content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import re
def extractMigrationInformation(filename: str, direction: str):
"""Extract the version from a filename e.g. V1.0.3.up.sql -> V1.0.3"""
match = re.search("(?P<version>[^_]*)_?(?P<description>.*)\." + direction + "\.sql", filename, re.IGNORECASE)
if not match:
return {'version': None, 'description': None}
return {'version': match.group('version'), 'description': match.group('description')} | 41983a2aa4e0b8c144db758da6cbec9d6803bd6c | 177,514 |
def normalize(xs,
axis=None,
eps=1e-8):
""" Normalize array along axis
:param xs: np.array(), array to normalize
:param axis: int, axis along which is normalized
:param eps: float, offset to avoid division by zero
:return: np.array(), normed array
"""
return (xs - xs.mean(axis=axis)) / (xs.std(axis=axis) + eps) | 548b4dc7eae65ccbfabffd2869fc6f30f9bf70f4 | 317,305 |
def month_diff(d1, d2):
"""Return the number of months between d1 and d2,
such that d2 + month_diff(d1, d2) == d1
"""
diff = (12 * d1.year + d1.month) - (12 * d2.year + d2.month)
return diff | 3a7545049dba00da755564614c56bcb2659c0324 | 199,857 |
def _get_key_and_indices(maybe_key_with_indices):
"""Extracts key and indices from key in format 'key_name[index0][index1]'."""
patterns = maybe_key_with_indices.split('[')
if len(patterns) == 1:
return (maybe_key_with_indices, None)
# For each index ensure that the brackets are closed and extract number
indices = []
for split_pattern in patterns[1:]:
# Remove surrounding whitespace.
split_pattern = split_pattern.strip()
if split_pattern[-1] != ']':
raise ValueError(
'ParameterName {} has bad format. Supported format: key_name, '
'key_name[index0], key_name[index0][index1], ...'.format(
maybe_key_with_indices))
try:
indices.append(int(split_pattern[:-1]))
except ValueError:
raise ValueError(
'Only integer indexing allowed for ParameterName. '
'Faulty specification: {}'.format(maybe_key_with_indices))
return patterns[0], indices | ffc065c60da419b73b1283e06a69098eeac19fbb | 37,070 |
import gzip
import pickle
def read_pickle(path: str) -> object:
"""Load a Python pickle that was compressed with Gzip.
Args:
path: Path to pickle
Returns:
Unpickled object
"""
with gzip.open(path, 'rb') as f:
return pickle.load(f) | a4f1579a2145993a152123fe38369823e309455f | 204,080 |
def bigram_shingler(str):
"""Extract a set of 2 character n-grams (character bigrams) from string"""
big_set = {str[x:x+2] for x in range(0, len(str) -1) if len(str) > 1}
return big_set | c82ad4b1d76b25e6e1101af9316e1bc6fd7cc408 | 163,085 |
def parse_classification(tool):
"""
Parses a classification from an ontology. Only radio, checklist, and text are supported for mal
Args:
tool (dict)
Returns:
dict
"""
if tool['type'] in ['radio', 'checklist']:
return {
'tool': tool['type'],
'featureSchemaId': tool['featureSchemaId'],
'options': [r['featureSchemaId'] for r in tool['options']]
}
elif tool['type'] == 'text':
return {
'tool': tool['type'],
'featureSchemaId': tool['featureSchemaId']
} | 1c5fe385678ba375cfcfee97c56941382d151fd0 | 399,128 |
def make_context(host, port, path, store, callbacks,
collection_funcs, retrieve_funcs, entry_funcs,
strip_meta, ctl, queue):
"""Returns a context object which is passed around by visit()."""
return {"host": host, "port": port, "store": store,
"path": path, "queue": queue or [], "ctl": ctl,
"collection_funcs": collection_funcs,
"retrieve_funcs": retrieve_funcs,
"entry_funcs": entry_funcs,
"strip_meta": strip_meta,
"callbacks": callbacks} | 2b469f661d2b33eed0e50b646805039bbe112b42 | 471,106 |
def get_all_terminals_of_inner_node(phylo_tree, node_id):
"""
Given a phylogenetic tree and a preorder ID of an inner node, return
a list of all leaf nodes of the subtree rooted at the inner node.
"""
# Since the node IDs are unique, the loop is only iterated once.
leaf_nodes = list()
for clade in phylo_tree.find_clades(name=node_id, order='preorder'):
leaf_nodes += clade.get_terminals(order='postorder')
return leaf_nodes | 36fbc43e0472415ab2215087412b8f4bfa1def2c | 428,763 |
def almul(x, y):
"""
Function to multiply 2 operands
"""
return(x * y) | f12e22e44d1a09c563501e58596cf8e52a93443e | 520,498 |
import six
def _GetDuration(args):
"""Returns a formatted duration string."""
return six.text_type(args.duration) + 's' if args.duration else None | b659eefe06bf2f02946c97470b04580b0d956f1e | 398,224 |
def all_additional_output_names(experiment_proto):
"""Return all additional output names from an Experiment proto.
Args:
experiment_proto: selection_pb2.Experiment describing the experiment.
Returns:
List of strings in sorted order.
"""
names = [ao.name for ao in experiment_proto.additional_output]
return sorted(names) | fdff817f5ec7b0a876b389a8447fc6e5b0e3dae3 | 582,164 |
def strip_profile_url(value):
"""strip /weblog/ from profile url"""
if value.endswith('weblog/'):
value = value[:-7]
return value | d8e050ce8a84a2e3518d7fb226fd39db7a8d8b96 | 163,563 |
def strict_accuracy_N(act, pred, ignore_class=0):
"""
Computes the accuracy of an array of tagged sentences
Actual values which match `ignore_class` are not factored in
Inputs:
- act: array of actual numerical vectors
- pred: array of predicted numerical vectors
- ignore_class: numerical value to be ignored
Outputs:
- accuracy score
"""
# number of correct predictions
corr_preds = 0
# number of predictions
total_preds = 0
# compute values via iterating over sentences
for sent in zip(act, pred):
act_classes = sent[0]
pred_classes = sent[1]
for t in range(len(act_classes)):
if act_classes[t] != int(ignore_class):
total_preds += 1
if pred_classes[t] == act_classes[t]:
corr_preds += 1
# actual accuracy without padding
return corr_preds / total_preds | 18bc12f4456e9d75fcb502412b76823669fea742 | 140,077 |
import json
def _write_json(file, contents):
"""Write a dict to a JSON file."""
with open(file, 'w') as f:
return json.dump(contents, f, indent=2, sort_keys=True) | 86f0809cb46d833135ac3941eef9916b23001d4e | 121,790 |
def get_id(*, label, configuration):
"""Generates a unique identifier for a target.
Args:
label: The `Label` of the `Target`.
configuration: The value returned from `get_configuration`.
Returns:
An opaque string that uniquely identifies the target.
"""
return "{} {}".format(label, configuration) | a5f86cd4465938bb9faa67a20c7501c89d381fbd | 515,217 |
def calc_csr(sigma_veff, sigma_v, pga, rd, gwl, depth):
"""
Cyclic stress ratio from CPT, Eq 2.2,
"""
return 0.65 * (sigma_v / sigma_veff) * rd * pga | becedff4526031f5047e68a0a2d51476bf56ca9b | 26,232 |
def collection_core_fields(item):
"""Extract only fields that are used to identify a record"""
record = {}
# Define umm
umm = item.get('umm', {})
record['ShortName'] = umm.get('ShortName')
record['Version'] = umm.get('Version')
record['EntryTitle'] = umm.get('EntryTitle')
# Define meta
meta = item.get('meta', {})
record['concept-id'] = meta.get('concept-id')
return {key: value for key, value in record.items() if value} | c25d21d0f6d8c7752a75cada066cfb21a732a5a1 | 400,292 |
import re
def cut_iframes(value):
"""
Filter which cut <iframe> tags.
"""
pattern = re.compile(r'<p><iframe .*</iframe></p>')
return re.sub(pattern, '', value) | a8ab5e1f0c1c55a225c7d041374aba041d10e6d2 | 634,791 |
import builtins
def from_str_to(type_):
"""Return a cast function to convert a string to a builtin type.
The `type` parameter is the name of the type as a string. Returns the
builtin Python cast function if `type` is "str", "int", or "float". If
`type` is "bool", the returned cast function will return `True` for the
values "y", "yes", "true", and "1" (case insensitive), otherwise it will
return `False`. For any other `type` specified, the builtin `str`
function is returned.
>>> f = from_str_to("str")
>>> f("hello")
"hello"
>>> f = from_str_to("int")
>>> f("10")
10
>>> f = from_str_to("float")
>>> f("10")
10.0
>>> f = from_str_to("bool")
>>> [f(s) for s in ['yes', 'no', 'true', 'false']]
[True, False, True, False]
"""
if type_ in ("str", "int", "float"):
return getattr(builtins, type_)
if type_ == "bool":
return lambda s: s.lower() in ("y", "yes", "true", "True", "1")
return str | 8b6624a0d759c17eb9d6fa596d9922c6c459286b | 525,619 |
def replace_in_testbenches(
testbenches, search_str, replace, include_langs=None, exclude_langs=None
):
"""
In a testbench, replace a string with another string.
Args:
testbenches (str or dict): The testbench to replace text in. This may be
a string representing a single testbench or a dictionary where
different testbenches are indexed by language
search_str (str): String to search for
replace (str-like): Converted to string and used to replace search_str
include_langs (iterable, optional): Iterable of a subset of languages to
perform the replacement. Defaults to None.
exclude_langs (iterable, optional): Iterable of a subset of languages to
exclude from replacement. Defaults to None.
Returns:
str or dict: The modified testbench. Same type as testbenches
"""
if isinstance(testbenches, str):
testbenches = testbenches.replace(search_str, str(replace))
else:
for lang in [*testbenches]:
if include_langs and lang not in include_langs:
continue
if exclude_langs and lang in exclude_langs:
continue
if isinstance(replace, dict):
if lang in replace:
replace_str = str(replace[lang]).replace("$$lang", lang)
else:
replace_str = ""
else:
replace_str = str(replace).replace("$$lang", lang)
testbenches[lang] = testbenches[lang].replace(
search_str, replace_str
)
return testbenches | 3496175defb7327a166d78b77e1715fa2fb7e26d | 388,410 |
def remove(seq1, seq2):
""" remove the elements in `seq2` from `seq1`
"""
return tuple(elem for elem in seq1 if elem not in seq2) | 49ab05fec0304aca078f419dfee0cb5fab38d5f5 | 640,602 |
import struct
def Int2Bytes(integer):
"""Converts an Int32 into a 4 byte 'bytes' object."""
return struct.pack('i', integer) | c25ddfec574cb969c114d42476f743b548171392 | 488,547 |
import json
def getTokensInfo(ds):
"""
Get name of the token set and number of tokens used
for tokenization of problem solutions
Parameters:
- ds - directory with tokenized dataset
Returns:
- Name of token set
- Number of tokens
"""
_info_fn = f"{ds}/info.json"
with open(_info_fn, 'r') as _info_json:
_info = json.load(_info_json)
return _info["token_set"], _info["n_tokens"] | e1b816ba4eb5e0f62ccccbc67bb5bea1cfb56788 | 575,039 |
def stellar_params_from_archive(df, kep_name):
"""Get stellar parameters for the host of a KOI from exoplanet archive (downloaded data).
Parameters
----------
df: pandas.DataFrame
dataframe of exop. archive downloaded data
kep_name: str
Kepler name of planet
Returns
-------
smass: float
Stellar mass (solar mass)
srad: float
Stellar radius (solar radius)
limbdark_mod: str
Limb darkening model
ldm_c1: float
Limb darkening coefficient 1
ldm_c2: float
Limb darkening coefficient 2
"""
smass = float(df.loc[df['kepler_name'] == kep_name].koi_smass) #stellar mass (/solar mass)
smass_uerr = float(df.loc[df['kepler_name'] == kep_name].koi_smass_err1) #stellar mass upper error
smass_lerr = float(df.loc[df['kepler_name'] == kep_name].koi_smass_err2) #stellar mass lower error
srad = float(df.loc[df['kepler_name'] == kep_name].koi_srad) #stellar radius (/solar radius)
srad_uerr = float(df.loc[df['kepler_name'] == kep_name].koi_srad_err1) #stellar radius upper error
srad_lerr = float(df.loc[df['kepler_name'] == kep_name].koi_srad_err2) #stellar radius lower error
limbdark_mod = str(df.loc[df['kepler_name'] == kep_name].koi_limbdark_mod) #LDM Model
ldm_c2 = float(df.loc[df['kepler_name'] == kep_name].koi_ldm_coeff2) #LDM coef 2
ldm_c1 = float(df.loc[df['kepler_name'] == kep_name].koi_ldm_coeff1) #LDM coef 1
return smass, smass_uerr, smass_lerr, srad, srad_uerr, srad_lerr, limbdark_mod, ldm_c1, ldm_c2 | e87759395e7dbb3d84593e6c9f42e358b0589980 | 343,481 |
def render_value(v):
"""Render given value to string."""
if isinstance(v, float):
# ensure that we don't waste space by insignificant digits
return f'{v:.2g}'
return str(v) | 750597882f2017aeeeca1b93c89e4e77ed1b98cf | 509,463 |
import torch
def xxyy2xywh(box):
"""
Convert the box (x1, y1, x2, y2) encoding format to (c_x, c_y, w, h) format
Arguments:
box: tensor of shape (N, 4), boxes of (x1, y1, x2, y2) format
Returns:
xywh_box: tensor of shape (N, 4), boxes of (c_x, c_y, w, h) format
"""
c_x = (box[:, 2] + box[:, 0]) / 2
c_y = (box[:, 3] + box[:, 1]) / 2
w = box[:, 2] - box[:, 0]
h = box[:, 3] - box[:, 1]
c_x = c_x.view(-1, 1)
c_y = c_y.view(-1, 1)
w = w.view(-1, 1)
h = h.view(-1, 1)
xywh_box = torch.cat([c_x, c_y, w, h], dim=1)
return xywh_box | 1d3e92c0c0636772694bd348b796a81f99d09106 | 357,357 |
def Returns1(target_bitrate, result):
"""Score function that returns a constant value."""
# pylint: disable=W0613
return 1.0 | 727e58e0d6d596cf4833ca3ca1cbcec6b9eedced | 708,193 |
def _filter_featured_downloads(lst):
"""Filter out the list keeping only Featured files."""
ret = []
for item in lst:
if 'Featured' in item['labels']:
ret.append(item)
return ret | d722fdd01966f1650575912715f8a6f07d793dda | 700,475 |
def get_caption(etype, cell_meta, resources):
"""return an ipypublish caption or False
captions can either be located at cell_meta.ipub.<type>.caption,
or at resources.caption[cell_meta.ipub.<type>.label]
the resources version is proritised
"""
try:
caption = cell_meta["ipub"][etype]["caption"]
except (KeyError, TypeError):
caption = False
try:
label = cell_meta["ipub"][etype]["label"]
except (KeyError, TypeError):
label = False
rcaption = False
if label:
try:
rcaption = resources["caption"][label]
except (KeyError, TypeError):
pass
if rcaption:
return rcaption
return caption | b8e08c734efb6d3f5d6204cb70930cb835800b4c | 630,707 |
from datetime import datetime
def isoformat(dt: datetime) -> str:
"""ISO format datetime object with max precision limited to seconds.
Args:
dt: datatime object to be formatted
Returns:
ISO 8601 formatted string
"""
# IMPORTANT should the format be ever changed, be sure to update TIMESTAMP_REGEX as well!
return dt.isoformat(timespec="seconds") | 679ce7aa71ab30e4c78a0953272c17f487714177 | 699,758 |
def change_device(arg_params, aux_params, ctx):
"""Changes device of given mxnet arguments
Args:
arg_params (dict): arguments
aux_params (dict): auxiliary parameters
ctx (mx.cpu or mx.gpu): new device context
Returns:
dicts: arguments and auxiliary parameters on new device
"""
new_args = dict()
new_auxs = dict()
for k, v in arg_params.items():
new_args[k] = v.as_in_context(ctx)
for k, v in aux_params.items():
new_auxs[k] = v.as_in_context(ctx)
return new_args, new_auxs | 7442a4284cb7c777c5e03f2d7b35bd4fb75f9d5d | 334,322 |
def entity_seqs_equal(expected, predicted):
"""
Returns true if the expected entities and predicted entities all match, returns
false otherwise. Note that for entity comparison, we compare that the span, text,
and type of all the entities match.
Args:
expected (list of core.Entity): A list of the expected entities for some query
predicted (list of core.Entity): A list of the predicted entities for some query
"""
if len(expected) != len(predicted):
return False
for expected_entity, predicted_entity in zip(expected, predicted):
if expected_entity.entity.type != predicted_entity.entity.type:
return False
if expected_entity.span != predicted_entity.span:
return False
if expected_entity.text != predicted_entity.text:
return False
return True | 2060aeaeecb3e210020466437a634aa6c01914e5 | 89,423 |
def as_request_params(**kwargs):
"""Coerce kwargs into a tuple of param=value strings."""
return tuple('{0}={1}'.format(k, v) for k, v in kwargs.items()) | 19329a08281ee610220b6cfd3c6fd3daa9893bf4 | 482,452 |
def dectobin(dec_string):
"""Convert a decimal string to binary string"""
bin_string = bin(int(dec_string))
return bin_string[2:] | 5f02507ae5e7ab855eceb7a5908347060b46a400 | 15,111 |
import itertools
def possible_library_filenames(library_names):
"""Given a collection of library names like 'libfoo', generate the set of
library filenames that may be found on the system (e.g. libfoo.so). This
generates the library filenames that may appear on any OS.
"""
lib_extensions = ['a', 'la', 'so', 'tbd', 'dylib']
return set(
'.'.join((lib, extension)) for lib, extension in
itertools.product(library_names, lib_extensions)) | b6317246d5aa97ef7dacf0aee764de0f82953391 | 421,827 |
import hashlib
def md5sum(filepath):
"""Calculate md5_sum
Args:
filepath (string): path to the file
Returns:
string - digest value as a string of hexadecimal digits
"""
md5 = hashlib.md5()
with open(filepath, "rb") as f:
for chunk in iter(lambda: f.read(8192), b""):
md5.update(chunk)
return md5.hexdigest() | d04b85448d762b56907e799ba370d5a6ccabd5db | 440,749 |
def estimateGalaxyMass(pot_ext, r_gal, G):
""" Estimate the equivalent mass of galaxy by - pot_ext*r_gal/G
Parameters:
-------------
pot_ext: float
the external potential of the center of the particle system
r_gal: float
the distance between the center of the particle system to the galactic center
G: float
gravitational constant
Return:
-------------
M_galaxy: float
the estimated mass of the galaxy
"""
M_galaxy = - pot_ext*r_gal/G
if (M_galaxy<0):
raise ValueError('External potential is positive! ', pot_ext)
return M_galaxy | 82bd568d8d77eb83a432a6b0c449fb7a6c9c29ef | 135,566 |
import re
def MigrateImports(content):
"""Updates import statements from TestNG to JUnit."""
content_new = re.sub('org.testng.annotations.Test', 'org.junit.Test', content)
content_new = re.sub('org.testng.annotations.BeforeMethod;',
'org.junit.Before;', content_new)
content_new = re.sub('org.testng.annotations.BeforeClass;',
'org.junit.BeforeClass;', content_new)
content_new = re.sub(
'import org.testng.annotations.DataProvider;',
'''import com.tngtech.java.junit.dataprovider.DataProvider;
import com.tngtech.java.junit.dataprovider.DataProviderRunner;
import com.tngtech.java.junit.dataprovider.UseDataProvider;
import org.junit.runner.RunWith;''', content_new)
# for remaining imports such as assertEquals
content_new = re.sub('testng', 'junit', content_new)
return content_new | 14a9dd9882376189b1767119437fd31ce54fd26e | 112,127 |
def flatten_multicolumns(df):
"""
Converts multi-index columns into single column
"""
df.columns = [
"_".join([el for el in col if el != ""]).strip()
for col in df.columns.values
if len(col) > 1
]
return df | 1c8ce6d0a1139263d248139598830a03f46a9d92 | 295,526 |
def is_target_in_tags(tag, topic_list):
"""Check if tags contains target"""
return True if set(tag).intersection(topic_list) else False | 9fb62a23c26060cf18e7b638664fb1fa4343f5ba | 188,039 |
def add_tab(title: str, htmlcode: str, comment_cell: bool = True) -> str:
"""Add new tab section for the report. By default adds an opinion editable box at the start.
Parameters
----------
title : str
Title associated with this tab / section
htmlcode : str
All HTML code contain within this section
comment_cell : bool
Comment cell
Returns
-------
str
HTML code as string
"""
html_text = f'<div id="{title}" class="tabcontent"></br>'
if comment_cell:
html_text += """<p style="border:3px; border-style:solid;
border-color:#000000; padding: 1em; width: 1050px;" contentEditable="true">
No comment.
</p>"""
html_text += f"{htmlcode}</div>"
return html_text | 4095a5e519c9ded04a67444a4b31bd5f023fb255 | 604,997 |
import re
import operator
def extract_words(row, params):
""" Extract words as features
Args
row: A row of data
stop_words: List of stop words
case_insensitive: Use case insensitive?
strip_entities: Strip entities (hashtags, user mentions, URLs)?
strip_punctuation: Strip punctuations?
strip_numbers: Strip numeric strings?
strip_repeated_chars: Strip repeated characters?
min_token_length: Minimum word token length
max_features: Maximum number of feature tokens
"""
word_feat = dict()
if row and len(row.strip()) > 0:
if params["case_insensitive"]:
row = row.lower()
if params["strip_entities"]:
row = ' '.join(re.sub("(@[A-Za-z0-9]+)|(#[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)"," ", row).split())
if params["strip_punctuation"]:
row = re.sub('[^a-zA-Z0-9]', ' ', row)
if params["strip_numbers"]:
row = re.sub('[0-9]', ' ', row)
if params["strip_repeated_chars"]:
row = re.sub(r'((\w)\2{2,})', ' ', row)
if params["stop_words"]:
row = row.replace('_', ' ').replace('-', ' ')
x = [i.lower() for i in row.split() if i.lower() not in params["stop_words"]]
row = ' '.join(x)
for t in [x for x in row.split() if len(x) >= params["min_token_length"]]:
if 'word_' + t not in word_feat:
word_feat['word_' + t] = 0
word_feat['word_' + t] += 1
if params["max_features"]:
# sorts dictionary of word features in descending order of occurence
word_feat = sorted(word_feat.items(), key=operator.itemgetter(1), reverse=True)
# creates dictionary of features for top max_features number of features
word_feat = dict(word_feat[:params["max_features"]])
return word_feat | cf31ac24e31c30467e4106ee8a78905fd46191a1 | 464,808 |
def ctcp(function=None, *command_list):
"""Decorate a callable to trigger on CTCP commands (mostly, ``ACTION``).
:param str command_list: one or more CTCP command(s) on which to trigger
.. versionadded:: 7.1
This is now ``ctcp`` instead of ``intent``, and it can be called
without argument, in which case it will assume ``ACTION``.
.. note::
This used to be ``@intent``, for a long dead feature in the IRCv3 spec.
It is now replaced by ``@ctcp``, which can be used without arguments.
In that case, Sopel will assume it should trigger on ``ACTION``.
As ``sopel.module`` will be removed in Sopel 9, so will ``@intent``.
"""
default_commands = ('ACTION',) + command_list
if function is None:
return ctcp(*default_commands) # called as ``@ctcp()``
elif callable(function):
# called as ``@ctcp`` or ``@ctcp(function)``
# or even ``@ctcp(function, 'ACTION', ...)``
return ctcp(*default_commands)(function)
# function is not None, and it is not a callable
# called as ``@ctcp('ACTION', ...)``
ctcp_commands = (function,) + command_list
def add_attribute(function):
function._sopel_callable = True
if not hasattr(function, "intents"):
function.intents = []
for name in ctcp_commands:
if name not in function.intents:
function.intents.append(name)
return function
return add_attribute | a97131ff7f1c072e65579c5031609937c5f80bd9 | 503,673 |
def same_family(first_person, second_person) -> bool:
"""Check whether two person have the same family or not.
Args:
first_person (Person): The first input person.
second_person (Person: The second input person.
Returns:
bool: True, if the families match. Otherwise, returns False.
"""
if first_person.family is second_person.family:
return True
return False | 32845caba59d6166454c129d6166f8006e306bbf | 194,312 |
import re
from typing import OrderedDict
def read_avg_residuemap(infile):
""" Read sequence definition from PSN avg file, returning sequence Map
:param infile: File handle pointing to WORDOM avgpsn output file
:return: Returns an internal.map.Map object mapping the .pdb
residues to WORDOM id's from "Seq" section of the avgpsn-file
"""
m_start = re.compile("^\*\*\* Seq \*\*\*")
m_end = re.compile("^============")
m_entry = re.compile("^\s*\d+\s+.:.\d+\s+\d+\.\d+\s*$")
residuemap = OrderedDict()
reading = False
for line in infile:
if reading:
# Stop reading if end of interaction strength section
if m_end.search(line):
break
else:
if m_entry.search(line):
[num, resname, normfact] = line.split()
residuemap[resname] = int(num)
# Start reading when header found
elif m_start.search(line):
reading = True
return residuemap | 92c4cbe53edcd3d894a038d7cb9308c653e37146 | 3,206 |
def get_mers(seq, size):
"""
Get X-mers from seq.
Example
-------
>>> get_mers('MEAIKHD', 3)
{'MEA', 'EAI', 'AIK', 'KHD'}
"""
mers = []
mersa = mers.append
for i in range(len(seq) - (size - 1)):
mersa(seq[i:i + size])
return set(mers) | 516b9afa3ba38ff918e2025a4aed709c18711e3a | 72,253 |
def find_first_diff_pos(str1: str, str2: str) -> int:
"""Finds the first difference position. Returns `-1` if both strings are identical."""
if str1 == str2:
return -1
shorter, longer = sorted((str1, str2), key=len)
shorter_len = len(shorter)
return next(
(i for i in range(shorter_len) if shorter[i] != longer[i]),
shorter_len,
) | a49833e3fed8f70470937beccbff6f3f46a1ba31 | 434,027 |
def is_not_loaded(a_hash):
""" Do we have no intention of loading the data a_hash is supposed to contain?
If a hash has a single key 'NotLoaded' that means we don't
intend to load that hash and we shouldn't complain about data
inconsistency involving the hash. So if we're loading senses and
the sense_inventory_hash :func:`is_not_loaded` then we shouldn't
drop senses for being references against lemmas that don't exist.
"""
return a_hash and a_hash.keys() == ['NotLoaded'] | f1b5475cfb91aef449f5c3108d49e9d108605b92 | 486,123 |
def distance(coord_a, coord_b):
"""
Calcuate the distance between 2 coordinates.
Arguments:
coord_a (array): coordinate of point a
coord_b (array): coordinate of point b
Return:
dist (float)
"""
assert len(coord_a) == len(coord_b)
dim = len(coord_a)
sum_square_dist = 0
for a, b in zip(coord_a, coord_b):
sum_square_dist += (a - b)**2
dist = sum_square_dist**(1 / dim)
return dist | 01d7c93c50d90a8e2089a754399431de4eacf962 | 623,226 |
import requests
from bs4 import BeautifulSoup
def extract_url(url, values=None):
"""Given an url, extracts the contents as a BeautifulSoup object.
Args:
url: URL to parse.
Returns:
The site contents as a BeautifulSoup object
"""
if values:
r = requests.post(url, data=values)
else:
r = requests.get(url)
# Create the soup :)
html_raw = r.text
soup = BeautifulSoup(html_raw, 'lxml') # Here we use lxml, because the default html.parser is not working properly...
return soup | 56ea95796cb718634390ac595d74f637bc8385d6 | 653,023 |
import sqlite3
def robot_type_exists(cursor: sqlite3.Cursor, type: str) -> bool:
"""Determines whether or not the robot type exists in the db
:param cursor: [description]
:type cursor: sqlite3.Cursor
:param type: [description]
:type type: str
:return: [description]
:rtype: bool
"""
type_exists: int = cursor.execute(
'''SELECT COUNT(*)
FROM robot_type
WHERE id = :id''',
{"id": type.upper()}
).fetchone().get("COUNT(*)")
return True if type_exists == 1 else False | 4a7646c286ad92683e819263bed8410bff069736 | 56,395 |
import requests
def fetch_words(url):
"""Fetch a list of string from URL.
Args:
url: The URL of a UTF-8 text document.
Returns:
A list of strings containing words from the document.
"""
user_agents = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36'
headers = {'User-Agents':user_agents}
response = requests.get(url,headers = headers)
story_word = []
for line in response.text.split('\n'):
line_word = line.split()
for word in line_word:
story_word.append(word)
return story_word | 72085859e550e3909f635288c75203b497b98c22 | 124,563 |
def _matches_version(actual_version, required_version):
"""Checks whether some version meets the requirements.
All elements of the required_version need to be present in the
actual_version.
required_version actual_version result
-----------------------------------------
1 1.1 True
1.2 1 False
1.2 1.3 False
1 True
Args:
required_version: The version specified by the user.
actual_version: The version detected from the CUDA installation.
Returns: Whether the actual version matches the required one.
"""
if actual_version is None:
return False
# Strip spaces from the versions.
actual_version = actual_version.strip()
required_version = required_version.strip()
return actual_version.startswith(required_version) | 65c36bcb942bbdcf64a2ae42dca73bc424124151 | 447,637 |
import click
import re
def sanitize_user_name(ctx, param, value):
"""Check usernames for length and invalid characters.
"""
del ctx
del param
if len(value) > 255:
raise click.BadParameter('Username length > 255.')
if not re.match(r'^[a-zA-Z0-9_\+=,\.@-]+$', value):
raise click.BadParameter('Invalid characters in username')
return value.lower() | dd5eb63ad5162cdeaafb6d5cdc2214091f7adbd1 | 474,946 |
def create_sample_data(directory, dataset):
"""Creates sample datasets for testing and saves it to a two column csv.
Parameters
----------
directory : str
Directory to write csv file to.
dataset : int
The integer associated with each sample testing dataset.
Returns
-------
type : csv file
two column csv file with wavelength (um) and flux (Jy).
"""
target_filename = "sample_target_" + str(dataset) + ".csv"
target_file_path = str(directory.join(target_filename))
file = open(target_file_path, "w")
# simple dataset
if dataset == 1:
file.write("3.55,0.389\n4.49,0.357\n5.73,0.344\n7.87,0.506\n23.7,0.676")
# longer dataset
if dataset == 2:
file.write("1.2,0.4\n1.5,0.1\n1.6,0.1\n1.7,0.2\n2,0.7\n5,1.0\n40,0.676")
# out of order and bad fluxes
if dataset == 3:
file.write("1,0.389\n4,0.357\n3,0.344\n10,0\n40,-90")
# # not enough sources (failure)
# if dataset == 4:
# file.write("1,0.389\n4,0.357")
file.close()
return target_file_path | d4925a82e9802305c1dc31c4c2afe7e8c1bba1da | 411,209 |
import hashlib
def make_merkle(blob_name: str) -> str:
"""Creates a "merkle" by hashing the blob_name to get a unique value.
"""
m = hashlib.sha256()
m.update(blob_name.encode("utf-8"))
return m.hexdigest() | 1f61b235746e8ae34fe1e0b24e6d141d99517b64 | 655,615 |
def _mpv_coax_proptype(value, proptype=str):
"""Intelligently coax the given python value into something that can be understood as a proptype property."""
if type(value) is bytes:
return value;
elif type(value) is bool:
return b'yes' if value else b'no'
elif proptype in (str, int, float):
return str(proptype(value)).encode('utf-8')
else:
raise TypeError(
'Cannot coax value of type {} into property type {}'.format(
type(value), proptype)) | 71b7a1f82219bc4933293fc4c5f2f9ba322f654c | 454,447 |
def merge_exact_duplicates(dictionaries):
""" Given an array of dictionaries, merge the dictionaries into 1 final result"""
final_dict = {}
# Simple case for exact duplicates
for d in dictionaries:
duplicate_keys = set(d).union(final_dict)
for key in duplicate_keys:
arr = final_dict.get(key, []) + d.get(key, [])
final_dict[key] = arr
# If keys can have "nearness" we need a more advanced merge
return final_dict | cf82d96ce88afe1b5240fa67b0e812bd2bfed8d9 | 296,802 |
def accession(data):
"""
Get the accession for the given data.
"""
return data["mgi_marker_accession_id"] | 132dcbdd0712ae30ce7929e58c4bc8cdf73aacb2 | 3,699 |
from datetime import datetime
def log_date_to_python_date(s):
"""
Convert a log date (string) to a Python date object.
Args:
s (str): string representing the date ('%d/%b/%Y').
Returns:
date: Python date object.
"""
return datetime.strptime(s, '%d/%b/%Y').date() | 9a6d514b2b3044dbe1cb5f2ece6c41892665c3f8 | 362,865 |
def convert_event_type_case(event, case_force_upper=False):
""" Forces upper of lower case for event types at the end of the code engine. For Snowfalke force UPPER and for Redshift force lower.
:param event: A dict with the entire event
:param case_force_upper: True to for upper case.
:return: An event with the case altered in event_type
Examples:
.. code-block:: python
# Example #1
event = {'_metadata': {'event_type': 'My_SCHEMA.my_table'}}
event = convert_event_type_case(event)
event = {'_metadata': {'event_type': 'my_schema.my_table'}}
# Example #2
event = {'_metadata': {'event_type': 'My_SCHEMA.my_table'}}
event = convert_event_type_case(event, case_force_upper=True)
event = {'_metadata': {'event_type': 'MY_SCHEMA.MY_TABLE'}}
"""
if case_force_upper:
if type(event) == list:
for each_event in event:
if 'event_type' in each_event['_metadata']:
each_event['_metadata']['event_type'] = each_event['_metadata']['event_type'].upper()
else:
if 'event_type' in event['_metadata']:
event['_metadata']['event_type'] = event['_metadata']['event_type'].upper()
else:
if type(event) == list:
for each_event in event:
if 'event_type' in each_event['_metadata']:
each_event['_metadata']['event_type'] = each_event['_metadata']['event_type'].lower()
else:
if 'event_type' in event['_metadata']:
event['_metadata']['event_type'] = event['_metadata']['event_type'].lower()
return event | c8cfe77d67d64fb8ab3448047d76a1275ee3df6a | 281,742 |
import re
def fix_inline_math(f):
"""
In the code, I prefer to use inline math like $\int \bm x \mathrm dx$,
so we have to convert it to rst inline math :math:`\int \boldsymbol x \mathrm dx`
This is done by using a regex to find groups of $something$ and
replace the second one with `.
Afterwards, we replace the remaining $ with :math:`
"""
f = re.sub(r"\\bm", r"\\boldsymbol", f)
f = re.sub(r"(\$[^\$]*)\$", r"\1`", f)
return re.sub(r"\$", r":math:`", f) | a4c5a853cb499f2ef4adab4178f2b7bd2888fede | 224,795 |
def _print_and_append_loss(
BCE_loss_series, W_loss_series, C_loss_series, loss_in_epoch
):
"""Helper function to print and save loss values in each epoch
Parameters
----------
BCE_loss_series : list
Binary Cross-Entropy loss values
W_loss_series : list
Wasserstein-1 loss values in generator
C_loss_series : list
Wasserstein-1 loss values in critic
loss_in_epoch : list
Losses in the epoch of the form [BCE_Loss, W_Loss, C_Loss]
Returns
-------
List of losses [BCE_loss, W_loss, C_loss]
"""
BCE_loss_series.append(loss_in_epoch[0])
W_loss_series.append(loss_in_epoch[1])
C_loss_series.append(loss_in_epoch[2])
print(f"Generator - Binary-Cross Entropy Loss: {loss_in_epoch[0]}")
print(f"Generator - Wasserstein Loss: {loss_in_epoch[1]}")
print(f"Critic - Wasserstein Distance: {loss_in_epoch[2]}")
return BCE_loss_series, W_loss_series, C_loss_series | e3e612de01cff66099a17eac221f5d9608cff038 | 297,262 |
import re
def parse_int(to_convert:str):
"""Converts a string to an integer with the
given base. If base is None and the string starts
with a 0, automatically resolve the given base.
Supported bases are:
- 0x: Hexadecimal
- 0o or 0: Octal
The rest is interpreted as base 10.
Args:
to_convert (string): The string to convert to an int.
base (int, optional): Assume to_convert is in this base. If none, get the base from the string. Defaults to None.
Raises:
ValueError: If to_convert cannot be converted.
Returns:
int: The converted integer.
"""
to_convert = to_convert.lower()
# Determine which system this uses
if re.match("0x.*", to_convert):
base = 16
elif re.match("0b.*", to_convert):
base = 2
elif re.match("0o.*", to_convert):
base = 8
else:
base = 10
# Try to convert the number.
return int(to_convert, base) | 80ec513356738f3d872d2c3df7415ec373768805 | 540,360 |
def _get_return_value_name_from_line(line_str: str) -> str:
"""
Get the return value name from the target line string.
Parameters
----------
line_str : str
Target line string. e.g., 'price : int'
Returns
-------
return_value_name : str
Return value name. If colon character not exists in
line string, a blank string will be set.
"""
colon_exists: bool = ':' in line_str
if colon_exists:
return_value_name: str = line_str.split(':')[0]
else:
return_value_name = ''
return_value_name = return_value_name.strip()
return return_value_name | 463f8caeb60b57703e15d5720013533d2c0c04f1 | 59,763 |
def delta(self):
"""
This is the omega of the adjoint form,
which is the same as the omega of the reciprocal form.
EXAMPLES::
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,37])
sage: Q.delta()
148
"""
return self.adjoint().omega() | a835655d7ff54ef7a66338bc96f0da5062a4e286 | 69,831 |
def flatlist(nested_list):
""" flattens nested list """
flat_list = [item for inner_list in nested_list for item in inner_list]
return flat_list | e2d9990a3ec24225c4447bfb20ad655ab94fa726 | 218,156 |
def get_genes(exp_file, samples, threshold, max_only):
"""
Reads in and parses the .bed expression file.
File format expected to be:
Whose format is tab seperated columns with header line:
CHR START STOP GENE <sample 1> <sample 2> ... <sample n>
Args:
exp_file (str): Name of expression file.
samples (list): Names of the samples in the vcf file.
threshold (float): Expression threshold to filter lowly/unexpressed genes.
max_only (bool): if true, gene_dict value is 1 value = max expression
if false gene_dict value is list of expression values
YYY: WARNING: if want list to have meaning
then values needs to be tied to header sample names
Returns:
gene_dict (dict): {gene_name: [expression_vals]}.
Only include values for samples in the vcf.
"""
data_cols = []
gene_dict = {}
print('start read exp_file:' + format(exp_file))
if max_only:
# read and only return max exp value in gene_dict
with open(exp_file) as f:
header = f.readline().strip().split('\t')
for samp in header[4:]:
if samp in samples:
data_idx = header.index(samp)
data_cols.append(data_idx)
# Read in expression levels for each gene.
for line in f:
line = line.strip().split('\t')
gene_name = line[3].upper()
exp_val = -1e1000
for idx in data_cols:
if float(line[idx]) > exp_val:
exp_val = float(line[idx])
gene_dict[gene_name] = exp_val
else:
# read and return exp value list in gene_dict
with open(exp_file) as f:
header = f.readline().strip().split('\t')
for samp in header[4:]:
if samp in samples:
data_idx = header.index(samp)
data_cols.append(data_idx)
# Read in expression levels for each gene.
for line in f:
line = line.strip().split('\t')
gene_name = line[3].upper()
exp_vals = []
for idx in data_cols:
exp_vals.append(line[idx])
gene_dict[gene_name] = exp_vals
return gene_dict | 62b27eef9c863078c98dee0d09bada5e058909e2 | 704,776 |
def rivers_with_station(stations):
"""Takes in a list of station objects, returns a list of rivers with at least one station"""
output_set = set()
for station in stations:
output_set.add(station.river)
return output_set | 381915de1c49b1e669005138dafe9c4f72569f88 | 333,310 |
from pathlib import Path
import mimetypes
def _isImage(p: Path) -> bool:
"""Determine if the given path is an image, based on mime type"""
t, e = mimetypes.guess_type(str(p))
if t and t.startswith("image"): return True
else: return False | 4077b3b0a3016524c076d5b331893a9ccce00ce5 | 391,561 |
import json
def process_jfile(jfile:str):
"""Load up a JSON file
Args:
jfile (str): JSON file
Returns:
dict: JSON parsed
"""
with open(jfile, 'rt') as fh:
obj = json.load(fh)
return obj | 4304d0c5e5cfb62e03fd5736d78e18c3de91c90c | 221,340 |
import torch
def filter_points(points, shape):
"""
Remove points laying out of the image shape
"""
shape_tensor = torch.tensor(shape, dtype=torch.float) - 1
mask = (points >= 0) & (points <= shape_tensor)
mask = torch.all(mask, dim=1)
filtered = points[mask]
return filtered | 1f226990aba8282f6caae0ffaf81bfdc78c55789 | 406,553 |
def check_format(args, headers):
"""
check format requested from arguments or headers
:param args: dict of request keyword value pairs
:param headers: dict of request headers
:returns: format value
"""
# Optional f=html or f=json query param
# overrides accept
format_ = args.get('f')
if format_:
return format_
# Format not specified: get from accept headers
# format_ = 'text/html'
headers_ = None
if 'accept' in headers.keys():
headers_ = headers['accept']
elif 'Accept' in headers.keys():
headers_ = headers['Accept']
format_ = None
if headers_:
headers_ = headers_.split(',')
if 'text/html' in headers_:
format_ = 'html'
elif 'application/ld+json' in headers_:
format_ = 'jsonld'
elif 'application/json' in headers_:
format_ = 'json'
return format_ | b9382d4a75eec1d85c64da6bebeb46314549ae74 | 299,104 |
def min_max_scaler(img_ndarray, final_range=(0, 1)):
"""
Scale and transform feature values to given range.
Parameters
----------
img_ndarray: 2D numpy ndarray, shape=(28, 28)
Image to scale and transform
final_range: tuple (min, max), default=(0, 1)
Desired range of transformed data
Returns
-------
Scaled and transformed image as 2D numpy ndarray
"""
px_min = final_range[0]
px_max = final_range[1]
# Hard code pixel value range
img_std = img_ndarray / 255
return img_std * (px_max - px_min) + px_min | 6e612e3a29065667f9fe552e0da3192bf431bd5a | 186,070 |
def output_T(results, contrast, retvals=('effect', 'sd', 't')):
""" Convenience function to collect t contrast results
Parameters
----------
results : object
implementing Tcontrast method
contrast : array
contrast matrix
retvals : sequence, optional
None or more of strings 'effect', 'sd', 't', where the presence of the
string means that that output will be returned.
Returns
-------
res_list : list
List of results. It will have the same length as `retvals` and the
elements will be in the same order as retvals
"""
r = results.Tcontrast(contrast, store=retvals)
returns = []
for valname in retvals:
if valname == 'effect':
returns.append(r.effect)
if valname == 'sd':
returns.append(r.sd)
if valname == 't':
returns.append(r.t)
return returns | 7cd7e1b66a41e95936d2521abd3a9583feb6d57a | 326,054 |
def _get_model(args, func):
"""
Returns the model class for given function.
Note, that ``self`` is not available for proxy models.
"""
if hasattr(func, '__self__'):
# Bound method
model = func.__self__.model
elif hasattr(func, '__wrapped__'):
# Proxy model
model = func.__wrapped__.__self__.model
else:
# Custom method on user-defined model manager.
model = args[0].model
return model | 87115eeed5fa45ef95b0f8c5728ee246b516d2e2 | 338,428 |
from bs4 import BeautifulSoup
def extract_feature_counts(html_summary: str) -> tuple:
"""Extract features counts from html summary using BeautifulSoup.
If the html_summary from a raster dataset is supplied, there won't be any
feature counts. An IndexError exception is caught and a tuple containing
'None' values is returned.
Parameters
----------
html_summary : str
The dataset update summary component from the LINZ Data Service Atom
feed.
Returns
-------
tuple
(total_features, adds, modifies, deletes, total_changes)
"""
soup = BeautifulSoup(html_summary, features="html.parser")
feature_counts = soup.find_all("td")
try:
total_features = feature_counts[0].string
adds = feature_counts[1].string
modifies = feature_counts[2].string
deletes = feature_counts[3].string
except IndexError:
return (None, None, None, None, None)
total_changes = int(adds) + int(modifies) + int(deletes)
return (total_features, adds, modifies, deletes, total_changes) | 1227fd533a382bd495d6f2d11e7c652ce1ac88ca | 403,335 |
def maybe(obj, name, default=None):
"""Return atributte if it exists or default"""
if hasattr(obj, name):
return getattr(obj, name)
return default | ebfe9b69d12818c0f2cab2fcbbca434633835768 | 550,957 |
def first_word(str):
"""
returns the first word in a given text.
"""
text=str.split()
return text[0] | 73f1efc24c6c68e92b2af824358b0656cfbe278b | 21,448 |
def topic_duration_capture(data_dict: dict):
"""
Gets the choice of practice from user along with minutes the user wants to
practice
:param data_dict:
:return: dict | modified data_dict
"""
topic_duration_keeper = dict()
for key in data_dict.keys():
choice = input(f"\n'{key.upper()}' -- wanna practice right now? "
f"Press 'y' + Enter for yes, else Enter: ")
if choice:
while True:
try:
topic_duration_keeper[key] = int(input("Enter time in minutes for "
f"practicing {key}). "))
break
except:
print("Please enter time in minutes i.e. a number.")
return topic_duration_keeper | 09d78dc6b88105c9c2aedb2e7daf1cfecdd3065b | 467,739 |
def leafNames(node):
"""Return a list of labels of all leaf descendants of node"""
if (node['kids']):
return [ leaf for kid in node['kids'] for leaf in leafNames(kid) ]
else:
return [ node['label'] ] | 02e5d91c1ec125fbffee9d9f5516ed488c5fbf68 | 257,504 |
def calculate_timeout(start_point, end_point, planner):
"""
Calucaltes the time limit between start_point and end_point considering a fixed speed of 5 km/hr.
Args:
start_point: initial position
end_point: target_position
planner: to get the shortest part between start_point and end_point
Returns:
time limit considering a fixed speed of 5 km/hr
"""
path_distance = planner.get_shortest_path_distance(
[start_point.location.x, start_point.location.y, 0.22], [
start_point.orientation.x, start_point.orientation.y, 0.22], [
end_point.location.x, end_point.location.y, end_point.location.z], [
end_point.orientation.x, end_point.orientation.y, end_point.orientation.z])
return ((path_distance / 1000.0) / 5.0) * 3600.0 + 10.0 | cb7ae44df9b6a89d2e171046fa0bdfe3f81445c5 | 706,002 |
from datetime import datetime
def parse_date(iso_date):
""" Parse basic ISO 8601 date-only format into datetime.date format. """
if isinstance(iso_date, str):
date_obj = datetime.strptime(iso_date, "%Y-%m-%d")
else:
date_obj = iso_date
parsed_date = datetime.strftime(date_obj, "%d %B %Y")
return parsed_date | 6c8a74f347bb56ac8ace16bea9d2966444d8cb41 | 171,592 |
import math
def specific_psi_function(
arg, k, l, exp_rates, freq, a
): # pylint: disable=unused-argument
"""
The specific version of the Ψ function that is used for the purpose of
this study. This function is a simplification of the general_psi_function
when the following are fixed:
exp_rates = (0, C*mu, mu)
freq = (1, ??, 1)
a = 2
Due to the way the hypoexponential cdf works the function is called only for
values of k=1 and k=2. For these values the following hold:
- k = 1 -> l = 1, ..., n
- k = 2 -> l = 1
Parameters
----------
arg : float
The argument of the cdf
k : int
Variable that goes from 0 to the number of distinct parameters
l : int
Variable that goes from 0 to the frequencies of each parameter_k
exp_rates : tuple
Distinct exponential parameters
freq : tuple
Frequencies of each distinct parameter
a : int
The length of exp_rates and freq array
Returns
-------
float
The output of the Ψ function that is needed for the cdf of the
Hypoexponential distribution.
"""
if k == 1:
psi_val = (1 / (arg ** l)) - (1 / (arg + exp_rates[2]) ** l)
psi_val *= (-1) ** l * math.factorial(l - 1) / exp_rates[2]
return psi_val
if k == 2:
psi_val = -1 / (arg * (arg + exp_rates[1]) ** freq[1])
return psi_val
return 0 | 67b061c03b2684f38e007c025a479061981efac7 | 155,615 |
def get_dbf_from_config(config: dict) -> str:
"""Find the DBF file specified in a config.
Must return a string, not a Path, in case there's a protocol.
"""
shp_path = config['SHAPEFILE']
dbf_path = shp_path.replace('shp', 'dbf')
return dbf_path | 020d4391ff4639a18b662f6ad539e80a170a429d | 195,063 |
def _is_empty(db) -> bool:
"""
Helper method to check if the level db is empty (without any records).
:param db: The level db handler.
:return: True if the current level db is empty.
"""
empty = True
with db.iterator() as it:
for _, _ in it:
empty = False
break
return empty | 12a8e92ff5d696616f5005a545d0a53aef6911ac | 142,942 |
import random
def random_integer(n):
"""Returns a random integer between 0 and n."""
return random.randint(0, n) | d7f7c85559699a284463bc8095f5be77ab305098 | 561,874 |
def find_similarity(matches, current, source):
"""Function searches for a specific file similarity result among two files.
Since the direction of similarity can be in either way, lookup is done
in specified direction
:param matches: Similarity detection results in JSON format
:type matches: dict
:param current: The name of the current file, assumed to copy from `source`
file
:type current: str
:param source: The name of assumed source file, this is the file that
`current` might have copied from
:type source: str
:return: Similarity results among both files with `percentage` and number of
`lines` matched
:rtype: dict
"""
for file in matches["match_results"]:
if file["file"] != source:
continue
for possible_source in file["possible_sources"]:
if possible_source["file"] == current:
return possible_source["similarity"]
# If file had not been found, then there is no detected similarity between
# the files. Return no similarity scores
return {
"similarity": 0.0,
"lines": 0
} | adbba4d84de21649d2f36a1332ae53a9d33f6201 | 277,866 |
def get_unique_words(tokens):
"""
Provide a list of unique tokens present in the list tokens
:param tokens: List of lists containing all of the tokens in the corpus
:return: A list of all the unique tokens in the corpus
"""
unique_words = set().union(*tokens)
return list(unique_words) | 5842d93f8dbf047ab395ef868bc4c61386bf1315 | 131,166 |
import re
def is_abspath(pathname):
"""
Return True if pathname is an absolute pathname, else False.
"""
return bool(re.match(r"^([/\\])|([a-zA-Z]:)", pathname)) | 5ae179d0bd88d72531a59b2c522c69d0983d89c4 | 68,043 |
def read_wien2k_fermi(filename):
"""
Read the Wien2K .scf file and return the Fermi energy in units of Rydberg
The Fermi energy is given on lines starting with ":FER :". The .scf file
may contain multiple of such lines. We want to keep the last one and
extract the Fermi energy from that.
"""
line = ""
line_fermi = ""
with open(filename,"r") as fp:
while True:
line = fp.readline()
if not line:
break
if line.find(":FER :") > -1:
line_fermi = line
data = line_fermi.split("=")
fermi_energy = float(data[1])
return fermi_energy | c97518fb9c96f819812cd7696aa820eb42e83017 | 567,139 |
def ckpt_recency(ckpt):
"""Recency as Checkpoint importance metric.
This function can also act as an example of how to make checkpoint
importance keyfuncs. This is a named function, but as you can see
it could be easily implemented as a lambda in a pinch.
"""
return ckpt.meta["unixtime"] | 3969e618389e20ced56e1026d2d4a011373c1bc9 | 51,909 |
def convert_type(data):
"""
This function converts each categorical feature with a numerical
data type to a string data type.
Parameters:
data: The dataset in question.
Returns:
data: The transformed dataset.
"""
# Categorical features
columns = ['Browser', 'OperatingSystems', 'Region', 'TrafficType']
for col in columns:
data[col] = data[col].apply(lambda x: str(x))
return data | d0196e0a7f35b39860bbe371531241af65ad6b8d | 566,183 |
import json
def loadTagsFromFile(path):
"""
Return tags loaded from file at 'path'.
"""
# This can be used if you've already retrieved the tags.
tags = None
with open(path, 'r') as f:
tags = json.loads(f.read())
return tags | ec741bf845cf3d7a7e2d1b0ee0665caf1801f827 | 215,138 |
import json
from typing import Tuple
from typing import List
def get_proteins_list_from_json(file_path: str) -> Tuple[List[str], List[str]]:
"""Get proteins list from json.
Args:
file_path: path of the json file.
Returns:
Tuple of protein list.
"""
protein_json = {}
with open(file_path) as fp:
protein_json = json.load(fp)
protein_list = []
for _, value in protein_json.items():
protein_list.append(value)
return protein_list[0], protein_list[1] | b37a6e9cf85d56ded7ee6b3dd6ae4ba38b0c9970 | 243,453 |
import re
def parse_points(points_str):
"""Parses the points specification for polyline and polygon
elements (SVG 1.1, 9.7.1).
"""
# Treat #-# as # -#
points_str = points_str.replace('-', ' -')
return [float(s) for s in re.split("[\x20\x09\x0D\x0A]+|[,]",
points_str) if s != ""] | b2b29ffcf9e240ea06ca75d55f2595416b75963d | 36,260 |
def sqrt(x):
"""Return square root of x"""
return x ** (0.5) | fb1b12a98f5c10dc04fce7827c8acd5be814926c | 659,829 |
def report_exit(combined_test_report):
"""The exit code of this script is based on the following:
0: All tests have status "pass", or only non-dynamic tests have status "silentfail".
31: At least one test has status "fail" or "timeout".
Note: A test can be considered dynamic if its name contains a ":" character."""
ret = 0
for test in combined_test_report.test_infos:
if test.status in ["fail", "timeout"]:
return 31
return ret | f3fa40a42c8f6b61f8d2729abdb0e10321cc50f0 | 104,436 |
def parse_line_str(line_str):
"""
Parse the line string to a list
"""
line_list = line_str.split(",")
# cut the NEWLINE
line_len = len(line_list) - 1
line_list[line_len] = line_list[line_len].strip('\n').strip('\r')
return line_list | 24857eba3e5a25f13d2a4be4edf05473aa66e417 | 65,943 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.