content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def __checkPassed(a,b,c,verbose): #used in __convert_dims
"""
Notes:
internal logic to determine if correct information was passed in __convert_dims
when finding cellsize -> arrdim or arrdim -> cellsize conversion
Inputs:
a: cells
b: arrdims
c: lnglat_deltas
verbose: whether to print status message
Outputs:
bool: return a boolean specifiying if check was passed or not.
"""
if (c is None) and (type(c) not in(tuple,list)) or (len(c) !=2):
print(f'latlong: {c} must be a tuple or list of len 2') if verbose else None
return False
if (a is None) or (b is not None):
print('error: parameter mismatch, can only pass: cells or arrdims not both') if verbose else None
return False
if (type(a) not in (tuple,list)) or (len(a) != 2):
print(f'error: parameter {a} is not a tuple or list of length 2') if verbose else None
return False
return True | 95bf3196146a193a740a47293c7030ef7e4bf3d8 | 442,322 |
def mel_sampling(
audio, frame_duration_ms = 1200, overlap_ms = 200, sample_rate = 16000
):
"""
Generates audio frames from audio. This is for melspectrogram generative model.
Takes the desired frame duration in milliseconds, the audio, and the sample rate.
Parameters
----------
audio: np.array
frame_duration_ms: int, optional (default=1200)
overlap_ms: int, optional (default=200)
sample_rate: int, optional (default=16000)
Returns
-------
result: List[np.array]
"""
n = int(sample_rate * (frame_duration_ms / 1000.0))
n_overlap = int(sample_rate * (overlap_ms / 1000.0))
offset = 0
results = []
while offset + n <= len(audio):
results.append(audio[offset : offset + n])
offset += n - n_overlap
if offset < len(audio):
results.append(audio[offset:])
return results | 72cb22ba976d6f91a9b69953d8bedcd33c4ab294 | 671,329 |
def altCase(text: str):
"""
Returns an Alternate Casing of the `text`.
"""
return "".join(
[
words.upper() if index % 2 else words.lower()
for index, words in enumerate(text)
]
) | b8d2d0c4d98192c321da9111419fbb4262cf2f52 | 268,463 |
def flush_queue(queue):
"""Get all data from the queue.
Notes: this is just a multiprocessing support function.
Args:
queue (Queue): the multiprocessing queue
Returns:
list: the result data pushed in the queue
"""
data = []
while not queue.empty():
data.append(queue.get())
return data | 0e51e8d5f0d93e8422add9c5f74fbf0f4e240618 | 555,740 |
from pathlib import Path
def check_and_get_subdirectory(base_dir: Path, subdir_name: str) -> Path:
"""
Checks existance of base_dir, NON-existance of base_dir/subdir, and
returns the Path(base_dir / subdir).
Raises:
FileNotFoundError if the base_dir does not exist
OSError if the base_dir and subdir both exist.
Returns: path to an unexisting subdirectory subdir in the
base directory base_dir.
"""
if not base_dir.is_dir():
raise FileNotFoundError("Directory {} not found"
.format(base_dir))
subdir = base_dir / subdir_name
if subdir.is_dir():
raise OSError(
f"Directory {subdir} exists and shouldn't be overwritten."
)
return subdir | 1df2d2f03b4933a25f1bba7e1cb62f6ce998ccb3 | 637,809 |
from typing import List
def split_by_hash_sign(path: str) -> List[str]:
"""
Checks if the path contains maximum one hash.
:param path: path to check
:return: path split into array on the hash
"""
if "#" in path:
split_path = path.split("#")
if len(split_path) > 2:
raise Exception("There should be maximum one '#' in the path {}".format(path))
return split_path
return [path] | 52456b40a3f880be1d9f2441a4a989d8b5a00868 | 405,114 |
def testme(si):
"""Revert a string, filtering out the vowel characters"""
so = ''.join([c for c in reversed(si) if c.lower() not in 'aeiouy'])
return so, len(so) | ea90c3e95139b51f5854a32c3602607e26fd3a6a | 677,075 |
def sentencify(words):
"""
The function should:
1. Capitalise the first letter of the first word.
2. Add a period (.) to the end of the sentence.
3. Join the words into a complete string, with spaces.
4. Do no other manipulation on the words.
:param words:
:return:
"""
return words[0][0].upper() + ' '.join(words)[1:] + '.' | f9e80dfedd9d2257c92a5ab17115e5cf956adaac | 248,386 |
def _paginate(paginated_fn, max_results_per_page, max_results):
"""
Intended to be a general use pagination utility.
:param paginated_fn:
:type paginated_fn: This function is expected to take in the number of results to retrieve
per page and a pagination token, and return a PagedList object
:param max_results_per_page:
:type max_results_per_page: The maximum number of results to retrieve per page
:param max_results:
:type max_results: The maximum number of results to retrieve overall
:return: Returns a list of entities, as determined by the paginated_fn parameter, with no more
entities than specified by max_results
:rtype: list[object]
"""
all_results = []
next_page_token = None
while len(all_results) < max_results:
num_to_get = max_results - len(all_results)
if num_to_get < max_results_per_page:
page_results = paginated_fn(num_to_get, next_page_token)
else:
page_results = paginated_fn(max_results_per_page, next_page_token)
all_results.extend(page_results)
if hasattr(page_results, "token") and page_results.token:
next_page_token = page_results.token
else:
break
return all_results | de93c2f6c16350b9948cf68c8d53fcf9518fa4f8 | 140,348 |
def _possibly_sorted(x):
"""Bypass the sorted() call in reprlib._possibly_sorted
This is mostly for ensuring reproducibility in tests.
"""
return list(x) | b7dd511299567631900260a1130ad8e9034cdf4d | 114,670 |
def train_test_split(test_ratio, *args):
"""
Ordinary train/test split.
:param test_ratio: float, split value e.g. 0.8 means 80% train and 20% test data
:param args: tuple of arrays to be split
:return:
list of split arrays
"""
split = int(len(args[0]) * test_ratio)
return [(elem[:split], elem[split:]) for elem in args] | a8941968eb801ef18b312b4d93acba8dff0e9cde | 504,558 |
def __is_reflection_coord(coord):
"""Reflection coordinates have a 2 followed by 0 or more trailing 1s."""
i = len(coord)-1
while coord[i] == 1:
i -= 1
return coord[i] == 2 | f9b26fcf469831b42d95f3979240bdf77e851c40 | 587,394 |
def text_concat(format_str, source_str, concat_with, order_by=None):
"""
Generates the SQL for text concatenation.
Parameters
----------
format_str : str
Format of the concatenated output.
source_str : str
fields and FROM part of statement to provide values,
along with WHERE to join to aggregated.
concat_with : str
String to concatenate with
order_by : str
Column to order by
"""
if order_by is not None:
order_by = f" ORDER BY x.{order_by} ASC"
else:
order_by = ""
sql = f"""
STUFF((SELECT '{concat_with}'+CAST({format_str} AS VARCHAR(MAX))
FROM (SELECT DISTINCT {source_str}) x {order_by}
FOR XML PATH(''), TYPE).value('.','VARCHAR(MAX)'), 1, {len(concat_with)}, '') """
return sql | 6f5e0b3047db84527ad03a897c9f48d76b73ac94 | 332,824 |
def segment_times(timeseries, max_gap):
"""
Returns an N-D array where each row represents a separate segmentation of continuous data with no gaps
greater than the max gap.
"""
time_segments = []
is_contiguous = False
arr_n = -1
for i, t in enumerate(timeseries):
if not is_contiguous:
time_segments.append([t])
arr_n += 1
else:
time_segments[arr_n].append(t)
if i + 1 < len(timeseries):
is_contiguous = (timeseries[i + 1] - t) < max_gap
return time_segments | 1751be2f415297e07eb8952709388f5033ba7da4 | 585,723 |
def _get_name_from_email(email):
"""
Given an email return a capitalized name. Ex. [email protected] would return John Smith.
"""
name = email.rsplit('@', 1)[0]
name = ' '.join([n_part.capitalize() for n_part in name.split('.')])
return name | 0644b6dbb69b89624b5f60b7f13f35efe5ce2ff6 | 314,362 |
import logging
def INFO(target):
"""A decorator to set the .loglevel attribute to logging.INFO.
Can apply to either a TestCase or an individual test method."""
target.loglevel = logging.INFO
return target | 8bf2061b248a457131486687a32440ce68d173b5 | 661,055 |
def calc_z_shifts(zphase, zsubstrate, margin):
"""Calculate shifts from z = 0 for each phase."""
shifts = {}
shifts['sub_bottom'] = margin
sub_bottom_upper_margin = shifts['sub_bottom'] + zsubstrate
shifts['phase'] = sub_bottom_upper_margin + margin
phase_upper_margin = shifts['phase'] + zphase
shifts['sub_top'] = phase_upper_margin + margin
sub_top_upper_margin = shifts['sub_top'] + zsubstrate
shifts['box_z'] = sub_top_upper_margin + margin
return shifts | 6798fc6b4fff552103fe9d7abdfd7e1ef12181d1 | 584,574 |
def model_with_weights(model, weights, skip_mismatch):
""" Load weights for model.
Args
model : The model to load weights for.
weights : The weights to load.
skip_mismatch : If True, skips layers whose shape of weights doesn't match with the model.
"""
if weights is not None:
# model.load_weights(weights, by_name=True, skip_mismatch=skip_mismatch)
model.load_weights(weights, by_name=True)
return model | 8d37f3b884d9041a65d4d168c255d1dde203e562 | 417,396 |
def divide_cases(ncases, nprocs):
"""
Divide up load cases among available procs.
Parameters
----------
ncases : int
Number of load cases.
nprocs : int
Number of processors.
Returns
-------
list of list of int
Integer case numbers for each proc.
"""
data = []
for j in range(nprocs):
data.append([])
wrap = 0
for j in range(ncases):
idx = j - wrap
if idx >= nprocs:
idx = 0
wrap = j
data[idx].append(j)
return data | b13db144b5e6ca4a0dc31750c2507c1a250408e0 | 443,580 |
def find_first(value, vector):
"""Find the index of the first occurence of value in vector."""
for i, v in enumerate(vector):
if value == v:
return i
return -1 | d366d991083710c27ec667d69d532d4281246b69 | 141,666 |
import requests
def extra_metadata_helper(resource_id, headers):
"""
Build extra metadata dict to help with other integrations.
Parameters
----------
resource_id: str
The OSF resource ID
headers: dict
OSF Authorization header
Returns
-------
Extra metadata dictionary
"""
# Get project information
base_url = "https://api.osf.io/v2/nodes/{}/".format(resource_id)
project_info = requests.get(base_url, headers=headers).json()
# Build creators list
citation_data = requests.get("{}citation/".format(base_url), headers=headers).json()
creators = [{
"first_name": author['given'],
"last_name": author['family'],
"ORCID": None} for author in citation_data['data']['attributes']['author']]
# Get license if it exists
license = None
if 'license' in project_info['data']['relationships'].keys():
license_data = requests.get(project_info['data']['relationships']['license']['links']['related']['href'],
headers=headers).json()
if license_data['data']['attributes']:
license = license_data['data']['attributes']['name']
# See if there's an identifier for this project
identifier_data = requests.get("{}identifiers/".format(base_url), headers=headers).json()
identifiers = [{
"type": identifier['attributes']['category'],
"identifier": identifier['attributes']['value']} for identifier in identifier_data['data']]
extra_metadata = {
"title": project_info['data']['attributes']['title'],
"creators": creators,
"publication_date": project_info['data']['attributes']['date_created'],
"description": project_info['data']['attributes']['description'],
"keywords": project_info['data']['attributes']['tags'],
"license": license,
"related_identifiers": identifiers,
"references": None,
"notes": None
}
return extra_metadata | 19038f10fdd11602de7a892fba0a2801ce01fa46 | 93,066 |
def startswith(string, substring):
"""
Return True if string starts with substring, otherwise false.
"""
return string.startswith(substring) | 4b1edeb846f0736b7890e3ddd9daba3ca95d9143 | 288,553 |
def cli_cosmosdb_gremlin_database_throughput_migrate(client,
resource_group_name,
account_name,
database_name,
throughput_type):
"""Migrate an Azure Cosmos DB Gremlin database throughput"""
if throughput_type == "autoscale":
return client.migrate_gremlin_database_to_autoscale(resource_group_name, account_name, database_name)
return client.migrate_gremlin_database_to_manual_throughput(resource_group_name, account_name, database_name) | 2b768c0e443c4ce4324e2a3bfc2f685693a08d99 | 681,922 |
def relFreqProfile(freqprof):
"""Generates a relative frequency profile from an absolute frequency
profile."""
tokenCount = sum(freqprof.values())
if tokenCount > 0:
return dict(((i[0], i[1]/tokenCount) for i in freqprof.items())) | 76a2d81212894674e5456750f5d588b1b7bb60a6 | 197,178 |
def has_bio_error(prev_label, curr_label):
"""
Check whether a BIO error occurred by comparing the current label with the previous label.
Examples for incorrect BIO tags:
1. I- follows I- of another type
1 Hello B-ABC
2 World I-ABC
3 ! I-XYZ
2. I- after O
1 Hello O
2 World I-ABC
3 ! I-ABC
Args:
prev_label (Label): Previous label
curr_label (Label): Current label
Returns:
bool: Whether or not a BIO error occurred
"""
i_follows_o = prev_label.is_o and curr_label.is_i
i_follows_other_component = all([
curr_label.is_i,
any([
# The types differ
prev_label.type != curr_label.type,
# OR: the types are equal, but the relation type differs
all([
prev_label.type == curr_label.type,
prev_label.rel_type is not None,
curr_label.rel_type is not None,
prev_label.rel_type != curr_label.rel_type
])
])
])
return i_follows_o or i_follows_other_component | cc831f71c5d20448b6d822127e01e124c5cc2020 | 149,904 |
def Crosses(ps, thresh):
"""Tests whether a sequence of p-values ever drops below thresh."""
if thresh is None:
return False
for p in ps:
if p <= thresh:
return True
return False | f269f1093df0537fc79bab85631050a94b1316fb | 314,877 |
def linspace(start,stop,num):
"""Return a list of floats linearly spaced from start to stop (inclusive).
List has num elements."""
return [i*(stop-start)/(num-1)+start for i in range(num)] | 4a8c90845531cf999bbcee5867d1558dad204516 | 321,104 |
def pow(x: int, n: int) -> int:
"""pow(x, n) -> x ^ n"""
return x ** n | 51248c191b424ee1d0e0a1a68ef365e6fe097847 | 475,423 |
def generate_distracting_answer_by_top(question_type, top_answers_split):
"""
Use top 3 answer of specific type to replace
Args:
question_type: string
top_answers_split: dict, keys are question_type, values are list of (top_answers, frequency)
"""
return [_[0] for _ in top_answers_split[question_type][:3]] | eca140e540a6e6824a766307e2479c6e7e094fc5 | 351,112 |
def next_cell(board, current):
"""
Get next cell in board after current
:param board: matrix
:param current: tuple (matrix index)
:return: tuple(matrix index) or None if not exists
"""
for row in range(current[0], len(board)):
for col in range(current[1], len(board)):
if board[row][col] == 0:
return (row, col)
for row in range(len(board)):
for col in range(len(board)):
if board[row][col] == 0:
return (row, col)
return None | 515286c4a65782dde38af3c04e6db905c892517d | 135,969 |
def _list_str(string, separator=','):
"""Convert comma separated string to list."""
return string.strip('{:s} \n\t'.format(separator)) | dd272909c58ededde01ad6ebb01101d58788c42f | 583,407 |
def parse_input(line):
"""Parse length, width, and height from line"""
# Split the line by character 'x'
# Parse them into ints
return tuple(int(value) for value in line.split('x')) | 6c62ff676cf958f6bde8d29f5ebe4b4487ff171b | 266,832 |
def labeled_point_to_row_col_period(labeled_point):
"""Helper function to reconstruct period, row, and column of labeled point
Used in .map call for predictions
Args:
labeled_point (LabeledPoint): cell with label and features
Returns:
tuple (int, int, str): row, col, period
"""
features = labeled_point.features
row, col = features[0], features[1]
month, day, hour = features[2], features[3], features[4]
period = '2013{:02d}{:02d}{:02d}'.format(int(month), int(day), int(hour))
return row, col, period | e18bd88a8d4a341bec000e0fa250fd7ade69b32b | 81,872 |
def remove_class_init_kwargs(cls, kwargs: dict) -> dict:
"""Remove kwargs used to initialize the given class."""
params = list(cls.__init__.__code__.co_varnames)
params.remove("self")
for param in params:
kwargs.pop(param, None)
return kwargs | fdc0e1826971ff02448af2b111dd8a7419f00ce2 | 528,776 |
def _nltk_to_iso369_3(name):
"""
Map a country name to an ISO 369-3 code.
See https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes for an overview.
"""
name = name.lower()
return {'danish': 'dan',
'dutch': 'nld',
'english': 'eng',
'french': 'fra',
'finnish': 'fin',
'german': 'deu',
'hungarian': 'hun',
'italian': 'ita',
'norwegian': 'nor',
'portuguese': 'por',
'russian': 'rus',
'spanish': 'spa',
'swedish': 'swe',
'turkish': 'tur'}.get(name, None) | db29333075ed4dffff9a900c50b638ef25f9dcc7 | 514,236 |
def _parse_snapshots(data, filesystem):
"""
Parse the output of a ``zfs list`` command (like the one defined by
``_list_snapshots_command`` into a ``list`` of ``bytes`` (the snapshot
names only).
:param bytes data: The output to parse.
:param Filesystem filesystem: The filesystem from which to extract
snapshots. If the output includes snapshots for other filesystems (eg
siblings or children) they are excluded from the result.
:return list: A ``list`` of ``bytes`` corresponding to the
names of the snapshots in the output. The order of the list is the
same as the order of the snapshots in the data being parsed.
"""
result = []
for line in data.splitlines():
dataset, snapshot = line.split(b'@', 1)
if dataset == filesystem.name:
result.append(snapshot)
return result | 9e7ee50892ca446f57e2d52c29f5813bded72186 | 527,405 |
def map_fields(raw: str, field_map):
"""Map raw field values to column name and perform type cast on value"""
fields = raw.split(',')
return {key: field_map[key](fields[i]) for i, key in enumerate(field_map.keys())} | cbeb5b5abf2e8cf4b2ed8945b5282a69f552ecde | 89,992 |
import requests
def get_census_variable_descriptions(dataset, year, variables):
"""
Download descriptions of census variables from the API
"""
url_template = "https://api.census.gov/data/{year}/{dataset}/profile/variables/{variable}.json"
variable_descriptions = {}
for variable in variables:
url = url_template.format(year=year, dataset=dataset, variable=variable)
response = requests.get(url)
data = response.json()
variable_descriptions[variable] = {
"concept": data["concept"],
"label": data["label"],
}
return variable_descriptions | e87bd8890a46907f03182d0633e1508c562d8f82 | 609,004 |
import six
def get_process_signature(process, input_parameters):
""" Generate the process signature.
Parameters
----------
process: Process
a capsul process object
input_parameters: dict
the process input_parameters.
Returns
-------
signature: string
the process signature.
"""
kwargs = ["{0}={1}".format(name, value)
for name, value in six.iteritems(input_parameters)]
return "{0}({1})".format(process.id, ", ".join(kwargs)) | 0004870baaf3a00c35eae815dfcbf4c6965cec51 | 67,174 |
def get_message(service, message, userid="me"):
"""Get a message."""
msg = service.users().messages().get(
userId=userid,
id=message['id']
).execute()
return msg | 3f2bed26aeecbde6ddc917c7201a5b1f952839c4 | 493,849 |
def get_obj_attr(obj, attr):
"""Works like getattr() but supports django's double underscore object
dereference notation.
Example usage:
.. code-block:: python
>>> get_obj_attr(book, 'writer__age')
42
>>> get_obj_attr(book, 'publisher__address')
<Address object at 105a79ac8>
:param obj:
Object to start the derference from
:param attr:
String name of attribute to return
:returns:
Derferenced object
:raises:
AttributeError in the attribute in question does not exist
"""
# handle '__' referencing like in QuerySets
fields = attr.split('__')
field_obj = getattr(obj, fields[0])
for field in fields[1:]:
# keep going down the reference tree
field_obj = getattr(field_obj, field)
return field_obj | dc059569acce1d8e33d3e001ef7c908ce43ae4cb | 500,553 |
import torch
def get_uniq_topk(rank, history=None):
"""Based on rank and history, select the top ranked that is not in history
Args:
rank: (N, seq_len) torch.LongTensor, from torch.sort(x)[1]
history: either None, or a torch.LongTensor of size (N, history_len); history_len <= seq_len
Returns:
res: torch.LongTensor of size (N,1)
history: torch.LongTensor of size (N, history_len); if initially history=None, then history_len = 1;
otherwise the new history will have res appended as the last column
"""
res = []
if history is None:
res = rank[:, :1]
history = res
else:
for r, h in zip(rank, history):
for i in r:
if i in h:
continue
else:
res.append(i)
break
res = torch.stack(res, dim=0).unsqueeze(-1)
history = torch.cat([history, res], dim=-1) # in fact, dim=1
return res, history | 028d013ffeb870b80955da0449fcec85d1525b00 | 536,374 |
def _strftime(d):
"""
Format a date the way Atom likes it (RFC3339?)
"""
return d.strftime('%Y-%m-%dT%H:%M:%SZ%z') | 1eebf1bff9c68ba4649f1377f16b4b9feb737f01 | 10,608 |
from typing import List
from typing import Tuple
from typing import Any
def find_groupped_index(groupping_list : List[Tuple[Any, List[str]]], key_to_check : Any) -> int:
"""Finds index of key in given list of tuples where first element of tuple is key."""
for i, (key, _) in enumerate(groupping_list):
if key == key_to_check:
return i
return -1 | e092228def86029d77f263dd07c5b811bd771687 | 473,520 |
def filter_matches(matches, threshold=0.75):
"""Returns filterd copy of matches grater than given threshold
Arguments:
matches {list(tuple(cv2.DMatch))} -- List of tupe of cv2.DMatch objects
Keyword Arguments:
threshold {float} -- Filter Threshold (default: {0.75})
Returns:
list(cv2.DMatch) -- List of cv2.DMatch objects that satisfy ratio test
"""
filtered = []
for m, n in matches:
if m.distance < threshold * n.distance:
filtered.append(m)
return filtered | c2cbec1da42d96575eb422bfdda6a1351e24508b | 6,553 |
def is_blank(text):
"""
Returns ``True`` if string contains only whitespace characters
or is empty. Otherwise ``False`` is returned.
"""
return not text or text.isspace() | 3c5f4cf864b4115cfe2dd7cf67165fe5a130ad02 | 328,628 |
from typing import List
from typing import Dict
from typing import Any
def consolidate_fastapi_response(all_exceptions: List[Dict[str, Any]]) -> str:
"""
Consolidate the default fastAPI response so it can be returned as a string.
Default schema of fastAPI exception response is:
{
'loc': ('body',
'<outer_scope1>',
'<outer_scope2>',
'<inner_param>'),
'msg': '<the_error_message>',
'type': '<expected_type>'
}
In order to create a meaningful V1-style response, we consolidate the
above response into a string of shape:
'<outer_scope1>.<outer_scope2>.<inner_param>: <the_error_message>'
"""
# Pick just the error message while discarding v2 response items
def error_to_str(error: dict) -> str:
err_node = ".".join(str(loc) for loc in error['loc'] if loc != 'body')
res = ": ".join([err_node, error["msg"]])
return res
all_errs = ". ".join(error_to_str(exc) for exc in all_exceptions)
return all_errs | 895883ea80834fe8ffc98ede84f601c5a56c247b | 540,938 |
from typing import List
from typing import Tuple
import random
import math
def split_train_dev(
game_files: List[str], train_ratio: float = 0.9, rnd_seed: int = 42
) -> Tuple[List[str], List[str]]:
"""
Split train/dev sets from given game files
sort - shuffle w/ Random(42) - split
Args:
game_files: game files
train_ratio: the percentage of training files
rnd_seed: for randomly shuffle files, default = 42
Returns:
train_games, dev_games
Exception:
empty game_files
"""
# have to sort first, otherwise after shuffling the result is different
# on different platforms, e.g. Linux VS MacOS.
game_files = sorted(game_files)
random.Random(rnd_seed).shuffle(game_files)
n_files = len(game_files)
if n_files == 0:
raise ValueError("no game files found!")
n_train = int(math.ceil(n_files * train_ratio))
n_dev = n_files * (1 - train_ratio)
n_dev = int(math.floor(n_dev)) if n_dev > 1 else 1
train_games = game_files[:n_train]
dev_games = game_files[-n_dev:]
return train_games, dev_games | baaf4dd4785cb6324ce3bcdbabe6624aebe7ef82 | 155,238 |
def num_args(*args):
"""Return the number of arguments called."""
return len(args) | 12835555487347c64f487fe65970d76a82949a8c | 327,389 |
import string
def strip_punctuation(text):
"""
Input:
text (string)
Returns:
Text string without punctuation
"""
return text.rstrip().translate(str.maketrans('', '', string.punctuation)) | 60467cb4accfb5f260932e1c9250f796df416c9b | 441,195 |
def build_hsts_header(config):
"""Returns HSTS Header value."""
value = 'max-age={0}'.format(config.max_age)
if config.include_subdomains:
value += '; includeSubDomains'
if config.preload:
value += '; preload'
return value | 9f94d87b1949f5c9e2f898466a8f5191f2327357 | 17,128 |
def elapsed_time(word_time):
"""An accessor function for the elapsed time of a word_time."""
return word_time[1] | c9a1a15e52846c5f3266c9d627554d97c72be220 | 312,997 |
from typing import Iterable
def product(iterable: Iterable[int], start: int = 1) -> int:
"""
>>> product([2])
2
>>> product([2, 3])
6
>>> product([])
1
>>> product([2], start=10)
20
"""
for v in iterable:
start *= v
return start | 9265fa57cd809982195d1688264b62dbffc4a0b5 | 194,282 |
def insertion_sort(array : list) -> list:
"""
This function sorts an array of numbers using the insertion sort algorithm
Parameters
----------
array : list
List containing numbers
Returns
-------
list
The sorted list
"""
for i in range(1, len(array)):
iteration = array[i]
index = i
while iteration < array[index-1] and index > 0:
array[index] = array[index - 1]
index -= 1
array[index] = iteration
return array | 6a93e2457d530b7185de7ac62c2c23d0cc503f69 | 346,644 |
from pathlib import Path
def get_model_name(model_name_or_path):
"""Return a short version of the model's name or path"""
path = Path(model_name_or_path)
if path.exists():
if "checkpoint-" in path.name:
model_name_or_path = f"{path.parent.name}/{path.name}"
else:
model_name_or_path = str(path.name)
return model_name_or_path | c4a29af7d3123e3ab0f6c7db6686a5cf958cd41a | 549,014 |
def get_counts_permutation_fdr(value, random, observed, n, alpha):
"""
Calculates local FDR values (q-values) by computing the fraction of accepted hits from the permuted data over accepted hits from the measured data normalized by the total number of permutations.
:param float value: computed p-value on measured data for a feature.
:param ndarray random: p-values computed on the permuted data.
:param observed: pandas Series with p-values calculated on the originally measured data.
:param int n: number of permutations to be applied.
:param float alpha: error rate. Values velow alpha are considered significant.
:return: Tuple with q-value and boolean for H0 rejected.
Example::
result = get_counts_permutation_fdr(value, random, observed, n=250, alpha=0.05)
"""
a = random[random <= value].shape[0] + 0.0000000000001 #Offset in case of a = 0.0
b = (observed <= value).sum()
qvalue = (a/b/float(n))
return (qvalue, qvalue <= alpha) | 0af134f0d37f69d099bad01751730a42ef2a9dc0 | 392,717 |
def Compute_structures(V,F):
"""
For the linear normal kernel
Parameters
----------
@param : V : torch tensor
n-points x d-dimension points.
@param : F : torch Long tensor
m-connections x 2-dim tensor containing pair of connected points' indices.
Returns
-------
@output : centers : torch tensor
npoints-1 x d-dimension points, the centers of each discretization segment in the tree.
@output : lengths : float
npoints-1 x 1-dimension tensor, the length of each discretization segment in the tree.
@output : normalized_seg : torch tensor
npoints-1 x d-dimension normalized vectors of the discretization segments in tne tree.
"""
V0, V1 = V.index_select(0,F[:,0]), V.index_select(0,F[:,1])
u = (V1-V0)
lengths = (u**2).sum(1)[:, None].sqrt()
normalized_tgt_ok = u / (lengths.view(-1,1))
centers = (V0+V1)/2.
return centers, lengths, normalized_tgt_ok | 5cd1af5dc51332ad92904a037c86047e93548b42 | 242,238 |
def convert_timedelta_to_mins(timedelta):
"""Calculates and returns the minuetes from the inputted timedelta
Args:
timedelta (datetime.timedelta): the timedelta to calculate the minuetes from
Returns:
int: the minuetes calculated from the inputted timedelta
"""
return int(round(timedelta.total_seconds() / 60)) | d6b45c34b02499589cf92fc11f895f479b4b579c | 409,991 |
def section(title):
"""center in a string 60 wide padded with ="""
return "\n{:=^60}\n.".format(title) | f8904ee5429d5ffe0e9373f61f0db98a261359c4 | 48,590 |
def ProjectToProjectResourceName(project):
"""Turns a project id into a project resource name."""
return 'projects/{0}'.format(project) | 957a0bc46442068a52bdbe1ca7bfee25e9715597 | 276,753 |
def y_eq_func(ylag,pilag,v,s,slag,alpha,h,b,phi,gamma):
""" equilibrium value for output
Args:
ylag (float): lagged output
pilag (float): lagged inflation
v (float): demand disturbance
s (float): supply disturbance
slag (float): lagged supply disturbance
alpha (float): sensitivity of demand to real interest rate
h (float): coefficient on inflation in Taylor rule
b (float): coefficient on output in Taylor rule
phi (float): degree of stickiness in inflation expectations
gamma (float): effect of output on inflation in SRAS
Returns:
(float): equilibrium value for output
"""
return 1/(alpha*b+alpha*gamma*h+1)*(-pilag*alpha*h+alpha*gamma*h*phi*ylag+alpha*h*phi*slag-alpha*h*s+v) | 74f1cf166b9806b0c0f7cb742a37329dfe21cf4c | 332,607 |
def multicommand_get_command_short_help(self, ctx, cmd_name):
"""Returns the short help of a subcommand
It allows MultiCommand subclasses to implement more efficient ways to provide the subcommand short help, for
example by leveraging some caching.
Parameters
----------
ctx : click.core.Context
The current context
cmd_name :
The sub command name
Returns
-------
str
The sub command short help
"""
return self.get_command(ctx, cmd_name).short_help | 0255615202c52f9a6ca82b12d273a97efbbee42d | 648,530 |
import json
def find_arg(i):
"""
Find the arg (e.g. '422') if i is one of the analyzed args,
otherwise return ''
"""
path = '/var/inphosemantics/data/20131214/Washburn/vsm-data/'
if i == 'new' or '(' in i:
return ''
i = int(i)
with open(path + 'arg_indices.json', 'r') as jsonf:
indices = json.load(jsonf)
for k in indices:
if i in indices[k]:
return str(k)
return '' | 6357bd5c999fee3b4a7f391272361f681d94a9e3 | 161,236 |
def construct_url(ip_address: str) -> str:
"""Construct the URL with a given IP address."""
if "http://" not in ip_address and "https://" not in ip_address:
ip_address = "{}{}".format("http://", ip_address)
if ip_address[-1] == "/":
ip_address = ip_address[:-1]
return ip_address | dbd4754140e85a09809abf1a76c9d3eedd45230f | 460,046 |
def sig_indicator(pvalue):
"""Return a significance indicator string for the result of a t-test.
Parameters
----------
pvalue: float
the p-value
Returns
-------
str
`***` if p<0.001, `**` if p<0.01, `*` if p<0.05, `ns` otherwise.
"""
return (
'***' if pvalue < 0.001
else '**' if pvalue < 0.01
else '*' if pvalue < 0.05
else 'ns'
) | 51798d74afc6284c633d65a5ca89a9a421cab76b | 638,162 |
import csv
def read_cities(file_name):
"""
Read in the cities from the given `file_name`, and return
them as a list of four-tuples:
[(state, city, latitude, longitude), ...]
Use this as your initial `road_map`, that is, the cycle
Alabama -> Alaska -> Arizona -> ... -> Wyoming -> Alabama.
"""
roadmap = []
for l in csv.reader(open(file_name, 'r'), quotechar='"', delimiter=',', quoting=csv.QUOTE_ALL, skipinitialspace=True):
if l[5] == str("Lat"):
continue
roadmap.append((l[2], l[1], float(l[5]), float(l[6]), int(l[0]), None))
print(roadmap)
return roadmap | 1fe3f57848e0c543414b8a89595a7040186eb4c7 | 414,737 |
def _Backward2a_T_Ph(P, h):
"""Backward equation for region 2a, T=f(P,h)
Parameters
----------
P : float
Pressure [MPa]
h : float
Specific enthalpy [kJ/kg]
Returns
-------
T : float
Temperature [K]
References
----------
IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the
Thermodynamic Properties of Water and Steam August 2007,
http://www.iapws.org/relguide/IF97-Rev.html, Eq 22
Examples
--------
>>> _Backward2a_T_Ph(0.001,3000)
534.433241
>>> _Backward2a_T_Ph(3,4000)
1010.77577
"""
I = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7]
J = [0, 1, 2, 3, 7, 20, 0, 1, 2, 3, 7, 9, 11, 18, 44, 0, 2, 7, 36, 38, 40,
42, 44, 24, 44, 12, 32, 44, 32, 36, 42, 34, 44, 28]
n = [0.10898952318288e4, 0.84951654495535e3, -0.10781748091826e3,
0.33153654801263e2, -0.74232016790248e1, 0.11765048724356e2,
0.18445749355790e1, -0.41792700549624e1, 0.62478196935812e1,
-0.17344563108114e2, -0.20058176862096e3, 0.27196065473796e3,
-0.45511318285818e3, 0.30919688604755e4, 0.25226640357872e6,
-0.61707422868339e-2, -0.31078046629583, 0.11670873077107e2,
0.12812798404046e9, -0.98554909623276e9, 0.28224546973002e10,
-0.35948971410703e10, 0.17227349913197e10, -0.13551334240775e5,
0.12848734664650e8, 0.13865724283226e1, 0.23598832556514e6,
-0.13105236545054e8, 0.73999835474766e4, -0.55196697030060e6,
0.37154085996233e7, 0.19127729239660e5, -0.41535164835634e6,
-0.62459855192507e2]
Pr = P/1
nu = h/2000
T = 0
for i, j, ni in zip(I, J, n):
T += ni * Pr**i * (nu-2.1)**j
return T | f425d6921b2f0e1fe05fe8442c4988db18c12a4d | 176,019 |
def linefunc(X1, X2, Y1, Y2):
"""Construct a 1D linear function (y=a*x+b), based on two points."""
a = (Y2-Y1) / (X2-X1)
b = Y1 - a*X1
return lambda X: a*X+b | e946aac2a9b42f7fa7daf7dec095745c7b2ed3f6 | 496,236 |
def ensure_fd(fd):
"""Ensure an argument is a file descriptor."""
if not isinstance(fd, int):
if not hasattr(fd, "fileno"):
raise TypeError("Arguments must be file descriptors, or implement fileno()")
return fd.fileno()
return fd | eabbb5cd6462ef36953190690a464e43e392ace4 | 500,787 |
def store_true(arg, _, args, acc):
"""
lambda that store a True boolean value on the parser result
"""
acc[arg] = True
return args, acc | 84f6cb94905a03b1952ce62fc8e6bea354866016 | 649,339 |
def is_link(url, processed):
"""
Determine whether or not a link should be crawled
A url should not be crawled if it
- Is a file
- Has already been crawled
Args:
url: str Url to be processed
processed: list[str] List of urls that have already been crawled
Returns:
bool If `url` should be crawled
"""
if url not in processed:
if url.startswith('#') or url.startswith('javascript:'):
return False
is_file = url.endswith(['pdf', 'jpg', 'jpeg', 'png', 'docx', 'csv', 'xls'])
if is_file:
return False
return True
return False | 310f8ade0d22a988b193dbeb93b083e64ae7d28e | 480,569 |
def mutate_with_removal(solution):
"""Try to mutate the passed solution in-place by removing an item"""
# removal is only possible if there are items placed in the container
if solution.placed_items:
# select an item randomly
item_index = solution.get_random_placed_item_index()
# remove the item
return solution.remove_item(item_index)
return False | b948500395ee817492fe57b2c6ffd030c1d50967 | 428,853 |
def plzz(self, rotvel="", deltarotvel="", **kwargs):
"""Plots the interference diagram from a cyclic modal analysis.
APDL Command: PLZZ
Parameters
----------
rotvel
Rotational speed in revolutions per minute (RPM) used to define the
speed line. If blank, use the rotational speed (from OMEGA)
specified in the prestressing step of the linear perturbation
analysis. If explicitly input as 0, or if the linear perturbation
was not used, no speed lines are plotted.
deltarotvel
Adds speed lines about the RotVel speed line corresponding to
RotVel ± DeltaRotVel. Only plotted if RotVel is known.
Notes
-----
PLZZ plots the cyclic modal frequencies as points on a frequency vs.
harmonic index (nodal diameter) graph. If rotational speed (RotVel) is
provided, the speed line is also plotted, leading to the interference
diagram (also known as the SAFE or ZZENF diagram). If DeltaRotVel is
also provided, two additional speed lines are plotted, enveloping the
safe speed line itself.
For more information, see Postprocessing a Modal Cyclic Symmetry
Analysis in the Cyclic Symmetry Analysis Guide.
"""
command = f"PLZZ,{rotvel},{deltarotvel}"
return self.run(command, **kwargs) | 8bdd7745f9c9c5cab8ef3825bef3be6296bf8faa | 578,305 |
def split(sentence):
"""Splits a sentence into words.
Args:
sentence (str): A sentence to split.
Returns:
list of str: A list of words. Punctuations are removed.
"""
return sentence.lower().replace('.', '').replace('?', '').split() | 9e8cfa2e640ef9818351e8a249e55ddccc7e1057 | 435,701 |
def _pow(a, b):
"""C-like power, a**b
"""
return a**b | 02101594d22a3366912b468de96bfe0bdab44102 | 640,379 |
def get_q(kernel_size: int, dilation: int):
"""Get apparent kernel size
Args:
kernel_size: kernel size
dilation: dilate ratio of kernel
"""
return (kernel_size - 1) * dilation + 1 if kernel_size % 2 == 1 else kernel_size * dilation | eba28e9c7f8696ca737368deeefb6056951b9d43 | 212,295 |
import ast
def get_input(arg, valid_keys):
"""Convert the input to a dict and perform basic validation"""
json_string = arg.replace("\\n", "\n")
try:
input_dict = ast.literal_eval(json_string)
if not all(k in input_dict for k in valid_keys):
return None
except Exception:
return None
return input_dict | 55f702725186cb74767546c8a3c4b068f0c03f2b | 44,157 |
def diff_mic(pos1, pos2, cell):
"""Minimum image convention relative vector (orthorhombic cell only)"""
diff = pos2 - pos1
for i in range(3):
diff[i] -= round(diff[i]/cell[i])*cell[i]
return diff | ea63817262321024bff29439354efeaaf8c58bb4 | 645,630 |
def unescape_bytes(bytestr):
"""
Returns a variant of the given bytestring that has C escapes replaced
with their ASCII values.
>>> unescape_bytes(b'\\0')
b'\x00'
"""
return bytestr.decode('unicode_escape') | a628b9433c409d5180a793c266ba48774239ee41 | 620,859 |
def factorial(number: int) -> int:
"""
>>> factorial(5)
120
>>> factorial(0)
1
>>> import random
>>> import math
>>> numbers = list(range(0, 50))
>>> for num in numbers:
... assert factorial(num) == math.factorial(num)
>>> factorial(-1)
Traceback (most recent call last):
...
ValueError: factorial() not defined for negative values
"""
if number < 0:
raise ValueError("factorial() not defined for negative values")
fact = 1
for i in range(1, number + 1):
fact *= i
return fact | a63bb3c547411e265184eda954c4616d29a759e5 | 609,147 |
def bits_to_str(bits: list) -> str:
"""
convert bits to string
Args:
bits (list): bits as list
Returns:
str: bit list string
"""
return "".join(str(int(x)) for x in bits) | 4a48f019131463c21df1cbc5a167d08e38dc18cd | 417,340 |
def get_tr1(name):
"""In libstd++ the tr1 namespace needs special care.
Return either an empty string or tr1::, useful for
appending to search patterns.
Args:
name (str): the name of the declaration
Returns:
str: an empty string or "tr1::"
"""
tr1 = ""
if "tr1" in name:
tr1 = "tr1::"
return tr1 | c44d1f2830fb0f0ee6fcfeda331a46868676363c | 116,181 |
import math
def calc_I_circle(R: float) -> float:
"""Calculate the second moment of area of a circle centered on an axis."""
return math.pi * R**4 / 4 | 770b4efcd16655f5893a693a78d76b1e5b64e561 | 287,525 |
import time
def wait_for(condition, max_tries=60):
"""Wait for a condition to be true up to a maximum number of tries
"""
cond = False
while not cond and max_tries > 1:
try:
cond = condition()
except Exception:
pass
time.sleep(1)
max_tries -= 1
return condition() | eb8f77c6cc26324222f6ccbc973046c14bb93a56 | 625,210 |
def get_uniprot_to_dcid(file_path):
"""
Args:
file_path for the 'uniprot_to_dcid.txt'.
Returns:
A dict mapping UniProt entry to protein DCID in Data Commons.
example: {'O43657': 'TSN6_HUMAN'}
"""
with open(file_path, 'r') as file:
lines = file.read().split('\n')
uniprot_to_dcid = {}
#lines[0] is the column names and lines[-1] is ''.
for line in lines[1:-1]:
line_split = line.split('\t')
uniprot = line_split[0]
dcid = line_split[2]
# multiple uniprot entry maps to one entry name
if ',' in uniprot:
uniprots = uniprot.split(',')
for uni in uniprots:
uniprot_to_dcid[uni] = dcid
else:
uniprot_to_dcid[uniprot] = dcid
return uniprot_to_dcid | 5b00c83fb4430d28055d5b7c5b7b8de3acb3c6fe | 363,277 |
def within_range(year_start, year_end, year_x):
"""
Check if year_x is within the time span defined by [year_start, year_end]
Parameters
-----------
year_start : int
year_end : int
year_x : int
Return
-------
Boolean
"""
return ((year_x >= year_start) and (year_end >= year_x)) | eec98ed9369c1169606493d5e9be8f34611dd8ad | 481,474 |
def ReadFile(path, encoding='utf-8'):
"""Reads data from a file.
Args:
path: The path of the file to read.
encoding: Same param as open(). Set to None for binary mode.
"""
with open(path, mode='r' if encoding else 'rb', encoding=encoding) as f:
return f.read() | b0a0b5482db050b506c66292cc147bf7ba160f35 | 218,745 |
def create_unique_ID(class_no, sentence_no):
"""
Creates a a unique ID for our dataset in the format of 'c' + class_no + '-s' + sentence_no.
Eg - c0-s0, c1-s2 etc.
"""
unique_id = 'c' + str(class_no) + '-s' + str(sentence_no)
return unique_id | 378c4cc2c24c15e5c5a217519b8bda975088f155 | 305,166 |
def parse_keypair_lines(content, delim='|', kv_sep='='):
"""
Parses a set of entities, where each entity is a set of key-value pairs
contained all on one line. Each entity is parsed into a dictionary and
added to the list returned from this function.
"""
r = []
if content:
for row in [line for line in content if line]:
item_dict = {}
for item in row.split(delim):
key, value = [i.strip("'\"").strip() for i in item.strip().split(kv_sep)]
item_dict[key] = value
r.append(item_dict)
return r | fc720f66e84c4173cc78e61ef5be31ae447e0cd8 | 391,957 |
from datetime import datetime
def set_current_time() -> str:
"""Return the current time as string
with the following format 'YYYYMMDD_HHMMSS'
"""
return datetime.now().strftime("%Y%m%d_%H%M%S") | 6761fd286126efbdc5b525e4ce0820feae5fa48f | 201,161 |
import requests
def get_versions(manifest_url: str, types=['snapshot', 'release', 'old_beta', 'old_alpha']):
"""Get manifest of mojang."""
response = requests.request(
method='GET',
url=manifest_url,
)
response_json = response.json()
versions = []
for version in response_json['versions']:
if version['type'] in types:
versions.append(version)
return versions | 257272f009f76d0b57739e32d6d744ec65b14efd | 490,903 |
def coroutine(f):
"""Turn a generator function into a coroutine by calling .next() once."""
def started(*args, **kwargs):
cr = f(*args, **kwargs)
cr.next()
return cr
return started | d2f63295a6a75eb70b6d99784acd6582f37b9c45 | 250,226 |
import configparser
def read_config(file):
"""
This loads the INI file into an easy to use ConfigParser() object.
This configuration structure can then be made an input to the
processing functions.
Parameters
----------
file: str
The name of the INI file to load
Returns
-------
config: ConfigParser() object
The ConfigParser object containing the structure of the INI file
"""
my_parser = configparser.ConfigParser()
my_parser.read(file)
return my_parser | 4ba8f27bc975bda0788f83fd781b94d8b32aac64 | 418,211 |
def scroll_with_mousewheel(widget, target=None, modifier='Shift', apply_to_children=False):
"""scroll a widget with mouse wheel
Args:
widget: tkinter widget
target: scrollable tkinter widget, in case you need "widget" to catch mousewheel event and make another widget
to scroll, useful for child widget in a scrollable frame
modifier (str): Modifier to use with mousewheel to scroll horizontally, default is shift key
apply_to_children (bool): bind all children
Examples:
scroll_with_mousewheel(my_text_widget, target='my_scrollable_frame')
to make a scrollable canvas:
for w in my_canvas:
scroll_with_mousewheel(w, target=my_canvas)
"""
def _scroll_with_mousewheel(widget):
target_widget = target if target else widget
def scroll_vertically(event):
# scroll vertically ----------------------------------
if event.num == 4 or event.delta > 0:
target_widget.yview_scroll(-1, "unit")
elif event.num == 5 or event.delta < 0:
target_widget.yview_scroll(1, "unit")
return 'break'
# bind events for vertical scroll ----------------------------------------------
if hasattr(target_widget, 'yview_scroll'):
# linux
widget.bind("<Button-4>", scroll_vertically, add='+')
widget.bind("<Button-5>", scroll_vertically, add='+')
# windows and mac
widget.bind("<MouseWheel>", scroll_vertically, add='+')
# scroll horizontally ---------------------------------------
def scroll_horizontally(event):
# scroll horizontally
if event.num == 4 or event.delta > 0:
target_widget.xview_scroll(-10, "unit")
elif event.num == 5 or event.delta < 0:
target_widget.xview_scroll(10, "unit")
return 'break'
# bind events for horizontal scroll ----------------------------------------------
if hasattr(target_widget, 'xview_scroll'):
# linux
widget.bind(f"<{modifier}-Button-4>", scroll_horizontally, add='+')
widget.bind(f"<{modifier}-Button-5>", scroll_horizontally, add='+')
# windows and mac
widget.bind(f"<{modifier}-MouseWheel>", scroll_horizontally, add='+')
_scroll_with_mousewheel(widget)
def handle_children(w):
for child in w.winfo_children():
_scroll_with_mousewheel(child)
# recursive call
if child.winfo_children():
handle_children(child)
if apply_to_children:
handle_children(widget) | d993586b7703b286f9a17406a1858c8e7f4c8507 | 622,746 |
def format_choice(choice):
"""
Default format for choice
:param choice: The choice
:return: The formatted choice
"""
return choice | 7986143bc19da03d66a58fb21d477b7c895ab9ee | 414,973 |
def is_supported_compression(file_extension: str) -> bool:
"""Determine if the given file extension indicates a compression format that pandas can handle automatically.
Args:
file_extension (str): the file extension to test
Returns:
bool: True if the extension indicates a compression format that pandas handles automatically and False otherwise
Notes:
Pandas can handle on the fly decompression from the following extensions: ‘.bz2’, ‘.gz’, ‘.zip’, or ‘.xz’
(otherwise no decompression). If using ‘.zip’, the ZIP file must contain exactly one data file to be read in.
"""
return file_extension.lower() in [".bz2", ".gz", ".xz", ".zip"] | 9a964b6cb126483a519746a3fd9cd1ce84f2d386 | 418,425 |
def get_db(entity):
"""
Returns the #pony.orm.Database backing the #Entity instance *entity*.
"""
return entity._database_ | 012f05c638b41ed21cf6d717fc3b55926264efb9 | 667,238 |
import torch
def one_hot_embedding(labels, num_classes=2):
"""Embedding labels to one-hot form.
Args:
labels: (LongTensor) class labels, sized [B,N].
num_classes: (int) number of classes.
Returns:
(tensor) encoded labels, sized [N,#classes].
"""
B, N = labels.size()
# labels = labels.view(-1, 1) # [B,N]->[B*N,1]
labels = labels.view(int(B * N), 1)
y = torch.FloatTensor(labels.size()[0], num_classes) # [B*N, D]
y.zero_()
y.scatter_(1, labels, 1)
return y | b4ec618441685ec0b30fb42eb363ea3db378e334 | 267,297 |
def get_method(ioctl_code):
"""Returns the correct method type name for a 32 bit IOCTL code"""
method_names = [
'METHOD_BUFFERED',
'METHOD_IN_DIRECT',
'METHOD_OUT_DIRECT',
'METHOD_NEITHER',
]
method = ioctl_code & 3
return method_names[method], method | 81a044837ba1aa46ddc824ff8c0dccd3e8c2eb21 | 366,035 |
from typing import List
from typing import Dict
from typing import Any
def validate_cell_header(
headers: List[str], cell: Dict[str, Any]
) -> List[str]:
"""Check that header of a cell meets project specifications."""
content = [line.rstrip('\n') for line in cell['source']]
curr_header = content[0]
msg = f"Cell header must be h2 (i.e. start with ##), found: {curr_header}"
if not curr_header.startswith('## '):
raise ValueError(msg)
msg = f"Each header must appear only once, '{curr_header}' is duplicated"
if curr_header in headers:
raise ValueError(msg)
headers.append(curr_header)
return headers | c18c385792a0f04661ca3961e31d7bb7ce8e5801 | 29,372 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.