content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def potential(element_symbol,functional):
"""
:param element_symbol: string, symbol of the element
:param functional: string, functional name
:return: string, GTH potential name to be used in the simulation
"""
return "GTH-"+functional | 37b3e56899da39780ed732e5afaa03652a5bf940 | 434,095 |
import grp
def gid_exists(gid):
"""Check if a gid exists"""
try:
grp.getgrgid(gid)
gid_exists = True
except KeyError:
gid_exists = False
return gid_exists | 7eee1b22cc6991579c644261e2b20fb42d967ecf | 564,879 |
import re
def kebab_case(inp):
""" Convert from `CamelCase` to `kebab-case`. """
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1-\2', inp)
return re.sub('([a-z0-9])([A-Z])', r'\1-\2', s1).lower() | 6e8d38188c213fe2efc2b8bfa43dd81b697cbcd0 | 66,282 |
def count_params(model):
"""returns (total n° of parameters, n° of trainable parameters)"""
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return total_params, trainable_params | 122d86d7c58afc7a2033edf71ad0e21eee3f6fce | 421,791 |
def sqrt(x, tolerance=0.0000001):
"""
Find a value r with r*r within tolerance of x.
"""
l = 0.0
r = float(x)
while r-l > tolerance:
m = l + 0.5*(r-l)
s = m*m
if s < x:
l = m
else:
r = m
return l | 1d3933d7d390403c92feb26e56ad6ba28b2e7e72 | 559,112 |
def _get_match(proto, filter_fn):
"""Finds and returns the first element that matches a query.
If no element matches the query, it throws ValueError.
If more than one element matches the query, it returns only the first.
"""
query = [elm for elm in proto if filter_fn(elm)]
if len(query) == 0:
raise ValueError('Could not find element')
elif len(query) > 1:
raise ValueError('Too many matches')
return query[0] | 2e3ed82cf0d12afaccae6863129cc6d81a2b7981 | 291,806 |
from typing import Dict
def get_default_metas() -> Dict:
"""
Get a copy of default meta variables.
NOTE: DO NOT ADD MORE ENTRIES HERE!
:return: a deep copy of the default metas in a new dict
"""
# NOTE: DO NOT ADD MORE ENTRIES HERE!
return {
'name': '', #: a string, the name of the executor
'description': '', #: a string, the description of this executor. It will be used in automatics docs UI
'workspace': '', #: a string, the workspace of the executor
'py_modules': '', #: a list of strings, the python dependencies of the executor
} | f05e2744cd4ea22ad3c25e9132d7508ccc94daac | 504,056 |
import math
def Critical(n1, n2):
"""Calculate critical angle in degrees."""
assert n1 > n2, "\nWarning: Critical angle is not defined, since n1 <= n2!"
return math.degrees(math.asin(n2/n1)) | 674c3588285b73b6a1be13810cc0bc2e924a1baa | 83,954 |
def openslide_can_load(file_extension: str) -> bool:
"""
Checks if the given file extension can be loaded by openslide.
:param file_extension: The file extension should be checked
:return: If the file extension can be loaded by openslide or not
"""
OPENSLIDE_FORMATS = [
"svs",
"tif",
"vms",
"vmu",
"ndpi",
"scn",
"mrxs",
"tiff",
"svslide",
"bif",
]
return file_extension.lower() in OPENSLIDE_FORMATS | 7bb5fceb373eef1cedcdef7896101728b1c84dfa | 372,011 |
def alt_text_to_curly_bracket(text):
"""
Converts the text that appears in the alt attribute of image tags from gatherer
to a curly-bracket mana notation.
ex: 'Green'->{G}, 'Blue or Red'->{U/R}
'Variable Colorless' -> {XC}
'Colorless' -> {C}
'N colorless' -> {N}, where N is some number
"""
def convert_color_to_letter(color):
if color.lower() not in ('red', 'white', 'blue', 'green', 'black', 'colorless', 'tap', 'energy'):
# some cards have weird split mana costs where you can pay N colorless
# or one of a specific color.
# Since we're ending up here, and what we're given isn't a color, lets assume its N
return color
else:
if color.lower() == 'blue': return 'U'
else: return color[0].upper()
try:
val = int(text, 10)
except Exception:
pass
else:
# This is just a number. Easy enough.
return f"{{{text}}}"
if ' or ' in text:
# this is a compound color, not as easy to deal with.
text = text.replace('or', '')
text = '/'.join([convert_color_to_letter(x) for x in text.split()])
else:
if 'Variable' in text:
text = 'X'
else:
# hopefully all that's left is just simple color symbols.
text = convert_color_to_letter(text)
# at this point we've hopefully
return f"{{{text}}}" | c604b236a8d0baeff244e0e246176a406674c9e2 | 709,995 |
def diffusion_coefficient(mol_vol, wat_viscosity = 10**-3):
"""
Return the diffusion coefficent [m²/s]
source : (HNS-MS)
Parameters
----------
mol_vol : Molar volume of the component [mol/m³]
wat_viscosity : Dynamic viscosity of water [Pa s]
"""
return (13.26*10**-5)/((wat_viscosity*1000)**1.14 * (mol_vol*100**3)**0.589)/(100*100) | 6bf3d4559404cff016ff8e70d8ae0f1041f3a1f0 | 302,468 |
def bacon_strategy(score, opponent_score, margin=8, num_rolls=4):
"""This strategy rolls 0 dice if that gives at least MARGIN points,
and rolls NUM_ROLLS otherwise.
"""
# BEGIN PROBLEM 9
"*** REPLACE THIS LINE ***"
return 4 # Replace this statement
# END PROBLEM 9 | 2188aeba464bb5b5796e6a0c2837165f04d5dc07 | 388,880 |
def project_to_2D(xyz):
"""Projection to (0, X, Z) plane."""
return xyz[0], xyz[2] | c6cdb8bd6dce65f6ce39b14b9e56622832f35752 | 2,634 |
def get_unique_identifier(item):
"""Return unique item identifier
The complete format is {database}/{uri}_{channel}:
* prefixed by "{database}/" only when `item` has a 'database' key.
* suffixed by "_{channel}" only when `item` has a 'channel' key.
Parameters
----------
item : dict
Item as yielded by pyannote.database protocols
Returns
-------
identifier : str
Unique item identifier
"""
IDENTIFIER = ""
# {database}/{uri}_{channel}
database = item.get('database', None)
if database is not None:
IDENTIFIER += "{database}/"
IDENTIFIER += "{uri}"
channel = item.get('channel', None)
if channel is not None:
IDENTIFIER += "_{channel:d}"
return IDENTIFIER.format(**item) | 62425e89441553756e5ebe557b8d503e0e898b5c | 526,953 |
def find_zeros(matrix):
"""Returns a dict with list of rows and columns that contain zeros
within the matrix
>>> zero_coordinates = find_zeros([['0', 'w', 'e'], ['a', 's', 'd'], ['z', 'x', '0']])
>>> sorted(zero_coordinates.items())
[('columns', [0, 2]), ('rows', [0, 2])]
"""
rows = []
columns = []
coordinates = {'rows': rows, 'columns': columns}
for list_number, list in enumerate(matrix):
for element_number, element in enumerate(list):
if element == '0':
coordinates['rows'].append(list_number)
coordinates['columns'].append(element_number)
return coordinates | 768f2622a4943a9555d3b3057eb2cfe3d88dd4d1 | 547,791 |
import torch
def _get_strided(waveform, window_size, window_shift, snip_edges):
""" Given a waveform (1D tensor of size num_samples), it returns a 2D tensor (m, window_size)
representing how the window is shifted along the waveform. Each row is a frame.
Inputs:
sig (Tensor): Tensor of size num_samples
window_size (int): Frame length
window_shift (int): Frame shift
snip_edges (bool): If True, end effects will be handled by outputting only frames that completely fit
in the file, and the number of frames depends on the frame_length. If False, the number of frames
depends only on the frame_shift, and we reflect the data at the ends.
Output:
Tensor: 2D tensor of size (m, window_size) where each row is a frame
"""
assert waveform.dim() == 1
num_samples = waveform.size(0)
strides = (window_shift * waveform.stride(0), waveform.stride(0))
if snip_edges:
if num_samples < window_size:
return torch.empty((0, 0))
else:
m = 1 + (num_samples - window_size) // window_shift
else:
reversed_waveform = torch.flip(waveform, [0])
m = (num_samples + (window_shift // 2)) // window_shift
pad = window_size // 2 - window_shift // 2
pad_right = reversed_waveform
if pad > 0:
# torch.nn.functional.pad returns [2,1,0,1,2] for 'reflect'
# but we want [2, 1, 0, 0, 1, 2]
pad_left = reversed_waveform[-pad:]
waveform = torch.cat((pad_left, waveform, pad_right), dim=0)
else:
# pad is negative so we want to trim the waveform at the front
waveform = torch.cat((waveform[-pad:], pad_right), dim=0)
sizes = (m, window_size)
return waveform.as_strided(sizes, strides) | f5ed429866926afc7a3915439fd84dbdd6352357 | 77,149 |
def true(m):
"""The membership-value is its own truth-value."""
return m | dea1e84a82f4578b7ab5fb97d18228525017b68d | 432,507 |
def euclidean_gcd(a, b):
"""
使用欧几里得算法, 计算两个数的最大公约数
:param a:
:param b:
:return: gcd(a,b)
"""
if a == 0 and b == 0:
return 0
elif a == 0 and b != 0:
return b
elif a != 0 and b == 0:
return a
while b != 0:
# 不使用 % , 因为 % 在不同的编程语言中的结果可能是不同的(虽然都是同余的)
# a, b = b, a % b
q = int(a / b)
r = a - q * b
a, b = b, r
return a | 64cde498d858fee9073b88e82e0caf5d90f5cb92 | 457,887 |
def unique_trees(msts):
"""
Test whether a list of minimum spanning trees are unique.
Args:
msts (list, nx.Graph): list of minimum spanning trees.
Returns:
(boolean): whether all trees in the list are unique.
"""
for i, mst1 in enumerate(msts):
for j, mst2 in enumerate(msts):
if i != j:
mst1_edges = set(mst1.edges)
mst2_edges = set(mst2.edges)
if len(mst1_edges.difference(mst2_edges)) == 0:
return False
return True | 9d7e2231adf376317f49e7ed438da632553ce76f | 597,967 |
def get_rank(c, domain):
"""Gets the alexa rank for a domain. Returns False if not found"""
entry = c['domains'].find_one({'domain':domain.replace(".", "#")}, {'alexa.rank.latest':1})
try:
return entry['alexa']['rank']['latest']
except Exception:
return False | c7b531ab9c431be4b440f8d14499ce5902dd3e30 | 191,963 |
def lazy_property(func):
""" Decorator that makes a property lazy-evaluated, i.e. only set
on first access.
"""
attr_name = '_%s' % func.__name__
docstring = func.__doc__
@property
def _lazy_property(self):
try:
return getattr(self, attr_name)
except AttributeError:
value = func(self)
setattr(self, attr_name, value)
return value
return _lazy_property | f8aad68b0469c135a748e8583057b652f66770bc | 248,062 |
import functools
import logging
import time
def RetryOnException(exc_type, retries):
"""Decorator to retry running a function if an exception is raised.
Implements exponential backoff to wait between each retry attempt, starting
with 1 second.
Note: the default number of retries is defined on the decorator, the decorated
function *must* also receive a "retries" argument (although its assigned
default value is ignored), and clients of the funtion may override the actual
number of retries at the call site.
The "unused" retries argument on the decorated function must be given to
keep pylint happy and to avoid breaking the Principle of Least Astonishment
if the decorator were to change the signature of the function.
For example:
@retry_util.RetryOnException(OSError, retries=3) # default no. of retries
def ProcessSomething(thing, retries=None): # this default value is ignored
del retries # Unused. Handled by the decorator.
# Do your thing processing here, maybe sometimes raising exeptions.
ProcessSomething(a_thing) # retries 3 times.
ProcessSomething(b_thing, retries=5) # retries 5 times.
Args:
exc_type: An exception type (or a tuple of them), on which to retry.
retries: Default number of extra attempts to try, the caller may also
override this number. If an exception is raised during the last try,
then the exception is not caught and passed back to the caller.
"""
def Decorator(f):
@functools.wraps(f)
def Wrapper(*args, **kwargs):
wait = 1
kwargs.setdefault('retries', retries)
for _ in range(kwargs['retries']):
try:
return f(*args, **kwargs)
except exc_type as exc:
logging.warning(
'%s raised %s, will retry in %d second%s ...',
f.__name__, type(exc).__name__, wait, '' if wait == 1 else 's')
time.sleep(wait)
wait *= 2
# Last try with no exception catching.
return f(*args, **kwargs)
return Wrapper
return Decorator | ea87117cd202cbc6ce5bc4fc9fb25a5b8a324e1f | 34,974 |
def write(*args, **kwargs):
"""
Wrapper for print function or print to ensure compatibility with python 2
The arguments are used similarly as the print_function
They can also be generalized to python 2 cases
"""
return print(*args, **kwargs) | f6bfcc9f72bf1fcfad0dbec56f4bce185df1fa04 | 667,489 |
def get_object_attrs(obj):
"""
Get the attributes of an object using dir.
This filters protected attributes
"""
attrs = [k for k in dir(obj) if not k.startswith('__')]
if not attrs:
attrs = dir(obj)
return attrs | 0fdc4d9e7c889493ce7e471f86ccfaa889151bdc | 522,762 |
def getPath(keyword, topicNames, topicPaths, topicIDs):
"""
Function to get the path of a particular keyword in ACM Tree.
Parameters:
keyword (string) - the keyword for which we want the path.
topicNames (dictionary) - the name of the topic as the key and the topic ID number as value.
topicPaths (dictionary) - the topic ID as the key, and its parent as value.
topicIDs (dictionary) - the topic ID as the key, and the topic name as the value.
Returns:
path (list) - the path of that keyword (backwards)
"""
topicId = topicNames[keyword]
path = [keyword]
topicParent = topicPaths[topicId]
#Start from the keyword and backtrack until the first parent.
while topicParent != 0:
curr = topicIDs[topicParent]
path.append(curr)
topicParent = topicPaths[topicParent]
return path | 22dd07a92290c4a7b9e1baf70ef0cc98960b4520 | 693,871 |
def wrapper(f, *arg, **kwargs):
""" Wrap a function and its arguments into a mapping function for
ImageCollections. The first parameter of the functions must be an Image,
and it must return an Image.
:param f: the function to be wrapped
:type f: function
:return: a function to use in ee.ImageCollection.map
:rtype: function
"""
def wrap(img):
return f(img, *arg, **kwargs)
return wrap | ae22f84131d0b32b4bc2e353b91203f2ff7badd3 | 183,520 |
def append(l: list, obj: object) -> list:
"""Extend or append to list"""
if isinstance(obj, list):
l.extend(obj)
else:
l.append(obj)
return l | 21996e2f36baf323a44459b8d9eb9602f87df761 | 52,295 |
import random
def new_path(existing_path):
"""Switch two random consecutive points on a path
Arguments received:
existing_path -- list of coordinates, e.g. [(0, 0), (10, 5), (10, 10)], representing a path
Arguments returned:
path -- list of coordinates representing the mutated path
"""
path = existing_path[:]
point = random.randint(0, len(path)-2) # randomly choose a point between 1st and 2nd-to-last points on path
path[point+1], path[point] = path[point], path[point+1] # switch this point with the next point
return path | a3a28f2e3570c66b37263f5408a774cac65410fc | 549,367 |
def format_node(node, indent, depth, to_str=str):
"""Return string of graph node based on arguments.
Args
node: tuple of two items
indent: string of tree indentation chars
depth: int of tree depth, 0 = root
to_str: function to convert node to string, by default str
Returns
String representaiton of node.
"""
space = ' ' * ((len(indent) + 1) * (depth - 1))
leader = '|' + indent if depth > 0 else ''
return space + leader + to_str(node) | 50a63b9ec8b663b91a3161db4776ed5d719b6599 | 471,002 |
import typing
def is_type(input_object, expected_type) -> bool:
"""
Check if an object corresponds to a given type.
Works similarly to isinstance but also works on select 'typing' types.
"""
try:
module = expected_type.__module__
except AttributeError:
module = "default"
if module == "typing":
if isinstance(input_object, dict):
right_types = []
for key, value in input_object.items():
right_types.append(
all([
isinstance(key, expected_type.__args__[0]),
isinstance(value, expected_type.__args__[1])
])
)
return all(right_types)
if isinstance(input_object, (list, tuple)):
accepted_types = expected_type.__args__
if not isinstance(accepted_types, list):
accepted_types = [accepted_types] * len(input_object)
right_types = [is_type(element, accepted_types[i]) for i, element in enumerate(input_object)]
return all(right_types)
if expected_type.__origin__ == typing.Union:
for accepted_type in expected_type.__args__:
if isinstance(input_object, accepted_type):
return True
return False
if input_object is None:
if expected_type is None:
return True
return False
return isinstance(input_object, expected_type) | 027ccfb42b41d53ee6d222563a54917ce7c9a184 | 285,584 |
def snapToGround(world, location):
"""Mutates @location to have the same z-coordinate as the nearest waypoint in @world."""
waypoint = world.get_map().get_waypoint(location)
location.z = waypoint.transform.location.z + 0.5
return location | 2827231c7f2b491ca59f23a48c4420a945bcf7a3 | 214,887 |
def time_series_estimates(data_y, nei_x, wei_x):
"""Return estimates of variable $Y$ from variable $X$'s shadow data cloud.
Params
------
data_y (np.ndarray): 1D array of variable $Y$'s time series data.
nei_x (np.ndarray): $M \times (N+1)$ array of time indices of nearest
neighbors in $X$'s shadow data cloud, where $M$ is the
number of points in the shadow data cloud.
wei_x (np.ndarray): Array of corresponding weights of the nearest
neighbors in $X$'s shadow data cloud.
Returns
-------
ests (np.ndarray): Length-$M$ 1D array of estimates of $Y$'s time series.
Notes
-----
Let $t_1, t_2, ..., t_{N+1}$ be the time indices of nearest neighbor of
point $t$ in $X$'s shadow data cloud. Its corresponding estimates of $Y$
is $\hat{Y}(t) = \sum_{k=1}^{N+1} w(t_k) Y(t_k)$, where $w$s are weights of
nearest neighbors.
"""
ests = (data_y[nei_x] * wei_x).sum(axis=1)
return ests | 929121aec4aab9d9a32fdfe67a9093c30e2cd573 | 473,036 |
import re
def shortstr(string):
"""
Shorten string by removing long floats
:param string: string, e.g. '#810002 scan eta 74.89533603616637 76.49533603616636 0.02 pil3_100k 1 roi2'
:return: shorter string, e.g. '#810002 scan eta 74.895 76.495 0.02 pil3_100k 1 roi2'
"""
#return re.sub(r'(\d\d\d)\d{4,}', r'\1', string)
def subfun(m):
return str(round(float(m.group()), 3))
return re.sub(r'\d+\.\d{5,}', subfun, string) | 377a9a5ed8f7d2831eb505cbe72910fd688addcf | 105,492 |
def _Chunk(items, chunk_size):
"""Breaks a long list into sub-lists of a particular size."""
chunks = []
for i in range(0, len(items), chunk_size):
chunks.append(items[i:i + chunk_size])
return chunks | c45884833f77a5ecfc9852764f7dc8282fdc0ae2 | 236,206 |
def are_words_in_word_list(
words, word_list, case_sensitive=False, get_score=False, all_must_match=True
):
"""Checks if word(s) are contained in another word list.
The search can be performed with or without case sensitivity.
The check words can contain wildcards, e.g. "abc*" to allow
a wider range of matches against the word list."""
if not isinstance(words, list):
check_words = [words]
else:
check_words = words
found = {}
for w in check_words:
word = w.lower() if not case_sensitive else w
if "*" in word:
idx = word.find("*") - 1
word = word[:idx]
for wl in word_list:
wl = wl.lower() if not case_sensitive else wl
if wl.startswith(word):
found[word] = True
if all_must_match and len(found) == len(check_words):
if get_score:
return True, len(found)
return True
if not all_must_match and len(found) > 0:
if get_score:
return True, len(found)
return True
if get_score:
return False, len(found)
return False | f1fa12e313fb65cf8606c7f81cc16b99b9e35c58 | 684,252 |
import math
def rounding_repeats(repeats, d_multiplier):
""" Round number of filters based on depth multiplier. """
if not d_multiplier:
return repeats
return int(math.ceil(d_multiplier * repeats)) | 76cd3208ca3fd86fcc87bab45c35f09a8cba6f57 | 198,934 |
def str_to_bool(str_bool):
""" Helper function to convert string to boolean. """
if str_bool == "False":
return False
return True | c38a2d9ea15f1cf37edcf890c1e79216befe3ef7 | 261,176 |
def make_matrix(num_rows, num_cols, entry_fn):
"""returns a num_rows x num_cols matrix
whose (i,j)th entry is entry_fn(i, j)"""
return [[entry_fn(i, j) # given i, create a list
for j in range(num_cols)] # [entry_fn(i, 0), ...]
for i in range(num_rows)] | e3a1719dd884ffdd5f7e81c50957943d9dd91ca5 | 481,481 |
def retain_truthy(iterable):
"""Retain those items which evaluate to True in a boolean context.
Args:
iterable: The iterable series of items to be filtered.
Returns:
An iterable series of items for which bool(item) is True.
"""
return filter(None, iterable) | 4a518b9820e0d14357dc6e8f998df8beb111a90d | 242,490 |
import csv
def make_run_list(run_csvs):
"""
Reads list of csvs to give performance of the different
hyperparameter settings.
Returns
-------
data_list : list of numpy.ndarrays
performance of different hyperaparameter settings
for the csvs given as input.
"""
data_list = []
for a_csv in run_csvs:
with open(a_csv, 'r') as f:
reader = csv.reader(f)
data_as_list = list(reader)
f.close()
data_list.append(data_as_list)
return data_list | e8d931ff89f6a68a3bc7d4bd28537560b1ac7faa | 366,493 |
def elem_to_dict(elem):
""" Used to convert the 'attributes' element to a dict for easy value access during beat slicing.
This is a dict of str:list. Each list contains more dicts like this.
The reason we have a list of dicts (as opposed to a single dict) is because we index by tag name,
but we can have multiple of the same tag as children (e.g. multiple <clef>s in <attributes>)
:param elem: The element to convert.
:type elem: ET.Element
:return: A nested dict representation of the element.
The key (tag) maps to a list of elements with that tag (each with its own dictionary).
:rtype: dict[str, list[dict]]
"""
d = {'text': elem.text, 'tail': elem.tail, 'attrib': elem.attrib}
if elem:
for child in elem:
if child.tag not in d:
d[child.tag] = []
d[child.tag].append(elem_to_dict(child))
return d | 5d4e96d4a4c7987a335d8b2aee21a85ad2e09228 | 501,663 |
def _get_resource_path(path):
"""Transform the path into a URL."""
return u'/%s' % path | 4d8ba3d6f643dd04492ea25b01b6633f0a51e910 | 108,934 |
def A2CLoss(x, log_prob_fn, **unused_kwargs):
"""Definition of the Advantage Actor Critic (A2C) loss."""
(predictions, actions, advantages, old_log_probs) = x
del old_log_probs # Not used in A2C.
action_log_probs = log_prob_fn(predictions, actions)
return -(action_log_probs * advantages).mean() | 0b653965eb7bbac1b03535a0edddc0c66ce7920d | 281,631 |
def create_url(users):
"""Create GET endpoint to get fetch handle information
Args:
users: List of twitter handles
Returns:
URL for GET call to get handle information
"""
str1 = ','.join(users)
usernames = "usernames=" + str1
user_fields = "user.fields=description,created_at,location,pinned_tweet_id,profile_image_url,protected," \
"public_metrics,url,verified"
url = f"https://api.twitter.com/2/users/by?{usernames}&{user_fields}"
return url | b3dd3a4d62ea64485215f7bd54fe947674209b22 | 343,316 |
import hashlib
def string_to_md5(content: str) -> str:
"""
Take a string and calculate its md5 hash (as a string).
"""
encoded = content.encode("utf8")
return hashlib.md5(encoded).hexdigest() | 1949385c5f95af092147b6576647769f79318109 | 77,809 |
def ppi_pm(g):
"""
True if any rows in the group have source PPI/PM
:param g: DataFrameGroupBy instance with a 'source' column
"""
return g['source'].isin(['PPI/PM']).any() | aeff1b16719ab1ffb2e4be0cd7ed2722930b39e6 | 402,357 |
def get_branch_col(svn_look_line, branches_map):
"""
For each project we have a list of branches which should be merged for it.
this method will take the svn_look_line returned by svn look command
and return the relevant branches map for it.
Args:
svn_look_line: Will deduce the relevant branches and project for this svn look line.
BRANCHES_MAP: All projects with all their assigned branches.
Returns:
The relevant branches for the provided svn look line.
"""
for branches_col in branches_map:
for branch in branches_map[branches_col]:
if svn_look_line.find(branch) != -1:
return branches_map[branches_col] | e6eeb6481aab3fa7f5bf747c985025568682b429 | 454,121 |
def _clear_entity_type_registry(entity, **kwargs):
"""Clear the given database/collection object's type registry."""
codecopts = entity.codec_options.with_options(type_registry=None)
return entity.with_options(codec_options=codecopts, **kwargs) | e8901dba01bdebae3415673568cf85c7134a6161 | 635,796 |
def _eth(dst, src, data):
"""Builds an Ethernet frame with and IP packet as payload"""
packet = (
dst + # dst
src + # src
b'' + # vlan
b'\x08\x00' # type
) + data
return packet | 05380967005e5608c9dc83430cc43e9f08096e0b | 78,450 |
import hashlib
def _digest(data):
"""SHA1 hash digest of message data.
Implements RFC2437, 9.2.1 EMSA-PKCS1-v1_5, Step 1. for "Hash = SHA1"
Args:
data: str of bytes to digest
Returns:
str: of bytes of digest from "data"
"""
hasher = hashlib.sha1()
hasher.update(data)
return hasher.digest() | fc34c0c8ba7373d841b5255b31f8f56d31af6ecc | 177,480 |
def int_addr(addr):
"""Gets the integer representation of an address"""
return int(addr[1:]) | 3f00ae151bff20516fbaddda73feb147aa1c8424 | 50,783 |
def get_lastfm_high_water_mark(config):
"""Get the marker for the latest last.fm track processed."""
if (not config.has_section('lastfm') or
not config.has_option('lastfm', 'last_timestamp')):
return 1
return config.getint('lastfm', 'last_timestamp') | ad5eab3b59e9b642cc3964af77bdf7d868d6914f | 582,333 |
def resolve_value(obj, _):
"""Convert 'value' from bytes to string."""
return obj.value.decode() | e1a3b14d5f49ef06fae51604fd549997b102a60a | 381,463 |
def step(x):
""" A neighbor of x is either 2*x or x+3"""
return [x+3, 2*x] | 49a9139e452bbc0abbc5ba86a5dba86a35302495 | 152,495 |
def get_config_part(config_parent, match_key, match_value):
"""
helper function to filter a dict by a dict key
:param dict_: ``dict``
:param key: dict key
:param value: dict key value
:returns: filtered ``dict``
"""
return {k: v for (k, v) in config_parent.items() if v[match_key] == match_value} | d92a5ad9135df3fb827701ecf0fdc31ba69c4f8d | 634,136 |
def read_scalar(group, dataset_name):
"""
Read a HDF5 `SCALAR` as a dict.
All attributes will be assigned as key: value pairs, and the
scalar value will be assigned the key name 'value'.
:param group:
A h5py `Group` or `File` object from which to write the
dataset to.
:param dataset_name:
A `str` containing the pathname of the dataset location.
:return:
A `dict` containing the SCALAR value as well as any
attributes coupled with the SCALAR dataset.
"""
dataset = group[dataset_name]
data = {k: v for k, v in dataset.attrs.items()}
data["value"] = dataset[()]
return data | 6d9908e64f6584d0128756778679f87ffc8cb46f | 697,094 |
def decompressCmd(path, default="cat"):
""""return the command to decompress the file to stdout, or default if not compressed, which defaults
to the `cat' command, so that it just gets written through"""
if path.endswith(".Z") or path.endswith(".gz"):
return "zcat"
elif path.endswith(".bz2"):
return "bzcat"
else:
return default | 4d3a56219497a0daa74fb7d3cf8f373157184d8b | 421,016 |
def _merge_meta(epi_ref, meta_list):
"""Prepare a tuple of EPI reference and metadata."""
return (epi_ref, meta_list[0]) | 3b9795c39d53a28251e9b08b89544e013619c908 | 447,069 |
def fast_tokenize(text, ln, tokenizer, mark=True):
"""
Tokenizes a text given a language and a tokenizer. In addition to the tokenization provided by the passed tokenizer:
- lowercases the text;
- replaces all digits with 0s;
- marks tokens with a langaguage marker ("_ln").
Returns a list of strings.
"""
text = text.lower()
text = ''.join("0" if c.isdigit() else c for c in text)
tokens = tokenizer.tokenize(text)
if mark:
for i, t in enumerate(tokens):
tokens[i] = t + '_' + ln
return tokens | 5f01e948fe50b4096c87ec6f680ae246428c6fab | 478,080 |
def get_sample_count(frame_count, samples_per_frame):
"""Get sample count.
:param frame_count: Count of frames.
:type frame_count: int
:param samples_per_frame: Samples per frame.
:type samples_per_frame: int
:return: Sample count
:rtype: int
"""
return frame_count * samples_per_frame | bdfd79305f9f3900cc2baa8122909e314cab9aaa | 205,831 |
def discretize(y_pred):
"""
Converts the predicted results from a continuous variable to five readability levels.
"""
for i in range(len(y_pred)):
if y_pred[i] < 0.5:
y_pred[i] = 0.0
elif y_pred[i] < 1.5:
y_pred[i] = 1.0
elif y_pred[i] < 2.5:
y_pred[i] = 2.0
elif y_pred[i] < 3.5:
y_pred[i] = 3.0
else:
y_pred[i] = 4.0
return y_pred | 29d9dc108c26444af468536b32aa2a4e2d2eed83 | 357,792 |
import math
def rad2deg(angle):
"""Converts value in radians to degrees."""
return angle * 180.0 / math.pi | 9f2390f3f9c97a7ce5db87c7a1dbbee0a5818099 | 275,550 |
import torch
def broadcast(tensor, devices):
"""Broadcasts a tensor to a number of GPUs.
Arguments:
tensor (Tensor): tensor to broadcast.
devices (Iterable): an iterable of devices among which to broadcast.
Note that it should be like (src, dst1, dst2, ...), the first element
of which is the source device to broadcast from.
Returns:
A tuple containing copies of the ``tensor``, placed on devices
corresponding to indices from ``devices``.
"""
return torch._C._broadcast(tensor, devices) | 3ded00742909d67e4cea0275e053af7c260bfad4 | 235,923 |
from typing import Set
from typing import Tuple
from typing import Dict
def _valid_bond(used_partitions: Set[int], bond: Tuple[int, int],
current_partition: int,
comp_map: Dict[int, int]) -> Tuple[bool, int]:
"""Helper method to find next partition to explore.
Used to check if a bond goes from the current partition into a
partition that is not yet explored
Parameters
----------
used_partions: Set[int]
Partitions which have already been used
bond: Tuple[int, int]
The bond to check if it goes to an unexplored partition.
This tuple is (from_atom, to_atom).
current_partition: int
The current partition of the DFS
comp_map: Dict[int, int]
Maps atom ids to component ids
Returns
-------
is_valid: bool
Whether to exist the next partition or not
next_partition: int
The next partition to explore
"""
part1 = comp_map[bond[0]]
part2 = comp_map[bond[1]]
if part1 != current_partition and part2 != current_partition:
return False, 0
if part1 == current_partition:
next_partition = part2
else:
next_partition = part1
return next_partition not in used_partitions, next_partition | f8b9bea8e2d8f27f2eeaf852bdf826fef3b97ae8 | 461,045 |
def get_loss_group(self, group, felec):
"""Get loss power for given group from coefficients stored in coeff dict
Parameter
---------
self : OutLoss
an OutLoss object
group: str
Name of part for which to calculate loss function
Return
------
Ploss : float
loss power for given group [W]
"""
if group in self.coeff_dict:
coeff_dict = self.coeff_dict[group]
Ploss = (
coeff_dict["A"] * felec ** coeff_dict["a"]
+ coeff_dict["B"] * felec ** coeff_dict["b"]
+ coeff_dict["C"] * felec ** coeff_dict["c"]
)
else:
Ploss = 0
return Ploss | edd650ddc6e3e5c3cb7f13a6943a0a6379b3cba8 | 265,719 |
def _evalues_score_gap_tuple(ranked_scores):
"""
ranked list of 3-part tuples, returns a 2-part tuple with max score and gap to next best socre
:param ranked_scores: ranked list of 3-part tuples [(id,score,evalue),...,(id,score,evalue)]
:return: tuple (float, float) 0: ranked alignment score, 1: the gap between best and next best
"""
if len(ranked_scores) > 1: # if there was more than one hit
# ranked_scores of form [(id, score, evalue),(id, score, evalue)]
score_gap = ranked_scores[0][1] - ranked_scores[1][1]
r = (ranked_scores[0][2], score_gap)
elif len(ranked_scores) == 1: # for the case where there was only one hit
r = (ranked_scores[0][2], -99)
else:
r = (-99, -99)
return(r) | 8e95704f67026038eef324a184d77f959b37655a | 531,204 |
def readFile(file, defStr = None, mode = "r"):
""" read a file and return its contents """
ret = defStr
try:
with open(file, mode) as f:
ret = f.read()
except Exception as e:
if defStr is not None:
ret = defStr
pass
else:
raise e
return ret | 296532a8a8682ac5a9b51477e9be71b864a5fd3c | 386,665 |
def get_arbitrage(odds):
"""
Calculate Arbitrage to find out, whether a book is worth it.
If the arbitrage is greater than 1 you are guaranteed to loose money, if it's below 1 you are guaranteed to make money.
"""
a = 0
for odd in odds:
a += 1/odd
return a | 43aa9bc5bdd4786951391c4509ec51076b32901e | 382,654 |
from typing import List
from typing import Any
import random
def generate_random_batches(values: List[Any], min_batch_size: int, max_batch_size: int) -> List[List[Any]]:
"""
Generate random batches of elements in values without replacement and return the list of all batches. Batch sizes
can be anything between min_batch_size and max_batch_size including the end points.
"""
shuffled_values = values.copy()
random.shuffle(shuffled_values)
start_id = 0
grouped_values_list = []
while start_id < len(shuffled_values):
num_values = random.randint(min_batch_size, max_batch_size)
grouped_values_list.append(shuffled_values[start_id : start_id + num_values])
start_id += num_values
assert sum([len(_) for _ in grouped_values_list]) == len(values)
return grouped_values_list | ab122041de32fb731251dacc5cfac77888e8ae03 | 642,653 |
def _set_cdict(HighRGB, MediumRGB, LowRGB):
"""
Helper function used to set color map from 3 RGB values.
Args:
HighRGB: RGB with highest values
MediumRGB: RGB with medium values
LowRGB: RGB with lowest values
Returns:
dictionary with colors and localizations on color bar.
"""
cdict = {'red': ((0.0, LowRGB[0], LowRGB[0]),
(0.5, MediumRGB[0], MediumRGB[0]),
(1.0, HighRGB[0], HighRGB[0])),
'green': ((0.0, LowRGB[1], LowRGB[1]),
(0.5, MediumRGB[1], MediumRGB[1]),
(1.0, HighRGB[1], HighRGB[1])),
'blue': ((0.0, LowRGB[2], LowRGB[2]),
(0.5, MediumRGB[2], MediumRGB[2]),
(1.0, HighRGB[2], HighRGB[2]))}
return cdict | b3525e65f88d196989b2bbf8da9e108b8f9f6bde | 336,755 |
from pathlib import Path
def paths_to_relative(root, paths):
"""
Converts a list of absolute paths to paths relative to the the
root project path.
"""
return list(map(lambda x: str(Path(x).relative_to(root)), paths)) | d0bdc68c76b6953d629f99f0c5db4d26174be390 | 477,155 |
def format_sequence_search_terms(sequence, filter_terms=None):
"""
Format parameters for a sequence search
:param str sequence: one letter sequence
:param lst filter_terms: Terms to filter the results by
:return str: search string
"""
params = {
'json.nl': 'map',
'start': '0',
'sort': 'fasta(e_value) asc',
'xjoin_fasta': 'true',
'bf': 'fasta(percentIdentity)',
'xjoin_fasta.external.expupperlim': '0.1',
'xjoin_fasta.external.sequence': sequence,
'q': '*:*',
'fq': '{!xjoin}xjoin_fasta'
}
if filter_terms:
for term in ['pdb_id', 'entity_id', 'entry_entity', 'chain_id']:
filter_terms.append(term)
filter_terms = list(set(filter_terms))
params['fl'] = ','.join(filter_terms)
return params | 64dba7ea091723e92eece9c00668e7ef1b2654a9 | 187,721 |
def get_regex(keyword, template):
"""
Turn a keyword into a regex, according to a template id:
- template 0 is for stems
- template 1 is for one-word expressions
- template 2 is for two-word expressions; the two words can appear in the sentence in different order with optional other words in between them
Parameters
----------
keyword: str
template: int
Returns
-------
regex: str
"""
if template == 0:
return rf"\b{keyword}.*?\b"
elif template == 1:
return rf"\b{keyword}\b"
elif template == 2:
kwd1, kwd2 = keyword.split(' ')
return rf"\b{kwd1}\b[^.]*?\b{kwd2}\b|\b{kwd2}\b[^.]*?\b{kwd1}\b" | 7f6cc46db9bf0d91b0ccd6baba6b35ebc81fa8c6 | 452,688 |
def get_parameter_for_suite(suite_name):
"""Return a parameter for which suite to run the tests for.
Args:
suite_name: str. The suite name whose tests should be run. If the value
is `full`, all tests will run.
Returns:
list(str). A list of command line parameters for the suite.
"""
return ['--suite', suite_name] | 36944bd9f68f376cacb3c375ba3b74f958f18916 | 417,278 |
def next_field_pad(pos_prev, offset, width, display):
"""
Local helper calculates padding required for a given previous position,
field offset and field width.
pos_prev Position following previous field
offset Offset of next field
width Width of next field
display True if next field is to be displayed, otherwise False.
Returns a tuple containing::
[0] True if next field is to be placed on next row
[1] Amount of padding (0..11) to be added from end of last field or start of row
[2] Position of next free space after new element
"""
if not display:
# Field not to be displayed
return (False, 0, pos_prev)
if (offset < pos_prev) or (offset+width > 12):
# Force to next row
next_row = True
padding = offset
else:
# Same row
next_row = False
padding = offset - pos_prev
pos_next = offset + width
return (next_row, padding, pos_next) | 1f3d503d57813c51a3303a1049f0364d9aedf221 | 117,578 |
def ToText(value):
""" Covert int/float to a string
:param any value: int or float.
:return: string(str)
"""
if not isinstance(value,str): text=str(value)
else:text=value
return text | de2b190ed1ae409e203b23360ef5bf566391a3c1 | 119,294 |
def select_fields(dic, fields):
"""
Selects items from a row, if the row doesn't exist, None is used.
"""
return {field: dic.get(field, None) for field in fields} | 58efb67ecdad6930ff9eaf6a59f53e3d0d018dbe | 429,033 |
def subtract(x,y):
"""Subtract x from y and return value"""
return y-x | 708c3de6a50e7ca2fd08722133d901b79d8bac15 | 643,079 |
def _rename_time_index(dict_da):
"""Rename the dim time of each datarray to ensure proper merge.
Each time dim is associated to its probe.
Parameters
----------
dict_da : a dictionary of timeserie datarray
Return
------
new_dict : dict
A dictionary of renamed DataArray
"""
new_dict = {}
for i, (key, xr_da) in enumerate(dict_da.items()):
renamed_xr_da = xr_da.rename({'time': 'time{}'.format(i+1)})
new_dict[key] = renamed_xr_da
return new_dict | 1d7233840918035cfaddd444a804673f6fe2f486 | 567,737 |
def strip(s):
"""Convert `s` to a string and return it white-space stripped."""
return str(s).strip() | 4ba378366b988738a542baa77b364598808b7dca | 325,080 |
def diff_dicts(dicts, ignore=None):
""" Given a sequence of dicts, returns
common, [difference1, difference2, ...]
where `commmon` is a dict containing items in all dicts, and `differenceN` is a dict containing keys
unique to the corresponding dict in `dicts`, ignoring any keys in `ignore`.
"""
dicts = [d.copy() for d in dicts]
ignore = [] if ignore is None else ignore
for key in ignore:
for d in dicts:
d.pop(key, None)
keyvals = [set(zip(d.keys(), d.values())) for d in dicts]
common = keyvals[0].intersection(*keyvals[1:])
differences = [dict(sorted(b.difference(common))) for b in keyvals]
return dict(common), differences | b457894020c0b47e1fdabcd20d9e1af5aec0617d | 632,653 |
from typing import Iterable
from typing import Sized
def max_sequence_length(sequences: Iterable[Sized]):
"""Computes the length of the longest sized element in an iterable.
Args:
sequences (Iterator): An iterator of some sized type
Returns:
max_len (int): The length of the longest sized type in sequences
"""
max_len = 0
for entry in sequences:
if len(entry) > max_len:
max_len = len(entry)
return max_len | 4101ccb8fb0ed6d5ca2f49e3d45ed729d2ffcd4b | 91,449 |
def part_2(input_file):
"""
forward value always add to horizontal
vertical value = pitch * forward value
where pitch = down - up
when pitch is positive: submarine is facing down and depth increases
when pitch is negative: submarine is facing up and depth decreases
"""
horizontal = 0
vertical = 0
pitch = 0
with open(input_file) as file:
for line in file:
line = line.split()
if line[0] == "forward":
horizontal += int(line[1])
if pitch == 0:
pass
elif pitch > 0:
vertical += int(line[1]) * pitch
else:
vertical -= int(line[1]) * pitch
elif line[0] == "down":
pitch += int(line[1])
else: # line[0] == 'up'
pitch -= int(line[1])
return horizontal * vertical | 69db616db602b7b20ef54ff71ba59828ccb4b120 | 180,681 |
def apply_if_valid(name, trial, callback=None, raise_if_not=True):
"""Detect a parameter in trial and call a callback on it if provided
Parameters
----------
name: str
Name of the param to look for
trial: `orion.core.worker.trial.Trial`
Instance of trial to investigate
callback: None of callable
Function to call with (trial, param) with a parameter is found.
Defaults to None
raise_if_not: bool
raises RuntimeError if no parameter is found.
Defaults to True.
Returns
-------
bool
False if parameter is not found and `raise_if_not is False`.
True if parameter is found and callback is None.
Else, output of callback(trial, item).
"""
for param in trial.params:
if param.name == name:
return callback is None or callback(trial, param)
if raise_if_not:
raise RuntimeError("Provided trial does not have a compatible configuration. "
"A dimension named '%s' should be present.\n %s" %
(name, trial))
return False | 503e8b6b20aae50703259e036a0922a66d52e8ac | 417,862 |
def none_if_empty(tup):
"""Returns None if passed an empty tuple
This is helpful since a SimpleVar is actually an IndexedVar with
a single index of None rather than the more intuitive empty tuple.
"""
if tup is ():
return None
else:
return tup | 26ee7bb9720eaa532d901b9c1f6c4a0fb6f7a340 | 8,358 |
from typing import Tuple
import colorsys
def rgb_to_hsv(rgb: int) -> Tuple[float, float, float]:
"""
Converts rgb int value to hue, saturation and value parts in percents.
:param rgb: int value
:return: Tuple[float, float, float]
"""
r = (rgb & 0xFF0000) >> 16
g = (rgb & 0x00FF00) >> 8
b = rgb & 0x0000FF
r, g, b = r / 255, g / 255, b / 255
return colorsys.rgb_to_hsv(r, g, b) | ba3b2270cff9fc4e87388fe2bd7067d4a10918b8 | 273,860 |
def _bytes(_str):
"""
Convert ordinary Python string (utf-8) into bytes object (should be considered
as c-string).
@rtype: bytes
"""
return bytes(str(_str), "utf-8") | 19470c93f6eac81947e852c9b716a4b9956c4bbb | 317,642 |
import hashlib
def md5sum(filename, first_block_only = False, blocksize = 65536):
"""Gets md5checksum of a file in memory-safe manner.
The file is read in blocks/chunks defined by the blocksize parameter. This is
a safer option to reading the entire file into memory if the file is very large.
@param filename <str>:
Input file on local filesystem to find md5 checksum
@param first_block_only <bool>:
Calculate md5 checksum of the first block/chunk only
@param blocksize <int>:
Blocksize of reading N chunks of data to reduce memory profile
@return hasher.hexdigest() <str>:
MD5 checksum of the file's contents
"""
hasher = hashlib.md5()
with open(filename, 'rb') as fh:
buf = fh.read(blocksize)
if first_block_only:
# Calculate MD5 of first block or chunck of file.
# This is a useful heuristic for when potentially
# calculating an MD5 checksum of thousand or
# millions of file.
hasher.update(buf)
return hasher.hexdigest()
while len(buf) > 0:
# Calculate MD5 checksum of entire file
hasher.update(buf)
buf = fh.read(blocksize)
return hasher.hexdigest() | 22ed8fef6eecba2c600a5ee6f9ff3fb0a3c48474 | 507,366 |
def _get_zip_filename(xml_sps, output_filename=None):
"""
Obtém o nome canônico de um arquivo ZIP a partir de `xml_sps: packtools.sps.models.sps_package.SPS_Package`.
Parameters
----------
xml_sps : packtools.sps.models.sps_package.SPS_Package
output_filename: nome do arquivo zip
Returns
-------
str
"1414-431X-bjmbr-54-10-e11439.zip"
"""
if not output_filename:
return f'{xml_sps.package_name}.zip'
else:
return output_filename | 2545fc02849d73da99a2d6c4bda3d69307f8afa1 | 675,223 |
def remove_control_char(pdf_content):
"""
移除控制字符,换行符、制表符、转义符等)python-docx是不支持控制字符写入的
:param pdf_content: PDF 文件内容
:return: 返回去除控制字符的内容
"""
# 使用str的translate方法,将ASCII码在32以下的都移除 http://ascii.911cha.com/
return pdf_content.translate(dict.fromkeys(range(32))) | 84dff48a5654b12f7446f77cbc4d132716d2018c | 697,523 |
def lower_words(docs):
"""Convert words in corpus to lowercase"""
lowered_words = []
for doc in docs:
lowered_words.append([word.lower() for word in doc])
return lowered_words | 1f07d8360e43875a7df253e2354305b65467af58 | 538,288 |
import random
import re
def generate_unigram_sentence(word_list):
"""Generates a sentence using the unigram frequency table"""
sentence = ''
while True:
rand = random.random()
val_sum = 0
for k, v in word_list.items():
val_sum += v # Words value is added to val_sum
if val_sum > rand: # First word to surpass the random value is used
if re.match(r'([\.\,\!\?\;\:\=\+\/\*\\]+)', k): # Prevent punct. spacing
sentence += k
else:
sentence += ' ' + k
break
if re.search(r'([\.\!\?]+)', sentence): # Sentence is complete once it has proper punct.
break
sentence = sentence.strip() # Strip whitespace for cleanliness
sentence = sentence.capitalize() # Capitalize first letter
return sentence | 8767db1614a578f38fa1a3317e80249eac8cc24c | 563,152 |
def _multiply_large_number_and_digit(number: str, digit: int) -> str:
"""Multiply a large number (as string) and a digit."""
large_product = ''
remainder = 0
for num_digit in reversed(number):
current_product_digit = remainder + int(num_digit) * digit
large_product = str(current_product_digit % 10) + large_product
remainder = current_product_digit // 10
if remainder:
large_product = str(remainder) + large_product
return large_product | 14375259c956ead6e3d7379fb0b1af6d9a680e81 | 189,118 |
def convert_dms_to_decimal(elem):
"""Convert latitude/ longitude dms form to dms form
Keyword arguments:
elem -- latitude or longitude : (degree, min, sec)
"""
return elem[0] + elem[1]/60 + elem[2]/3600 | bc35c69dd4035495996c1c08ad83a3effa940dbd | 159,567 |
def is_true(value):
"""
Check wether value contains the string 'true' in a variety of
capitalizations (e.g. "True" or "TRUE").
"""
return value.lower() == 'true' | 51cc0ba42bfef3a8206d4a294364aca0708aa054 | 583,030 |
def get_data_type(datum):
"""Determines the data type to set for the PostgreSQL database"""
if datum.isdigit():
return "integer"
elif datum.replace(".", "", 1).isdigit():
return "decimal"
return "text" | 220e3e02a879f3920349d2280f75c45ecfa4a37d | 484,551 |
def to_byte_string(value, count=2, signed=False, byteorder='little'):
"""Take bytes and return string of integers.
Example: to_byte_string(123456, count=4) = '64 226 1 0'
"""
byte_value = value.to_bytes(count, byteorder=byteorder, signed=signed)
return ' '.join([str(x) for x in byte_value]) | d1b2cc12000958a3858f73271b300ebe15480a43 | 26,157 |
import csv
def read_csv(filename):
""" Function that reads csv data and returns data in an array
INPUTS:
filename (str): name of csv file to be read
OUTPUTS:
data (list): csv data
"""
with open(filename,'r') as dest_f:
data_iter = csv.reader(dest_f, delimiter = ',', quotechar = '"')
data = [data for data in data_iter]
return data | 721ba3f12e5769c25f634e2e9d8259629ce21277 | 314,711 |
def add_until_100(array: list):
"""add numbers to a sum from list: array unless makes sum > 100"""
if not array: # base case
return 0
sum_remaining = add_until_100(array[1:])
if array[0] + sum_remaining > 100:
return sum_remaining
else:
return array[0] + sum_remaining | 123b4d7e9e7d833055ae84692f8dec119cf03317 | 61,143 |
def _get_dict_subset(dic, keys):
"""
Return a subset of a dictionary containing only the specified keys.
"""
return dict((k, dic[k]) for k in keys if k in dic) | 78625cdb47e94ba588f6f4ae6df8d4222825c2fb | 322,829 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.