content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def TruncateString(raw_string, max_length): """Returns truncated raw_string based on max length. Args: raw_string: String to be truncated. max_length: max length of string. Returns: string: The truncated string. """ if len(raw_string) > max_length: return raw_string[:max_length] return raw_string
3cd270e30d66199350169bef50db72a1e7c5ce49
392,725
import six def _MergeDicts(a, b): """Shallow merge two dicts. If both dicts have values for a same key and both are lists, it concats them. Args: a: a dict object. This will be updated with merged items. b: a dict object. Returns: a merged dict object. """ for key, value in six.iteritems(b): if key not in a: a[key] = value continue value_a = a[key] if not isinstance(value_a, list) or not isinstance(value, list): raise ValueError( 'values for key %s are not lists: value1 = %s, value2 = %s' % (key, value_a, value)) a[key] += value return a
4bf7a5ba20806003e7cd92fc6f9aa415301d8bc6
636,116
def calc_metrics(tp, p, t, percent=True): """ compute overall precision, recall and FB1 (default values are 0.0) if percent is True, return 100 * original decimal value """ precision = tp / p if p else 0 recall = tp / t if t else 0 fb1 = 2 * precision * recall / (precision + recall) if precision + recall else 0 if percent: return 100 * precision, 100 * recall, 100 * fb1 else: return precision, recall, fb1
27a17e41d6234ae1bbd2e0dcca3231b858625699
475,128
def remove_doubles(lst): """given a sorted list returns a new sorted list with duplicates removed""" if len(lst) == 1: return [lst[0]] newlist = [lst[0]] for i in range(1,len(lst)): if newlist[-1] != lst[i]: newlist.append(lst[i]) return newlist
a1721b8b0975166a9239e09b6a40153d73214e8f
497,739
def month_to_season(monthnum): """ Converts month numerical value to season numerical value. 0 - Winter 1 - Spring 2 - Summer 3 - Fall """ if (0 <= monthnum <= 1) or (monthnum == 11): return 0 elif 2 <= monthnum <= 4: return 1 elif 5 <= monthnum <= 7: return 2 elif 8 <= monthnum <= 10: return 3
ab8401da76bf9719036f9ec3243d447295da7511
155,600
def _calc_type_bit_size(bit_size: int) -> int: """Calculate the bit length of a data type which can express the given bit length""" if bit_size <= 8: return 8 elif bit_size <= 16: return 16 else: return 32
00c5f91cf7ae96a12659efd4805558e043fc81d9
357,688
import random def check_or_get_value(value, valid_value_set, is_continuous=False): """ Check if the given value of the specified property is a valid one, or randomly select one from the valid value set if value is True, and return the value. is_continuous denotes whenther the value is continuous (True) or discrete (False). """ if not is_continuous: if value is None: assert len(valid_value_set) > 0, \ "invalid value set %s is provided" % (valid_value_set, ) return random.choice(valid_value_set) else: assert value in valid_value_set, \ "input value %s is not in valid value set %s" % (value, valid_value_set) return value else: if value is None: assert len(valid_value_set) == 2 and valid_value_set[0] < valid_value_set[1], \ "invalid value range $s is provided" % (valid_value_set, ) return random.uniform(*valid_value_set) else: assert value >= valid_value_set[0] and value <= valid_value_set[1], \ "input value %s is not in valid value set %s" % (value, valid_value_set) return value
d3a7554ecd150a71b95278e40927a34107526795
351,945
from typing import Dict from typing import OrderedDict def _get_required_files(logdir: str, load_map: Dict[str, str]) -> Dict[str, str]: """ Generate required files for load model, criterion, scheduler, optimizer specified in ``load_map``. Expected that ``load_map`` contains keys: ``"model"``, ``"criterion"``, ``"optimizer"``, ``"scheduler"``. Otherwise an empty dict will be generated. Arguments: logdir: directory with logs load_map (Dict[str, str]): dict with specification what should be loaded Returns: Mapping from file to parts required from this file. """ if load_map is None: return OrderedDict() default_states = {"best", "best_full", "last", "last_full"} required_full_checkpoint = ["criterion", "optimizer", "scheduler"] steps = ["global_epoch_step", "global_batch_step", "global_sample_step"] experiment_parts = ["model"] + required_full_checkpoint + steps # keep required parts experiment_parts = list(filter(lambda part: part in load_map, experiment_parts)) # avoid unnecessary loading if "model" in experiment_parts and len(experiment_parts) > 1: required_full_checkpoint.append("model") # mapping - <filename>: <list of parts to load from this file> required_files = OrderedDict() for part in experiment_parts: fname = load_map[part] required_full = fname.endswith("_full") # specified default state if fname in default_states: if part in required_full_checkpoint and not required_full: fname = fname + "_full" fname = f"{logdir}/{fname}.pth" # in other case specified path to checkpoint required_files[fname] = required_files.get(fname, []) + [part] return required_files
acabfd9e52a1e272889d218ad0b0ed5bbf284e44
208,999
def conslice(sim_mat, sep): """Slices a confusion matrix out of similarity matrix based on sep""" images = sim_mat[:sep] slices = [] for i in range(len(images)): slices.append(images[i][sep:]) return slices
62e7591015beb317fab694089f5253f97cda7f34
667,087
def get_pokemon_id(species_ids): """Asks the user for a pokemon number for which they'd like the stats. If the user enters something invalid (ie. anything that's not a valid number of a pokemon), warns the user and repeats until they enter a valid pokemon number. Args: species_ids: a list of species ids (ints) sorted in increasing order Returns: the id chosen by the user as an int """ max_pokemon_id = max(species_ids) # This is the prompt you'll display to the user to ask for their choice. # Don't modify it! prompt = 'Enter a pokemon number (1 - {0}): '.format(max_pokemon_id) # This is the prompt you'll display to the user if they enter something # invalid. Don't modify it! However, you'll be required to fill in the # placeholders with the appropriate values. warning = 'Please enter a number between 1 and {0}'.format(max_pokemon_id) while True: species_id = input(prompt) if species_id.isdigit(): species_id = int(species_id) if species_id in species_ids: break print(warning) return species_id
dea5a07df0dcb8c1be71a7f3083b2c7c3cced7ab
347,761
from typing import Dict from typing import Tuple def create_indexed_ngrams(ngrams: Dict[str, int]) -> Dict[int, Tuple[int, str]]: """ Create an indexed version of a ngram list. This basically adds an unique identifier to every (str, int) tuple. :param ngrams: :return: """ identifier = 1 output = {} for (ngram, freq) in ngrams.items(): output[identifier] = (freq, ngram) identifier += 1 return output
41b58a74809973b6497a83600f1b973ac0a2986c
373,053
def _get_atom_coord(component, at_id, conformer_type): """Retrieve 3D coordinates for the particular atom in a given conformer. Args: component (Component): component to be processed. at_id (int): atom id to be retrieved. conformer_type (ConformerType): conformer type Returns: rdkit.Geometry.rdGeometry.Point3D: 3D coordinates of the atom. """ conf_id = component.conformers_mapping[conformer_type] return component.mol.GetConformer(conf_id).GetAtomPosition(at_id)
1af192df7b6ba24cafb771f9d91506508352dcfe
252,867
def extend_set(list_to_extend: list, new_elements: list) -> list: """ Helper function to extend a list while maintaining set property. They are stored as lists, so with this function set property is maintained. :return Returns: list of elements that were added to the set """ set_repr = set(list_to_extend) added_elements = [s for s in new_elements if s not in set_repr] list_to_extend.extend(added_elements) return added_elements
c48fed17ed962c4f2f72bc06839d78445da28eb0
549,036
def get_content_latin1(thepath: str): """Returns the file content by interpreting the encoding as "LATIN-1" instead of UTF-8. LATIN-1 has exactly 255 possible characters with no gaps, so it is perfect for reading text and binary data without errors. Examples: >>> test = get_content_latin1('test_text.txt')\n >>> test.splitlines()\n ['ok', 'so here is some', "'blah blah'", 'We are planning', 'To use this ', 'in not only', 'normal testing...', 'but also for "gzip compressed ', 'text searching"', 'I know... sounds cool', "Let's see if it works!"] >>> binary_test = get_content_latin1('/bin/bash')\n >>> binary_test[:15]\n '\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00' Args: thepath (str): Reference the file to read. Returns: str: Returns the content of the file as one long string """ with open(thepath, encoding="latin-1") as f: content = f.read() return content
b2ce67345800acc34d43433c65c1fb80132f2761
283,828
import types def module_local_public_functions(module): """Get a list of function names defined in a module. Ignores functions that start with `_` and functions imported from other modules. """ local_functions = [] module_name = module.__name__ for name in dir(module): if not name.startswith('_'): attr = getattr(module, name) if isinstance(attr, types.FunctionType) and attr.__module__ == module_name: local_functions.append(name) return local_functions
6a39f1d1f06cabcab5b4e1599d2066d9e2d62da8
379,107
from typing import Any def any2str(value: Any) -> str: """Converts value to string using `str(value)`. """ return str(value)
5d291c0af31820cb4c7ea0924ff6f1b478ec2c9c
371,178
def get_number_of_pieces_and_kings(spots, player_id=None): """ Gets the number of pieces and the number of kings that each player has on the current board configuration represented in the given spots. The format of the function with defaults is: [P1_pieces, P2_pieces, P1_kings, P2_kings] and if given a player_id: [player_pieces, player_kings] """ piece_counter = [0,0,0,0] for row in spots: for element in row: if element != 0: piece_counter[element-1] = piece_counter[element-1] + 1 if player_id == True: return [piece_counter[0], piece_counter[2]] elif player_id == False: return [piece_counter[1], piece_counter[3]] else: return piece_counter
bdf0b12e7eac46247146b5c5112c817900933223
599,881
from typing import Any def get_logging_id(obj: Any) -> Any: """Returns logging ID for object. Arguments: obj: Any object Returns: 1. `logging_id` attribute if `obj` does have it, or.. 2. `__qualname__` attribute if `obj` does have it, or.. 3. `str(obj)` """ return getattr(obj, 'logging_id', getattr(obj, '__qualname__', str(obj)))
9e441a232462ff577b2aaef4ac075fdd5a56a85d
601,059
def matches_any(cf_stack_name: str, stack_refs: list): """ Checks if the stack name matches any of the stack references """ cf_stack_name = cf_stack_name or "" # ensure cf_stack_name is a str try: name, version = cf_stack_name.rsplit("-", 1) except ValueError: name = cf_stack_name version = "" return any(ref.matches(name, version) for ref in stack_refs)
17f33283983aa04e6162c86c837093f9c5dfddf5
70,323
def interval_to_errors(value, low_bound, hi_bound): """ Convert error intervals to errors :param value: central value :param low_bound: interval low bound :param hi_bound: interval high bound :return: (error minus, error plus) """ error_plus = hi_bound - value error_minus = value - low_bound return error_minus, error_plus
ffee403968ddf5fd976df79a90bdbb62474ede11
706,297
import multiprocessing def _run_in_process(target, *args, **kwargs): """Runs target in process and returns its exitcode after 10s (None if still alive).""" process = multiprocessing.Process(target=target, args=args, kwargs=kwargs) process.daemon = True try: process.start() # Do not need to wait much, 10s should be more than enough. process.join(timeout=10) return process.exitcode finally: if process.is_alive(): process.terminate()
4ac57947c821a02b8e0ffe55f2f577a7847f248b
653,458
def Ch(x, y, z): """Choose function x chooses if value comes from y or z 1 means the bit comes from y and 0 means the bit comes from z Ch(x, y, z) = (x โˆง y) โŠ• (ยฌx โˆง z) """ return (x & y) ^ ((x ^ 0xffffffff) & z)
f1b474aa2f7083f48b977b7dd34d9c393298e86a
207,850
def find_biggest_pattern_in_patterns(dict): """ dict: dictionary of translation vector->pattern Returns the biggest pattern and its corresponding translation vector. """ max_length = -1 pattern = None trans_vector = None for key in dict: if len(dict[key])>max_length: max_length=len(dict[key]) trans_vector = key pattern = dict[key] return pattern, trans_vector
34e658369145ccb30d25ba5d1d80085a61f68413
44,931
import requests import json def get_status_from_api(url): """ Get the current API status. Paramaters ---------- url (str): The API url. Return ------ status (dict): The API status. """ url += "ping" r = requests.get(url) return json.loads(r.content)
ca01e8952aaf67508eac2d22bfe3ba9a88790c2e
326,941
def validateEmail(email, planb): """Do a basic quality check on email address, but return planb if email doesn't appear to be well-formed""" email_parts = email.split('@') if len(email_parts) != 2: return planb return email
59e20e925257c9cbe753fd205de673506447cf31
173,631
def str_to_sha256(obj): """Convert a hexidecimal string to a bytearray. Args ---- obj (str): Must be a hexadecimal string. Returns ------- (bytearray): bytearray representation of the string. """ if isinstance(obj, str): return bytearray.fromhex(obj) if isinstance(obj, memoryview) or isinstance(obj, bytearray) or isinstance(obj, bytes): return obj if obj is None: return None raise TypeError("Un-encodeable type '{}': Expected 'str' or byte type.".format(type(obj)))
5ce010ccc9a37e716dac17ebf4e4109a56cd85cc
466,000
def get_ordered_values_from_table_by_key(table, reverse=False): """ Get value list where the value orders are determined by their keys. Args: table: a table of data reverse: value list in a reversed order Returns: - an ordered list of values """ keys = [_ for _ in table] keys.sort(reverse=reverse) values = [table[k] for k in keys] return values
21c3dcef91b3a8e5fb7d9a36aa2acba87e508432
618,914
from typing import Optional import torch def get_n_byte_tensor(n: int, device: Optional[torch.device] = None) -> torch.Tensor: """Returns a torch.int8 tensor of size n. Args: n: size of the tensor to allocate device: torch.device to allocate tensor on Returns: torch.int8 tensor of size n on device Notes: Though 1 int8 = 1 byte, memory is allocated in blocks, such that the size of the tensor in bytes >= n. """ return torch.zeros(n, dtype=torch.int8, device=device)
b1923b766ffdb7c82850f317bfc2c8755231ada0
569,985
def get_vaac(root): """Returns the VAAC region of the alert""" vaac = root.alert.vaac_region.attrib.get('value') return vaac
ec70f68697688d3c1c1b617c4d18b22362a37f0f
458,207
def pov_2d_array(array_list): """Convert a mxn 2d array to POV-Ray format, e.g. [(1, 2), (3, 4), (5, 6)] --> arrar[3][2] {{1, 2}, {3, 4}, {5, 6}}. """ return "array[{}][{}] {{{}}}".format( len(array_list), len(array_list[0]), ", ".join("{{{}}}".format(", ".join(str(x) for x in arr)) for arr in array_list))
58b9117a0c21e262a48d9e3e606956952f029ca0
561,914
import logging def predict(testing_corpus, instance_extractor, perceptron, coref_extractor): """ According to a learned model, predict coreference information. Args: testing_corpus (Corpus): The corpus to predict coreference on. instance_extractor (InstanceExtracor): The instance extracor that defines the features and the structure of instances that are extracted during testing. perceptron (Perceptron): A perceptron learned from training data. argmax_function (function): A decoder that computes the best-scoring coreference structure over a set of structures. coref_extractor (function): An extractor for consolidating pairwise predictions into coreference clusters. Returns: A tuple containing two dicts. The components are - **mention_entity_mapping** (*dict(Mention, int)*): A mapping of mentions to entity identifiers. - **antecedent_mapping** (*dict(Mention, Mention)*): A mapping of mentions to their antecedent (as determined by the ``coref_extractor``). """ logging.info("Predicting.") logging.info("\tRemoving coreference annotations from corpus.") for doc in testing_corpus: doc.antecedent_decisions = {} for mention in doc.system_mentions: mention.attributes["antecedent"] = None mention.attributes["set_id"] = None logging.info("\tExtracting instances and features.") substructures, arc_information = instance_extractor.extract(testing_corpus) logging.info("\tDoing predictions.") arcs, labels, scores = perceptron.predict(substructures, arc_information) logging.info("\tClustering results.") return coref_extractor(arcs, labels, scores, perceptron.get_coref_labels())
ca5007178b9c1f9805bf8faa09d72ecbd6d8b967
243,941
def _try_call(fn, args, kwargs): """Convenience function for evaluating argument `fn`.""" if fn is None: return args[0] try: return fn(*args, **kwargs) except TypeError: return fn(*args)
f74618ca9892d2da5695143d5864eb50a348211d
640,803
def steps(current, target, max_steps): """ Steps between two values. :param current: Current value (0.0-1.0). :param target: Target value (0.0-1.0). :param max_steps: Maximum number of steps. """ if current < 0 or current > 1.0: raise ValueError("current value %s is out of bounds (0.0-1.0)", current) if target < 0 or target > 1.0: raise ValueError("target value %s is out of bounds (0.0-1.0)", target) return int(abs((current * max_steps) - (target * max_steps)))
0287efec583bfb8c37907a34ca5adf7c0aa61886
17,519
async def statistics_covid(conn, size, sort, offset): """Statistics on cases by country List the number of cases by country, the cases will be splitted in three state 'infected', 'treated' or 'dead' :param size: The number of countries to fetch. :type size: int :param sort: Sort order: * 'asc' - Ascending, from the least affected country to the most affected country. * 'desc' - Descending, from the most affected country to the least affected country. :type sort: str :param offset: An offset to allow pagination. :type offset: int :rtype: List[{ country: str, total: int, treated: int, infected: int, dead: int}] """ query = "SELECT COUNT(*) as count,country, health FROM detected_cases GROUP BY country,health" proxy = await conn.execute(query) records = await proxy.fetchall() # format the response country_hash = {} for record in records: count = record[0] country = record[1] health = record[2] value = country_hash.get(country, {'country': country, 'total': 0, 'infected': 0, 'treated': 0, 'dead': 0}) value[health] = count value['total'] += count country_hash[country] = value response = list(country_hash.values()) if sort == 'asc': return sorted(response, key=lambda value: value['total'])[offset:(offset+size)] else: return sorted(response, key=lambda value: -value['total'])[offset:(offset+size)]
97255a50f225a6d76072726aaf8c6ee207f61ea9
559,222
def my_sqrt(x): """ Compute integer part of the square root of given number :param x: given integer :type x: int :return: integer part of the square root :rtype: int """ if x < 0: return -1 elif x == 0: return 0 left, right = 1, x while left + 1 < right: mid = (left + right) // 2 mid_2 = mid * mid if mid_2 == x: return mid elif mid_2 > x: right = mid else: left = mid return left
d80599b9adcb0b0d6a91d4d30a4d92a904e874c3
511,152
from typing import Counter def counter_to_string(counter: Counter, howmany: int = 10) -> str: """Turn counter object into a string showing the top howmany items.""" return "\n".join( [ f"{cnt:5d}: {key}" for key, cnt in sorted(counter.items(), key=lambda x: x[1], reverse=True)[ :howmany ] ] )
1042951c6dffca75ae6d10c007e0f08320e8172b
538,051
from typing import Any def is_null(value: Any) -> bool: """Check if a value is equivalent to null in Dynamo""" return value is None or (isinstance(value, (set, frozenset)) and len(value) == 0)
4ad43961673b7e8ae7c9eff8739299fedaae9a4c
349,791
import codecs def read_file(filename, encoding="UTF-8"): """ :param filename: string :param encoding: string: the encoding of the file to read (standart: `UTF-8`) :return: list of strings: the lines of the file """ f1 = codecs.open(filename, encoding=encoding) lines = f1.read() f1.close() return lines
81966b9633b7ac2548b092373bdd7cab92278aba
86,731
def _compute_hms(tot_time): """ Computes hours, minutes, seconds from total time in seconds. """ hrs = tot_time // 3600 mins = (tot_time - hrs * 3600) // 60 secs = (tot_time - hrs * 3600 - mins * 60) return hrs, mins, secs
4f55bbe5b70982f2ab8066adf9f14ef96f20182d
198,842
def _CheckNoScopedAllowIO(input_api, output_api): """Make sure that ScopedAllowIO is not used.""" problems = [] file_filter = lambda f: f.LocalPath().endswith(('.cc', '.h')) for f in input_api.AffectedFiles(file_filter=file_filter): for line_num, line in f.ChangedContents(): if 'ScopedAllowIO' in line: problems.append(' %s:%d' % (f.LocalPath(), line_num)) if not problems: return [] return [output_api.PresubmitPromptWarning('New code should not use ' 'ScopedAllowIO. Post a task to the blocking pool or the FILE thread ' 'instead.\n' + '\n'.join(problems))]
6f59c11bedf15d15afb1301fa55b4396f62b5a3d
401,988
def host_to_ldap_url(hostfqdn): """Converts a host fqdn into an appropriate default LDAP URL. """ return "ldap://%s" % hostfqdn
b2715578b4da24bb19eeb4924ba17d6f9f924638
279,228
def load_dict_from_file(path): """Loads key=value pairs from |path| and returns a dict.""" d = {} with open(path, 'r', encoding='utf-8') as f: for line in f: line = line.strip() if not line or line.startswith('#'): continue if '=' in line: name, value = line.split('=', 1) d[name] = value return d
ba4e945decb18f2885b02549538d0b269b97a045
293,054
from pathlib import Path def find_next_available_file(fname_pattern, max_n=1000, start=1): """ :param str fname_pattern: File name pattern using "%d" style formatting e.g. "result-%03d.png" :param int max_n: Check at most that many files before giving up and returning None :param int start: Where to start counting from, default is 1 """ for i in range(start, max_n): fname = fname_pattern % i if not Path(fname).exists(): return fname return None
4ea7c49fedc66532146ce31a4e28bdb492f64194
289,406
import json def strval(value): """JSON serialize value as appropriate. This function should only be used internally. :param dict|list|string|number value: An input value. :returns string: The output value, suitable for saving by Redis. If ``value`` is a ``dict`` or ``list``, it will be JSON-serialized. Otherwise it will be left as-is. Note that while Redis only takes string values, numbers have their string values be themselves in strings, and the conversion will be done by Redis automatically. """ return json.dumps(value) if isinstance(value, (list, dict)) else value
98be03cbd0593dddd12157e8b73d9cda59954ec6
183,562
def is_balanced(node): """Check if a BST is balanced; returns (True/False, height of tree).""" # First we ensure the left subtree is balanced; then ensure the right subtree # is balanced too; and ensure the diff betw heights of left & right subtree <=1 if node is None: return True, 0 balanced_l, height_l = is_balanced(node.left) balanced_r, height_r = is_balanced(node.right) balanced = balanced_l and balanced_r and abs(height_l - height_r) <= 1 height = 1 + max(height_l, height_r) return balanced, height
f4db8d2d0ce7e773118a30ce19c19d41097f10b7
654,662
import re def user_data(image: str, timeout: int, S3_results_bucket: str, flags: str): """Generates EC2 instance user data script which is basically a bash script which will be executed as soon as the machine is up and running Args: image (str): docker image as `repository:tag` timeout (int): timeout in minutes flags (str): Will be appended to docker run command e.g. for `--foo=bar --baz=boo` it will result in `docker run IMAGE --foo=bar --baz=boo` Returns: user_data (str): user_data script for EC2 instance returned as in ascii encoding """ data = [ "#!/bin/bash", "set -x", # Set automatic shutdown after 5 hours f"sudo shutdown -P {timeout}", # Login into ECR. This only works because we assigned # the right IAM instance profile to the EC2 instance "$(aws ecr get-login --region eu-central-1 --no-include-email)", # Pull docker job f"docker pull {image}", # Start docker job "mkdir -p /opt/app/output", "cd /opt/app/", f"docker run \ -e S3_RESULTS_BUCKET={S3_results_bucket} \ -v $(pwd)/output:/opt/app/output \ {image} python -m xain.benchmark.exec {flags} >& $(pwd)/output/training.log", # Cancel previous shutdown and shutdown 1m after the job finishes # The machine is setup to terminate on shutdown "shutdown -c", "shutdown -P 1", ] # Replace multiple whitespaces with single whitespaces to allow # the use of line breaks in data to increase readability while # keeping the final output also readable data = [re.sub(r"\s+", " ", s) for s in data] return "\n".join(data)
a1600298522526545470d9c05b3702126206c4dd
228,391
def input_tape_string(turing_machine): """ Get the input tape's string from the user. :param turing_machine: The Turing's machine. Used to check if the inserted tape is valid. :return: The given tape. """ tape = list(input("Insert an input for the machine: ")) fault = False for char in tape: if not turing_machine.is_symbol(char): fault = True while fault: tape = input("Error. Insert a valid input for the machine: ").split() fault = False for char in tape: if not turing_machine.is_symbol(char): fault = True return tape
6babe2e5691e4a22040954bc0d250f3990b3c5a5
502,863
def dominance(solution_1, solution_2): """ Function that analyze solutions dominance. Parameters ----------- :param solution_1: Solution :param solution_2: Solution Returns --------- :return int If solution_1 dominates solution_2 -> return 1 :return -1 If solution_2 dominates solution_1 -> return -1 :return 0 If neither solution dominates the other -> return 0 """ dominance_1, dominance_2 = False, False for i, value in enumerate(solution_1.values): if value > solution_2.values[i]: # ย Solution 1 at least greater in one value dominance_1 = True elif value < solution_2.values[i]: # Solution 2 at least greater in one value dominance_2 = True # Solution 1 dominates solution 2 if dominance_1 and not dominance_2: return 1 # Solution 2 dominates solution 1 if not dominance_1 and dominance_2: return -1 return 0
2b6b39e12afed85a9064cb36d0ecb9c3473bac61
681,666
import io def isfile(f): """ Returns True if the given object represents an OS-level file (that is, ``isinstance(f, file)``). On Python 3 this also returns True if the given object is higher level wrapper on top of a FileIO object, such as a TextIOWrapper. """ if isinstance(f, io.FileIO): return True elif hasattr(f, 'buffer'): return isfile(f.buffer) elif hasattr(f, 'raw'): return isfile(f.raw) return False
ac8f746c047f7ca616fd1c8d87d72f75fbfa0f9f
106,978
def is_visible(self, y): """Checks whether a given point is within the currently visible area of the markdown area. The function is used to handle text which is longer than the specified height of the markdown area and during scrolling. :param self: MarkdownRenderer :param y: y-coordinate :return: boolean """ return not self.is_above_area(y) and not self.is_below_area(y)
aa982d8fadf70f970e084ead9be07916d2599217
699,709
import csv def write_excess_gates(excess_dict, fname): """ Writes the position and values of gates that have a frequency of occurrence higher than a particular threshold Parameters ---------- excess_dict : dict dictionary containing the gates parameters fname : str file name where to store the data Returns ------- fname : str the name of the file where data has written """ ngates = len(excess_dict['ray_ind']) with open(fname, 'w', newline='') as csvfile: csvfile.write('# Gates exceeding '+str(excess_dict['quant_min']) + ' percentile data file\n') csvfile.write('# Comment lines are preceded by "#"\n') csvfile.write( '# Data collection start time: ' + excess_dict['starttime'].strftime('%Y-%m-%d %H:%M:%S UTC')+'\n') csvfile.write( '# Data collection end time: ' + excess_dict['endtime'].strftime('%Y-%m-%d %H:%M:%S UTC')+'\n') csvfile.write('# Number of gates in file: '+str(ngates)+'\n') csvfile.write('#\n') fieldnames = [ 'ray_ind', 'rng_ind', 'ele', 'azi', 'rng', 'nsamples', 'occurrence', 'freq_occu'] writer = csv.DictWriter(csvfile, fieldnames) writer.writeheader() for i, ray_ind in enumerate(excess_dict['ray_ind']): writer.writerow({ 'ray_ind': ray_ind, 'rng_ind': excess_dict['rng_ind'][i], 'ele': excess_dict['ele'][i], 'azi': excess_dict['azi'][i], 'rng': excess_dict['rng'][i], 'nsamples': excess_dict['nsamples'][i], 'occurrence': excess_dict['occurrence'][i], 'freq_occu': excess_dict['freq_occu'][i]}) csvfile.close() return fname
4d7c2fb547237b36d0d263dfd536349fbde47b50
139,721
def kmin(l1, l2, k): """ Return the k smaller elements of two lists of tuples, sorted by their first element. If there are not enough elements, return all of them, sorted. Params: l1 (list of tuples): first list. Must be sorted. l2 (list of tuples): second list. Must be sorted. k (integer): number of elements to return. Return: (list): k smaller elements """ results = [] while len(results) < k: if l1 == []: if l2 == []: return results else: results.append(l2[0]) l2 = l2[1:] else: if l2 == []: results.append(l1[0]) l1 = l1[1:] else: if l1[0][0] > l2[0][0]: results.append(l2[0]) l2 = l2[1:] else: results.append(l1[0]) l1 = l1[1:] return results
753fdc838183218db451cdfee403365006c5c50f
441,696
def _ref(name): """Return workflow reference name.""" return 'workflows/{0}'.format(name)
2e0df25dfb0fbbab45042022328f06ec7ec4bb90
518,261
def worker_exploration(worker_index, num_workers): """ Computes an exploration value for a worker Args: worker_index (int): This worker's integer index. num_workers (int): Total number of workers. Returns: float: Constant epsilon value to use. """ exponent = (1.0 + worker_index / float(num_workers - 1) * 7) return 0.4 ** exponent
3d530bbbcf4c1bd42a7149bbbd06dc52c561d7c2
217,365
def trigrid(tripts): """ Return a grid of 4 points inside given 3 points as a list. INPUT: - ``tripts`` -- A list of 3 lists of the form [x,y] where x and y are the Cartesian coordinates of a point. OUTPUT: A list of lists containing 4 points in following order: - 1. Barycenter of 3 input points. - 2,3,4. Barycenters of 1. with 3 different 2-subsets of input points respectively. EXAMPLES:: sage: from sage.matroids import matroids_plot_helpers sage: points = matroids_plot_helpers.trigrid([[2,1],[4,5],[5,2]]) sage: points [[3.6666666666666665, 2.6666666666666665], [3.222222222222222, 2.888888888888889], [4.222222222222222, 3.222222222222222], [3.5555555555555554, 1.8888888888888886]] .. NOTE:: This method does NOT do any checks. """ pairs = [[0, 1], [1, 2], [0, 2]] cpt = list((float(tripts[0][0]+tripts[1][0]+tripts[2][0])/3, float(tripts[0][1]+tripts[1][1]+tripts[2][1])/3)) grid = [cpt] for p in pairs: pt = list((float(tripts[p[0]][0]+tripts[p[1]][0]+cpt[0])/3, float(tripts[p[0]][1]+tripts[p[1]][1]+cpt[1])/3)) grid.append(pt) return grid
2f968aca1f49bdfa60badbe3db29a2143f9693a9
153,372
async def ping(): """ A quick check to see if the system is running """ return True
4f569b665106c7b3b571e3718e38832c50cc3541
484,370
def add_request_headers(headers): """Add headers for 3rd party providers which we access data from.""" # Pass our abuse policy in request headers for third-party site admins. headers["X-Abuse-Policy"] = "https://web.hypothes.is/abuse-policy/" headers["X-Complaints-To"] = "https://web.hypothes.is/report-abuse/" return headers
5c0c1d40fb0d14c62efee51e8dc49a97737d0f8b
392,591
def gcd(a,b): """Calculate the Greatest Common Divisor of a and b. e.g. 8 , 12 becomes 12, 8 becomes 8, 4 becomes 4, 0 returns 4""" while b: a, b = b, a%b return a
0fe289a79400514c98d5b932cb77122597bffac6
411,861
from pathlib import Path def GetRendererLabelFromFilename(file_path: str) -> str: """Gets the renderer label from the given file name by removing the '_renderer.py' suffix.""" file_name = Path(file_path).stem return file_name.rstrip("_renderer.py")
11e97b9712046840103b7bb5910f2b82109f0545
682,529
def len_ignore_leading_ansi(s: str) -> int: """Returns the length of the string or 0 if it starts with `\033[`""" return 0 if s.startswith("\033[") else len(s)
9a01323a3bd5a840760c076f6beddb435d373791
87,205
def min_max_mean_total_feature(feature_list): """ This method calculates the min, max, mean and sum value of a characteristic list. Used in conjunction with packet count and packet length base netflow features :param feature_list: List of netflow characteristics values :return: A list containing min, max, mean and sum value of characteristic list """ if feature_list == []: feature_list = [0] feature_min = min(feature_list) feature_max = max(feature_list) feature_total = sum(feature_list) feature_mean = feature_total / len(feature_list) return [feature_min, feature_max, feature_mean, feature_total]
d9ce07297cd463fca4a908f2eb0e4798f69d5323
435,309
def parse_slice(token): """Parse a single slice string :param token: A string containing a number [3], a range [3:7] or a colon [:] :returns: An integer for simple numbers, or a slice object """ try: return int(token) except ValueError: if token == ':': return ... elif ':' in token: rng = [int(s) for s in token.split(':')] # The DAP protocol uses slicing including the last index. # [0:20] in DAP translates to [0:21] in Python. rng[1] += 1 return slice(*rng)
c93d3182335d6db6a51fac4dd5f0d015e189def4
247,181
def _prob_mass_function(message: str, word_length: int) -> dict: """ Compute probability mass function for a one-dim discete rv, Snippet 18.1, page 266. :param message: (str or array) encoded message :param word_length: (int) approximate word length :return: (dict) of pmf for each word from message """ lib = {} if not isinstance(message, str): message = ''.join(map(str, message)) for i in range(word_length, len(message)): message_ = message[i - word_length:i] if message_ not in lib: lib[message_] = [i - word_length] else: lib[message_] = lib[message_] + [i - word_length] pmf = float(len(message) - word_length) pmf = {i: len(lib[i]) / pmf for i in lib} return pmf
6be381a441123124583d9b681ace8134252e3d87
160,857
def _hyperparams_text_to_dict(cfg_text): """Converts hyperparams config text to a dictionary of key-value pairs.""" txt_list = cfg_text.split("\n") pair_list = [] for v in txt_list: if not v: continue vals = v.split(" : ") if len(vals) != 2: raise ValueError(v) pair_list.append(vals) return dict(pair_list)
9139817dfbb13c916f7d099a29c0b2b06412e5c1
489,895
def get_address_string_from_bytes(address_raw, delimiter=":"): """ Convert a Bluetooth address in bytes form into a delimited string representation. :param address_raw: Bluetooth address, as a bytes instance. :param delimiter: Delimiter to use between octets. :return: A string representing `address_raw` delimited by `delimiter`. """ return delimiter.join("{:02x}".format(ord(octet)) for octet in address_raw[::-1])
88d52596d71d446f6e37e94b36cb29ba00ce6dc9
513,753
def get_songs_from_playlist(player, playlist_name): """Returns a list of songs from the given playlist""" lists = player.get_sonos_playlists() for playlist in lists: if playlist.title == playlist_name: return player.music_library.browse(playlist)
381c664664071f0a788e0b0a76f1d1779fde1821
317,805
import shutil def rm_directory_tree(directory): """ Recursively removes a directory and its subdirectories and files.""" try: shutil.rmtree(directory) except OSError as e: raise(e) return True
2f1e5ff66657f90350e2e06ab60f96308901b278
183,225
import codecs def open_write(file_path): """ Opens a file for writing in UTF-8 :rtype: file :param file_path: Path to file :type file_path: string :return: A file opened for writing """ return codecs.open(file_path, "w", encoding="utf-8")
33d07324e88c649cbb7ec48b58d65904430f4fee
345,915
def _minor(x, i, j): """The minor matrix of x :param i: the column to eliminate :param j: the row to eliminate :returns: x without column i and row j """ return [[x[n][m] for m in range(len(x[0])) if m != j] for n in range(len(x)) if n != i]
8168b56914109ff52f6e5572dfa533db462d5d0c
579,963
def is_external_plugin(appname): """ Returns true when the given app is an external plugin. Implementation note: does a simple check on the name to see if it's prefixed with "kolibri_". If so, we think it's a plugin. """ return not appname.startswith("kolibri.")
969b6650a2c6917dd40786444c83d88d80236e5c
377,029
from typing import Any def is_netlist(netlist: Any) -> bool: """check if a dictionary is a netlist""" if not isinstance(netlist, dict): return False if not "instances" in netlist: return False if not "connections" in netlist: return False if not "ports" in netlist: return False return True
abe571d3aeba950f9d818751cf44824efa69db1a
179,430
def _serialize(node): """ Serialize a xml node tag and its attribute dict in a reproducible way. @param node: xml node to serialize """ tokens = [node.tag] for k, v in node.attrib.items(): tokens.extend([k, v]) return ' '.join(tokens)
644e274c3b23f6605d90ede0628c13d4f25981a7
308,016
import hashlib def _ntowfv1(password): """ [MS-NLMP] v28.0 2016-07-14 3.3.1 NTLM v1 Authentication Same function as NTOWFv1 in document to create a one way hash of the password. Only used in NTLMv1 auth without session security :param password: The password of the user we are trying to authenticate with :return digest: An NT hash of the password supplied """ digest = hashlib.new('md4', password.encode('utf-16le')).digest() return digest
901373ba06589b0a8ac7089e7b3421a3afdec745
225,947
import csv def get_email_addresses() -> dict: """ Function that reads the emails.csv file and returns a dictionary that can server as a one way mapping based on the data from the file. The first column is the name of the person and the second column the email address. Leading and trailing spaces are removed :return: the dictionary with the mapping """ mapping = {} with open("emails.csv", mode="r", newline="") as csvfile: reader = csv.reader(csvfile, delimiter=",", quotechar="|") for row in reader: if len(row) < 2: continue mapping[row[0].lower().strip()] = row[1].strip() return mapping
74b2401d6ef5505d21e84e6b82573586d5619c06
431,376
from datetime import datetime def midnightify(date: datetime) -> datetime: """Return midnightified datetime.""" return date.replace(hour=0, minute=0, second=0, microsecond=0)
f46fc92c415081cbda62ac5f20b140049529060f
532,698
def to_var(field): """Converts a field name int a variable (snake_case) Args: string: a string to be converted to a var Returns: a string in lower snake case """ return field.replace(' ', '_').lower()
09833cba0e7c06a4353875ba1beb28530691822e
573,960
def get_two_by_two_edges(*edges): """ create the list of edges Parameters ---------- * edges : list or tuple each consecutive elements will be an edge Returns ------- list of 2-uple for the edges """ # Examples : # G = test_graph_from_edges((1,2,3),(4,3)) # 1 -> 2 -> 3, and 3 -> 4 two_by_two_edges = [] for list_of_edge in edges: if len(list_of_edge) <= 1: raise ValueError("edges must be of length at least 2") if not isinstance(list_of_edge, (tuple, list)): raise TypeError("argument should be tuple or list, instead i got : '%s' " % type(list_of_edge)) for e1, e2 in zip(list_of_edge[:-1], list_of_edge[1:]): two_by_two_edges.append((e1, e2)) return two_by_two_edges
2de744f1dc4c6cfc2a03f7044cbc8648504d5ae4
195,800
def generate_neighbours(coordinates): """ Returns the coordinates of potential neighbours of a given cell :param coordinates: (tuple) the coordinates of the cell :return: (list(tuples(int, int))) the list of the coordinates of the potential neighbours of a cell Examples: >>> generate_neighbours((0, 0)) [(0, -1), (-1, -1), (-1, 0), (0, 1), (1, 0), (1, -1)] >>> generate_neighbours((4, 2)) [(4, 1), (3, 1), (3, 2), (4, 3), (5, 2), (5, 1)] """ x = coordinates[1] y = coordinates[0] if y % 2 == 0: # If the number of the line is even return [(y, x-1), (y-1, x-1), (y-1, x), (y, x+1), (y+1, x), (y+1, x-1)] else: return [(y, x-1), (y-1, x), (y-1, x+1), (y, x+1), (y+1, x+1), (y+1, x)]
ed56f84d5701ca40fda6a7543e031df9210f7de8
469,777
def get_dnum(det, caps=False, prefix=True): """ Convert a detector index into a string used by the settings dictionary or other bits of code. Best to keep at two digits Parameters ---------- det : int Detector index caps : bool, optional Return all caps? prefix : bool, optional Include the prefix? Returns ------- dnum : str A string used by the settings dictionary """ dnum = '{0:02d}'.format(det) if prefix: if caps: dnum = 'DET'+dnum else: dnum = 'det'+dnum # Return return dnum
9cc819da7c3015df993477169643d46b08edd784
427,381
def GetFileWithReplace(path, replace): """Return content of file after replacing any keys in replace with values.""" fp = open(path) content = fp.read() fp.close() for key in replace.iterkeys(): content = content.replace(key, replace[key]) return content
1dacb099da3c26dbb03b8fd6b4913e49c15ae96d
523,487
import re def str_list_to_tuple_str_series(col, regex_pattern='[A-Z]\d+'): """ Convert string of lists into tuples of strings, for each row in column. regex_pattern determines string tokens. """ if not isinstance(col[0], str): print("error: str expected, instead {} found.".format(type(col[0]))) return col else: p = re.compile(regex_pattern) return col.apply(p.findall).apply(tuple)
0c29b31614f037675733d6018d9b666fff195200
86,745
def get_resource_type_name(resource_values): """Gets resource type name from resource values.""" resource_type = resource_values['Type'] return resource_type.split('::')[-1]
62944170fe9885ac632e2048f89b9336efdcd979
571,180
import importlib def class_for_name(module_name, class_name): """ Import a class dynamically :param module_name: the name of a module :param class_name: the name of a class :type module_name: string :type class_name: string :return: Return the value of the named attribute of object. :rtype: object """ # load the module, will raise ImportError if module cannot be loaded m = importlib.import_module(module_name) # get the class, will raise AttributeError if class cannot be found c = getattr(m, class_name) return c
4192581999812d103f2e15f757e6592bc68661a6
232,042
def correct_date(date): """ Converts the date format to one accepted by SWA SWA form cannot accept slashes for dates and is in the format YYYY-MM-DD :param date: Date string to correct :return: Corrected date string """ if date is None: return "" else: a, b, c = date.split("/") if len(a) == 4: # Assumed format is year, month, day return "%s-%s-%s"%(a, b, c) else: # Assumed format is month, day, year return "%s-%s-%s" % (c, a, b)
6b17124b4b5e4a3740b56210fc88ea79ca816434
686,459
def get_projection_name(srs): """ Extract the projection name from a spatial reference system Parameters ---------- srs : object OSR spatial reference system Returns ------- : string The projection name """ proj_name = srs.GetAttrValue("PROJECTION", 0) return proj_name
092991989fdf9b09445941ad6e79380ec155d1ed
435,382
def thermal_time_constant_at_rated_load(C, P, dTOr): """ Returns the average oil time constant in minutes (for rated load) As per IEEE C57.91-2011 C = Thermal capacity of oil P = Supplied losses (in W) at the load considered OilRise = The average oil temperature rise above ambient temperature in K at the load considered """ tau = (C * dTOr * 60) / P return tau
f64eaba59b7b2faee1cb30d9b7b8cdf0a61797b4
540,626
def progress_bar(current_work, total_work): """์ง„ํ–‰ ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฌธ์ž์—ด์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. Args: current_work: ํ˜„์žฌ์˜ ์ž‘์—… ๋‹จ๊ฒŒ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ •์ˆ˜ total_work: ์ด ์ž‘์—…์˜ ๊ฐœ์ˆ˜ """ length = 50 # ํ”„๋กœ๊ทธ๋ ˆ์Šค ๋ฐ”์˜ ๊ธธ์ด done = round(current_work / total_work * length) progress_str = [ "[", done * "โ–ˆ", (length - done) * "-", "]", f" {round(current_work / total_work * 100)}%", ] return "".join(progress_str)
8dce5a869f83521a69b29c13b31a44d9b4c77b2e
388,957
def _is_camel_case_ab(s, index): """Determine if the index is at 'aB', which is the start of a camel token. For example, with 'workAt', this function detects 'kA'.""" return index >= 1 and s[index - 1].islower() and s[index].isupper()
c21ec7d8aa7e786d1ea523106af6f9426fea01d8
2,600
import requests def feedstock_name(package): """ Check to see if a package has a conda-forge feedstock Parameters ------------ package : str Name of a package to check Returns ------------- name : str or None None if it doesn't exist """ # base url to check base = 'https://github.com/conda-forge/{}-feedstock' #check_yes = requests.get(base.format('triangle')) #check_no = requests.get(base.format('blahahshdrraaa1123')) #assert check_no.status_code == 404 #assert check_yes.status_code == 200 # make sure name is clean package = package.lower().strip() # map packages to different name if known here name_map = {'msgpack': 'msgpack-python'} if package in name_map: package = name_map[package] # check the feedstock on github fetch = requests.get(base.format(package)) exists = fetch.status_code == 200 print(f'{package} exists={exists}') if exists: return package return None
c22ce99e165abb83ce718d55f5351f9983f61720
116,469
def bbox_area(bbox): """Compute the area of the annotation bounding box.""" return (bbox[:, 2] - bbox[:, 0]) * (bbox[:, 3] - bbox[:, 1])
deeb10e7ed56f8b417a2c83014a218993d961884
334,009
def lenum(l, start=0): """ Indexes a list from the left side. Examples -------- >>> lenum(['a', 'b', 'c']) [(0, 'a'), (1, 'b'), (2, 'c')] """ return list(enumerate(l, start=start))
a78bc54867684859f354c53680cd7c36460e3a3a
246,247
import filecmp def issamefile(file1, file2): """Tests if the two files have the same contents.""" return filecmp.cmp(file1, file2, False)
6f590c3c459063eada095113b7cece99597dcf05
261,276
def average_precision(gt, pred): """ Computes the average precision. This function computes the average prescision at k between two lists of items. Parameters ---------- gt: set A set of ground-truth elements (order doesn't matter) pred: list A list of predicted elements (order does matter) Returns ------- score: double The average precision over the input lists """ if not gt: return 0.0 score = 0.0 num_hits = 0.0 for i,p in enumerate(pred): if p in gt and p not in pred[:i]: num_hits += 1.0 score += num_hits / (i + 1.0) return score / max(1.0, len(gt))
ca265471d073b6a0c7543e24ef0ba4f872737997
709,784
import torch from typing import Optional from typing import Tuple def assign_labels( spikes: torch.Tensor, labels: torch.Tensor, n_labels: int, rates: Optional[torch.Tensor] = None, alpha: float = 1.0, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # language=rst """ Assign labels to the neurons based on highest average spiking activity. :param spikes: Binary tensor of shape ``(n_samples, time, n_neurons)`` of a single layer's spiking activity. :param labels: Vector of shape ``(n_samples,)`` with data labels corresponding to spiking activity. :param n_labels: The number of target labels in the data. :param rates: If passed, these represent spike rates from a previous ``assign_labels()`` call. :param alpha: Rate of decay of label assignments. :return: Tuple of class assignments, per-class spike proportions, and per-class firing rates. """ n_neurons = spikes.size(2) if rates is None: rates = torch.zeros((n_neurons, n_labels), device=spikes.device) # Sum over time dimension (spike ordering doesn't matter). spikes = spikes.sum(1) for i in range(n_labels): # Count the number of samples with this label. n_labeled = torch.sum(labels == i).float() if n_labeled > 0: # Get indices of samples with this label. indices = torch.nonzero(labels == i).view(-1) # Compute average firing rates for this label. rates[:, i] = alpha * rates[:, i] + ( torch.sum(spikes[indices], 0) / n_labeled ) # Compute proportions of spike activity per class. proportions = rates / rates.sum(1, keepdim=True) proportions[proportions != proportions] = 0 # Set NaNs to 0 # Neuron assignments are the labels they fire most for. assignments = torch.max(proportions, 1)[1] return assignments, proportions, rates
fa8752ef9ef5263d384d6841720c24b22c56067e
95,824
def _GetClearedFieldsForHeaderAction(header_action, field_prefix): """Gets a list of fields cleared by the user for HeaderAction.""" cleared_fields = [] if not header_action.requestHeadersToRemove: cleared_fields.append(field_prefix + 'requestHeadersToRemove') if not header_action.requestHeadersToAdd: cleared_fields.append(field_prefix + 'requestHeadersToAdd') if not header_action.responseHeadersToRemove: cleared_fields.append(field_prefix + 'responseHeadersToRemove') if not header_action.responseHeadersToAdd: cleared_fields.append(field_prefix + 'responseHeadersToAdd') return cleared_fields
1e54b3da8b0c8de2983d7762f68e8c1765db9378
237,131
def api_repo_url(org_name): """ With the supplied organization name, constructs a GitHub API URL :param org_name: GitHub organization name :return: URL to GitHub API to query org's repos """ return 'https://api.github.com/orgs/{}/repos'.format(org_name)
e602303d680bef850e7053ff589a3a76382d4833
89,142
def get_fields(fields): """ From the last column of a GTF, return a dictionary mapping each value. Parameters: fields (str): The last column of a GTF Returns: attributes (dict): Dictionary created from fields. """ attributes = {} description = fields.strip() description = [x.strip() for x in description.split(";")] for pair in description: if pair == "": continue pair = pair.replace('"', '') key, val = pair.split() attributes[key] = val # put in placeholders for important attributes (such as gene_id) if they # are absent if 'gene_id' not in attributes: attributes['gene_id'] = 'NULL' return attributes
30777838934b18a0046017f3da6b3a111a911a9c
709,555
import itertools def chunked(iterable, size): """Split iterable `iter` into one or more `size` sized tuples""" it = iter(iterable) return iter(lambda: tuple(itertools.islice(it, size)), ())
474e121727f4c29a8d98a50c1e3694cc6e04d906
281,967
def _is_tarfile(filename): """Returns true if 'filename' is TAR file.""" return (filename.endswith(".tar") or filename.endswith(".tar.gz") or filename.endswith(".tgz"))
761b776e0e8078ddd4bee694e0a9d853dd2e31fd
9,098
def _format_type(json_value): """Helper to determine the Python type of the provided value from CLI. Args: json_value: (str) Value providing from CLI. Returns: json_value: The provided input coerced into proper Python Type. """ if (json_value.startswith('-') and json_value[1:].isdigit()) or ( json_value.isdigit()): return int(json_value) if (json_value.startswith('-') and json_value[1].isdigit()) or ( json_value[0].isdigit()): return float(json_value) if json_value.capitalize() == 'True': return True if json_value.capitalize() == 'False': return False return json_value # The value is a string.
0f6dd0750ec8cd42c8741898687b4c1adb42a687
570,370