content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def del_constant_start_stop(x):
"""
>>> l = [1,2,3,4]
>>> del_constant_start_stop(l)
[1, 2]
>>> l = [1,2,3,4,5,6,7]
>>> del_constant_start_stop(l)
[1, 2, 7]
"""
del x[2:6]
return x | f6b98c3d1e082588db962f6887a4035307756a0d | 109,584 |
import re
def gather_fn_handles(mc_lines, warn):
"""Gets all footnote references (handles) occuring in main content
excluding any occuring in XML comments."""
fn_handles = set()
in_comment = False
for mcl in mc_lines:
if re.match("^\s*<!---?\s*$", mcl):
in_comment = True
elif in_comment and re.match("^\s*---?>\s*$", mcl):
in_comment = False
elif not in_comment: # handle up to 3 footnotes in a single <sup></sup>
fns1 = re.findall("<sup>\[([a-zA-Z0-9_-]*)\]</sup>", mcl)
fn_handles = fn_handles.union(set(fns1))
fns2 = re.findall("<sup>\[([a-zA-Z0-9_-]*)\],\[([a-zA-Z0-9_-]*)\]</sup>", mcl)
for fn in fns2: fn_handles = fn_handles.union(set(fn))
fns3 = re.findall("<sup>\[([a-zA-Z0-9_-]*)\],\[([a-zA-Z0-9_-]*)\],\[([a-zA-Z0-9_-]*)\]</sup>", mcl)
for fn in fns3: fn_handles = fn_handles.union(set(fn))
fns4p = re.findall("<sup>\[([a-zA-Z0-9_-]*)\],\[([a-zA-Z0-9_-]*)\],\[([a-zA-Z0-9_-]*)\],(.*)</sup>", mcl)
if len(fns4p) >= 4:
print("Error: Max number of grouped footnotes between <sup>...</sup> is 3")
print("This occurred at or near this line...")
print(mcl)
if not warn:
print("Correct above issues and re-try...")
exit(1)
return fn_handles | da5cd8bef220e01968005700d336e54a3dde0ee2 | 265,968 |
def get_wv1(conds):
"""
[ [wc, wo, wv],
[wc, wo, wv], ...
]
"""
wv1 = []
for cond in conds:
wv1.append(cond[2])
return wv1 | e88de170aaf091d5fa3bbde9b26690e0942b4b49 | 259,391 |
def image_zoom(img, new_size, **kwargs):
"""
Resizes an *image* (from :epkg:`PIL`).
@param img :epkg:`PIL.Image`
@param new_size size after zoom
@param kwargs additional arguments
@return new image
"""
return img.resize(new_size, **kwargs) | 24799135c293a40a13a1462d8d5c978ba5170c67 | 232,645 |
def _is_hierachy_searchable(child_id: str) -> bool:
""" If the suffix of a child_id is numeric, the whole hierarchy is searchable to the leaf nodes.
If the suffix of a child_id is alphabetic, the whole hierarchy is not searchable. """
pieces_of_child_id_list = child_id.split('.')
suffix = pieces_of_child_id_list[len(pieces_of_child_id_list) - 1]
return suffix.isnumeric() | 13146128fc8ab050323a23f07133676caeb83aaf | 28,275 |
def _parse_limits(joint):
"""Parse joint limits."""
limit = joint.find("limit")
lower, upper = float("-inf"), float("inf")
if limit is not None:
if limit.has_attr("lower"):
lower = float(limit["lower"])
if limit.has_attr("upper"):
upper = float(limit["upper"])
return lower, upper | 6aa1a31183f52b4699081e1a34860f8f7588c67f | 277,768 |
def align_embedding(sequences, padding_word="<PAD/>", max_length=-1):
"""
Pads all sentences to the same length. The length is defined by the longest sentence.
Returns padded sentences.
"""
print("aligning sequences...")
if max_length < 0:
max_length = max(len(x) for x in sequences)
padded_sequences = []
for sequence in sequences:
# new_sequence = [1]
if len(sequence) >max_length:
new_sequence = sequence[:max_length]
else:
new_sequence = sequence + [padding_word] * (max_length - len(sequence))
# print("new_sequence:", new_sequence)
padded_sequences.append(new_sequence)
return padded_sequences | c87670ad068f811c44621772e0ace4dbdee9de6b | 461,338 |
def _get_node(root, name):
""" Find xml child node with given name """
for child in root:
if child.get('name') == name:
return child
raise ValueError(f'{name} not found') | 4cb0d450fd1ea6fffda3366ec77ed500e6a47a9a | 406,620 |
from typing import List
from typing import Optional
from typing import Tuple
def _get_file_name(path: List[str]) -> Optional[Tuple[str, str]]:
"""Fetches the file name from the path.
Args:
path: The list of elements in the path
Returns:
None is returned on failure. If the path contains
a valid file path the tuple will contain the path in the first
element. The second element will be the extension of the file.
"""
# The path may not be empty
if len(path) < 1:
return None
# Check that the path is sanitized
# Path elements may only contain alphabetic characters, numbers and
# dashes. Only the last path element may have exactly one dot.
for i in range(len(path)):
is_last = i == len(path) - 1
has_dot = False
has_chars = False
for c in path[i]:
if c == ".":
if not is_last:
return None # dots not in last element
if has_dot:
return None # multiple dots
if not has_chars:
return None # element starts with a dot
has_dot = True
elif c not in ("abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"0123456789-"):
return None # illegal character
has_chars = True
# Construct the file name
fn = "/".join(path)
if "." not in fn:
return None # no file extension
dot_idx = fn.index(".")
f = "./res/%s" % fn
ext = fn[(dot_idx + 1):]
return f, ext | 101069b6403b3da0d6b705d714943f32cd0a4810 | 331,551 |
import pickle
import zlib
def zunpickle(zdata):
"""Given a zlib compressed pickled serialization, returns the deserialized data."""
return pickle.loads(zlib.decompress(zdata), encoding='latin1') | 201ca5f014c7f3b23ddbd418541b233b3a6f1d54 | 152,194 |
def addLists(list1, list2):
"""Add lists together by value. i.e. addLists([1,1], [2,2]) == [3,3]."""
# Find big list and small list
blist, slist = list(list2), list(list1)
if len(list1) > len(list2):
blist, slist = slist, blist
# Overlay small list onto big list
for i, b in enumerate(slist):
blist[i] += b
return blist | f5469dab8fd2c62d2d3ffed253803c1a3d343281 | 702,997 |
def addYears(date, value):
"""Add or subtract an amount of years to a given date and time.
Args:
date (Date): The starting date.
value (int): The number of units to add, or subtract if the
value is negative.
Returns:
Date: A new date object offset by the integer passed to the
function.
"""
return date.replace(year=date.year + value) | 0d218095921e38b92042b80e1fb8b20c62de3b28 | 537,075 |
def is_palindrome(word):
"""
Determines if the specified word is a palindrome.
Args:
word: The word to check.
Returns:
True if the word is a palindrome, otherwise False.
"""
return word.lower() == word[::-1].lower() | 606934276488a1e8e88fa59fb21b41c8da84f1d2 | 433,991 |
import torch
def random_choice(a, size):
"""Generates a random sample of a given size from a 1-D tensor. The sample
is drawn without replacement.
Parameters
----------
a: torch.tensor
The input tensor from which the sample will be drawn.
size: int
The size of the generated sample.
Returns
-------
sample: torch.tensor
The generated sample.
"""
permutation = torch.randperm(a.size(0))
indices = permutation[:size]
return a[indices] | d47202dd08a1a5f0845c6057fbee8a0a41a0a3f9 | 83,636 |
from datetime import datetime
def as_date(x, format='%m/%d/%Y'):
"""
Convert date string to datetime object
"""
return datetime.strptime(x, format) | a4a6e11310894db0c8781a2ae70874b51a41bc5b | 396,240 |
import six
def convert_id36_to_numeric_id(id36):
"""Convert strings representing base36 numbers into an integer."""
if not isinstance(id36, six.string_types) or id36.count("_") > 0:
raise ValueError("must supply base36 string, not fullname (e.g. use "
"xxxxx, not t3_xxxxx)")
return int(id36, 36) | 5ccd3661f6985c73e38ebcb6bbf9d0e242cddbb6 | 657,389 |
def get_pbs_node_requirements(sys_settings,node_count):
"""Get the cpu and memory requirements for a given number of nodes
Args:
sys_settings (dict): System settings dict, as supplied from config_manager
node_count (int): Number of whole nodes on target system
Returns:
dict: ncpus and mem for target number of nodes
"""
ncpus = node_count * sys_settings['REMOTE_SETTINGS']['PBS_SETTINGS']['CORES_PER_NODE']
mem_per_node = sys_settings['REMOTE_SETTINGS']['PBS_SETTINGS']['MEM_PER_NODE']
mem = '%s%s' % (int(node_count * mem_per_node[0]), mem_per_node[1])
return dict(ncpus=ncpus,mem=mem) | f4fd12dee6608a87e6c8b0f2f56e245e6be7c0fc | 8,257 |
def max_value_constraint(value, limit):
"""Test maximum value constraint."""
if value <= limit:
return True
return False | 53f9849ae2bd3ee2dd953525c6a0a0bd223c5757 | 449,304 |
def get_objname_from_tuple(obj_name_tuple):
"""Given a O, C, I tuple, return its string full name
(e.g 0&0&DEFINING_ORIGIN).
"""
O, C, I = obj_name_tuple
return str(O) + '&' + str(C) + '&' + I | 23f6bee2f1af9dfbca90eecca16a00fe5641b722 | 370,375 |
from typing import List
from typing import Any
def flatten_list(nested: List[List[Any]]) -> List[Any]:
"""Flatten a nested list."""
flat = []
for x in nested:
flat.extend(x)
return flat | ef71bf3072b74af31ff218ea0e57ba3c08e0436c | 293,176 |
def check_size(indices: list, queries: list) -> int:
""" Check whether size of all indices and queries are the same
:param list indices: list of all indices
:param list queries: list of all queries
:returns: the size when size of all indices and queries are the same or -1
if lists does not have same size
"""
width = 0
# get the first length if any
if indices:
width = len(indices[0])
elif queries:
width = len(queries[0])
# at this point, width will be the length of 1 of the indices or queries,
# or will still be 0 if there is no index or query
for index in indices:
if len(index) != width:
print('Indices are not the same width')
return -1
for query in queries:
if len(query) != width:
print('Queries and indices not the same width')
return -1
return width | 7075c42042824439b6d25bffd1a5b8c2291b4012 | 549,550 |
def interpolate(r1, r2, x=None, y=None):
"""Perform simple linear interpolation between two points in 2D
- one of x or y must be defined
Parameters
----------
r1,r2 : float
x,y coordinates from which to interpolate
x : float
x-value from which to interpolate y (default: None)
y : float
y-value from which to interpolate x (default: None)
Returns
-------
val : float
interpolated value
History
2019 - Written - Webb (UofT)
"""
x1, y1 = r1
x2, y2 = r2
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
if x != None:
val= m * x + b
elif y != None:
val=(y - b) / m
else:
print("NO INTERMEDIATE COORDINATE GIVEN")
val=0
return val | a222293c451b5a0826ddcd5c5223f9b85c2a6510 | 315,999 |
from datetime import datetime
def is_rule_expired(rule_timestamp):
"""Returns True if the rule timestamp is expired."""
return rule_timestamp < datetime.now() | fd9c0c5f693efa53ea721a030544db5b620d2b54 | 402,323 |
def get_average(pixels):
"""
Given a list of pixels, finds the average red, blue, and green values
Input:
pixels (List[Pixel]): list of pixels to be averaged
Returns:
rgb (List[int]): list of average red, green, blue values across pixels respectively
Assumes you are returning in the order: [red, green, blue]
"""
red_total = 0 # set variable for calculate total value for pixel in red
green_total = 0 # set variable for calculate total value for pixel in green
blue_total = 0 # set variable for calculate total value for pixel in blue
rgb = [] # set a list for storage the average value
for ele in pixels: # for each element in pixel
red_total += ele.red # calculate total value for pixel in red
green_total += ele.green # calculate total value for pixel in green
blue_total += ele.blue # calculate total value for pixel in blue
red = red_total / len(pixels) # calculate average for red
green = green_total / len(pixels) # calculate average for green
blue = blue_total / len(pixels) # calculate average for blue
rgb.append(int(red)) # add average value of red in list
rgb.append(int(green)) # add average value of green in list
rgb.append(int(blue)) # add average value of blue in list
return rgb # return the list | 5e26a0aee4f719ff499f0c5ce73e8794ce40388f | 296,111 |
def doc_urls_to_string(doc_urls, queryset=False):
"""
Args:
doc_urls: [{"name": "wiki", "url": "http://www.wiki.com"}, ...] OR
doc_urls: [models.DocUrl] (if queryset=True)
Returns:
'(wiki, http://www.wiki.com), ...'
"""
if queryset:
new_doc_urls = [(i.name, i.url) for i in doc_urls]
else:
new_doc_urls = [(i['name'], i['url']) for i in doc_urls]
return str(sorted(new_doc_urls)) | c89de44daec117c5e09870e4381993e08ef1b933 | 147,857 |
def check(grad_honests, f_real, defense, factor=-16, negative=False, **kwargs):
""" Check parameter validity for this attack template.
Args:
grad_honests Non-empty list of honest gradients
f_real Number of Byzantine gradients to generate
defense Aggregation rule in use to defeat
... Ignored keyword-arguments
Returns:
Whether the given parameters are valid for this attack
"""
if not isinstance(grad_honests, list) or len(grad_honests) == 0:
return "Expected a non-empty list of honest gradients, got %r" % (grad_honests,)
if not isinstance(f_real, int) or f_real < 0:
return "Expected a non-negative number of Byzantine gradients to generate, got %r" % (f_real,)
if not callable(defense):
return "Expected a callable for the aggregation rule, got %r" % (defense,)
if not ((isinstance(factor, float) and factor > 0) or (isinstance(factor, int) and factor != 0)):
return "Expected a positive number or a negative integer for the attack factor, got %r" % (factor,)
if not isinstance(negative, bool):
return "Expected a boolean for optional parameter 'negative', got %r" % (negative,) | 59b11df0809cf2de7e35e23c6b9416adad3202da | 425,255 |
import torch
def smooth_weights(class_freqs: torch.Tensor,
smoothing: float = 0.15,
clip: float = 10.0,
normalize: bool = True) -> torch.Tensor:
"""Compute smoothed weights starting from class frequencies (pixel counts).
Args:
class_freqs (torch.Tensor): tensor with shape (num_classes,)
smoothing (float, optional): smoothing factor. Defaults to 0.15.
clip (float, optional): maximum value before clipping. Defaults to 10.0.
normalize (bool, optional): whether to map them to range [0, 1]. Defaults to True.
Returns:
torch.Tensor: weights inversely proportial to frequencies, normalized if required
"""
# the larger the smooth factor, the bigger the quantities to sum to the remaining counts (additive smoothing)
freqs = class_freqs.float() + class_freqs.max() * smoothing
# retrieve the (new) max value, divide by counts, clip to max. value
weights = torch.clamp(freqs.max() / class_freqs, min=1.0, max=clip)
if normalize:
weights /= weights.max()
return weights | 75bdb480c158632dfd418582d77f3c54c3b7af8a | 288,691 |
import torch
def all_comb(X, Y):
"""
Returns all possible combinations of elements in X and Y.
X: (n_x, d_x)
Y: (n_y, d_y)
Output: Z: (n_x*x_y, d_x+d_y)
Example:
X = tensor([[8, 8, 8],
[7, 5, 9]])
Y = tensor([[3, 8, 7, 7],
[3, 7, 9, 9],
[6, 4, 3, 7]])
Z = tensor([[8, 8, 8, 3, 8, 7, 7],
[8, 8, 8, 3, 7, 9, 9],
[8, 8, 8, 6, 4, 3, 7],
[7, 5, 9, 3, 8, 7, 7],
[7, 5, 9, 3, 7, 9, 9],
[7, 5, 9, 6, 4, 3, 7]])
"""
assert len(X.size()) == 2
assert len(Y.size()) == 2
X1 = X.unsqueeze(1)
Y1 = Y.unsqueeze(0)
X2 = X1.repeat(1,Y.shape[0],1)
Y2 = Y1.repeat(X.shape[0],1,1)
Z = torch.cat([X2,Y2],-1)
Z = Z.view(-1,Z.shape[-1])
return Z | 525370a163c2c40593e6277f1f27befd1fc3be09 | 558,543 |
def surface_absorption(wave_len, wave_len_min, wave_len_max, abs_surface):
"""Determines probability of absorption as a function of wavelength at a
particular boundary.
Parameters
----------
wave_len : float
Bundle wavelength
wave_len_min : float
Minimum wavelength absorbed by matrix
wave_len_max : float
Maximum wavelength absorbed by matrix
abs_surface : DataFrame
Probability of absorption of a surface as a function of wavelength
Returns
-------
probability : float
Probability that a bundle is absorbed
Notes
-----
surface_absorption should be renamed to boundary_absorption
"""
probability = 0
if wave_len >= wave_len_min and wave_len <= wave_len_max:
probability = abs_surface.__call__(wave_len)
return probability | 90cc70051f6977bdffa42e026d1a46f6d2575ba3 | 478,333 |
def calc_clf(rs, rso):
"""
Crawford and Duchon (1999) cloud fraction.
Parameters
----------
rs : numpy ndarray
Total incoming shortwave solar radiation, in MegaJoules per square meter per day
rso : numpy ndarray
Clear-sky solar radiation.
"""
clf = 1.0 - (rs / rso)
# From Crawford and Duchon (1999):
# Calculated values of clf less than zero were adjusted back to
# zero so as to be physically realistic.
clf[clf < 0] = 0
return clf | 47b73001f05e06bb7b01a25338c54b8398e6cf3c | 376,013 |
def get_sources(dataframe):
"""
extract sources
:param pandas.core.frame.DataFrame dataframe:
:rtype: set
:return: set of archive.org links
"""
sources = set()
for index, row in dataframe.iterrows():
sources.update(row['incident_sources'].keys())
return sources | 468c0cf6428833c9b05c06415917a516471189a5 | 700,385 |
def load_RIRE_ground_truth(file_name):
"""
Load the point sets defining the ground truth transformations for the RIRE
training dataset.
Args:
file_name (str): RIRE ground truth file name. File format is specific to
the RIRE training data, with the actual data expectd to
be in lines 15-23.
Returns:
Two lists of tuples representing the points in the "left" and "right"
coordinate systems.
"""
with open(file_name, "r") as fp:
lines = fp.readlines()
l = []
r = []
# Fiducial information is in lines 15-22, starting with the second entry.
for line in lines[15:23]:
coordinates = line.split()
l.append(
(float(coordinates[1]), float(coordinates[2]), float(coordinates[3]))
)
r.append(
(float(coordinates[4]), float(coordinates[5]), float(coordinates[6]))
)
return (l, r) | 9c7747b6fad1a10fb8cbb32162a3423e31fa40f3 | 27,368 |
def print_last_word(words):
"""Prints the last word after popping it off."""
word = words.pop(-1)
print(word)
# Poop out
result = None
return result | 35b24f63921c46e8f075a0f85fe0bd6d540b2a37 | 398,375 |
def _calc_padding_for_alignment(align, base):
"""
Returns byte padding required to move the base pointer into proper alignment
"""
rmdr = int(base) % align
if rmdr == 0:
return 0
else:
return align - rmdr | 473876dc24eefadfc174c5c3cb05820085d2e1d5 | 455,332 |
def expand_onPremisesExtensionAttributes(entry):
"""
entry - a dictionary that must have the "onPremisesExtensionAttributes" key defined
This transformer takes a dictionary, and returns the same dictionary, but with the
"onPremisesExtensionAttributes" value expanded into it's own key: value pair.
This value must initially be a JSON.
"""
for key, value in entry.get("onPremisesExtensionAttributes", {}).items():
entry[key] = value
entry.pop("onPremisesExtensionAttributes", None)
return entry | 3bcf88ff68fe92588f42ad27018a31d4935161d7 | 159,224 |
def splitclass(classofdevice):
"""
Splits the given class of device to return a 3-item tuple with the
major service class, major device class and minor device class values.
These values indicate the device's major services and the type of the
device (e.g. mobile phone, laptop, etc.). If you google for
"assigned numbers bluetooth baseband" you might find some documents
that discuss how to extract this information from the class of device.
Example:
>>> splitclass(1057036)
(129, 1, 3)
>>>
"""
if not isinstance(classofdevice, int):
try:
classofdevice = int(classofdevice)
except (TypeError, ValueError):
raise TypeError("Given device class '%s' cannot be split" % \
str(classofdevice))
data = classofdevice >> 2 # skip over the 2 "format" bits
service = data >> 11
major = (data >> 6) & 0x1F
minor = data & 0x3F
return (service, major, minor) | 37c19ab17293b4fd0c46cff24c30e349459f7bd0 | 707,830 |
def as_lines(content):
"""This function splits given ``content`` into lines if it's a string or
returns it as is if it's a list.
Args:
content: String or list of strings.
Returns:
List of strings.
"""
if isinstance(content, list):
return content
return content.split('\n') | 129d95a35e3e74837d9c168df5bcd4e6c7271d5e | 598,013 |
import random
def _get_user_agent() -> str:
"""Get a random User-Agent strings from a list of some recent real browsers
Parameters
----------
None
Returns
-------
str
random User-Agent strings
"""
user_agent_strings = [
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.10; rv:86.1) Gecko/20100101 Firefox/86.1",
"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:86.1) Gecko/20100101 Firefox/86.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:82.1) Gecko/20100101 Firefox/82.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:86.0) Gecko/20100101 Firefox/86.0",
"Mozilla/5.0 (Windows NT 10.0; WOW64; rv:86.0) Gecko/20100101 Firefox/86.0",
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.10; rv:83.0) Gecko/20100101 Firefox/83.0",
"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:84.0) Gecko/20100101 Firefox/84.0",
]
return random.choice(user_agent_strings) | bad887c3c3ee66bdb70f7f4fda4a925df0afb12d | 122,239 |
def is_numeric(lit):
"""
value of numeric: literal, string, int, float, hex, binary
From http://rosettacode.org/wiki/Determine_if_a_string_is_numeric#Python
"""
# Empty String
if len(lit) <= 0:
return lit
# Handle '0'
if lit == '0':
return 0
# Hex/Binary
if len(lit) > 1: # sometimes just '-' means no data...
litneg = lit[1:] if lit[0] == '-' else lit
if litneg[0] == '0':
if litneg[1] in 'xX':
return int(lit, 16)
elif litneg[1] in 'bB':
return int(lit, 2)
else:
try:
return int(lit, 8)
except ValueError:
pass
# Int/Float/Complex
try:
return int(lit)
except ValueError:
pass
try:
return float(lit)
except ValueError:
pass
try:
return complex(lit)
except ValueError:
pass
return lit | 75f49677274e800af93fd9f518f05d72e8f85c6c | 313,890 |
def sql_file(tmp_path):
""" Construct a file containing a SQL statement """
directory = tmp_path / "sql"
directory.mkdir()
file = directory / "sql.txt"
file.write_text("SELECT\n 1 as foo;")
return file.absolute() | e5adb73bc24519ab7547aa2ca897bcca70e4aaca | 653,561 |
def gen_file_name(output_path, title):
"""Generates the name of the PDF-file from the "doc title" in the json file.
Args:
output_path (string): relative output path
title (string): title of the file according to content.json
Returns:
string: file_name of the pdf-file
"""
file_name = output_path + title + ".pdf"
return file_name | 031e5fd78e0958c3de711c33e0357f1034a5e02d | 64,598 |
def separate_hourly_vals(hourstring):
"""Separate individual hourly field means from the string containing all
24 values in the WDC file. Called by wdc_parsefile.
Args:
hourstring (str): string containing the hourly magnetic field means
parsed from a WDC file for a single day.
Returns:
hourly_vals_list (list):
list containing the hourly field values.
"""
n = 4
hourly_vals_list = [hourstring[i:i+n] for i in range(0, len(hourstring),
n)]
return hourly_vals_list | 0f9cca7102f583ca747ba4928fcb3cec4d996a99 | 407,572 |
def get_child_object_data(raw_data):
"""
Returns key/value pairs that describe child objects in raw data
Args:
raw_data (dict):
Returns:
dict:
"""
return {k: v for k, v in raw_data.items() if k.startswith("[")} | 1ea57f62592de0ed17d9f45628ecd3d87313d654 | 453,077 |
def _GetMuteConfigIdFromFullResourceName(mute_config):
"""Gets muteConfig id from the full resource name."""
mute_config_components = mute_config.split("/")
return mute_config_components[len(mute_config_components) - 1] | 33b5c5598a156768dc4c87ddf5cc77d08cb6766e | 87,112 |
def list_contains(list1, list2):
"""Return True if any item in `list1` is also in `list2`."""
for m in list1:
for n in list2:
if n == m:
return True
return False | 37668fe6641f3c7c575c4b82dd6c3d1d4dfda974 | 265,023 |
import collections
def count_tokens(samples):
"""Count tokens in the data set."""
token_counter = collections.Counter()
for sample in samples:
for token in sample:
if token not in token_counter:
token_counter[token] = 1
else:
token_counter[token] += 1
return token_counter | 416d3450b25c3e2d1b9ab10914b45f5f848a6608 | 193,162 |
import csv
def get_consensus_sequence(seq_info):
"""
Determine the consensus sequence of an alignment.
Definition of consensus: most common base represented at that position.
"""
def output_position_matrix(position_matrix):
output_file = open('position_matrix.csv', 'w', newline='')
keys = position_matrix[0].keys()
csvwriter = csv.DictWriter(output_file, keys)
csvwriter.writeheader()
csvwriter.writerows(position_matrix)
output_file.close()
consensus_sequence = []
position_matrix = []
for position in seq_info:
#Ignore any ambiguous basecalls - accept A, T, C, G, and 'gap'
base_counts = {
'A':position['bases'].count('a'),
'T':position['bases'].count('t'),
'C':position['bases'].count('c'),
'G':position['bases'].count('g'),
'-':position['bases'].count('-'),
}
#print(base_counts)
max_basecalls = [key for key, count in base_counts.items() if count == max(base_counts.values())]
if len(max_basecalls) == 1:
consensus_sequence.append(max_basecalls[0])
else:
consensus_sequence.append('N')
#Assembling position_matrix
position_matrix.append(base_counts)
#Output position matrix
output_position_matrix(position_matrix)
return ''.join(consensus_sequence) | d0c0d8ab0ebe5686514d8769bf7e00df5dd92a36 | 551,998 |
def get_repository_from_image(image):
""" Returns the first RepoTag repository
found in image. """
repotags = image.attrs['RepoTags']
for repotag in repotags:
repository, tag = repotag.split(':')
return repository | 1fd10666caea62d2412639b64ac573cefbd77a12 | 316,680 |
def poll_for_valid_message(consumer):
"""
Polls the subscribed topics by the consumer and checks the buffer is not empty or malformed.
:param consumer: The consumer object.
:return: The message object received from polling.
"""
msg = consumer.poll()
assert not msg.error()
return msg | 50e7e48cf24427101e1db52854b540ebb2d60f9f | 570,472 |
def evaluate(pred_joins, gt_joins):
""" Evaluate the performance of fuzzy joins
Parameters
----------
pred_joins: list
A list of tuple pairs (id_l, id_r) that are predicted to be matches
gt_joins:
The ground truth matches
Returns
-------
precision: float
Precision score
recall: float
Recall score
f1: float
F1 score
"""
pred = {(l, r) for l, r in pred_joins}
gt = {(l, r) for l, r in gt_joins}
tp = pred.intersection(gt)
precision = len(tp) / len(pred)
recall = len(tp) / len(gt)
f1 = 2 * precision * recall / (precision + recall)
return precision, recall, f1 | c8c43a7d1d0905f10f21395d162b2202186989f4 | 225,030 |
def get_grouped_by_powers(bases, powers):
"""
Groups the powers and bases in the given
`~astropy.units.CompositeUnit` into positive powers and
negative powers for easy display on either side of a solidus.
Parameters
----------
bases : list of `astropy.units.UnitBase` instances
powers : list of ints
Returns
-------
positives, negatives : tuple of lists
Each element in each list is tuple of the form (*base*,
*power*). The negatives have the sign of their power reversed
(i.e. the powers are all positive).
"""
positive = []
negative = []
for base, power in zip(bases, powers):
if power < 0:
negative.append((base, -power))
elif power > 0:
positive.append((base, power))
else:
raise ValueError("Unit with 0 power")
return positive, negative | add38c3024ef25c04bccdab6093a32370725f654 | 453,522 |
def ad_group_ids_are_unique(df):
"""
This function returns True iff ad_group_ids are unique (only show up once in the rows of df)
"""
return len(df[['ad_group_id']].drop_duplicates()) == len(df) | 468834e05f7bb15282078fa0bb73ed82227fc18d | 599,750 |
import json
def loadSettings(save):
"""load ON, OFF and VOLUME_THRESHOLD settings from a file"""
try:
with open("./settings/" + save+".json", "r") as f:
data = json.load(f)
print("Loaded settings")
return data["off"], data["on"], data["vol"]
except Exception as e:
raise OSError("Invalid setting name: " + save) | 6010dc5b1e7e51d5a2da905c0906236090c8a2d1 | 295,198 |
def _function_iterator(graph):
"""Iterate over the functions in a graph.
:rtype: iter[str]
"""
return (
node.function
for node in graph
) | aaff945176f3d5754a4381cb74ad5a660a298556 | 691,013 |
from typing import Iterable
from typing import Any
def join(items: Iterable[Any], s: str) -> str:
"""Join items (probably of an array).
Example usage:
myArray|join:','
"""
return s.join(items) | 30480c3582cd7e602a7d5108b820c573908b4c22 | 561,833 |
def win_ts_to_unix_epoch(high, low):
"""Convert Windows timestamp to POSIX timestamp.
See https://goo.gl/VVX0nk
Args:
high (int): high 32 bits of windows timestamp.
low (int): low 32 bits of windows timestamp.
Returns:
float
"""
return high * ((2 ** 32) / 1e9) + low / 1e9 - 11644473600 | 6f309ec4255dd8063814ad329984f0d80afd6b36 | 79,499 |
import torch
def get_minibatch(t, y, nsub=None, tsub=None, dtype=torch.float64):
"""
Extract nsub sequences each of lenth tsub from the original dataset y.
Args:
t (np array [T]): T integration time points from the original dataset.
y (np array [N,T,d]): N observed sequences from the original dataset,
each with T datapoints where d is the dimension
of each datapoint.
nsub (int): Number of sequences to be selected from.
If Nsub is None, then all N sequences are considered.
tsub (int): Length of sequences to be returned.
If tsub is None, then sequences of length T are returned.
Returns:
tsub (torch tensor [tsub]): Integration time points (in this minibatch)
ysub (torch tensor [nsub, tsub, d]): Observed (sub)sequences (in this minibatch)
"""
# Find the number of sequences N and the length of each sequence T
[N,T] = y.shape[:2]
# If nsub is None, then consider all sequences
# Else select nsub sequences randomly
y_ = y if nsub is None else y[torch.randperm(N)[:nsub]]
# Choose the starting point of the sequences
# If tsub is None, then start from the beginning
# Else find a random starting point based on tsub
t0 = 0 if tsub is None else torch.randint(0,1+len(t)-tsub,[1]).item() # pick the initial value
tsub = T if tsub is None else tsub
# Set the data to be returned
tsub, ysub = torch.from_numpy(t[t0:t0+tsub]).type(dtype), torch.from_numpy(y_[:,t0:t0+tsub]).type(dtype)
return tsub, ysub | 7773b86be5966306c3d33827ef49353b9525f8bf | 459,783 |
def build_dependency_list(deps, version_prefix=''):
"""Build a list of dependency specifiers from a dependency map.
This can be used along with :py:data:`package_dependencies`,
:py:data:`npm_dependencies`, or other dependency dictionaries to build a
list of dependency specifiers for use on the command line or in
:file:`setup.py`.
Args:
deps (dict):
A dictionary of dependencies.
Returns:
list of unicode:
A list of dependency specifiers.
"""
new_deps = []
for dep_name, dep_details in deps.items():
if isinstance(dep_details, list):
new_deps += [
'%s%s%s; python_version%s'
% (dep_name, version_prefix, entry['version'], entry['python'])
for entry in dep_details
]
else:
new_deps.append('%s%s%s' % (dep_name, version_prefix, dep_details))
return sorted(new_deps, key=lambda s: s.lower()) | 910a250a45a21025a47ff2695f11b56d1cee910f | 170,646 |
def get_snapping_pos_line_chart_vertical(data_objects, line_pos):
"""
Calculates the nearest pos of and objects from a line chart with an vertical line.
:param data_objects: The nodes of the data objects in the chart.
:type data_objects: dict[str, PolyLineNode]
:param line_pos: The necessary position of the node of the line according to the orientation.
:type line_pos: float
:return: The nearest pos (x) of an data object in the given chart.
:rtype: float
"""
nearest_pos = []
for node in data_objects.itervalues():
nearest_pos.append(sorted(node.pos, key=lambda pos: abs(line_pos - pos[0]))[0])
return sorted(nearest_pos, key=lambda pos: abs(line_pos - pos[0]))[0][0] | bb0db8aa9280d21119fd07d85b3046453fa4ffda | 641,467 |
import collections
def read_csv(path):
"""Read data from a CSV file.
Parameters
----------
path : str
Path to the CSV file produced by the `ChessAnalysis` program.
Returns
-------
data : dict
Dictionary mapping player names to a sequence of rating values.
"""
data = collections.defaultdict(list)
with open(path) as f:
next(f) # First line is header.
for line in f:
name, year, mu, sigma = line.strip().split(",")
data[name].append((int(year), float(mu), float(sigma)))
return data | 2fc9dee72997eebbbfdd8e1958b8a7d6ce60b265 | 287,851 |
def transposed(matrix):
"""Returns the transpose of the given matrix."""
return [list(r) for r in zip(*matrix)] | 30835a1583f365b558c39e8fd1b459e79e85448e | 638,027 |
import torch
def get_backward_segment(backward_rnn_output, s, e, device):
"""Gets span representation in backward rnn
Arguments:
forward_rnn_output {tensor} -- backward rnn output
s {int} -- span start
e {int} -- span end
device {int} -- device
Returns:
tensor -- span representaion vector
"""
seq_len, hidden_size = backward_rnn_output.size()
if s >= e:
vec = torch.zeros(hidden_size, dtype=backward_rnn_output.dtype)
if device > -1:
vec = vec.cuda(device=device, non_blocking=True)
return vec
if e == seq_len:
return backward_rnn_output[s]
return backward_rnn_output[s] - backward_rnn_output[e] | 11189a690b1fb9b0420657882a47093f1099589b | 598,995 |
import math
def degToRadian(angle):
"""Convert angle from degrees to radians"""
return angle*(math.pi/180) | fcac824c69ea56e58702ead320293e760a10fe2c | 215,039 |
def get_responders(players, suggester):
""" get the responders (in the correct order) for the given suggester """
si = players.index(suggester)
return players[si+1:] + players[:si] | b64fb803c3c95ddf9080ca5bbaaf902cd61e45c2 | 430,998 |
from typing import Optional
import logging
def get_existing_handlers(handlertype) -> Optional[logging.Handler]:
"""
Returns Existing handler or None (if the handler has not yet been added to the root handlers).
"""
return next((h for h in logging.root.handlers if isinstance(h, handlertype)), None) | b5cdfbf20133fcc7629c3291f1111fe353b067af | 694,434 |
def constraints_violated(constraints):
"""
:param constraints: constraints to be evaluated
:return [0]: True if there are any constraints that are violated, false otherwise
:return [1]: Maximum violation if one or more constraints exist, else None
:return [2]: Name of the maximum constraint violated if one or more constraints exist, else None
"""
n = []
v = []
violated = False
for constraint_name, constraint in constraints.items():
n.append(constraint_name)
v.append(constraint.violation)
if constraint.violated:
violated = True
if not v:
return False, None, None
return violated, max(v), n[v.index(max(v))] | a9274c2f5de0eada038b8c4068acf3a510dc0146 | 107,653 |
def user_known(env, user):
"""Returns whether the user has ever been authenticated before."""
for row in env.db_query("""
SELECT 1
FROM session
WHERE authenticated=1 AND sid=%s
""", (user,)):
return True
return False | 97238304979f670fba5e3b7f2c09512e40db1f8e | 374,202 |
def xor(bytes1, bytes2):
"""
Xor two input bytes and return
Input: `bytes1`, `bytes2`: bytes need to xor.
Output: xor result
"""
return bytes([a ^ b for a, b in zip(bytes1, bytes2)]) | ac898cf412bb48482d2919a213934262e9d7ecda | 649,416 |
def parse_filename(filename):
"""Parse python and platform according to PEP 427 for wheels."""
stripped_filename = filename.strip(".whl")
try:
proj, vers, build, pyvers, abi, platform = stripped_filename.split("-")
except ValueError: # probably no build version available
proj, vers, pyvers, abi, platform = stripped_filename.split("-")
return (pyvers, platform) | 3f301b0939ffbb5886e827d6b7fd15a96e68d0fc | 353,551 |
def get_friendly_name(name: str) -> str:
"""Get a friendly version of a name."""
return name.replace("_", " ").title() | f66c5c8205e973d3d0c0cf0ed3acf3ea0a99e840 | 146,509 |
def crowd_comparison(p, q):
"""Crowded Comparison Operator. Return 1 means p is better than q.
Return -1 means q is better than p.
"""
if p.rank < q.rank or (p.rank == q.rank and p.distance > q.distance):
return 1
elif p.rank > q.rank or (p.rank == q.rank and p.distance < q.distance):
return -1
else:
return 0 | ae7f484feb319477b5d90476f9e4440c551041fe | 484,200 |
def standard_rb(x, baseline, amplitude, decay):
"""
Fitting function for randomized benchmarking.
:param numpy.ndarray x: Independent variable
:param float baseline: Offset value
:param float amplitude: Amplitude of exponential decay
:param float decay: Decay parameter
:return: Fit function
"""
return baseline + amplitude * decay ** x | 60d67143e16307ebd2fa8581d269570590ae6774 | 651,705 |
from typing import Callable
def abstract(method: Callable) -> Callable:
"""Marks a method as abstract"""
def wrapper(*args, **kwargs):
raise NotImplementedError(f"Missing required method {repr(method)}")
return wrapper | 70462cb5232b6b3ad2ac56b19d6da65f9eb64e9d | 286,143 |
def split_obs(obs):
"""Split a dict obs into state and images."""
return obs['state'], obs['img'] | ebb043f2b75c2a9e12883ef8fe49595c3a751483 | 38,450 |
import re
def parse_event_fields(lines, idx, event_dict):
"""
Parses lines from a proto file that contain an event definition and stores it in event_dict
"""
fields = []
end_of_event = False
# record all fields in event definition.
# note: we don't check if there's a leading brace.
while not end_of_event and idx < len(lines):
line = lines[idx].rstrip()
idx += 1
# ex 1: uint32_t numSampleCLZExecuted; // number of sample_cl_z instructions executed
# ex 2: char reason[256]; // size of reason
match = re.match(r'^(\s*)([\w\*]+)(\s+)([\w]+)(\[\d+\])*;\s*(\/\/.*)*$', line)
# group 1 -
# group 2 type
# group 3 -
# group 4 name
# group 5 [array size]
# group 6 //comment
if match:
field = {
"type": match.group(2),
"name": match.group(4),
"size": int(match.group(5)[1:-1]) if match.group(5) else 1,
"desc": match.group(6)[2:].strip() if match.group(6) else "",
}
fields.append(field)
end_of_event = re.match(r'(\s*)};', line)
event_dict['fields'] = fields
event_dict['num_fields'] = len(fields)
return idx | f7c229d4a0315e3e8a7d0adbf5b91a4105f36592 | 614,839 |
def filename_dist(dist):
""" Return the filename of a distribution. """
if hasattr(dist, 'to_filename'):
return dist.to_filename()
else:
return dist | 3791f8b03b254108a2a97bc725fd2802187367bd | 655,482 |
import logging
def create_ssh_key(nova_client, keypair_name, replace=False):
"""Create ssh key.
:param nova_client: Authenticated nova client
:type nova_client: novaclient.v2.client.Client
:param keypair_name: Label to apply to keypair in OpenStack.
:type keypair_name: str
:param replace: Whether to replace the existing keypair if it already
exists.
:type replace: str
:returns: The keypair
:rtype: nova.objects.keypair
"""
existing_keys = nova_client.keypairs.findall(name=keypair_name)
if existing_keys:
if replace:
logging.info('Deleting key(s) {}'.format(keypair_name))
for key in existing_keys:
nova_client.keypairs.delete(key)
else:
return existing_keys[0]
logging.info('Creating key %s' % (keypair_name))
return nova_client.keypairs.create(name=keypair_name) | 8b62e2378145cd9473530a390e97dd45e40a78ab | 255,236 |
def full_email(service_account):
"""Generate the full email from service account"""
return "{0}@{1}.{2}".format(service_account.name, service_account.project,
service_account.suffix) | 8b5305f794fd59b24adfefca1338db594fb799bc | 33,897 |
def str2list(string):
"""Convert a string with comma separated elements to a python list.
Parameters
----------
string: str
A string with comma with comma separated elements
Returns
-------
list
A list.
"""
string_list = [str_.rstrip(" ").lstrip(" ") for str_ in string.split(",")]
return string_list | 5563ef02e27f30a3316164c48148db62735a7469 | 372,242 |
def get_thirdparty_plugin(main_window, plugin_title):
"""Get a reference to the thirdparty plugin with the title given."""
for plugin in main_window.thirdparty_plugins:
if plugin.get_plugin_title() == plugin_title:
return plugin | cfa5bf6e0933fa253ed97e0efb5f3c61e466b430 | 131,350 |
def lopen_loc(x):
"""Extracts the line and column number for a node that may have an opening
parenthesis, brace, or bracket.
"""
lineno = x._lopen_lineno if hasattr(x, "_lopen_lineno") else x.lineno
col = x._lopen_col if hasattr(x, "_lopen_col") else x.col_offset
return lineno, col | 75545bb527dac4ab0ceffffbbd2c3f028ac4f898 | 666,509 |
import json
def open_vocab(vocab_path):
"""
Opens the json containing the vocabulary used for the word2vec
Args:
vocab_path : str
the path where the vocab json file is stored
Returns:
vocab_dic : dic
the vocab dictionnary
"""
with open(vocab_path, "r", encoding="utf-8") as vo:
vocab_dic = json.load(vo, encoding="utf-8")
return vocab_dic | 4ff7d66bc53df99581c2e06f7f64aa13978c676d | 488,345 |
def CombineMetrics(loss_metric_weight_pairs):
"""Combines metrics from `loss_metric_weight_pairs` according to weights.
Keys must either exist in all metrics, in which it will be processed as a
weighted sum, or exist in only one metrics, in which case it will be copied.
Args:
loss_metric_weight_pairs: a list of (metrics, weight) pairs, where each
weight is a float and each metrics is a dict with str keys and
(metric_value, target_weight) values.
Returns:
A dict with the same set of keys as input metrics and values of
(weighted_sum(metric_value), weighted_sum(target_weight)).
Raises:
ValueError: if there exists a metric that exists in more than one element
of `loss_metric_weight_pairs` but not in all of them.
"""
all_keys = set(
[k for loss_metrics, _ in loss_metric_weight_pairs for k in loss_metrics]) # pylint: disable=g-complex-comprehension
result = {}
for k in all_keys:
count = 0
for loss_metrics, weight in loss_metric_weight_pairs:
if k in loss_metrics:
count += 1
if count > 1 and count != len(loss_metric_weight_pairs):
raise ValueError('Found metric %s which exists in more than one'
'but not all loss metrics.' % k)
total_val = 0
total_target_weight = 0
for loss_metrics, weight in loss_metric_weight_pairs:
if k in loss_metrics:
val, target_weight = loss_metrics[k]
if count == 1:
# Single metric, don't multiply by weight.
total_val = val * target_weight
total_target_weight = target_weight
else:
# Total weighted sum of all predictions.
total_val += weight * val * target_weight
total_target_weight += weight * target_weight
result[k] = (total_val / total_target_weight, total_target_weight)
return result | f1859a6a250dcc911cd654cac9ea8aeaa0e73deb | 409,574 |
def transform_point(point, matrix):
"""Transform point by matrix.
:param list point: 2-item list
:param list matrix: 6-item list representing transformation matrix
:returns list: 2-item transformed point
"""
x, y = point
a, b, c, d, e, f = matrix
# This leaves out some unnecessary stuff from the fact that the matrix is
# homogenous coordinates.
new_x = x * a + y * c + e
new_y = x * b + y * d + f
return [new_x, new_y] | 92c16f1698db3e9b2d754aefb0b44a8bef2cf783 | 59,670 |
from typing import List
def match_shape(tensor, *expected_shape):
"""Compare the given tensor's shape with what you expect it to be.
This function serves two goals: it can be used both to assert that the size
of a tensor (or part of it) is what it should be, and to query for the size
of the unknown dimensions. The former result can be achieved with:
>>> match_shape(t, 2, 3, 4)
which is similar to
>>> assert t.size() == (2, 3, 4)
except that it doesn't use an assert (and is thus not stripped when the code
is optimized) and that it raises a TypeError (instead of an AssertionError)
with an informative error message. It works with any number of positional
arguments, including zero. If a dimension's size is not known beforehand
pass a -1: no check will be performed and the size will be returned.
>>> t = torch.empty(2, 3, 4)
>>> match_shape(t, 2, -1, 4)
3
>>> match_shape(t, -1, 3, -1)
(2, 4)
If the number of dimensions isn't known beforehand, an ellipsis can be used
as a placeholder for any number of dimensions (including zero). Their sizes
won't be returned.
>>> t = torch.empty(2, 3, 4)
>>> match_shape(t, ..., 3, -1)
4
"""
if not all(isinstance(d, int) or d is Ellipsis for d in expected_shape):
raise RuntimeError(
"Some arguments aren't ints or ellipses: %s" % (expected_shape,))
actual_shape = tensor.size()
error = TypeError("Shape doesn't match: (%s) != (%s)" % (
", ".join("%d" % d for d in actual_shape),
", ".join("..." if d is Ellipsis else "*" if d < 0 else "%d" % d
for d in expected_shape)),
)
if Ellipsis not in expected_shape:
if len(actual_shape) != len(expected_shape):
raise error
else:
if expected_shape.count(Ellipsis) > 1:
raise RuntimeError("Two or more ellipses in %s"
% (tuple(expected_shape),))
if len(actual_shape) < len(expected_shape) - 1:
raise error
pos = expected_shape.index(Ellipsis)
expected_shape = (expected_shape[:pos]
+ actual_shape[pos:pos + 1 - len(expected_shape)]
+ expected_shape[pos + 1:])
unknown_dims: List[int] = []
for actual_dim, expected_dim in zip(actual_shape, expected_shape):
if expected_dim < 0:
unknown_dims.append(actual_dim)
continue
if actual_dim != expected_dim:
raise error
if not unknown_dims:
return None
if len(unknown_dims) == 1:
return unknown_dims[0]
return tuple(unknown_dims) | 2206343129ce9b1078bcab567f3a49a66b64ecde | 600,243 |
import time
def do_work(task):
""" Sample task evaluation. Returns a result as string and an optional log message."""
time.sleep(2)
return "result", "Another information" | 3e354a7e3547428f8ab73832278838a120a9cd58 | 442,513 |
def flag(state, name, value: bool = True):
"""Set the state variable as a flag (boolean value)"""
state.vars[name] = bool(value)
return state | 7d7f42b51a900f2de647ce36ccd13bc8ae67c0b3 | 80,251 |
import json
def output_generic_from_traj(traj, out_file, name, f):
"""Creates and returns outputter function that dumps some data
about atoms to json.
The resulting file will be in the JSON Lines format, i.e. one JSON-document
on each line.
:param traj: traj object containing atoms objects.
:param outfile: open file handle that the data should be appended to.
:param str name: name of data, this will be the name of the json-field.
:param function f: lambda used to extract some data from an atoms object.
"""
def output():
values = [f(atoms) for atoms in traj]
data = {
name: values
}
json.dump(data, fp=out_file)
# Newline to generate JSON Lines data, one doc per line
out_file.write('\n')
return output | 17a07cfcf13e6ef05a7a8895b30bb4432798b6f3 | 301,268 |
def is_in_period(month, period):
"""Return which months fall within a specified group of calendar months.
Parameters
----------
month : int or iterable of ints
One or a series of calendar month numbers [1..12].
period : tuple of ints
Group of calendar month numbers to match against. These are usually
consecutive, e.g., [3, 4, 5] for MAM, but they don't have to be.
Returns
-------
return : bool or iterable of bools
True for month numbers that are in the group.
"""
try:
return [m in period for m in month]
except TypeError:
return month in period | e973f1ec11ea4dc6b87834c75d6374bbbb152635 | 10,105 |
def _append_spc_date_to_storm_ids(primary_id_strings, spc_date_string):
"""Appends SPC date to each storm ID.
N = number of storm objects
:param primary_id_strings: length-N list of primary IDs.
:param spc_date_string: SPC date (format "yyyymmdd").
:return: primary_id_strings: Same as input but with new IDs.
"""
return [
'{0:s}-{1:s}'.format(p, spc_date_string) for p in primary_id_strings
] | de5d54dfb322bdbf4ab7e261526b6e295ea1900c | 103,427 |
def get_session(monitored_sess):
""" Get Session object from MonitoredTrainingSession.
"""
session = monitored_sess
while type(session).__name__ != 'Session':
session = session._sess
return session | a377a2aeeed1cc7f625f49693adc6b1b6ee203cf | 96,268 |
def _sanitize_ipv4_mapping(ip_str):
"""
Sanitize IPv4 mapping in a expanded IPv6 address.
This converts ::ffff:0a0a:0a0a to ::ffff:10.10.10.10.
If there is nothing to sanitize, returns an unchanged
string.
Args:
ip_str: A string, the expanded IPv6 address.
Returns:
The sanitized output string, if applicable.
"""
if not ip_str.lower().startswith('0000:0000:0000:0000:0000:ffff:'):
# not an ipv4 mapping
return ip_str
hextets = ip_str.split(':')
if '.' in hextets[-1]:
# already sanitized
return ip_str
ipv4_address = "%d.%d.%d.%d" % (
int(hextets[6][0:2], 16),
int(hextets[6][2:4], 16),
int(hextets[7][0:2], 16),
int(hextets[7][2:4], 16),
)
result = ':'.join(hextets[0:6])
result += ':' + ipv4_address
return result | ece3a84d69eb5eefed1ca4908ea03b095644e89d | 552,015 |
def get_legacy_msg_type(identifier):
"""
Convert an SBP spec identifier to the message type #define identifier according to the legacy API
Only works for real messages, will assert when called for any other type
"""
assert identifier[:4] == "MSG_"
return "SBP_" + identifier | 213f469458298c8e8ec4b9f12156cb60db9561f2 | 322,515 |
def epsi_vapor_top(Fr_top):
"""
Calculates the vapor content of bubble layer at the top of column
Parameters
----------
Fr_top : float
The Frudo criterion at the top of column, [dimensionless]
Returns
-------
epsi_vapor_top : float
The vapor content of bubble layer at the top of column, [dimensionless]
References
----------
Дытнерский, страница 207, формула 5.47
"""
return Fr_top**0.5 / (1 + Fr_top**0.5) | 30157399f659514ef2a041fa19e7902773581ed4 | 503,544 |
def _create_sitelink_campaign_extension_setting_mutate_operation(
client, customer_id, campaign_id
):
"""Creates a MutateOperation for the sitelink campaign extension setting
that will be removed.
Args:
client: an initialized GoogleAdsClient instance
customer_id: the client customer ID.
campaign_id: the campaign ID.
Returns:
The created MutateOperation for the sitelink campaign extension
setting.
"""
extension_type_enum = client.enums.ExtensionTypeEnum
# Construct the campaign extension setting resource name, in format:
# customers/{customer_id}/campaignExtensionSettings/{campaign_id}~{extension_type}
resource_name = client.get_service(
"CampaignExtensionSettingService"
).campaign_extension_setting_path(
customer_id, campaign_id, extension_type_enum.SITELINK.name
)
# Create a MutateOperation for the campaign extension setting.
mutate_operation = client.get_type("MutateOperation")
mutate_operation.campaign_extension_setting_operation.remove = resource_name
return mutate_operation | 28dbaf410935b3e59c655c370aecd30ab0b465a3 | 288,776 |
def mult(value, arg):
"""Multiplies the value by the arg"""
return int(value)*int(arg) | 74afbb99fa473ffbe822ea9e44a54cc0ccb27677 | 453,038 |
def make_weights_for_balanced_classes(images, nclasses):
"""
Generates weights to get balanced classes during training. To be used with weighted random samplers.
:param images: list of training images in training set.
:param nclasses: number of classes on training set.
:return: list of weights for each training image.
"""
count = [0] * nclasses
for item in images:
count[item[1]] += 1
weight_per_class = [0.] * nclasses
N = float(sum(count))
for i in range(nclasses):
weight_per_class[i] = N / float(count[i])
weight = [0] * len(images)
for idx, val in enumerate(images):
weight[idx] = weight_per_class[val[1]]
return weight | 9d48b07161c403543174548b90ebda7b04ce760f | 603,965 |
def no_op(arg):
"""Dummy do nothing function"""
return arg | 185a29bbfbcf6598d88b6a934a5bbc47017710c2 | 319,459 |
from typing import List
def read_docs(fnames: List[str]) -> List[str]:
"""
Reads in the documents.
param fnames: List of paths to .txt files to read.
returns: List of input documents.
"""
all_docs = []
for docfile in fnames:
doc = open(docfile, 'r').read()
all_docs.append(doc)
return all_docs | 26c8bd7c31ecfd84144ee5d180ae5d41353945f3 | 69,599 |
def update_trackers(frame,trackers,penalties=0,mark_new=True):
"""Update all the trackers using the new frame
Args:
frame ([type]): new frame
trackers (List[TrackerObj]): List of trackers to update
penalties (int, optional): Amount of penaltie. Defaults to 0.
mark_new (bool, optional): Mark tracker as new or old,
if it's old, later the bounding box will be reset to be more accurate
using the detection box. Defaults to True.
Returns:
List[TrackerObj]: The updated list without destroyed trackers
"""
for trk in trackers:
trk.update(frame)
trk.new=mark_new
trk.fails+=penalties
return [tr for tr in trackers if not tr.destroy()] | 275905dbffc57639caf8a99d55a686d2f53ddf5f | 480,724 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.