation of the object :return: encoded object (its type is unicode string) """ result = base64.urlsafe_b64encode(obj) # this workaround is needed because in case of python 3 the # urlsafe_b64encode method returns string of 'bytes' class. if six.PY3: result = result.decode() return result
c7a7d2362d6c4cc194495af77d5f09991ed4b2ed
688,604
def merge_dicts(*args): """Given any number of dicts, shallow copy and merge into a new dict, precedence goes to key value pairs in latter dicts. Args: *args (list(dict)): A list of dictionaries to be merged. Returns: dict: A merged dictionary. """ result = {} for dictionary in args: result.update(dictionary) return result
b570069e82187414559c7a9479402e263366d978
216,526
def read_file(path_to_file: str): """Return the file data from `path_to_file`.""" with open(path_to_file, 'r') as json_file: return json_file.read()
c7da33c398e7f5ff190c8b5f1ff0d972d01b4d55
61,651
def max_power_rule(mod, g, tmp): """ **Constraint Name**: GenVar_Max_Power_Constraint **Enforced Over**: GEN_VAR_OPR_TMPS Power provision plus upward services cannot exceed available power, which is equal to the available capacity multiplied by the capacity factor. """ return ( mod.GenVar_Provide_Power_MW[g, tmp] + mod.GenVar_Upwards_Reserves_MW[g, tmp] <= mod.Capacity_MW[g, mod.period[tmp]] * mod.Availability_Derate[g, tmp] * mod.gen_var_cap_factor[g, tmp] )
03cfd061867ce68dcab7068c38eaece69b9906ca
26,765
def find_pow2_size(addr, min_size, next_value): """Find smallest power of 2 value greater than min_size by given addr. For instance, (0x4000_0000, 0x21000) and `next_value` as 0x40080000, the result will be 0x4_0000 But it should return result not exceeding the base_addr's leading one bit position. For instance, if the base_addr is 0x4003_0000, the return value should be less than or equal to 0x1_0000. Cannot be 0x4_0000. """ base_addr = int(addr["base_addr"], 0) diff = next_value - base_addr # Find the least one bit position. # If base_addr is 0, then any value can be used if not base_addr == 0: leading_one = 1 while True: if base_addr & leading_one != 0: break leading_one = leading_one << 1 if leading_one <= diff: diff = leading_one i = 1 while True: i = i << 1 if i >= min_size: break # If found pow2 value is greater tha diff, it cannot be used. Just use # min_size then the tool will use comparators (>=, <=) if i > diff: i = min_size # Shall be greater than 4kB assert i >= 0x1000 return i
4298ab188bfa45ed6ecc996198fe9fe290fa9b03
420,633
def get_pip_package_key(candidate): """Get package key for the provided string. The string may be a name and version. """ return str(candidate).split()[0].split('==')[0]
323deeee59e5b454e7291c944477471b2ca61aa0
79,023
def h3_html(text: str) -> str: """Embed text in subsubheading tag.""" return "<h3>{}</h3>".format(text)
7f8631987215674d1bb71b4b60311aad6fbd8449
312,846
import re def search_re(out, l): """ Search the regular expression 'l' in the output 'out' and return the start index when successful. """ m = re.search(l, out) if m: return m.start() return None
c20c5df306c9f0914825fb1e2c10d0ef5590dda6
659,770
import re def _gem_name(name: str, version: str) -> str: """Determines the gem name for a generated API client. This effectively converts the API name and version to underscore case, and matches the logic in the Ruby Apiary generator. Arguments: name {str} -- The name of the API being generated version {str} -- The version of the API being generated Returns: str -- Directory name """ name = re.sub(r"([A-Z]+)([A-Z][a-z])", r"\1_\2", name) name = re.sub(r"([a-z])([A-Z])", r"\1_\2", name) name = name.lower() version = version.replace(".", "_").lower() return f"google-apis-{name}_{version}"
6351d14ce9232c3e5573164914c16c39e0b1d2a8
449,040
import math def Log_Nash_Sutcliffe(SimulatedStreamFlow, ObservedStreamFlow): """ (SimulatedStreamFlow, ObservedStreamFlow) Logarithmic Nash-Sutcliffe model efficiency coefficient """ x = SimulatedStreamFlow y = ObservedStreamFlow A = 0.0 # dominator B = 0.0 # deminator tot = 0.0 for i in range(0, len(y)): tot = tot + y[i] average = tot / len(y) for i in range(0, len(y)): X = x[i] Y = y[i] if X == 0: X = 1e-3 if Y == 0: Y = 1e-3 A = A + math.pow((math.log(Y) - math.log(X)), 2) # log = ln or log_e B = B + math.pow((math.log(Y) - math.log(average)), 2) E = 1 - (A / B) # Nash-Sutcliffe model eficiency coefficient return E
b4220b4849f53027ee63c046c08db069e8d3c563
622,563
def dict2class(dct, name='Dummy'): """ Convert a dict to a class. Examples -------- >>> dct={'a':1, 'b':2} >>> dct2class(dct, 'Foo') <Foo instance at 0x3615ab8> >>> dct2class(dct, 'Bar') <Bar instance at 0x3615b48> >>> dct2class(dct, 'Bar').__dict__ {'a':1, 'b':2} """ class Dummy: pass cl = Dummy() cl.__dict__.update(dct) cl.__class__.__name__ = name return cl
a28d84fa78065ee0759aee0b448bfd2206696355
374,971
def is_modified(path, commit): """ Test whether a given file was present and modified in a specific commit. Parameters ---------- path : str The path of a file to be checked. commit : git.Commit A git commit object. Returns ------- bool Whether or not the given path is among the modified files and was not deleted in this commit. """ try: d = commit.stats.files[path] if (d["insertions"] == 0) and (d["deletions"] == d["lines"]): # File was deleted in commit, so cannot be tested return False else: return True except KeyError: return False
4f12b314a6525d7c7832fc4ef37f9cf4d39ee555
78,029
def median(lst): """ Calculates list mediana """ n = len(lst) if n < 1: return None if n % 2 == 1: return sorted(lst)[n//2] else: return sum(sorted(lst)[n//2-1:n//2+1])/2.0
5da9c14d7fe94dc9f2935c96b88b265583122127
585,780