content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def _PrepareDevicePath(vm, link):
"""Find device path and grant full permission.
Args:
vm: VirtualMachine object.
link: string. Represents device path.
Returns:
String represents the actual path to the device.
"""
path = vm.RemoteCommand('readlink -f %s' % link)[0][:-1]
vm.RemoteCommand('sudo chmod 777 %s' % path)
return path | 4b34f3338ce0b328ff52d27f418674ad5c8a44da | 569,342 |
def parse_requirements(fname):
"""Read requirements from a pip-compatible requirements file."""
with open(fname):
lines = (line.strip() for line in open(fname))
return [line for line in lines if line and not line.startswith("#")] | 9b27d34324b5ea304ff5c66289193640a385f393 | 679,356 |
def arg_from_keywords(node, arg):
"""Retrieves a keyword argument from the node's keywords.
Args:
node (ast.Call): a node that represents a function call. For more,
see https://docs.python.org/3/library/ast.html#abstract-grammar.
arg (str): the name of the argument.
Returns:
ast.keyword: the keyword argument if it is present. Otherwise, this returns ``None``.
"""
for kw in node.keywords:
if kw.arg == arg:
return kw
return None | 1c05737474e426eccd9337652a27cbc0118677b0 | 231,605 |
def odict_representer(dumper, self):
"""Serialize OrderedDict items in their order."""
return dumper.represent_mapping('tag:yaml.org,2002:map', self.items()) | 022025d70f826319796383857a1423c258f9879a | 549,904 |
def some(*fs):
"""
Create a function that returns the first non-``None`` result of applying
the arguments to each ``fs``.
"""
def _some(*a, **kw):
for f in fs:
result = f(*a, **kw)
if result is not None:
return result
return None
return _some | f7e0b7842d25107dc81c0eb913ad2d74aff0f6f7 | 385,741 |
def pad_time(timestring, pos='start'):
"""
Returns a 12 digit string as time by padding any missing month, day, hour
or minute values.
If `pos` is `start`: Pad with year=0, month=1, day=1, hour=0, min=0
If `pos` is `end`: Pad with year=9999, month=12, day=31,
hour=23, min=59
Default is to pad with start position.
"""
yr = int(timestring[:4])
if pos == 'end':
padder = "999912312359"
else:
# Default to start
padder = "000001010000"
if len(timestring) < 12:
timestring = timestring + (padder[len(timestring):])
return timestring | 1be1e98b8ac6d051acc1c2bfc887bd6b59534a16 | 380,175 |
def get_photo_url(photo, handler):
"""Returns the URL where this app is serving a hosted Photo object."""
id = photo.key().name().split(':')[1]
return handler.get_url('/photo', id=id) | da4338b5e5089d1aa330355c82023a9201d2aa24 | 298,904 |
def escape_tab(s: str) -> str:
"""Replaces each tab character (\\t) in the input with \\\\t"""
return s.replace('\t', '\\t') | 44baf045af9a4779ce43aa4158c720c317f753dc | 559,493 |
def assemble_url(league_id: int) -> str:
"""Assemble the ranking HTML's URL for the league with that ID."""
template = (
'http://www.basketball-bund.net/public/tabelle.jsp'
'?print=1'
'&viewDescKey=sport.dbb.views.TabellePublicView/index.jsp_'
'&liga_id={:d}'
)
return template.format(league_id) | 42c72c2c1c27430f343a063e7a6aded7d94de578 | 140,031 |
import csv
def read_lun_file(filename):
"""Read lun csv file and return the list."""
lunlist = []
with open(filename, 'r') as cvsfile:
filereader = csv.reader(cvsfile, delimiter=',')
for row in filereader:
lunlist.append(row)
del lunlist[0]
return lunlist | 4ad633dcb673c50fc43d9ee81edb88d34c4b2f89 | 657,639 |
from typing import List
from typing import Callable
import functools
def chain_calls(*funcs: List[Callable]) -> Callable:
"""Chain multiple functions that take only one argument, producing a new function that is the result
of calling the individual functions in sequence.
Example:
```python
f1 = lambda x: 2 * x
f2 = lambda x: 3 * x
f3 = lambda x: 4 * x
g = chain_calls(f1, f2, f3)
assert g(1) == 24
```
Returns:
Single chained function
"""
def call(x, f):
return f(x)
def _inner(arg):
return functools.reduce(call, funcs, arg)
return _inner | a7963abc51f96e23d2b188edd6c0d8e8146dd842 | 460,157 |
def parse_fromaddr(fromaddr):
"""Generate an RFC 822 from-address string.
Simple usage::
>>> parse_fromaddr('[email protected]')
'[email protected]'
>>> parse_fromaddr(('from', '[email protected]'))
'from <[email protected]>'
:param fromaddr: string or tuple
"""
if isinstance(fromaddr, tuple):
fromaddr = "%s <%s>" % fromaddr
return fromaddr | 20dc1083eeed1b57cb4fa5a0d4fffb351cd44ecc | 435,590 |
def get_content(filename):
"""Return a tuple of ints from a given file.
"""
with open(filename) as stream:
return tuple(map(int, stream.readlines())) | 195f02d317fc33cade1384498f58f42b1383df7d | 369,175 |
def average_tol_numpy(values, tolerance):
"""Compute the mean of values where value is > tolerance
:param values: Range of values to compute average over
:param tolerance: Only values greater than tolerance will be considered
"""
return values[values > tolerance].mean() | 9c68aa3058879e5b30d63dffc34aff0916c6c76d | 417,409 |
def get_eventnames(file):
"""Return a list of sorted temporal event names in trials."""
trials = file.intervals['trials']
event_names = []
for name in trials.colnames:
t = trials[name].data[-1]
try:
if trials['start_time'][-1] <= t <= trials['stop_time'][-1]:
event_names.append(name)
except:
pass
ts = [trials[name].data[-1] for name in event_names]
event_names = [name for _, name in sorted(zip(ts, event_names))]
return event_names | b0bb8c3e4b844475b63230425750467a63bb2c3d | 104,106 |
def funql_template_fn(target):
"""Simply returns target since entities are already anonymized in targets."""
return target | a5f95bd6b7feabb4826fff826e6638cd242e04d6 | 17,102 |
from typing import Optional
def get_uri_parent(uri: str) -> Optional[str]:
"""Return URI of parent collection with trailing '/', or None, if URI is top-level.
This function simply strips the last segment. It does not test, if the
target is a 'collection', or even exists.
"""
if not uri or uri.strip() == "/":
return None
return uri.rstrip("/").rsplit("/", 1)[0] + "/" | b764eb6cdfd5b51265a234419b47aba9475caf7d | 613,807 |
def test(azote, phosphore, potassium):
"""3 values between 0 and 1, summing to 1.
Error is the distance between the given 3d point and the expected 3d point.
"""
expected = 0.3, 0.2, 0.5
return (
1
- (
(azote - expected[0]) ** 2
+ (phosphore - expected[1]) ** 2
+ (potassium - expected[2]) ** 2
)
** 0.5
) | 9f3d6504dea2b04d09272e0c7f5bbf5c5c34c846 | 306,140 |
def labor_supply_shock(t, states, param, t_start_lockdown, t_end_lockdown, l_s):
"""
A function returning the labor reduction due to lockdown measures.
Parameters
----------
t : pd.timestamp
current date
param: np.array
initialised value of epsilon_S
states : dict
Dictionary containing all states of the economic model
t_start_lockdown : pd.timestamp
start of economic lockdown
t_end_lockdown : pd.timestamp
end of economic lockdown
l_s : np.array
number of unactive workers under lockdown measures (obtained from survey 25-04-2020)
Returns
-------
epsilon_S : np.array
reduction in labor force
"""
if t < t_start_lockdown:
return param
elif ((t >= t_start_lockdown) & (t < t_end_lockdown)):
return l_s
else:
return param | f53e0fae0ec7e90b527dda80534f4aeafa394060 | 392,507 |
import socket
def is_valid_ip_address(address, family=socket.AF_INET):
"""
Check if the provided address is valid IPv4 or IPv6 address.
:param address: IPv4 or IPv6 address to check.
:type address: ``str``
:param family: Address family (socket.AF_INTET / socket.AF_INET6).
:type family: ``int``
:return: ``bool`` True if the provided address is valid.
"""
try:
socket.inet_pton(family, address)
except socket.error:
return False
return True | f6c6c670c617ff88f8f7c95a1cb1558f3813bf8e | 486,931 |
def xyzs2xyzfile(xyzs, filename=None, basename=None, title_line=''):
"""
For a list of xyzs in the form e.g [[C, 0.0, 0.0, 0.0], ...] convert create a standard .xyz file
:param xyzs: List of xyzs
:param filename: Name of the generated xyz file
:param basename: Name of the generated xyz file without the file extension
:param title_line: String to print on the title line of an xyz file
:return: The filename
"""
if basename:
filename = basename + '.xyz'
if filename is None:
return 1
if filename.endswith('.xyz'):
with open(filename, 'w') as xyz_file:
if xyzs:
print(len(xyzs), '\n', title_line, sep='', file=xyz_file)
else:
return 1
[print('{:<3}{:^10.5f}{:^10.5f}{:^10.5f}'.format(*line), file=xyz_file) for line in xyzs]
return filename | e9ab2f3436db3a54f7d60b5fd2c396e681f4090c | 342,548 |
def eaton(v, vn, hydrostatic, lithostatic, n=3):
"""
Compute pore pressure using Eaton equation.
Parameters
----------
v : 1-d ndarray
velocity array whose unit is m/s.
vn : 1-d ndarray
normal velocity array whose unit is m/s.
hydrostatic : 1-d ndarray
hydrostatic pressure in mPa
lithostatic : 1-d ndarray
Overburden pressure whose unit is mPa.
v0 : float, optional
the velocity of unconsolidated regolith whose unit is ft/s.
n : float, optional
eaton exponent
Returns
-------
ndarray
Notes
-----
.. math:: P = S - {\\sigma}_{n}\\left(\\frac{V}{V_{n}}\\right)^{n}
[4]_
.. [4] Eaton, B. A., & others. (1975). The equation for geopressure
prediction from well logs. In Fall Meeting of the Society of Petroleum
Engineers of AIME. Society of Petroleum Engineers.
"""
ves = (lithostatic - hydrostatic) * (v / vn)**n
pressure = lithostatic - ves
return pressure | 80abde12e6890e8ae1febd52a0e1e86a65128d78 | 575,896 |
import math
def obliquity_correction_deg(mean_obliquity_of_ecliptic_deg, julian_century):
"""Returns Obliquity Correction in Degrees with Mean Obliquity Ecliptic,
mean_obliquity_of_ecliptic_deg and Julian Century, julian_century."""
obliquity_correction = mean_obliquity_of_ecliptic_deg + 0.00256 * math.cos(
math.radians(125.04 - 1934.136 * julian_century)
)
return obliquity_correction | 838f1ca10ebd5299d515a39e7152dee4e1404021 | 493,139 |
def _prepare_round_config(round: str, round_config: dict) -> dict:
"""Internal function that combines a base config with a specific
round config.
The base config is updated with the round config,
overwriting any common fields.
Parameters
----------
round : str
round_config : dict
Returns
-------
dict
Raises
------
ValueError
Raises an error if the resulting config dict is empty. Typically due
to typos in the config file.
"""
config = {}
if "Base" in round_config:
config.update(round_config["Base"])
if round in round_config:
config.update(round_config[round])
if not config:
raise ValueError(f"Invalid configuration for round {round}")
return config | f89343e9b06bf32ea87e0137868db441d455ae05 | 336,995 |
import base64
import gzip
import json
def decode(value, decompress=False):
"""Decodes response from Base64 encoded string."""
decoded = base64.b64decode(value)
if decompress:
decoded = gzip.decompress(decoded)
return json.loads(decoded.decode()) | f0c36cc9f3df5939365e069c900a78f3d4f47b69 | 563,481 |
def clamp_bbox(bbox, shape):
"""
Clamp a bounding box to the dimensions of an array
Parameters
----------
bbox: ndarray([i1, i2, j1, j2])
A bounding box
shape: tuple
Dimensions to which to clamp
"""
[i1, i2, j1, j2] = bbox
j1 = max(0, int(j1))
i1 = max(0, int(i1))
j2 = min(shape[1]-1, int(j2))
i2 = min(shape[0]-1, int(i2))
bbox[0:4] = [i1, i2, j1, j2]
return bbox | d50391a17882c4070a8780d2ad745545741329d2 | 658,662 |
def latest(scores):
"""
Return the last score in the scores list.
param: list of scores
return: last score in scores
"""
return scores[-1] | 4f28449255fe95eaaf5817f7b2e40ab8aff5100f | 195,591 |
def calc_real_underlying_subst_rate(obs_aa_ident_full_protein, rand_ident_region1, rand_ident_region2, fraction_region1_residues=0.3):
"""Calculation of the real, underlying substitution rate in a protein with two regions of differing random identity.
Estimation of the underlying substitution rate is the first step in calculating a normalisation factor,
to remove the region1/region2 conservation attributable to the restricted subset of amino acids.
Please see the associated article manuscript (in preparation) for a full explanation of the method.
Example calculation:
region1 = transmembrane(TM)
region2 = non-transmembrane(nonTM)
i = obs_aa_ident_full_protein = 0.60 #(i.e. 60% amino acid identity, 40% substitutions)
fraction_TM_residues = 0.1
# the observed aa subst rate is 1 - obs_aa_ident_full_protein
b = 1 - i = 1 - 0.60 = 0.4
# proportion of seq that is Membranous
m = fraction_TM_residues = 0.1
# proportion of seq that is Soluble
s = 1 - m = 1 - 0.1 = 0.90 # i.e. 90% of the residues are nonTM
# random identity of TM region
t = rand_ident_region1 = rand_TM = 0.12
# random identity of nonTM region
n = rand_ident_region2 = rand_nonTM = 0.06
# real underlying aa subst rate for full protein
# solved from b = mx - mtx + sx - snx
x = b / ((m*-t) + m - n*s + s) = 0.428
Parameters
----------
obs_aa_ident_full_protein : float
Observed amino acid identity of the full pairwise alignment
"observed" in that it always includes some position that have had a substitution to the same AA (e.g. Leu to Leu), which are unobserved.
Typically excluding gaps, which are heavily biased by splice variants, etc, and are excluded from AAIMON calculations.
E.g. 0.6, for 60% amino acid identity.
rand_TM : float
Random identity of the TM region.
e.g. 0.124 for 12.4%
rand_nonTM : float
Random identity of the nonTM region.
e.g. 0.059 for 5.9%
fraction_TM_residues : float
Fraction of TM residues in protein sequence, e.g. 0.1 (10% TM, 90% nonTM)
Used to estimate the real underlying AA substitution rate from the observed AA subst. rate.
Returns
-------
x : float
Amino acid propensity normalisation factor.
Real, underlying substitution rate for the full protein.
Usage
-----
# calculate the TM/nonTM conservation ratio for a particular query and homologue
TM_over_nonTM_cons_ratio = percentage_identity_of_TMD / percentage_identity_of_nonTMD
# calculate the amino acid propensity normalisation factor.
obs_aa_ident_full_protein, rand_TM, rand_nonTM, fraction_TM_residues = 0.60, 0.136, 0.055, 0.10
real_underlying_subst_rate = calc_real_underlying_subst_rate(obs_aa_ident_full_protein, rand_TM, rand_nonTM, fraction_TM_residues)
aa_prop_norm_factor = calc_aa_prop_norm_factor(real_underlying_subst_rate, rand_TM, rand_nonTM)
# to normalise, divide the AAIMON by the aa_prop_norm_factor
TM_over_nonTM_cons_ratio_normalised = TM_over_nonTM_cons_ratio / aa_prop_norm_factor
"""
# the oBserved aa subst rate is 1 - obs_aa_ident_full_protein
b = 1 - obs_aa_ident_full_protein
# proportion of seq that is Membranous
m = fraction_region1_residues
# proportion of seq that is Soluble
s = 1 - m
# random identity of Tm region
t = rand_ident_region1
# random identity of NonTM region
n = rand_ident_region2
# real underlying aa subst rate for full protein
# solved from b = mx - mtx + sx - snx
x = b / ((m * -t) + m - n * s + s)
return x | 5bdc11a775210c968100602e57b1fcf71f44c112 | 506,667 |
def limits_testing(environment_state, lower_limits, upper_limits, observed_states_indices):
"""
Test the limits to compare the output with the reward function
:param environment_state: current state (ndarray)
:param lower_limits: lower physical limits (ndarray)
:param upper_limits: upper physical limits (ndarray)
:param observed_states_indices: indices of the observed states for the limit violation
:return: True if limits are violated, False otherwise
"""
if any(environment_state[observed_states_indices] > upper_limits[observed_states_indices]) or\
any(environment_state[observed_states_indices] < lower_limits[observed_states_indices]):
return True
else:
return False | 157c151e5ad1c10f3bb752ada06a4b3d8fe459f9 | 140,843 |
from typing import Tuple
def reverse_causal(effective_kernel_size: int) -> Tuple[int, int]:
"""Post-padding such that output has no dependence on the past."""
return (0, effective_kernel_size - 1) | df182b5c710fbb143c83d7c80a718ed9d1db9c9d | 576,612 |
import json
def read_json(json_file):
"""
Utility method to read a json file schema
Parameters:
-----------
json_file : string
file name for the json schema
Returns:
--------
dictionary, as serialized in the json_file
"""
with open(json_file) as schema:
val = json.load(schema)
return val | 68af62d70a71ce326e8027b9d7ccccf1bfd6b144 | 294,600 |
import json
def json_to_dict(path):
"""
Given a path to a .json file returns a dict of the .json file
Parameters
----------
path: path to .json file
Output:
dict of json file
"""
with open(path) as data_file:
data = json.load(data_file)
return data | bf33d559d3171d80a43010789eeef880eb25e9c8 | 558,914 |
def get_recs(user_recs, k=None):
"""
Extracts recommended item indices, leaving out their scores.
params:
user_recs: list of lists of tuples of recommendations where
each tuple has (item index, relevance score) with the
list of tuples sorted in order of decreasing relevance
k: maximumum number of recommendations to include for each
user, if None, include all recommendations
returns:
list of lists of recommendations where each
list has the column indices of recommended items
sorted in order they appeared in user_recs
"""
recs = [[item for item, score in recs][0:k] for recs in user_recs]
return recs | 490d0473e640c70457aa69a9af7dc7a4269e39d3 | 673,772 |
def _load_consultancy_facilities_sme(df):
"""_load_consultancy_facilities_sme
Args:
df (pd.DataFrame): Services income table from HESA (table-2a).
Returns:
df (pd.DataFrame): Consultancy and facilities income from SMEs.
"""
df = df[df['Unit'] == '£000s']
df = df[
(df['Type of organisation'] == "SME's")
& ((df['Type of service'] == 'Facilities and equipment related')
| (df['Type of service'] == 'Consultancy'))]
df['Value'] = (df['Value'] * 1000).astype(int)
return df | 606651c61e222a30cd46abdcf1d4f2080025a064 | 462,392 |
from pathlib import Path
def setup_results_dir(experiment_name):
"""Create the directories for the results."""
root = Path(__file__).parent.parent
result_path = root / "batchpredict"
results_dir = (
result_path
/ experiment_name
)
results_dir.mkdir(parents=True, exist_ok=True)
print(f"Writing results to {results_dir}")
return results_dir | 17e79aa996538f31b26f5d4d2aaa523c5b2037d0 | 570,803 |
def get_skel(s):
"""Get a tuple representing an instrution skeleton.
Args:
s: String of chars in {0, 1, x} of the skeleton
Returns:
Tuple (before, length, after), where
- before is the number before the mask
- length is the length of x's in the mask
- after is the number after the mask
"""
i = 0
# get number before x's
before = 0
while i < len(s):
if s[i] != 'x':
assert s[i] == '0' or s[i] == '1'
before += before
before += int(s[i])
else:
break
i += 1
# get number of x's
xlen = 0
while i < len(s):
if s[i] == 'x':
xlen += 1
else:
break
i += 1
# get number of 0s after x's
zerolen = 0
while i < len(s):
if s[i] == '0':
zerolen += 1
else:
break
i += 1
# get number afer x's
after = 0
while i < len(s):
assert s[i] == '0' or s[i] == '1'
after += after
after += int(s[i])
i += 1
return (before, xlen, zerolen, after) | c310480448e6a959cf2a68e14d19dcbadb908e18 | 648,582 |
def post_step1(records):
"""Apply whatever extensions we have for GISTEMP step 1, that run
after the main step 1. None at present."""
return records | 98287f6930db6aa025715356084b3bef8c851774 | 709,673 |
def get_diff_optreg(comp, opt):
"""
Returns difference between two arrays of same size. Actually unused.
Parameters
----------
comp : ndarray
Computed results.
opt : ndarray
Target values.
Returns
-------
diff : ndarray
Difference between computed and target.
"""
return comp - opt | 05ab55d03143cfb2a079ba02a4620aca994c3654 | 152,382 |
def record_sets_fetcher(record):
"""Fetch a record's sets."""
return record.get('_oai', {}).get('sets', []) | 4c3eeb1d5ae0ce7c832192bfb16e17c5c08583bb | 197,875 |
def Heun_step(f, told, uold, h):
"""
Usage: unew = Heun_step(f, told, uold, h)
Heun's Runge-Kutta of order 2 solver for one step of the
ODE problem,
u' = f(t,u), t in tspan,
u(t0) = u0.
Inputs: f = function for ODE right-hand side, f(t,u)
told = current time
uold = current solution
h = time step size
Outputs: unew = updated solution
"""
# call f to get ODE RHS at this time step
f1 = f(told, uold)
# set stages z1 and z2
z1 = uold
z2 = uold + h*f1
# get f(t+h,z2)
f2 = f(told+h, z2)
# update solution in time
return (uold + h/2*(f1+f2)) | 9502e2343abcb17024fdcee0b90e8ebef026277f | 159,953 |
def norm(v):
"""Computes the norm (length) of a vector v, represented
as a tuple or list of coords."""
norm = 0
for n in v:
norm += n**2
return norm**0.5 | f453258226c31deba2e7735da987882c5627a936 | 453,499 |
def _decodeASCII(string):
"""Returns an ASCII decoded version of the null terminated string.
Non ASCII characters are ignored."""
return str(string.decode("ascii", "ignore").split("\0", 1)[0]) | 1620817bf4f98f0a4459914a482b90d906133044 | 514,936 |
import base64
import json
def gen_sig_claim_file(reference: str, digest: str, requested_by: str) -> str:
"""
Generated a claim file to be signed based on given data.
Args:
reference: Docker reference for the signed content,
e.g. registry.redhat.io/redhat/community-operator-index:v4.9
digest: Manifest digest for the signed content, usually in the format sha256:xxx
requested_by: Name of the user that requested the signing, for auditing purposes
"""
claim = {
"critical": {
"image": {"docker-manifest-digest": digest},
"type": "atomic container signature",
"identity": {"docker-reference": reference},
},
"optional": {"creator": requested_by},
}
claim = base64.b64encode(json.dumps(claim).encode("utf-8"))
return claim.decode("utf-8") | a411233510c0f2a3b59c464d2483859bf2f21f2d | 352,366 |
import requests
def is_arduino_library(repo):
"""Returns if the repo is an Arduino library, as determined by the existence of
the 'library.properties' file.
"""
lib_prop_file = requests.get(
"https://raw.githubusercontent.com/adafruit/"
+ repo["name"]
+ "/master/library.properties"
)
return lib_prop_file.ok | 89ccba5852eba6e746dad71c911abde4d51bc386 | 525,410 |
def m_total_from_m1_m2(mass1, mass2):
"""Return the total mass given the samples for mass1 and mass2
"""
return mass1 + mass2 | 21476e4e92b9da043280a8553a13ceb54e8b4193 | 288,205 |
def _prepare_shape_for_squeeze(shape, axes):
"""
Creates the squeezed new shape based on the tensor and given axes.
Args:
shape (tuple): the shape of the tensor
axes Union[None, int, tuple(int), list(int)]: the axes with dimensions squeezed.
Returns:
new_shape(tuple): the shape with dimensions squeezed.
"""
new_shape = []
ndim = len(shape)
# Convert to set
if isinstance(axes, int):
if axes >= ndim or axes < -ndim:
raise ValueError(
f"axis {axes} is out of bounds for tensor of dimension {ndim}")
axes = {axes}
elif isinstance(axes, (list, tuple)):
for axis in axes:
if axis >= ndim or axis < -ndim:
raise ValueError(
f"axis {axis} is out of bounds for tensor of dimension {ndim}")
axes = set(axes)
elif axes is not None:
raise TypeError(
f"only int, tuple and list are allowed for axes, but got {type(axes)}")
if axes is None:
new_shape = [s for s in shape if s != 1]
else:
for idx, s in enumerate(shape):
if s != 1 or (idx not in axes) and (idx - ndim not in axes):
new_shape.append(s)
# if an axis is selected with shape entry greater than one, an error is raised.
if s != 1 and ((idx in axes) or (idx - ndim in axes)):
raise ValueError(
f"axis {axes} has shape entry {s} > 1, cannot be squeezed.")
return tuple(new_shape) | 0f984a9eab2b5897556c3001e2ca0c607035534f | 55,141 |
def i_replaced(list_, i, value):
"""Return a new list with element i replaced by value.
i : value
Index to replace with value.
value : value
Value to replace at index i. None will return original list with element i removed.
"""
if value is not None:
return list_[:i] + [value] + list_[i + 1 :]
else:
return list_[:i] + list_[i + 1 :] | 88b9103b1439683553f12575ab3241071f994c2b | 225,662 |
def replace_letters(string, encrypted, standard):
"""
Given a string, replace each encrypted letter with its equivalent
frequency plaintext letter
@param string is the string in which to replace characters
@param encrypted is the encrypted letter alphabet
@param standard is the standard language letter alphabet
@returns the new decrypted string
"""
res = ""
for letter in string:
if letter not in standard:
res += letter
else:
encrypted_distribution_index = encrypted.index(letter)
res += standard[encrypted_distribution_index]
return res | d23394d6b88b56a5d19b2ca18c70810cf355fe94 | 165,125 |
def make_slist(l, t_sizes):
"""
Create a list of tuples of given sizes from a list
Parameters
----------
l : list or ndarray
List or array to pack into shaped list.
t_sizes : list of ints
List of tuple sizes.
Returns
-------
slist : list of tuples
List of tuples of lengths given by t_sizes.
"""
out = [] # output
start = 0
for s in t_sizes:
out.append(l[start:start + s])
start = start + s
return out | b87ce7a430751d9b46e94609736bb9e25a180b27 | 89,077 |
def _get_text(node, tag, default=None):
"""Get the text for the provided tag from the provided node"""
try:
result = node.find(tag).text
return result
except AttributeError:
return default | 0777f70b82f5024bbf0fe2e90e3011c09d47df51 | 529,934 |
import re
def escape_ansi(string):
"""Remove ansi-codes from help text."""
ansi_escape = re.compile(r"(?:\x1B[@-_]|[\x80-\x9F])[0-?]*[ -/]*[@-~]")
return ansi_escape.sub("", string) | f9dbf939afcf0011faa04fc3c2017820548b167d | 507,013 |
def chop_words(text, maximum_length=117):
"""
Deletes last word in a string until it does not exceed maximum length.
Args:
text (str): Status text.
maximum_length (int): Maximum character length.
Returns:
str or ``None``
"""
words = text.split()
for i in range(len(words)):
words.pop()
chopped_text = ' '.join(words)
if len(chopped_text) <= maximum_length:
return chopped_text
return None | 793a536b7240b6cb6fb2a4796fb33d6a2a3e7e64 | 126,878 |
def unique(iterable):
"""Return unique values from iterable."""
seen = set()
return [i for i in iterable if not (i in seen or seen.add(i))] | 776d1003bb86415170b3406cce1a365fb06a494f | 447,626 |
from typing import List
from typing import Tuple
def parse_linenos(term: str, max_val: int) -> List[Tuple[int, int]]:
"""Parse a comma-delimited list of line numbers and ranges."""
results: List[Tuple[int, int]] = []
if not term.strip():
return []
for term in term.strip().split(","):
parts = term.split("-", 1)
lower = int(parts[0])
higher = int(parts[1]) if len(parts) == 2 else lower
if lower < 0 or higher < 0:
raise ValueError(
f"Invalid line number specification: {term}. Expects non-negative integers."
)
elif lower > max_val or higher > max_val:
raise ValueError(
f"Invalid line number specification: {term}. Expects maximum value of {max_val}."
)
elif lower > higher:
raise ValueError(
f"Invalid line number specification: {term}. Expects {lower} < {higher}."
)
results.append((lower, higher))
return results | 54af7c9556086c51b6d5eb7342fd603af80ea125 | 296,832 |
def fetch_following(api,name):
"""
Given a tweepy API object and the screen name of the Twitter user,
return a a list of dictionaries containing the followed user info
with keys-value pairs:
name: real name
screen_name: Twitter screen name
followers: number of followers
created: created date (no time info)
image: the URL of the profile's image
To collect data: get the list of User objects back from friends();
get a maximum of 100 results. Pull the appropriate values from
the User objects and put them into a dictionary for each friend.
"""
friends_ls=[]
for friend in api.get_friends(screen_name=name,count=100):
#friend_name=api.get_user(screen_name=friend)
dict_user={}
dict_user['name']=friend.name
dict_user['screen_name']=friend.screen_name
dict_user['followers']=friend.followers_count
dict_user['created']=friend.created_at.strftime('%Y-%m-%d')
dict_user['image']=friend.profile_image_url_https
friends_ls.append(dict_user)
return friends_ls | 3f71ccbfdafd744ed61dbec793b68c78e081274b | 112,924 |
def insert_aux(seq):
"""
Auxiliary function for insert_at_junctions
Returns the first element encountered
"""
list_insert = ["GGCAT", "GCAT", "CAT"]
for insert in list_insert:
if insert in seq:
return insert
return "-" | 12a19f6bff877042b80123426141278b9005ff66 | 308,978 |
from pathlib import Path
def create_target_absolute_file_path(file_path, source_absolute_root, target_path_root, target_suffix):
"""
Create an absolute path to a file.
Create an absolute path to a file replacing the source_absolute_root part of the path with the target_path_root path
if file_path is on the source_absolute_root path and replace the extension with target_suffix.
If file_path is not on source_absolute_root return file_path with the target_suffix
Parameters
----------
file_path : str or Path
Path to a file
source_absolute_root : str or Path
a path that may be the start of file_path
target_path_root : str or Path
A path that will become the start of the path to the returned target path
target_suffix : str
The suffix to use on the returned target path
Returns
-------
Path
The new absolute path to the file that was on file_path
"""
if Path(file_path).is_relative_to(source_absolute_root):
target_relative_path_to_source_root = Path(file_path).relative_to(source_absolute_root)
# target_relative_path_to_source_root is the relative path that will be added onto the export folder path
return Path(target_path_root, target_relative_path_to_source_root).with_suffix(target_suffix)
if not Path(file_path).is_absolute():
# path is relative add target path_root and new suffix
return Path(target_path_root, file_path).with_suffix(target_suffix)
# file is not in the source path return the file path with the new suffix
return Path(file_path).with_suffix(target_suffix) | 0d24f8544752967815bd8ddceea15b371076c500 | 29,485 |
def languages(context, flag_type='', **kwargs):
"""
Templatetag languages
:param context: Getting context
:param flag_type: Default empty, It acepts the string 'square'
:param kwargs: Classes to HTML tags
:return: A dict with classes
"""
if flag_type == 'square':
flag_type = 'flag-icon-square'
default = dict(li_class='', a_class='')
classes = dict(default, **kwargs)
return {
'icon_class': flag_type,
'classes': classes,
'redirect_to': context.request.get_full_path
} | 4530bdbb780f6c244eb46f6c7603305076f8ee29 | 284,740 |
def receiver(signal, **kwargs):
"""
A decorator for connecting receivers to signals. Used by passing in the
signal and keyword arguments to connect::
@receiver(signal_object, sender=sender)
def signal_receiver(sender, **kwargs):
...
"""
def _decorator(func):
signal.connect(func, **kwargs)
return func
return _decorator | dbbde0855b2a657adaff9fa688aa158053e46579 | 706,551 |
def bbox2location(bbox):
"""
From bbox [x,y,width,height] to location [top,right,bot,left]
Args:
bbox (list): bounding box [x,y,width,height]
Returns:
**location** (list) - coordinate [top,right,bot,left]
"""
location = [bbox[1],bbox[0]+bbox[2],bbox[1]+bbox[3],bbox[0]]
return location | cca690d72c7887d96eea03810b439c06878dba4f | 375,147 |
def is_positive(value):
"""Helper function that returns True if a given value is greater than
zero.
"""
return value > 0 | 6caa36a857f5db476a010090abb630e1d6fdc481 | 425,002 |
def inner(v,w):
"""return the inner product of two vectors
using the convention of conjugating the first argument
"""
return v.conj().dot(w) | 078a1c4e8e1f71f218633b06f2f2b7df87c842c4 | 502,842 |
def chromosomes_from_fai(genome_fai):
"""
Read a fasta index (fai) file and parse the input chromosomes.
:param str genome_fai: Path to the fai file.
:return: list of input chromosomes
:rtype: list[str]
"""
chromosomes = []
with open(genome_fai) as fai_file:
for line in fai_file:
line = line.strip().split()
chromosomes.append(line[0])
return chromosomes | 45dba8dcdf7ac331be298619ab83319b0737c402 | 406,857 |
import math
def get_rounded_pruned_element_number(total: int, sparsity_rate: float, multiple_of: int = 8) -> int:
"""
Calculates number of sparsified elements (approximately sparsity rate) from total such as
number of remaining items will be multiple of some value.
Always rounds number of remaining elements up.
:param total: Total elements number.
:param sparsity_rate: Prorortion of zero elements in total.
:param multiple_of: Number of remaining elements must be a multiple of `multiple_of`.
:return: Number of elements to be zeroed.
"""
remaining_elems = math.ceil((total - total * sparsity_rate) / multiple_of) * multiple_of
return max(total - remaining_elems, 0) | 9565c091965689249b80fbe62cc1d67461bf26a1 | 97,229 |
def get_cmd_name(name=__name__):
"""Get command name from __name__ within a file"""
return name.split('.')[-1] | 9dbc79b30b220f92199a56fc9ea2a0116fc1d7a2 | 368,602 |
from pathlib import Path
def _path_to_file_or_directory_to_path_iterator(path):
"""Convert a path to a file or directory to an iterator over paths."""
path = Path(path)
if path.is_dir():
paths = list(path.rglob("*"))
else:
paths = [path]
return paths | 0f6ddb81ea56b7d184d26930e1d3926da0a8a7ec | 396,515 |
def _convert_node_attr_types(G, node_type):
"""
Convert graph nodes' attributes' types from string to numeric.
Parameters
----------
G : networkx.MultiDiGraph
input graph
node_type : type
convert node ID (osmid) to this type
Returns
-------
G : networkx.MultiDiGraph
"""
for _, data in G.nodes(data=True):
# convert node ID to user-requested type
data["osmid"] = node_type(data["osmid"])
# convert numeric node attributes from string to float
for attr in {"elevation", "elevation_res", "lat", "lon", "x", "y"}:
if attr in data:
data[attr] = float(data[attr])
return G | 388d8b6c148ceebdad85f2b1d4ccbed7ca5d9e32 | 654,354 |
from typing import IO
def read_line(f: IO[str]) -> str:
"""
Read a single non-comment line from a file
:param f: The file
:return: the line
"""
line = f.readline()
while len(line) > 0 and line[0] == '#':
line = f.readline()
return line | 205d6f9760ee070f6d2edcb566fd41cd62cbbafb | 482,713 |
def get_distinct_values(df, key):
"""Get the distinct values that are present in a given column."""
return sorted(list(df[key].value_counts().index.values)) | 0833a6024f34faa28fb45d73b7ad7e22ac7ba541 | 679,066 |
import math
def distance(a, b):
"""Euclidean distance between two points
Parameters
----------
a : list of array_like
First 3D point
b : list or array_like
Second 3D point
Returns
-------
d : float
Euclidean distance between a and b
"""
return math.sqrt((a[0] - b[0])*(a[0] - b[0]) +
(a[1] - b[1])*(a[1] - b[1]) +
(a[2] - b[2])*(a[2] - b[2])) | 60d61d961aa419e0af8ee39e5c87088fc1314ff4 | 343,514 |
def linear_search(array, item):
"""Returns true if item is in array
Time Complexity O(n)
"""
for i in range(len(array)):
if array[i] == item:
return True
return False | 0fde49a4d879fd6849b9464e4ff4ac9df4698181 | 298,129 |
def parse_magic_invocation(line):
"""
Parses the magic invocation for the commands
As a general rule we want to forward the arguments to sfdx
But we also need to pass the variable to capture the results
%%sfdx:cmd {var?} {...options}
"""
args = {"variable": None, "sfdx_args": ""}
line = line.strip()
if line.startswith("-"):
args["sfdx_args"] = line
return args
else:
[variable, *sfdx_args] = line.split(" ")
args = {"variable": variable, "sfdx_args": " ".join(sfdx_args)}
return args | 5dfc59010f968f91ceef5fa81f550349e66dcdaf | 547,348 |
from typing import Any
from contextlib import suppress
def cast_str_to_bool(value: Any) -> bool:
"""Parse anything to bool.
Params:
value:
Anything to be casted to a bool. Tries to be as smart as possible.
1. Cast to number. Then: 0 = False; anything else = True.
1. Find [YAML booleans](https://yaml.org/type/bool.html),
[YAML nulls](https://yaml.org/type/null.html) or `none` in it
and use it appropriately.
1. Cast to boolean using standard python `bool(value)`.
"""
# Assume it's a number
with suppress(TypeError, ValueError):
return bool(float(value))
# Assume it's a string
with suppress(AttributeError):
lower = value.lower()
if lower in {"y", "yes", "t", "true", "on"}:
return True
elif lower in {"n", "no", "f", "false", "off", "~", "null", "none"}:
return False
# Assume nothing
return bool(value) | 784ffba5e07962c329ff0accb4896449fc849480 | 237,284 |
def safe_column_name(name):
"""Generate SQL friendly column name"""
return '"{}"'.format(name).upper() | 495b54a94c4350a8f20df5a1416a5c8c10d7a559 | 697,756 |
def points2d_at_height(pts, height):
"""Returns a list of 2D point tuples as 3D tuples at height"""
if isinstance(pts, tuple):
if len(pts) == 2:
return [(*pts, height)]
return [(pts[0], pts[1], height)]
pts3d = []
for pt in pts:
if len(pt) == 3:
pts3d.append((pt[0], pt[1], height))
else:
pts3d.append((*pt, height))
return pts3d | a4f56f3f04e45eec04a476be331006ab58e922bb | 475,519 |
def line_text(*fields, **kargs):
"""
Transform a list of values into a tsv line
:param fields: list of values as parameters
:param kargs: optional arguments: null_value: value to interpret as None
:return: tsv line text
"""
null_value = kargs.get("null_value", "")
return "\t".join([str(x) if x is not None else null_value for x in fields]) + "\n" | 0b3abf4f408b5f75807d0ee514f88d2c2e1f98bd | 583,406 |
def extract_bits(bit, bit_dict):
"""Extract bits which is turend on (1).
Args:
bit (int): Bit to check.
bit_dict (dict): Correspondance dict of bit and status.
Return:
valid_bit (:obj:`list` of :obj:`str`): List of bit which is
turned on (1).
Example:
>>> sample_dict = {
... "S1": 0b001,
... "S2": 0b010,
... "S3": 0b100,
... }
>>> extract_bits(0b101, sample_dict)
["S1", "S3"]
"""
assert all(isinstance(val, int) for val in bit_dict.values()), \
"bit_dict: all elements are expected to be 'int'"
valid_bit = [
key for key, val in bit_dict.items() if not int(bit) & val == 0
]
return valid_bit | ed82cdfa070f36ebfe59e7efa46a956a0e2a950c | 436,805 |
def posName(i):
"""
posName(i) - this function returns the positioner name Pi used in sscan record
where
i - specify the zero based positioner sequence number
"""
if i < 4:
return "P%d" % (i+1)
else:
return "?" | 099cdad08aea41f9500518efc528102513c4b985 | 411,101 |
import io
def stream_binary(f):
"""
Create a data stream from a file path (str), raw bytes, or stream.
"""
if isinstance(f, str):
return open(f, "rb")
if isinstance(f, bytes):
return io.BytesIO(f)
if hasattr(f, "read"):
if hasattr(f, "seek"):
f.seek(0)
return f | b9651a903ac9d8e3efac9c3bad8403296effba24 | 117,072 |
import re
def remove_hyperlinks(text):
"""
Remove all hyperlinks and URLs from the raw text
Args:
text(str) -- raw text
Returns:
text(str) -- text clean from hyperlinks
"""
text = re.sub(r'https?://\S+', '', text)
return text | a5042e83e5891a71dac274b0a6fdf4dc6513ae8c | 205,775 |
def localhost_url(url, local_hostname):
"""Return a version of the url optimized for local development.
If the url includes the string `localhost`, it will be replaced by
the `local_hostname`.
Parameters
----------
url : str
The url to check
Returns
-------
str : The url, possibly converted to use a different local hostname
"""
return url.replace('localhost', local_hostname) | dc2cba2acc89fe4ad7da30da9e6a3a1c16465731 | 26,217 |
def split_string(joined, split_char="_"):
"""Split joined string and substitute back the null characters with an underscore if necessary.
Inverse function of `join_strings(strings)`.
Args:
joined: str, the joined representation of the substrings.
split_char: str, the character to split by.
Returns:
A tuple of strings with the splitting character (underscore) removed.
Examples:
```python
>>> split_string('asd__\x00xcv\x00\x00')
('asd', '', '_xcv__')
```
"""
strings = joined.split(split_char)
strings_copy = []
for s in strings:
strings_copy.append(s.replace("\0", split_char))
return tuple(strings_copy) | c99d911dc82961a58821c96ba38e8a902eaa2e5d | 458,654 |
def _get_vector_identifier(line):
"""Return the identifier from the vector string. """
return line.split()[0] | f3d8dd43d1e49461474fe855fec1ecd7707d34f7 | 641,681 |
def list_kinds(client):
"""
List all valid kinds for Azure Cognitive Services account.
:param client: the ResourceSkusOperations
:return: a list
"""
# The client should be ResourceSkusOperations, and list() should return a list of SKUs for all regions.
# The sku will have "kind" and we use that to extract full list of kinds.
kinds = {x.kind for x in client.list()}
return sorted(list(kinds)) | fd8b49f1b5e83109859c00491d0914da2e5ccdc2 | 502,124 |
import csv
def load_csv(filename):
"""Load a CSV file and return a list with datas (corresponding to truths or
predictions).
"""
datas = list()
with open(filename, 'r') as opened_csv:
read_csv = csv.reader(opened_csv, delimiter=',')
for line in read_csv:
datas.append(line[1])
# Clean the header cell
datas.remove("Hogwarts House")
return datas | c1cd1beb03baaba0ba5ab25d74459e44d5e8a557 | 94,076 |
def summarize_results(results, gene, holdout_cancer_type, signal, z_dim,
seed, algorithm, data_type):
"""
Given an input results file, summarize and output all pertinent files
Arguments
---------
results: a results object output from `get_threshold_metrics`
gene: the gene being predicted
holdout_cancer_type: the cancer type being used as holdout data
signal: the signal of interest
z_dim: the internal bottleneck dimension of the compression model
seed: the seed used to compress the data
algorithm: the algorithm used to compress the data
data_type: the type of data (either training, testing, or cv)
"""
results_append_list = [
gene,
holdout_cancer_type,
signal,
z_dim,
seed,
algorithm,
data_type,
]
metrics_out_ = [results["auroc"], results["aupr"]] + results_append_list
roc_df_ = results["roc_df"]
pr_df_ = results["pr_df"]
roc_df_ = roc_df_.assign(
predictor=gene,
signal=signal,
z_dim=z_dim,
seed=seed,
algorithm=algorithm,
data_type=data_type,
)
pr_df_ = pr_df_.assign(
predictor=gene,
signal=signal,
z_dim=z_dim,
seed=seed,
algorithm=algorithm,
data_type=data_type,
)
return metrics_out_, roc_df_, pr_df_ | d1a9a55be3ef614871c805aaffe706dc10c70a83 | 221,451 |
def pack_byte_to_hn(val):
"""
Pack byte to network order unsigned short
"""
return (val << 8) & 0xffff | a0ab9ca7460c45470570bb0eb8a56a16e613b720 | 610,224 |
async def async_api_reportstate(hass, config, directive, context):
"""Process a ReportState request."""
return directive.response(name="StateReport") | 3ee0b8b8e4ca874a43e9d7cf3aae9b426eda0e43 | 649,621 |
def profile_probability(kmer, profile_matrix):
"""
A function to return the probability of a kmer based on a profile matrix
Args:
kmer: the kmer
profile_matrix: the profile matrix
Return:
The probability of kmer computed w.r.t the profile matrix
"""
matrix_row = {"A": 0, "C": 1, "G": 2, "T": 3}
probability = 1
for i in range(len(kmer)):
probability = probability*profile_matrix[matrix_row[kmer[i]]][i]
return probability | 8824952b2a8556131dddfb8fa91b3db30ae4cc99 | 597,009 |
import json
def load_json(filepath):
"""Deserialize ``filepath`` to a Python object."""
with open(filepath, "r", encoding="utf-8") as fd:
return json.load(fd) | fafd4d98d9a90a6050ca185ca8f1ce79205037f9 | 499,146 |
def _x_zip_matcher(art):
""" Is this artifact the x.zip file? """
return art['name'].endswith('.zip') | b018870a12ad3f5ad54aec28f346973c575f9241 | 659,404 |
def rm_empty_indices(*args):
"""
Remove unwanted list indices. First argument is the list
of indices to remove. Other elements are the lists
to trim.
"""
rm_inds = args[0]
if not rm_inds:
return args[1:]
keep_inds = [i for i in range(len(args[1])) if i not in rm_inds]
return [[a[i] for i in keep_inds] for a in args[1:]] | 4151f75bb11dd6275ae87382be4e0898be9bdedd | 422,055 |
def _sum(a, i, j):
"""Return the sum of the elements from a[i] to a[j]."""
if i > j: # T(n) = 0
return 0
if i == j: # T(n) = 1
return a[i]
mid = (i+j)//2
return _sum(a, i, mid) + _sum(a, mid+1, j) | c6c37e946311cbf93cd720fb7a6bcbc4b8818a25 | 481,530 |
def isOverlap1D(box1, box2):
"""Check if two 1D boxes overlap.
Reference: https://stackoverflow.com/a/20925869/12646778
Arguments:
box1, box2: format: (xmin, xmax)
Returns:
res: bool, True for overlapping, False for not
"""
xmin1, xmax1 = box1
xmin2, xmax2 = box2
return xmax1 >= xmin2 and xmax2 >= xmin1 | 898331f7f0aced6a86b244e22ebb069423fee719 | 696,396 |
def select_login_fields(fields):
"""
Select field having highest probability for class ``field``.
:param dict fields: Nested dictionary containing label probabilities
for each form element.
:returns: (username field, password field, captcha field)
:rtype: tuple
"""
username_field = None
username_prob = 0
password_field = None
password_prob = 0
captcha_field = None
captcha_prob = 0
for field_name, labels in fields.items():
for label, prob in labels.items():
if label in ("username", "username or email") and prob > username_prob:
username_field = field_name
username_prob = prob
elif label == "password" and prob > password_prob:
password_field = field_name
password_prob = prob
elif label == "captcha" and prob > captcha_prob:
captcha_field = field_name
captcha_prob = prob
return username_field, password_field, captcha_field | 9bd97028a10736fc34958546ec7362128824673a | 88,956 |
import socket
def check_ip(ip):
"""Check if an IP address has a reverse DNS that matches worldpay.com, and if
it does, check that that hostname has the IP as one of its resolvables."""
try:
hostname, aliaslist, ipaddrlist = socket.gethostbyaddr(ip)
except socket.herror:
# No reverse DNS service available
return False
except socket.gaierror:
# No match
return False
if hostname.endswith(".worldpay.com") or hostname.endswith(".rbsworldpay.com"):
try:
# The 80 here is because getaddrinfo is expecting to be used to open
# sockets. We can ignore the port, we're just interested in the
# resolved version.
names = socket.getaddrinfo(hostname, 80)
except socket.gaierror:
# Forward DNS lookup error
return False
for family, type_, proto, canonname, sockaddr in names:
if sockaddr[0] == ip:
return True
return False | 023869e20e1c5d95e49233f2ff98561d9e85324d | 456,830 |
def with_metaclass(meta, *bases):
"""Create a base class with a metaclass for py2 & py3
This code snippet is copied from six."""
# This requires a bit of explanation: the basic idea is to make a
# dummy metaclass for one level of class instantiation that replaces
# itself with the actual metaclass. Because of internal type checks
# we also need to make sure that we downgrade the custom metaclass
# for one level to something closer to type (that's why __call__ and
# __init__ comes back from type etc.).
class metaclass(meta):
__call__ = type.__call__
__init__ = type.__init__
def __new__(cls, name, this_bases, d):
if this_bases is None:
return type.__new__(cls, name, (), d)
return meta(name, bases, d)
return metaclass("temporary_class", None, {}) | 513f9e212bd8f689b09c74867876d51ab1ac544b | 19,072 |
def aggregate_run_results(collection_failures, test_results):
"""
Determines overall status of run based on all failures and results.
* 'ERROR' - At least one collection failure occurred during the run.
* 'FAIL' - Template failed at least one test
* 'PASS' - All tests executed properly and no failures were detected
:param collection_failures: failures occuring during test setup
:param test_results: list of all test executuion results
:return: one of 'ERROR', 'FAIL', or 'PASS'
"""
if collection_failures:
return "ERROR"
elif any(r.is_failed for r in test_results):
return "FAIL"
else:
return "PASS" | c63597486927597e70dbd4c67216f37b9f1d18ba | 586,759 |
def summarize_broken_packages(broken):
"""
Create human-readable summary regarding missing packages.
:param broken: tuples with information about the broken packages.
:returns: the human-readable summary.
"""
# Group and sort by os, version, arch, key
grouped = {}
for os_name, os_ver, os_arch, key, package, _ in broken:
platform = '%s %s on %s' % (os_name, os_ver, os_arch)
if platform not in grouped:
grouped[platform] = set()
grouped[platform].add('- Package %s for rosdep key %s' % (package, key))
return '\n\n'.join(
'* The following %d packages were not found for %s:\n%s' % (
len(pkg_msgs), platform, '\n'.join(sorted(pkg_msgs)))
for platform, pkg_msgs in sorted(grouped.items())) | 61c190349ba934871739822435fd36c209c2eb7a | 94,531 |
from typing import List
def _find_sibiling_ipynb_cells(
ipynb_node_id: str, item_node_ids: "List[str]"
) -> "List[str]":
"""
Returns all sibiling IPyNb cells given an IPyNb cell nodeid.
"""
fpath = ipynb_node_id.split("::")[0]
return [item for item in item_node_ids if fpath in item] | 7ac86b6853bd217cb1e17ce16dffc261bca9a3d0 | 442,915 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.