content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import operator def sort_values(values: list[tuple]) -> list[tuple]: """Returns a list of tuples sorted by x value (the value at index 0 of the inner tuple.""" return sorted(values, key=operator.itemgetter(0))
f172f68418988d4e01dcc406de8ec467abfe7aa8
8,521
from datetime import datetime def get_datetime_object(datetime_string): """ Interpret the UltraSuite prompt date and time string as a python datetime object :param datetime_string: :return: """ return datetime.strptime(datetime_string, '%d/%m/%Y %H:%M:%S')
35fe2c9056f28d3d8dbe963121cd8ce93e36550f
691,840
def remove_dups(linked_list): """Remove duplicate values from a linked list Uses a hash table to store values previously found, and walks through linked list, deleting duplicates vals. Parameters ---------- linked_list : LinkedList Linked list to remove duplicates from Returns ------- linked_list : LinkedList Input linked list, with duplicates removed """ # Handle empty linked list if linked_list.head is None: return linked_list # Initialise hash table to contain values found vals_found = {} # Start at head current_node = linked_list.head # Add head val to vals_found vals_found[current_node.data] = True # Walk through linked list, from head to tail while current_node.next_node is not None: # Check next node's value, to see if it is a duplicate next_node = current_node.next_node if next_node.data in vals_found: # Delete next node current_node.next_node = next_node.next_node # Stick to current_node, don't update it, since its next_node has # changed else: # Add val to vals_found vals_found[next_node.data] = True # Go to next node current_node = next_node return linked_list
dba61304ade467a05273b4e188f4adea731127f7
277,865
def call_reply(msg, call_return): """Construct message used by CtrlServer when replying to API calls. :param msg: Description of API call. :type msg: string :param call_return: Return value of API call. :type call_return: string :returns: Constructed call_reply dict, ready to be sent over the wire. """ return {"type": "call_reply", "msg": msg, "call_return": call_return}
eadbaf02bf182af228e0c4a1a31603ca5bfa0eb2
624,358
import re def _get_git_ref_from_chartpress_based_version(version): """ Get a git ref from a chartpress set version of format like 1.2.3-beta.1.n123.h1234567, 1.2.3-n123.h1234567, or 1.2.3. """ tag_hash_split = re.split("[\.|-]n\d\d\d\.h", version) if len(tag_hash_split) == 2: return tag_hash_split[1] else: return tag_hash_split[0]
4eb00071157403f905bbeafd1b32449cbb48848d
546,939
def co2Stom(co2: float, params: dict) -> float: """ CO2 concentration in the stomata Parameters ---------- co2 : float Carbon dioxide concentration on air [μmol {CO2} mol-1 {air}] params : dict n_convCO2: float Conversion factor from the CO2-concentration of the greenhouse air Returns ------- float CO2 concentration in the stomata [μmol {CO2} mol-1 {air}] """ co2Stom = params['n_convCO2']*co2 return co2Stom
c1a8ab0fbb3f71299e6a4303d1ec32df25835858
413,067
import binascii def hex(b) -> str: """ Returns the hexily version of the binary datas. :param b: binary datas :return: the string """ return binascii.hexlify(b).decode('utf8')
77141aefdde7af177cc36eb3317679a3f5743df0
640,204
import math def computeRMS(y_true, y_pred, distances): """Helper function to compute RMS of a given multiclass problem. Args: y_true: The ground truth labels y_pred: The predicted labels distances: A symmetric matrix defining the distance between two labels. """ rms = 0.0; for i in range(len(y_true)): yt = y_true[i] yp = y_pred[i] rms += distances[yt][yp]**2 rms = math.sqrt(rms/len(y_true)) return rms
3aec637a943a9c0fdc5d7591ee4e3d20fc78bad4
329,270
def sg_access_map(ip_perm_list): """Convert the ip_perm_list into a dictionary where the key is the tuple (protocol, port-range) and the value is the set of CIDRs that are allowed access for that protocol/port(s). """ access_map = {} for ip_perm in ip_perm_list: if ip_perm.from_port is not None: from_port = int(ip_perm.from_port) else: from_port = None if ip_perm.to_port is not None: to_port = int(ip_perm.to_port) else: to_port = None target = (ip_perm.ip_protocol.upper(), from_port, to_port) for grant in ip_perm.grants: if grant.cidr_ip: if grant.cidr_ip.endswith("/32"): grant_id = grant.cidr_ip.split('/', 1)[0] else: grant_id = grant.cidr_ip elif grant.group_id: grant_id = grant.group_id else: continue if target not in access_map: access_map[target] = set() access_map[target].add(grant_id) return access_map
fc5f89c6d763f80232482cb713d1b9d24a48a65a
332,054
def _get_neighbor_species(m): """ Args: m: A dictionary representing a molecule entry in LIBE Returns: A list of tuple (atom species, bonded atom species), where `bonded_atom_species` is a list. Each tuple represents an atom and its bonds. """ res = [(s, list()) for s in m["species"]] for a1, a2 in m["bonds"]: s1 = m["species"][a1] s2 = m["species"][a2] res[a1][1].append(s2) res[a2][1].append(s1) return res
d3015d9efef6137515e9196cb3806a295546b89b
423,462
def function_3_args(first_argument, second_argument, third_argument): """three arguments function""" return first_argument, second_argument, third_argument
600cd2436ba47afa1335fa05bf9fa8aa60f4da34
520,514
import requests def auth(gurl, beid, wskey): """ Formats the provided TDX information into the appropriate format, uses Requests to get a bearer token, then returns HTTP headers. Args: gurl (str): the API URL of the TeamDynamix environment beid (str): TeamDynamix environment BEID wskey (str): TeamDynamix environment Web Services Key Returns: headers (str): A string including the content-type and bearer token, used for future API calls to TDX; bearer is only valid for this session """ data = { "BEID": beid, "WebServicesKey": wskey } bearer = requests.post( url = gurl + "/api/auth/loginadmin", json = data ) token = str(bearer.content, "utf-8") headers = { "Content-Type": "application/json", "Authorization": "Bearer " + token } return headers
26db96c1b83c6efaeed64b597bd2cb728c5becd9
162,511
def extend_schema_field(field): """ Decorator for the "field" kind. Can be used with ``SerializerMethodField`` (annotate the actual method) or with custom ``serializers.Field`` implementations. If your custom serializer field base class is already the desired type, decoration is not necessary. To override the discovered base class type, you can decorate your custom field class. Always takes precedence over other mechanisms (e.g. type hints, auto-discovery). :param field: accepts a ``Serializer`` or :class:`~.types.OpenApiTypes` """ def decorator(f): if not hasattr(f, '_spectacular_annotation'): f._spectacular_annotation = {} f._spectacular_annotation['field'] = field return f return decorator
91f665f927357813f43963ce9c348f8da7a2c5c8
18,812
import torch def box_corners_to_center(corners): """ Arguments: corners (Tensor[N, 8]): boxes to be converted. They are expected to be in (x0, y0, ..., x3, y3) format, where the corners are sorted counterclockwise. Returns: b (Tensor[N, 6]): converted boxes in centered (x_c, y_c, w, h, c, s) format. * c, s: sin, cos before sigmoid """ x0, y0, x1, y1, x2, y2, x3, y3 = corners.unbind(-1) x_c = (x0 + x2) / 2 y_c = (y0 + y2) / 2 wsin, wcos, hsin, hcos = (y1 - y0, x1 - x0, x0 + x1, y2 + y3) theta = torch.atan2(wsin, wcos) c = torch.cos(theta) s = torch.sin(theta) b = [x_c, y_c, (wsin ** 2 + wcos ** 2).sqrt(), (hsin ** 2 + hcos ** 2).sqrt(), c, s] return torch.stack(b, dim=-1)
25e7a396175585ac82793666d1cd66bb80d5e7d6
347,555
import torch def autograd_range(name): """ Creates an autograd range for pytorch autograd profiling """ return torch.autograd.profiler.record_function(name)
fc781d79e5befbda86fad15ef2abb85d1f8403a7
61,788
from typing import AnyStr def want_str(s: AnyStr) -> str: """Convert bytes to string.""" if isinstance(s, bytes): return s.decode() return s
9c6634098a4f8949b1af56d3cfeb3303833d8270
353,910
from pathlib import Path import click def validate_existing_dir(ctx, param, value: Path) -> Path: """ Callback for click commands that checks that a given path is a directory """ if not value.is_dir(): raise click.BadParameter(f"{value} is not a directory") return value
76cb4b62a964a6192fb34d862005ec7d8ddca977
636,491
import re def normalize_whitespace(text): """ Normalize whitespace. Strips the string of whitespace in both ends, and replaces all consecutive whitespace characters (including tabs, newlines and nonbreak space) with a single space. """ return re.sub('(\s|\\xa0)+', ' ', text).strip()
60a09fad363395c06caa6363eaacc7c01a780416
341,992
def overlap(indices1, indices2): """Returns a boolean indicating whether two pairs of indices overlap.""" assert (len(indices1) == 2 and len(indices2) == 2) indices1 = sorted(indices1) indices2 = sorted(indices2) if (indices2[0] <= indices1[0] <= indices2[1]) or \ (indices2[0] <= indices1[1] <= indices2[1]) or \ (indices1[0] <= indices2[0] <= indices1[1]) or \ (indices1[0] <= indices2[1] <= indices1[1]): return True else: return False
94ca141bd7320a617a51d0baf8a7f99f4e5231d4
579,490
def _out_of_str(n1: int, n2: int) -> str: """ :return A string in the format [n1 / n2], where "n1" and "n2" are the passed integers padded to the same length """ width = len(str(max(n1, n2))) return '[%s / %s]' % (str(n1).rjust(width), str(n2).rjust(width))
70398ec476405122ff799e3924d6488cea372706
406,426
def compare_two_model_index(index_1, index_2): """ If the two input index's row and column and their parent is equal, then they are equal for test. """ return (index_1.row() == index_2.row()) \ and (index_1.column() == index_2.column()) \ and (index_1.parent() == index_2.parent())
5f199812456ae74d2a65528610ca752a2771aad1
677,775
from datetime import datetime def GrADStime_to_datetime(gradsTime): """ Convert GrADS time string e.g., 00:00z01Jan2000 to datetime Parameters ---------- gradsTime : str Grads time in str format e.g., 00:00z01Jan2000. Returns ---------- re : datetime """ lens = len(gradsTime) if lens==15 or lens==14: time = datetime.strptime(gradsTime, "%H:%Mz%d%b%Y") elif lens==12 or lens==11: time = datetime.strptime(gradsTime, "%Hz%d%b%Y" ) elif lens== 9 or lens== 8: time = datetime.strptime(gradsTime, "%d%b%Y" ) elif lens== 7: time = datetime.strptime(gradsTime, "%b%Y" ) else: raise Exception('invalid length of GrADS date/time string') return time
df21ac4532510e883245be67ba354f4048761800
33,651
def attrib_basic(_sample, class_id): """ Add basic attribute Args: _sample: data sample class_id: class label asscociated with the data (sometimes indicting from which subset the data are drawn) """ return {'class_id': class_id}
af2be3a187267ecaa817309b9f1d7e66375f79ea
366,568
import random def create_random_graph(nodes): """ Creates a random (directed) graph with the given number of nodes """ graph = [] for i in range(0, nodes): graph.append([]) for j in range(0, nodes): rand = random.randint(1, 100) if rand % 2 == 0 and i != j: graph[i].append(rand) else: graph[i].append(-1) return graph
57401f41d0dbbd871dcefd369c22b82fc453b3f3
682,196
def question_node_shallow_copy(node): """ Create a copy of the question tree node """ new_node = { 'type': node['type'], 'inputs': node['inputs'], } if 'value_inputs' in node: new_node['value_inputs'] = node['value_inputs'] else: new_node['value_inputs'] = [] return new_node
712f803fc30b702e50c4cdccbfdbd13cf3fa7588
442,150
def apply_update(content: dict, scenario_data: dict) -> dict: """ Sample update that look for each ADT datasets and count the number of entities/relation of a given type :param content: Contains all datasets and parameters downloaded from the API :param scenario_data: The data associated to your scenario downloaded from the API :return: dict (str -> int) containing the number of entities/relations for each type in all ADT datasets """ ret = dict() for dataset in content['datasets'].values(): if dataset['type'] is not "adt": continue data = dataset['content'] for item_type, list_items in data.items(): ret.setdefault(item_type, 0) ret[item_type] += len(list_items) return ret
ac6ed84e795ed06f1dd118b57640cfe5a472af3d
157,963
def pos_to_float(pos): """ Convert a lat or long to a float :param pos: A lat or a long :type pos: str :return: The float version :rtype: float """ # N & E are positive signs = {'N': '+', 'S': '-', 'E': '+', 'W': '-'} degrees = float(pos.split(' ')[0]) + float(pos.split(' ')[1][:-1]) / 60 return float(signs[pos[-1:]] + str(degrees))
0ea779e3b72a953f9980edba4cc567b80ef4e67b
326,059
def get_status(runs): """Get the most recent status of workflow for the current PR. Parameters ---------- runs : list List of comment objects sorted by the time of creation in decreasing order. Returns ------- status : string The most recent status of workflow. Can be 'success', 'failure' or 'in-progress'. """ status = 'success' for run in runs: body = run['body'] if "Status: " in body: if "Status: skipped" in body: continue if "Status: failure" in body: status = 'failure' break if "Status: success" in body: status = 'success' break else: status = 'in-progress' break return status
081d5fb6e8218edcbf25adb9f8b1eeb2d2add1a1
655,532
def is_file_available (data, filename): """Return True is the given file is available in the input data file, otherwise return False""" return True if filename in data else False
39d4a4d8ca3c7b89a23a18ffaa1fb0d47b3e2f84
640,772
def reduce_aet_if_dry(aet, wat_lev, fc): """ Reduce actual evapotranspiration if the soil is dry. If the water level in a cell is less than 0.7*fc, the rate of evapo-transpiration is reduced by a factor. This factor is 1 when wat_lev = 0.7*fc and decreases linearly to reach 0 when wat_lev = 0 i.e. where wat_lev < 0.7*fc, apply a correction factor of wat_lev/(0.7*fc) to the aet grid. Args: aet: "Raw" actual evapotranspiration grid. wat_lev: Water level grid fc: Soil field capacity grid. Returns: Array (modified AET grid with AET reduced where necessary). """ # Get a boolean array showing which cells need correcting bool_array = wat_lev < (0.7*fc) # Calculate a correction factor for all cells, but subtract 1 from answer cor_facts_minus1 = (wat_lev / (0.7*fc)) - 1 # Multiplying bool_array by cor_facts_minus1 gives a grid with values of # (cor_fact - 1) for cells which need correcting and zero otherwise. Add 1 # to this to get a grid of cor_facts and ones cor_facts = (bool_array * cor_facts_minus1) + 1 return aet*cor_facts
170462a23c3903a390b89963aa6ce21839e5d44b
705,839
def remove_dupes(car_list): """Remove duplicate dicts from list""" x = set() cars = [] for i in car_list: if i['title'] not in x: x.add(i['title']) cars.append(i) else: continue return cars
ab9636b7d830c9742aa543f2aa85a85a88ecf92a
218,335
def time_str_from_datetime_str(date_string: str) -> str: """ Extracts the time parts of a datetime. Example: 2019-12-03T09:00:00.12345 will be converted to: 09:00:00.12345 :param date_string: :return: """ return date_string.split('T')[1]
cd08fc6cb55854cacf1620aea4b02692b7925cd7
30,322
def make_dic(doc_id=None, root=None, date=None, author=None, text=None, favorite=None): """make dictionary form argument and return dictionary Keyword Arguments: doc_id {int} -- documnet ID (default: {None}) root {string} -- xml file name (default: {None}) date {string} -- date of document (default: {None}) author {string} -- author of document (default: {None}) text {string} -- text of document (default: {None}) favorite {string} -- favorite of document (default: {None}) Returns: dictionary -- document data in dictionary """ return { 'docID': doc_id, 'root': root, 'date': date, 'author': author, 'text': text, 'favorite': favorite }
1948b9e20fe03a849cc072cc16330270730ee72d
676,565
def get_short_labeler(prefix): """ Returns a labeling function that prepends `prefix` to an assignment index. """ def labeler(index): return f"{prefix} {index:02d}" return labeler
a0037b8bb8e398efd8726309b914591ed6c6d75b
696,776
from typing import Tuple def get_namespace_and_name_from_role(role: str) -> Tuple[str, str]: """ Extract namespace and name for a role. Args: role (str): role in the form {{role_namespace}}.{{role_name}} Returns: Tuple[str, str]: namespace, name """ # role comes in the form {{role_namespace}}.{{role_name}}, so split by . role_data = role.split(".") role_namespace, role_name = role_data[0], role_data[1] return role_namespace, role_name
c4682d8457b49c12fc7bf01279f8cd5583eea13c
26,564
def DSER(results): """DA Segmentation Rate: number of segments of the reference incorrectly segmented over number of reference segments. """ assert len(results) == 2 CorrectSegs = results[0] TotalSegs = results[1] return ((TotalSegs-CorrectSegs)/TotalSegs) * 100
5d74c7bd3329448609fe36fa4d7778155c54d7c1
698,099
def get_filenames_in_folder(folder): """ Return list of filenames (stem + suffix) in folder """ files_in_folder = [p for p in folder.iterdir() if p.is_file()] filenames_in_folder = [f.stem + f.suffix for f in files_in_folder] return filenames_in_folder
121e87aca8f56eefa51d63730d52efc3829dcbb1
430,383
def get_gps_data(content): """ Parse latitude and longitude :param content: raw html :return: list with geographical coordinates or None if can't find :rtype: list """ try: return str(content).split('showMapDialog(')[1].split(')')[0].split(', ')[:2] except IndexError: return None
0835b7c52138a2babcef8af080fdb51fcebb1b57
360,127
def raise_diacritic(some_diacritic: str) -> str: """ When given a diacritic that goes below, replaces it with one that goes below, and has the same meaning; otherwise it does nothing. """ if some_diacritic == "̥": return "̊" else: return some_diacritic
855feaa797db4f96270fc43dcf4d305906477ebc
442,645
def context_mod_args(parser, dsparsification_reg_type='l1', dsparsification_reg_strength=1., dcontext_mod_init='constant'): """This is a helper function of function :func:`parse_cmd_arguments` to add an argument group for options regarding the context modulation. Arguments specified in this function: - `use_context_mod` - `no_context_mod_outputs` - `context_mod_inputs` - `context_mod_post_activation` - `context_mod_last_step` - `checkpoint_context_mod` - `offset_gains` - `dont_softplus_gains` - `sparsify_context_mod` - `sparsification_reg_strength` Args: parser: Object of class :class:`argparse.ArgumentParser`. dsparsification_reg_type (str): Default value of option `sparsification_reg_type`. dsparsification_reg_strength (float): Default value of option `sparsification_reg_strength`. dcontext_mod_init (str): Default value of option `context_mod_init`. Returns: The created argument group, in case more options should be added. """ heading = 'Context modulation options' agroup = parser.add_argument_group(heading) # here we dont differenciate between the usage of hnet and context mod # since we assume we only use the cm case agroup.add_argument('--use_context_mod', action='store_true', help='If True, hnet-based context-mod will be used.') agroup.add_argument('--no_context_mod_outputs', action='store_true', help='If True, context modulation will not be ' + 'applied to the output layer.') agroup.add_argument('--context_mod_inputs', action='store_true', help='If True, context modulation will be applied ' + 'to the input layer.') agroup.add_argument('--context_mod_post_activation', action='store_true', help='If True, context modulation will be applied ' + 'after computing the activation function, ' + 'else, it will be applied before.') agroup.add_argument('--context_mod_last_step', action='store_true', help='If True, context modulation will only be ' + 'applied in the last timestep of the sequence. ' + 'Else, it is applied at every timestep.') agroup.add_argument('--checkpoint_context_mod', action='store_true', help='Train context-modulation without a ' + 'hypernetwork. Instead, context-mod weights ' + 'will be part of the main network and will be ' + 'checkpointed after every task (linear memory ' + 'growth).') agroup.add_argument('--context_mod_init', type=str, default=dcontext_mod_init, help='What method to use to initialize context-' + 'modulation weights. Note, this option is only ' + 'applicable in combination with ' + '"checkpoint_context_mod". Reinitialization ' + 'will be performed after every task. If ' + '"sparse" is used, then the option ' + '"mask_fraction" is reused to determine the ' + 'sparsity level. Default: %(default)s.', choices=['constant', 'normal', 'uniform', 'sparse']) agroup.add_argument('--offset_gains', action='store_true', help='If this option is activated, the modulatory ' + 'gains produced by the hypernetwork will be ' + 'shifted by 1. Note, requires ' + '"dont_softplus_gain" to be set.') agroup.add_argument('--dont_softplus_gains', action='store_true', help='If this option is activated, the modulatory ' + 'gains produced by the hypernetwork will not ' + 'be send through a softplus. Therefore, they ' + 'might be positive and negative.') agroup.add_argument('--context_mod_per_ts', action='store_true', help='If True, a different context-mod pattern per ' + 'timestep will be learned.') agroup.add_argument('--sparsify_context_mod', action='store_true', help='If this option is activated, the modulatory ' + 'gains are pushed towards zero to sparsify the ' + 'backpropagation through neurons in order to ' + 'restrict the absolute model capacity used per ' + 'task as well to ensure that there are ' + '"unimportant" weights reserved for future tasks.') agroup.add_argument('--sparsification_reg_strength', type=float, default=dsparsification_reg_strength, help='The strength of the gain sparsification ' + 'regularizer. Default: %(default)s.') agroup.add_argument('--sparsification_reg_type', type=str, default=dsparsification_reg_type, help='The type of regularizer to be used in order to ' + 'obtain sparse gain patterns. ' + 'Default: %(default)s.', choices=['l1', 'log']) return agroup
736393c9fd7b2dd75e76fcabef2a0e51fb331d48
164,249
def slice_sparse(mat, slice0, slice1): """ Slice a block out of a sparse matrix, ie mat[slice0,slice1]. Scipy sparse matrices do not support slicing in this manner (unlike numpy) Args: mat (sparse): of any form slice0 (bool,array): mask to apply on axis 0 (rows) slice1 (bool,array): mask to apply on axis 1 (columns) Returns: CSR matrix """ out = mat.tocsc()[:,slice1] return out.tocsr()[slice0,:]
7940372d776efd4e1027556bf547ddfc025288f3
296,047
def process_img_paths(input): """Processes image paths If one path is entered, return list of length 1 containing location. If multiple (comma-separated) paths are entered, return list containing all paths. Args: input (str): string containing image path(s) Returns: paths (list): list containing image path, or separated image paths """ input = input.replace(" ", "") paths = input.split(",") if '' in paths: paths.remove("") return paths
53f693885d10c7631257583bb465c9147dc2dca7
633,454
import torch def _distance_matrix(x: torch.Tensor, eps_factor=1e2) -> torch.Tensor: """Naive dense distance matrix calculation. Parameters ---------- x : torch.Tensor Dense [n, d] tensor containing the node attributes/embeddings. eps_factor : [type], optional Factor to be multiplied by `torch.finfo(x.dtype).eps` for "safe" sqrt, by default 1e2. Returns ------- torch.Tensor n by n distance matrix. """ x_norm = (x ** 2).sum(1).view(-1, 1) x_norm_t = x_norm.transpose(0, 1) squared = x_norm + x_norm_t - (2 * (x @ x.transpose(0, 1))) # For "save" sqrt eps = eps_factor * torch.finfo(x.dtype).eps return torch.sqrt(torch.abs(squared) + eps)
bafe4c182101bbf161745aba11de549412bbbbfa
634,449
def dict_failed_keys(table): """Returns all failed keys of the dict match comparison result table.""" failed = [] for _, key, result, _, _ in table: if key and result == 'Failed': failed.append(key) return tuple(sorted(failed))
58a8707d08c6e944f4a2ea5752e423297c02d84f
81,362
def get_str_comparison_term(args, db_name, arg_name=None): """ Return an SQL WHERE term for the named argument. :param str db_name: database column name :param str arg_name: command-line argument name :return: (sql_term, value). :rtype: (str, str) """ arg_name = arg_name or db_name val = getattr(args, arg_name) eq = getattr(args, '_eq_' + arg_name, False) if eq or args.eq: op = '==' wildcard = '' elif args.like: op = 'LIKE' wildcard = '%' elif args.regex: op = 'REGEXP' wildcard = '.*' else: op = 'glob' wildcard = '*' where = ('{} {} ?'.format(db_name, op)) val = val if args.exact else '{1}{0}{1}'.format(val, wildcard) if args.regex: val += '$' return (where, val)
9091ce0b359d2f4c14da5368a241146974f19f9b
548,296
def checkdms(dms): """Verify a sexagesimal string; returns True if valid, False if not """ assert isinstance(dms, str) try: d=dms.split(':') for i in range(3): float(d[i]) return True except: return False
8255b4a983ee3e2e5d633ed3eba89b81a12fb6f5
102,500
def find_duplicated(list1): """ Returns a list with duplicated items """ duplicated = [] for element in list1: if list1.count(element) >= 2 and element not in duplicated: duplicated.append(element) return duplicated
1106f02ad169b8f26099e870fb483c910082ef85
385,153
def beta_exp(a, b): """ Expected value of beta distro https://en.wikipedia.org/wiki/Beta_distribution """ return a / (a + b)
92a10f1e091fbb857b513995a4ad628111e7f71d
65,794
def show_prop(df, target_col='target'): """Show proportion of classes in target column""" return df \ .groupby(target_col) \ .agg(num=(target_col, 'size')) \ .assign(prop=lambda x: x.num / x.num.sum()) \ .style \ .format(dict( num='{:,.0f}', prop='{:.2%}'))
f0d60f39da1075e9b7233650f84c8fff5a4ee03c
172,052
def duns_screener(duns): """ Takes a duns number and returns a modified string to comply with DUNS+4 format common DUNS errors: * leading zero removed: len == 8 --> add leading zero back + '0000' trailing * 9-digits --> duns + '0000' * else: 'error' """ if len(duns) == 9: duns = duns + '0000' return duns elif len(duns) == 8: duns = '0' + duns + '0000' return duns else: return 'error'
bed8c6bff392a31d511cf962cec7c30e32b86d8b
87,346
def _get_server_info(metadata=None, created=None): """ Creates a fake server config to be used when testing creating servers (either as the config to use when creating, or as the config to return as a response). :param ``dict`` metadata: metadata to include in the server config :param ``created``: this is only used in server responses, but gives an extra field to distinguish one server config from another """ config = { 'name': 'abcd', 'imageRef': '123', 'flavorRef': 'xyz', 'metadata': metadata or {} } if created is not None: config['created'] = created return config
3d96678702dd88173ed069f81e7eda84b8dff358
550,369
import math def api_psv_release_rate(P1, Pback, k, CD, T1, Z, MW, area): """ PSV vapour relief rate calculated according to API 520 Part I 2014 Eq. 5, 9, 15, 18 Parameters ---------- P1 : float Upstream pressure Pback : float Downstream / backpressure k : float Ideal gas k (Cp/Cv) CD : float Coefficient of discharge T1 : float Upstream temperature Z : float Compressibility MW : float Molecular weight of the gas relieved area : float PSV orifice area Returns ---------- : float Relief rate / mass flow """ P1 = P1 / 1000 Pback = Pback / 1000 area = area * 1e6 MW = MW * 1000 C = 0.03948 * (k * (2 / (k + 1)) ** ((k + 1) / (k - 1))) ** 0.5 if P1 / Pback > ((k + 1) / 2) ** ((k) / (k - 1)): w = CD * area * C * P1 / math.sqrt(T1 * Z / MW) else: r = Pback / P1 f2 = ((k / (k - 1)) * r ** (2 / k) * (1 - r**((k - 1) / k)) / (1 - r))**0.5 print(f2) w = CD * area * f2 / (T1 * Z / (MW * P1 * (P1 - Pback)))**0.5 / 17.9 return w/3600
b87567a1cf88dc550f83bb9facd7d88388fddc40
508,299
def count_encrypted_layers(encrypted_layers: dict): """ Count number of encrypted layers homomorphic encryption (HE) layers/variables. """ n_total = len(encrypted_layers) n_encrypted = 0 for e in encrypted_layers.keys(): if encrypted_layers[e]: n_encrypted += 1 return n_encrypted, n_total
12c3f8d19dd161ba84265144de159882f82cab79
270,627
def collect_runtime_flags(properties): """Returns a list of unique runtime flags used by the properties""" flags = {p['runtime_flag'] for p in properties if p['runtime_flag']} return sorted(flags)
70e255f6696533162dc3335bfedbf845ce556339
472,053
def angle_to_azimuth_scalar(angle): """ Helper function for angle_to_azimuth, for scalar inputs. Takes an angle (in unit circle coordinates) and returns an azimuth (in compass direction coordinates). """ az = - (angle - 90) while az < 0: az += 360 while az > 360: az -= 360 return az
7e24e8a25092f8d7af80c0007b4a8bc94050d6e3
389,099
import torch def denormalize(tensor, mean, std): """Denormalize the image for given mean and standard deviation. Args: tensor: Image tensor mean: Dataset mean std: Dataset standard deviation Returns: tensor Raises: No Exception """ if not tensor.ndimension() == 4: raise TypeError('tensor should be 4D') mean = torch.FloatTensor(mean).view(1, 3, 1, 1).expand_as(tensor).to(tensor.device) std = torch.FloatTensor(std).view(1, 3, 1, 1).expand_as(tensor).to(tensor.device) return tensor.mul(std).add(mean)
12eedd38c33d81d1d30fc002a5cf3ad404f84ef4
132,303
import posixpath def get_fuzzer_benchmark_covered_regions_filestore_path( fuzzer: str, benchmark: str, exp_filestore_path: str) -> str: """Returns the path to the covered regions json file in the |filestore| for |fuzzer| and |benchmark|.""" return posixpath.join(exp_filestore_path, 'coverage', 'data', benchmark, fuzzer, 'covered_regions.json')
f999a81c53d961a2ed38a7941d7dd6912dae9621
699,148
def open_file(filename): """Returns list of lines from the text file. \n at the end of the lines are trimmed. Empty lines are excluded""" lines = [] with open(filename, 'r') as infile: for line in infile: if line.strip(): lines.append(line.strip()) return lines
2baf43bcfceec3286790918620c7a9b3d4bb7f7e
140,731
import math def calculateDeterminant(termA, termB, termC): """ Calculates the determinant and returns the correct value or -1 if is a negative number. """ firstCalc = math.pow(termB, 2) - (4*termA*termC) if(firstCalc < 0): return -1 else: determinant = math.sqrt(firstCalc) return determinant
9b3f2b7fd35f2ff73b29ec6402e8306123f7a0ba
398,880
import math def get_conv_output_sizes(lengths, num_layers=4): """ Returns the length of the output after conv block. Using kernel size of 3 for conv1d and maxpool1d, and max pool stride of 2. """ kernel_size = 3 max_pool_stride = 2 for _ in range(num_layers): lengths = [math.floor(((length - (kernel_size-1)) - (kernel_size) + max_pool_stride)/max_pool_stride) for length in lengths] return lengths
4c917920edc6b1ab37382ebcba6eef174b5d4f00
358,203
from typing import Dict def prettify_wildfire_rule(rule: Dict) -> Dict: """ Args: rule: The profile security rule to prettify. Returns: The rule dict compatible with our standard. """ pretty_rule = { 'Name': rule['@name'], } if isinstance(rule.get('application'), dict) and 'member' in rule['application']: pretty_rule['Application'] = rule['application']['member'] if isinstance(rule.get('file-type'), dict) and 'member' in rule['file-type']: pretty_rule['File-type'] = rule['file-type']['member'] if 'analysis' in rule: pretty_rule['Analysis'] = rule['analysis'] return pretty_rule
1bf153d81a611c1cb275ed1025cd0680ebbf0267
641,587
def is_prime(number: int): """ This function finds if the number is prime Returns: True if prime false otherwise """ for index in range(2, (number//2) + 1): if number%index == 0: return False return True
abeb7efc2b95f7ad2051e37cd3c96bfd0e71901a
472,863
def nested_update(this, that): """Merge two nested dictionaries. Effectively a recursive ``dict.update``. Examples -------- Merge two flat dictionaries: >>> nested_update( ... {'a': 1, 'b': 2}, ... {'b': 3, 'c': 4} ... ) {'a': 1, 'b': 3, 'c': 4} Merge two nested dictionaries: >>> nested_update( ... {'x': {'a': 1, 'b': 2}, 'y': 5, 'z': 6}, ... {'x': {'b': 3, 'c': 4}, 'z': 7, '0': 8}, ... ) {'x': {'a': 1, 'b': 3, 'c': 4}, 'y': 5, 'z': 7, '0': 8} """ for key, value in this.items(): if isinstance(value, dict): if key in that and isinstance(that[key], dict): nested_update(this[key], that[key]) elif key in that: this[key] = that[key] for key, value in that.items(): if key not in this: this[key] = value return this
1f218df42cd37e328118fe7e87b2523aae622be9
89,562
def extract_query(message, cmdlength=1): """ Removes the command and trigger from the message body, return the stripped text.""" content = message.getBody() if message.participant: offset = 1 + cmdlength else: offset = cmdlength return ' '.join(content.split()[offset:])
a1cba57c8650599315fd83f70b590ba6c563ef01
148,502
def run_sixs_job(args): """Run sixs for a specific wavelength Parameters ---------- args : tuple initialized SixS instance [additional args passed through] Returns ------- dict correction parameters list of float adjacency correction parameters list arguments passed through """ mysixs = args[0] moreargs = args[1:] mysixs.run() xdict = { 'xa': mysixs.outputs.coef_xa, # inverse of transmitance 'xb': mysixs.outputs.coef_xb, # scattering term of the atmosphere 'xc': mysixs.outputs.coef_xc} # reflectance of atmosphere for isotropic light (albedo) adjcorr_params = [ mysixs.geometry.view_z, mysixs.outputs.optical_depth_total.total, mysixs.outputs.transmittance_global_gas.upward, mysixs.outputs.transmittance_total_scattering.upward] return (xdict, adjcorr_params, moreargs)
52a215c2e06ce6fe50ac7bc106b6aaa89c043c79
216,175
def flatten(items): """Convert a sequence of sequences to a single flat sequence. Works on dictionaries, tuples, lists. """ result = [] for item in items: if isinstance(item, list): result += flatten(item) else: result.append(item) return result
d44e3391f791dfd2ec9b323c37c510a415bb23bf
707,930
def _is_passing_grade(course_grade): """ Check if the grade is a passing grade """ if course_grade: return course_grade.passed return False
0c25fca3629433a2ae1956cd0e14a212b2881639
535,004
def get_non_link_props(props): """Return subset of iterable props that are not links.""" return [val for val in props if '.' not in val]
f2790eb1301c426da0115e543d01a1a454221fdd
591,932
def update_bookmark(connection, bookmark_id, body, error_msg=None): """Update a bookmark. Args: connection: MicroStrategy REST API connection object bookmark_id (string): Bookmark ID body: JSON-formatted information used to format the document error_msg (string, optional): Custom Error Message for Error Handling Returns: Complete HTTP response object. """ url = f"{connection.base_url}/api/bookmarks/{bookmark_id}" return connection.put(url=url, json=body)
bebb30e2b5cdcd8078b9585a568e52a69b05b62a
253,499
import mimetypes def guess_mimetype(filename: str, fallback: bool = False) -> str: """Guess a mimetype based on a filename. Args: filename: The filename to check. fallback: Fall back to application/octet-stream if unknown. """ mimetype, _encoding = mimetypes.guess_type(filename) if mimetype is None: if fallback: return 'application/octet-stream' else: raise ValueError("Got None mimetype for {}".format(filename)) return mimetype
3cbaafdb2476491c2723ab1ba776eb62abd4b8d2
62,919
from datetime import datetime import click def validate_optional_timestamp(ctx, param, value): """Ensure that a valid value for a timestamp is used.""" if value: try: return datetime.strptime(value, "%Y-%m-%dT%H:%M:%SZ").replace( hour=0, minute=0, second=0 ) except ValueError: raise click.BadParameter( "{} must be a valid utc timestamp formatted as `%Y-%m-%dT%H:%M:%SZ` " "e.g. `2020-12-31T00:00:00Z`".format(param.name), param=param, ) return value
ace2b46b6b36d078b450f264164b73f88ebc2537
38,887
def get_cart_location(env, screen_width=600): """ Get the position of cart :param env: environment, in this file means cartpole-v0 :param screen_width:screen width defined in gym :return:middle position of cart """ world_width = env.x_threshold * 2 scale = screen_width / world_width return int(env.state[0] * scale + screen_width / 2.0)
da4b7f710e0ecff94e65b48e40e71a108d239bac
377,132
def median(arr): """Determines the median of a list of numbers. Args: arr: a list of ints and/or floats of which to determine the median Returns: int or float: the median value in arr """ if len(arr) == 0: return None arr_sorted = sorted(arr) midpoint = int(len(arr) / 2) if len(arr) % 2 == 0: # even number of elements; get the average of the middle two result = (arr_sorted[midpoint - 1] + arr_sorted[midpoint]) / 2 else: result = arr_sorted[midpoint] return result
68c8f7cde71d7e79e8888336454995cd50c4763e
283,353
def allocate_available_excess(region): """ Allocate available excess capital (if any). """ difference = region['total_mno_revenue'] - region['total_mno_cost'] if difference > 0: region['available_cross_subsidy'] = difference region['deficit'] = 0 else: region['available_cross_subsidy'] = 0 region['deficit'] = abs(difference) return region
e586435791b56f9e5ce25b760da62f5cdedc3bd7
171,540
def GetIdFromArgs(args): """Returns the id to be used for constructing resource paths. Args: args: command line args. Returns: The id to be used.. """ if args.organization: return 'organizationsId' elif args.folder: return 'foldersId' elif args.billing_account: return 'billingAccountsId' else: return 'projectsId'
b5d61e02b7e04d56a8c2ac5d172e1623d27187db
136,487
def number_equal(element, value, score): """Check if element equals config value Args: element (float) : Usually vcf record value (float) : Config value score (integer) : config score Return: Float: Score """ if element == value: return score
df96f13cc31ffd147253dafb8f1f137c09940a8a
291,553
import torch def position_embeddings(position_tensor: torch.LongTensor, b: int, E: int, dtype: torch.dtype = torch.float) \ -> torch.Tensor: """ Returns the embeddings for bth Transformer block Parameters ---------- position_tensor: torch.LongTensor (L, N) where L is the sequence length, N is the batch size. b: int The index of Transformer block E: int The embedding dimension dtype: torch.dtype Returns ------- embeddings: torch.Tensor (L, N, E) where L is the sequence length, E is the embedding dimension. embeddings[i, n, 2j ] = sin((position_tensor[i, n] + b) / (10000**(2j/E))) embeddings[i, n, 2j + 1] = sin((position_tensor[i, n] + b) / (10000**(2j/E))) """ device = position_tensor.device L, N = position_tensor.shape divisor = torch.arange(0, E) // 2 divisor = \ torch.pow(10000, 2 * divisor.to(dtype=dtype) / E).to(device=device) embeddings = \ position_tensor.view(L, N, 1).expand(L, N, E)\ .to(dtype=dtype).to(device=device) embeddings = embeddings + b embeddings = embeddings embeddings /= divisor return torch.sin(embeddings)
af087adeb4560793f27bf0eb92bd167cd0911e4c
406,624
import jinja2 def render(data, template): """render jija2 template Args: data(obj): dict with data to pass to jinja2 template template(str): jinja2 template to use Returns: string, rendered all, or pukes with error :) """ with open(template, 'r'): templateLoader = jinja2.FileSystemLoader(searchpath="./") templateEnv = jinja2.Environment(loader=templateLoader) template = templateEnv.get_template(template) outputText = template.render(data=data) return outputText
caf24bccd0351f72f5750bcb7c43e676994fecea
37,702
import collections def _longest(d): """ Returns an OrderedDict with the contents of the input dictionary ``d`` sorted by the length of the keys, in descending order. This is useful for performing substring matching via ``str.startswith``, as it ensures the most complete match will be found. >>> data = {'a': 1, 'bb': 2, 'ccc': 3} >>> pwnlib.context._longest(data) == data True >>> for i in pwnlib.context._longest(data): ... print i ccc bb a """ return collections.OrderedDict((k,d[k]) for k in sorted(d, key=len, reverse=True))
56b6efe5ae544f4026c462893d54fb626b7009b4
96,503
import re def cert_arn_lookup(session, domain_name): """Looks up the ARN for a SSL Certificate Args: session (Session|None) : Boto3 session used to lookup information in AWS If session is None no lookup is performed domain_name (string) : Domain Name that the Certificate was issued for Returns: (string|None) : Certificate ARN or None if the Certificate could not be located """ if session is None: return None client = session.client('acm') response = client.list_certificates() for certs in response['CertificateSummaryList']: if certs['DomainName'] == domain_name: return certs['CertificateArn'] if certs['DomainName'].startswith('*'): # if it is a wildcard domain like "*.thebossdev.io" cert_name = certs['DomainName'][1:] + '$' if re.search(cert_name, domain_name) != None: return certs['CertificateArn'] return None
17e3e5dcbcb32d2491a8790d0625c12a2ec06f9b
324,811
async def ping() -> str: """health check""" return "pong"
95c730e4d05fbc5e86d66ffad6bbbab182ece9a4
633,388
def str_cellarray2str_list(str_cellarray): """ After using loadmat, the str cell array have a strange shape >>> here the loaded "strange" array is converted to an str list Args: str_cellarray ( ndarray): correponing to str cell array in matlab Returns: str list: """ str_array=str_cellarray if str_cellarray.ndim ==2: tmp= str_cellarray[0,:] str_array= [ t[0] for t in tmp] elif str_cellarray.ndim ==1: tmp= str_cellarray[0] str_array= tmp return str_array
765d07c2b61982bb68bb98faa2792a4ba6f4d3ee
427,288
def mean_squared_error(original_img, resoluted_img): """ Computing the mean squared error between original and resoluted images Args: ----- original_img: batch of torch Tensors batch containing the input images resoluted_img: batch of torch Tensors batch containing the tensors at the output of the network Returns: -------- mse: float mean squared error of the image """ subs = original_img - resoluted_img mse = subs.pow(2).mean() return mse
55379bf6aef8d4d78dba41a03799ecb9447d83ab
404,295
def plane(xy_array, a, b, c): """ Return z values such that z = a*x + b*y + c. :param xy_array: a (2xN) numpy array, x values being the first row and y values the second row :param a: coefficient for x values :param b: coefficient for y values :param c: constant offset :return: an array of length N containing the z values """ return a * xy_array[0, :] + b * xy_array[1, :] + c
0cf9441f9d76bab667935cf9b63216750ca74c23
582,362
def zoom_fit(screen, bounds, balanced=True): """What affine transform will zoom-fit the given items? screen: (w,h) of the viewing region bounds: (x,y,w,h) of the items to fit balance: Should the x and y scales match? returns: [translate x, translate y, scale x, scale y] """ (sw, sh) = screen (gx, gy, gw, gh) = bounds x_scale = sw/gw y_scale = sh/gh if (balanced): x_scale = min(x_scale, y_scale) y_scale = x_scale return [-gx*x_scale, -gy*y_scale, x_scale, y_scale]
5bdd7d017b65426b3d7937bd866a45da3a67e929
120,607
from typing import List from typing import Tuple from typing import Optional def match_initial(string: str, candidates: List[str]) -> Tuple[str, Optional[str]]: """ Returns the longest match at the initial position among a list of candidates. The function will check if any candidate among the list is found at the beginning of the string, making sure to match longer candidates first (so that it will match "abc" before "ab"). @param string: The string to matched at the beginning. @param candidates: A list of string candidates for initial match. The list does not need to be sorted in any way. @return: A tuple, whose first element is the original string stripped of the initial match, if any (if no candidate matched the beginning of the string, it will be a copy of the original one). The second element of the tuple is the candidate that was matched at the beginning of the string, or `None` if no match could be found. """ # Sort the candidates by inverse length -- this is a bit expensive computationally, # but it is better to perform it each time to make the function more general. # Note that we make sure to remove any empty string inadvertedly passed among the # `candidates`. candidates = sorted([cand for cand in candidates if cand], reverse=True, key=len) for cand in candidates: if string.startswith(cand): return string[len(cand) :], cand return string, None
1df8be244ef1bd241bc5b1b68bd0f2136242e17f
474,227
import csv def parse_line(value, quotechar=None, **kwargs): """ A simple wrapper to parse a single CSV value """ quotechar = quotechar or '"' return next(csv.reader([value], quotechar=quotechar, **kwargs), None)
786f83d2c268cc7d16b5ad1527817db59793cb48
415,881
import torch def determine_device(gpu_selected): """ Determines the device to be used based on requested device and available device :param gpu_selected: boolean value provided by the user :return: device to be used based on choice and availability """ if gpu_selected and torch.cuda.is_available(): device = "cuda" else: device = "cpu" if gpu_selected: print("WARN: CUDA is not available. Using CPU instead") return device
8c888a89037f41bbd107132141685471207feb3c
312,970
def reverse_image(image): """ Reverse an image horizontally. :param [int] image: Image to reverse :return [int]: Reversed image """ return tuple(reversed(image))
980c7344e0ada7542eaef3f2fbdcd60e622eab85
328,153
import hashlib def munch_abbreviation_string(m): """ Given a Munch, create a string that communicates the contents of the k,v pairs in a concise human-readable way. E.g. m = Munch( my_special_value=0.1, something_else='yoda', a_list=['joe','bob'], ) becomes => msv_0.1-se_yoda-al_joe.bob If any str(v) is longer than 32, it will be converted to hexdigest """ parts = [] for k, v in m.items(): abbrev = "".join(map(lambda s: s[0], k.split("_"))) v = ".".join(map(str, v)) if isinstance(v, list) else str(v) if len(v) > 32: v = hashlib.md5(v.encode()).hexdigest() parts += [f"{abbrev}_{v}"] return "-".join(parts)
bdac7c8ebdb10bfa2df9fda2251bb25a6de53ca5
478,943
def page_replace(context, value): """Replaces or adds the page number to form the pagination url. Example: if you're on the page ``/company/list/?sorted=created&page=5``, then <a href="/company/list/?{% page_replace 3 %}">Page 3</a> would expand to <a href="/company/list/?sorted=created&page=3">Page 3</a> """ query = context['request'].GET.copy() query['page'] = value return query.urlencode()
d6376f5f93323b2d4675ee25513b43d5afa7cf95
113,003
def is_passed_counting_roi(current_point, first_point, roi_polygon, roi_outside, is_enter): """ will check if the point passed the counting roi. if the current location in the roi and the first location not in the roi - it passed if the current location not in the roi and the first location in the roi - it passed. :param current_point: Point object for the current location :param first_point: Point object for the first detected location. :param roi_polygon: Polygon object for the counting roi. :param roi_outside: True if the roi if the outside. :param is_enter: True if we want to check if the person enter to the roi and false if we want to check if the person left the roi. :return: True if the point passed the roi , False if the point not passed the roi. """ if roi_outside ^ is_enter: return roi_polygon.contains(current_point) and not roi_polygon.contains(first_point) else: return roi_polygon.contains(first_point) and not roi_polygon.contains(current_point)
d48a158db0251a4ef64ec472d024029cf5f8ef8d
635,245
def roe(net_income, average_equity): """Computes return on equity. Parameters ---------- net_income : int or float Net income average_equity : int or float Average total equity Returns ------- out : int or float Return on equity """ return net_income / average_equity
947f0623987395ecea199fb42eb32e76763a592a
623,577
def gen_query_string(params): """Generate a query string from the parameter dict.""" return '&'.join('{}={}'.format(k, v) for k, v in params.items())
4bffaecdaf821a1c1921013c45cb7e60ae963a05
349,835
def calculate_loan_to_value_ratio(loan_amount, home_value): """ Calculates the loan to value ratio. Converts the loan amount and home value parameters to int values and divides the loan amount by the home value to produce the loan to value ratio. Parameters: loan_amount (float): The loan amount. home_value (float): The value of the home. Returns: loan_to_value_ratio (int): The loan to value ratio. """ loan_to_value_ratio = int(loan_amount) / int(home_value) return loan_to_value_ratio
998a9c5d4d8bca66002875f950aa0d650e326f90
348,291
def is_none(value): """Convert a string indicating 'None' or missing value to None.""" if value == 'NA' or value == 'None': return None else: return value
c5e5854a3d9a0c5205797f76a94ed96019fcfc84
118,426
def asini_c(pb, mf): """ asini_c(pb, mf): Return the orbital projected semi-major axis (lt-sec) given: 'pb' is the binary period in sec. 'mf' is the mass function of the orbit. """ return (mf * pb * pb / 8015123.37129)**(1.0 / 3.0)
1dd86e3619f2334d6d11c14bc2a7b28c9edb9dcb
693,961
def tile_bounds(tsinfo, z, x, y, width=1, height=1): """ Get the coordinate boundaries for the given tile. Parameters: ----------- tsinfo: { min_pos: [], max_pos [] } Tileset info containing the bounds of the dataset z: int The zoom level x: int The x position y: int The y position width: int Return bounds for a region encompassing multiple tiles height: int Return bounds for a region encompassing multiple tiles """ min_pos = tsinfo["min_pos"] max_pos = tsinfo["max_pos"] max_width = max(max_pos[0] - min_pos[0], max_pos[1] - min_pos[1]) tile_width = max_width / 2 ** z from_x = min_pos[0] + x * tile_width to_x = min_pos[0] + (x + width) * tile_width from_y = min_pos[1] + y * tile_width to_y = min_pos[1] + (y + height) * tile_width return [from_x, from_y, to_x, to_y]
1c59845ec208ff8bada155729c5151cf540cbe37
459,535
def thread(read=20, write=20): """Return the kwargs for creating the Thread table.""" return { 'AttributeDefinitions': [ { 'AttributeName': 'ForumName', 'AttributeType': 'S' }, { 'AttributeName': 'Subject', 'AttributeType': 'S' }, ], 'TableName': 'Thread', 'KeySchema': [ { 'AttributeName': 'ForumName', 'KeyType': 'HASH', }, { 'AttributeName': 'Subject', 'KeyType': 'RANGE', }, ], 'ProvisionedThroughput': { 'ReadCapacityUnits': read, 'WriteCapacityUnits': write, } }
15a4022a94c0a326364dedefa4b0561e8055fbdf
640,752
def follow_path(schema_root, path): """ Follow path from schema_root to get a specific schema. """ schema = schema_root for leaf in path: schema = getattr(schema, leaf) return schema
672ed961474a788297f579d7dbcea763bdc6258d
475,739