content
stringlengths
22
815k
id
int64
0
4.91M
def genmove(proc, colour, pluck_random=True): """ Send either a `genmove` command to the client, or generate a random move until it is accepted by the client """ if pluck_random and random() < 0.05: for _count in range(100): proc.stdin.write('1000 play %s %s\n' % (colour, random_vertex(),)) proc.stdin.flush() for line in proc.stdout: line = (str(line) or '').strip() print(line) if line.startswith('=1000'): vertex = line.split(' ', maxsplit=2)[-1].strip() return vertex elif line.startswith('?1000'): break return 'pass' else: proc.stdin.write('2000 genmove %s\n' % (colour,)) proc.stdin.flush() for line in proc.stdout: line = (str(line) or '').strip() print(line) if line.startswith('=2000'): vertex = line.split(' ', maxsplit=2)[-1].strip() return vertex return None
5,346,600
def geojson_to_meta_str(txt): """ txt is assumed to be small """ vlayer = QgsVectorLayer(txt, "tmp", "ogr") crs_str = vlayer.sourceCrs().toWkt() wkb_type = vlayer.wkbType() geom_str = QgsWkbTypes.displayString(wkb_type) feat_cnt = vlayer.featureCount() return geom_str, crs_str, feat_cnt
5,346,601
def tdf_UppestID(*args): """ * Returns ID 'ffffffff-ffff-ffff-ffff-ffffffffffff'. :rtype: Standard_GUID """ return _TDF.tdf_UppestID(*args)
5,346,602
def blend_multiply(cb: float, cs: float) -> float: """Blend mode 'multiply'.""" return cb * cs
5,346,603
def print_data_distribution(y_classes, class_names): """ :param y_classes: class of each instance, for example, if there are 3 classes, and y[i] is [1,0,0], then instance[i] belongs to class[0] :param class_names: name of each class :return: None """ count = np.zeros(len(class_names)) pro = [] num = [] for y in y_classes: class_index = np.argmax(y) count[class_index] = count[class_index] + 1 for i, class_name in enumerate(class_names): print(class_name, count[i]) pro.append(class_name) num.append(count[i]) return pro, num
5,346,604
def reorder_conj_pols(pols): """ Reorders a list of pols, swapping pols that are conjugates of one another. For example ('xx', 'xy', 'yx', 'yy') -> ('xx', 'yx', 'xy', 'yy') This is useful for the _key2inds function in the case where an antenna pair is specified but the conjugate pair exists in the data. The conjugated data should be returned in the order of the polarization axis, so after conjugating the data, the pols need to be reordered. For example, if a file contains antpair (0, 1) and pols 'xy' and 'yx', but the user requests antpair (1, 0), they should get: [(1x, 0y), (1y, 0x)] = [conj(0y, 1x), conj(0x, 1y)] Args: pols: Polarization array (strings or ints) Returns: conj_order: Indices to reorder polarization axis """ if not isinstance(pols, collections.Iterable): raise ValueError('reorder_conj_pols must be given an array of polarizations.') cpols = np.array([conj_pol(p) for p in pols]) # Array needed for np.where conj_order = [np.where(cpols == p)[0][0] if p in cpols else -1 for p in pols] if -1 in conj_order: raise ValueError('Not all conjugate pols exist in the polarization array provided.') return conj_order
5,346,605
def dx_login(project_name): """ Check if user has logged into the system using dx toolkit :return: boolean True is user has logged in else false """ cmd = ["dx", "whoami"] try: cmd_out = subprocess.check_output(cmd) except subprocess.CalledProcessError as cp: raise AssetBuilderException("Failed to run the dx command: " + str(cmd)) except OSError: raise AssetBuilderException("dx command is not found. Make sure that the dx toolkit is installed on this system.") try: cmd_out = subprocess.check_output(["dx", "select", project_name]) except subprocess.CalledProcessError as cp: raise AssetBuilderException("Failed to select the project: " + project_name) except OSError: raise AssetBuilderException("dx command is not found. Make sure that the dx toolkit is installed on this system.")
5,346,606
def get_machine_from_uuid(uuid): """Helper function that returns a Machine instance of this uuid.""" machine = Machine() machine.get_from_uuid(uuid) return machine
5,346,607
def select_loop_directional(edge, directional = True, direction = 0): """ *Bugs: Improve selection of edges that dont have two faces Selects more than intended FEATURES: *Select border if the selection is in a border """ counter = 0 iterations = 0 selection = [edge] selected = selection new_selection = selection iterate = True directionality_loop = True mesh = get_bmesh() update_indexes(mesh, edges = True) while directionality_loop and counter < 2: while iterations < ITERATION_LIMIT and iterate: print("") print("----------------------------") print(iterations) print("Current Edge") print(selection) if direction == 0: new_selection = [selection[0].link_loops[0].link_loop_next.link_loop_radial_next.link_loop_next.edge] else: new_selection = [selection[0].link_loops[0].link_loop_prev.link_loop_radial_next.link_loop_prev.edge] if new_selection[0].select: print("CHANGE DIRECTION") if direction == 0: new_selection = [selection[0].link_loops[0].link_loop_prev.link_loop_radial_next.link_loop_prev.edge] else: new_selection = [selection[0].link_loops[0].link_loop_next.link_loop_radial_next.link_loop_next.edge] #Check if new selection is still selected after correcting direction if new_selection[0].select: print("COMPLETE LAP") iterate = False if len(list_intersection(list(new_selection[0].verts),list(selection[0].verts)))< 1: #Correct selection for cases where theres holes close by print("HOLES CLOSEBY, CORRECTING") new_selection = [selection[0].link_loops[0].link_loop_radial_next.link_loop_prev.link_loop_radial_next.link_loop_prev.edge] if len([face for face in new_selection[0].link_faces if (selection[0] in face.edges)]) > 0: #Make sure you cant accidentally select a loop on top or below of it print("LOOP WILL JUMP ROW") new_selection = selection iterate = False if len([face for face in new_selection[0].link_faces if len(list(face.verts)) is not 4]) is not 0: #End selection on ngons or triangles print("END LOOP") iterate = False selection = new_selection new_selection[0].select = True iterations += 1 #If not directional reset and start the other way if not directional: iterate = True iterations = 0 direction = 1 selection = [edge] new_selection = selection else: directionality_loop = False counter += 1
5,346,608
def convert_numbers(text): """Convert numbers to number words""" tokens = [] for token in text.split(" "): try: word = w2n.num_to_word(token) tokens.append(word) except: tokens.append(token) return " ".join(tokens)
5,346,609
def init_emulator(rom: bytes): """ For use in interactive mode """ emulator = NitroEmulator() emulator.load_nds_rom(rom, True) return emulator
5,346,610
def sub_module_name_of_named_params(named_params: kParamDictType, module_name_sub_dict: Dict[str, str]) \ -> Union[Dict[str, nn.Parameter], Dict[str, torch.Tensor]]: """Sub named_parameters key's module name part with module_name_sub_dict. Args: named_params: Key-value pair of param name and param value. module_name_sub_dict: Module names' sub dict. Returns: named parameters whose module name part of it's param name is subbed by module_name_sub_dict. """ sub_named_params = dict() for module_param_name, value in named_params.items(): param_name, module_name = map(lambda inverse_name: inverse_name[::-1], module_param_name[::-1].split('.', maxsplit=1)) if module_name not in module_name_sub_dict: sub_named_params[module_param_name] = value else: sub_named_params[module_name_sub_dict[module_name] + '.' + param_name] = value return sub_named_params
5,346,611
def add_mongodb_document( m_client_db=get_mongodb_database(), collection=None, index_name=None, doc_type=None, doc_uuid=None, doc_body=None ): """ Funtion to add a MongoDB document by providing index_name, document type, document contents as doc and document id. """ status = { 'status_code' : 200 } log_.debug( "function : %s", inspect.stack()[0][3] ) log_.debug( "locals() : \n%s", pformat(locals())) db = m_client_db[ collection ] ### TO DO try : res = db.insert_one( doc_body, ) res_add = { 'item_id' : str(res.inserted_id), 'operation' : "item added" } except : res = {} res_add = { 'item_id' : None, 'operation' : 'not added...' } status = { 'status_code' : 500, 'error' : "", 'info' : "" } # log_.debug( "res : \n%s", pformat(res.__dict__)) log_.debug( "res_add : \n%s", pformat(res_add)) print() return res_add, status
5,346,612
def my_func_1(x, y): """ Возвращает возведение числа x в степень y. Именованные параметры: x -- число y -- степень (number, number) -> number >>> my_func_1(2, 2) 4 """ return x ** y
5,346,613
def test_run_model(fake_regression_data) -> alt.Chart: """Smoke test. """ res = run_model.run(fake_regression_data, y='y', X=['x1', 'x2', 'x3', 'x4']) assert isinstance(res, RegressionResultsWrapper)
5,346,614
def indexer_testapp(es_app): """ Indexer testapp, meant for manually triggering indexing runs by posting to /index. Always uses the ES app (obviously, but not so obvious previously) """ environ = { 'HTTP_ACCEPT': 'application/json', 'REMOTE_USER': 'INDEXER', } return webtest.TestApp(es_app, environ)
5,346,615
def BNN_like(NN,cls=tfp.layers.DenseReparameterization,copy_weight=False,**kwargs): """ Create Bayesian Neural Network like input Neural Network shape Parameters ---------- NN : tf.keras.Model Neural Network for imitating shape cls : tfp.layers Bayes layers class copy_weight : bool, optional Copy weight from NN when `True`. The default is `False` Returns ------- model : tf.keras.Model Bayes Neural Network """ inputs = tf.keras.Input(shape=(tf.shape(NN.layers[0].kernel)[0],)) x = inputs for i, L in enumerate(NN.layers): layer_kwargs = { **kwargs } if copy_weight: layer_kwargs["kernel_prior_fn": multivariate_normal_fn(L.kernel)] layer_kwargs["bias_prior_fn": multivariate_normal_fn(L.bias)] x = cls(L.units,activation=L.activation,**layer_kwargs)(x) return tf.keras.Model(inputs=inputs,outputs=x)
5,346,616
def CreateRepository(repoDir): """ Creates a Subversion repository """ try: TimestampDir(repoDir) # renames previous repository if it already exists Execute(r'%s create %s --fs-type fsfs' % (SVN_ADMIN_EXE, repoDir)) print 'Finished -- CreateRepository' except Exception, e: print 'Failed -- CreateRepository', e raise
5,346,617
def flattenImageALFOSC(fn,outfn): """ Flatten all ALFOSC image extentions """ import numpy import pyfits f = pyfits.open(fn) h1 = f[1].header d1 = f[1].data d2 = f[2].data f.close() d = numpy.hstack((d1,d2)) hdu = pyfits.PrimaryHDU(d) n = pyfits.HDUList([hdu]) n[0].header.update('AMPLMODE','A') n[0].header.update('CTYPE1', h1['CTYPE1']) n[0].header.update('CTYPE2', h1['CTYPE2']) n[0].header.update('CRVAL1', h1['CRVAL1']) n[0].header.update('CRVAL2', h1['CRVAL2']) n[0].header.update('CUNIT1', h1['CUNIT1']) n[0].header.update('CUNIT2', h1['CUNIT2']) n[0].header.update('CRPIX1', h1['CRPIX1']) n[0].header.update('CRPIX2', h1['CRPIX2']) n[0].header.update('CD1_1', h1['CD1_1']) n[0].header.update('CD1_2', h1['CD1_2']) n[0].header.update('CD2_1', h1['CD2_1']) n[0].header.update('CD2_1', h1['CD2_1']) n.writeto(outfn)
5,346,618
def matrix_mult(a, b): """ Function that multiplies two matrices a and b Parameters ---------- a,b : matrices Returns ------- new_array : matrix The matrix product of the inputs """ new_array = [] for i in range(len(a)): new_array.append([0 for i in range(len(b[0]))]) for j in range(len(b[0])): for k in range(len(a[0])): new_array[i][j] += a[i][k] * b[k][j] return new_array
5,346,619
def build_type(tp) -> Tuple[str, List[Type]]: """ Build typescript type from python type. """ tokens = tokenize_python_type(tp) dependencies = [ token for token in tokens if token not in TYPE_MAPPING_WITH_GENERIC_FALLBACK and not type(token) in TRIVIAL_TYPE_MAPPING and not isinstance(token, _Final) ] return _build_type(tokens), dependencies
5,346,620
def laplacian_radial_kernel(distance, bandwidth=1.0): """Laplacian radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. Returns ------- http://crsouza.com/2010/03/17/ kernel-functions-for-machine-learning-applications/ https://data-flair.training/blogs/svm-kernel-functions/ """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.exp(- scaled_distance) return weight
5,346,621
def build_eslog_config_param( group_id, task_name, rt_id, tasks, topic, table_name, hosts, http_port, transport, es_cluster_name, es_version, enable_auth, user, password, ): """ es参数构建 :param group_id: 集群名 :param task_name: 任务名 :param rt_id: rt_id :param tasks: 任务数 :param topic: 来源topic :param table_name: 表名 :param hosts: es的host :param http_port: es的port :param transport: es transport的port :param es_cluster_name: es集群名称 :param es_version es集群版本 :param enable_auth 是否启用验证 :param user: 用户名 :param password: 密码, 加密过的 :return: 参数 """ return { "group.id": group_id, "rt.id": rt_id, "topics": topic, "type.name": table_name, "tasks.max": "%s" % tasks, "es.index.prefix": table_name.lower(), "es.cluster.name": es_cluster_name, "es.cluster.version": es_version, "es.hosts": hosts, "es.transport.port": transport, "es.host": hosts, "es.http.port": http_port, "connector.class": "com.tencent.bk.base.datahub.databus.connect.sink.es.EsSinkConnector", "flush.timeout.ms": "10000", "batch.size": "10000", "max.in.flight.requests": "5", "retry.backoff.ms": "5000", "max.retry": "5", "es.cluster.enable.auth": enable_auth, "es.cluster.enable.PlaintextPwd": False, # 当前都是加密后的密码 "es.cluster.username": user, "es.cluster.password": password, }
5,346,622
def greet_user(username): # Docstring - used for documentation of functions """Display a simple greeting.""" print("Hello, " + username.title() + "!")
5,346,623
def test_crud__EditForm__2(address_book, browser): """Editing the addressbook can be canceled.""" address_book.title = u'ftest-ab' browser.login('mgr') browser.open(browser.ADDRESS_BOOK_DEFAULT_URL) browser.getLink('Master data').click() browser.getLink('Address book').click() assert browser.ADDRESS_BOOK_EDIT_URL == browser.url assert 'ftest-ab' == browser.getControl('title').value browser.getControl('title').value = 'fancy book' browser.getControl('Cancel').click() assert 'No changes were applied.' == browser.message assert 'ftest-ab' == browser.getControl('title').value
5,346,624
def disclosure(input_df, cur_period): """ Reading in a csv, converting to a data frame and converting some cols to int. :param input_df: The csv file that is converted into a data frame. :param cur_period: The current period for the results process. :return: None. """ input_df = pd.read_csv(input_df, dtype={"Q601_asphalting_sand": int, 'Q602_building_soft_sand': int, 'Q603_concreting_sand': int, 'Q604_bituminous_gravel': int, 'Q605_concreting_gravel': int, 'Q606_other_gravel': int, 'Q607_constructional_fill': int, 'Q608_total': int, 'enterprise_ref': int, 'period': int, 'region': int}) input_df["disclosive"] = None input_df["publish"] = None input_df["reason"] = None def run_disclosure(row): if row['Q608_total'] == 0: row['disclosive'] = 'N' row['publish'] = 'Publish' row['reason'] = ' Total is zero' else: row['disclosive'] = 'Y' row['publish'] = 'N/A' return row disaggregated_data = input_df[input_df.period == cur_period] region_agg = disaggregated_data.groupby('region') region_agg = region_agg.agg({'Q608_total': 'sum', 'Q607_constructional_fill': 'sum', 'Q606_other_gravel': 'sum', 'Q605_concreting_gravel': 'sum', 'Q604_bituminous_gravel': 'sum', 'Q603_concreting_sand': 'sum', 'Q602_building_soft_sand': 'sum', 'Q601_asphalting_sand': 'sum', 'enterprise_ref': 'nunique'}) region_agg = region_agg.apply(run_disclosure, axis=1) # regionlorm = disaggregated_data.groupby(['region']) region_agg_lorm = disaggregated_data.groupby(['region', 'land_or_marine']) return region_agg_lorm
5,346,625
def assert_c0_L0_mod(s: Section, attr: Any) -> None: """Assert after child0, leaf0 have a modification.""" assert s(attr) == [10, '2', '3'] assert s.children(attr) == [10, '2', '3'] assert s.leaves(attr) == [0, '1', '2', '3'] assert s[0](attr) == 10 assert s[0].leaves(attr) == [0, '1'] assert s[0][0](attr) == 0
5,346,626
def get_all_file_paths(directory): """ Gets all the files in the specified input directory """ file_paths = [] for root, _, files in os.walk(directory): for filename in files: filepath = os.path.join(root, filename) file_paths.append(filepath) return file_paths
5,346,627
def save_result(save_path, bbox_res, catid2name, threshold): """ save result as txt """ with open(save_path, 'w') as f: for dt in bbox_res: catid, bbox, score = dt['category_id'], dt['bbox'], dt['score'] if score < threshold: continue # each bbox result as a line # for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4 # for bbox: classname score x1 y1 w h bbox_pred = '{} {} '.format(catid2name[catid], score) + ' '.join( [str(e) for e in bbox]) f.write(bbox_pred + '\n')
5,346,628
def kitchen_sink(): """Combines all of the test data.""" return word_frequencies.load(_KITCHEN_SINK_DATA)
5,346,629
def sim_matrix(a, b, eps=1e-8): """ added eps for numerical stability """ a = normalize_embeddings(a, eps) b = normalize_embeddings(b, eps) sim_mt = torch.mm(a, b.transpose(0, 1)) return sim_mt
5,346,630
def delete_model(name, force=False): """Permanently deletes the given model from local and remote storage. CAUTION: this cannot be undone! Args: name: the name of the model, which can have "@<ver>" appended to refer to a specific version of the model. If no version is specified, the latest version of the model is assumed force: whether to force delete the remote model (True) or display a confirmation message that the user must approve before deleting the remote model (False). The default is False Raises: ModelError: if the model could not be found """ # Flush model locally flush_model(name) model, models_dir, manifest = _find_model(name) if force or etau.query_yes_no( "Are you sure you want to permanently delete this model from " "remote storage? This cannot be undone!", default="no", ): # Flush model remotely logger.info("Deleting model '%s' from remote storage", name) model.manager.delete_model() # Delete model from manifest manifest_path = manifest.make_manifest_path(models_dir) logger.info( "Removing model '%s' from manifest '%s'", name, manifest_path ) manifest.remove_model(model.name) manifest.write_json(manifest_path) else: logger.info("Remote deletion of model '%s' aborted", name)
5,346,631
def read_addon_xml(path): """Parse the addon.xml and return an info dictionary""" info = dict( path='./', # '/storage/.kodi/addons/plugin.video.vrt.nu', profile='special://userdata', # 'special://profile/addon_data/plugin.video.vrt.nu/', type='xbmc.python.pluginsource', ) tree = ET.parse(path) root = tree.getroot() info.update(root.attrib) # Add 'id', 'name' and 'version' info['author'] = info.pop('provider-name') for child in root: if child.attrib.get('point') != 'xbmc.addon.metadata': continue for grandchild in child: # Handle assets differently if grandchild.tag == 'assets': for asset in grandchild: info[asset.tag] = asset.text continue # Not in English ? Drop it if grandchild.attrib.get('lang', 'en_GB') != 'en_GB': continue # Add metadata info[grandchild.tag] = grandchild.text return {info['name']: info}
5,346,632
def get_submission_list(start_timestamp, end_timestamp, args=None): """ Scrapes a subreddit for submissions between to given dates. Due to limitations of the underlying service, it may not return all the possible submissions, so it will be necessary to call this method again. The method requests the results in descending orders, so in subsequent calls, you should only update end_timestamp. :param start_timestamp: request results after this date/time. :param end_timestamp: request results before this date/time. :param args: the args to pass to the endpoint :return: the JSON object returned by the service. """ # Generic parameters: for each submission we want its ID and timestamp, # 500 is the maximum limit, sorted temporally by the most recent params = "fields=id,created_utc,subreddit&limit=500&sort=desc&sort_type=created_utc" if args: for key, value in args.items(): params += "&{0}={1}".format(key, value) url = "{0}?before={1}&after={2}&{3}".format( PUSHSHIFT_ENDPOINT, end_timestamp, start_timestamp, params ) resp = requests.get(url) return resp.json()
5,346,633
def test_invalid_hopping_matrix(): """ Check that an error is raised when the passed size does not match the shape of hopping matrices. """ with pytest.raises(ValueError): tbmodels.Model(size=2, hop={(0, 0, 0): np.eye(4)})
5,346,634
def loadDataSet(): """ load data from data set Args: Returns: dataSet: train input of x labelSet: train input of y """ # initialize x-trainInput,y-trainInput dataSet = [] labelSet = [] # open file reader fr = open('testSet.txt') for line in fr.readlines(): # strip() -- get rid of the space on both side # split() -- division as tab lineArr = line.strip().split() # padding data in list # x0 = 1.0 , x1 = column1 , x2 = column2 dataSet.append([1.0, float(lineArr[0]), float(lineArr[1])]) # label = column3 labelSet.append(float(lineArr[2])) return dataSet,labelSet
5,346,635
def xds_read_xparm_new_style(xparm_file): """Parse the XPARM file to a dictionary.""" data = map(float, " ".join(open(xparm_file, "r").readlines()[1:]).split()) starting_frame = int(data[0]) phi_start, phi_width = data[1:3] axis = data[3:6] wavelength = data[6] beam = data[7:10] spacegroup = int(data[10]) cell = data[11:17] a, b, c = data[17:20], data[20:23], data[23:26] assert int(data[26]) == 1 nx, ny = map(int, data[27:29]) px, py = data[29:31] ox, oy = data[31:33] distance = data[33] x, y = data[34:37], data[37:40] normal = data[40:43] results = { "starting_frame": starting_frame, "phi_start": phi_start, "phi_width": phi_width, "axis": axis, "wavelength": wavelength, "beam": beam, "nx": nx, "ny": ny, "px": px, "py": py, "distance": distance, "ox": ox, "oy": oy, "x": x, "y": y, "normal": normal, "spacegroup": spacegroup, "cell": cell, "a": a, "b": b, "c": c, } return results
5,346,636
def clear_bit(val, offs): """Clear bit at offset 'offs' in value.""" return val & ~(1 << offs)
5,346,637
def get_org_details(orgs): """Get node and site details, store in Org object""" org_details = [] for org in orgs: org_id = org['id'] org_name = org['name'] org_longname = org['longname'] Org = namedtuple('Org', ['org_id', 'org_name', 'org_longname']) org_details.extend([Org(org_id, org_name, org_longname)]) return org_details
5,346,638
def decrypt(ctx, input_file, output_file): """Decrypt CSE configuration file.""" SERVER_CLI_LOGGER.debug(f"Executing command: {ctx.command_path}") console_message_printer = utils.ConsoleMessagePrinter() utils.check_python_version(console_message_printer) try: try: password = os.getenv('CSE_CONFIG_PASSWORD') or utils.prompt_text( PASSWORD_FOR_CONFIG_DECRYPTION_MSG, hide_input=True, color='green') decrypt_file(input_file, password, output_file) msg = "Decryption successful." console_message_printer.general(msg) SERVER_CLI_LOGGER.debug(msg) except cryptography.fernet.InvalidToken: raise Exception("Decryption failed: Invalid password") except Exception as err: console_message_printer.error(str(err)) SERVER_CLI_LOGGER.error(str(err)) sys.exit(1)
5,346,639
def flipFast(index, s, T, rand, neighs, bonds): """ Much more efficient version of _oneSweep MC input: index: spin to attempt flipping s: spin configuration T: temperature rand: a uniform random float neighs: list of neighboring sites to index bonds: list of bonds connections index to its neighbors """ dE = 0. for nn, jj in zip(neighs, bonds): dE += s[nn]*jj dE *= 2*s[index] if dE < 0 or rand <= exp(-dE/T): s[index] *= -1
5,346,640
def slot_size_selection(): """ Plots the latency and number of slots needed to encode repeater protocols for a few different levels of fidelity for both cases when two nodes are connected or separated by two hops :return: None """ link_length = 5 topology = gen_line_topology(num_end_node_comm_q=1, num_end_node_storage_q=3, link_length=link_length) protocols = [] source = '0' destinations = ['1', '2'] fidelities = [0.6 + 0.1 * i for i in range(4)] for destination in destinations: for fidelity in fidelities: demand = (source, destination, fidelity, 1) protocol = get_protocol_without_rate_constraint(topology, demand) if protocol: print("Found protocol between {} and {} with fidelity {} and rate {}".format(source, destination, protocol.F, protocol.R)) protocols.append((demand, protocol)) # Increments of 4ms slot_sizes = sorted(list(set([0.0001 * i for i in range(1, 200)]))) latency_data = {} slot_count_data = {} for demand, protocol in protocols: pdata_lat = [] pdata_slt = [] for slot_size in slot_sizes: task = convert_protocol_to_task(demand, protocol, slot_size) task, dec, corr = schedule_dag_for_resources(task, topology) asap_d, alap_d, shift_d = dec if not corr: import pdb pdb.set_trace() elif asap_d < shift_d or alap_d < shift_d: import pdb pdb.set_trace() num_slots = task.c task_latency = num_slots * slot_size pdata_lat.append((slot_size, task_latency)) pdata_slt.append((slot_size, num_slots)) s, d, f, r = demand print("Hops: {}, Fidelity: {}, Slot Size: {}, Latency: {}".format(d, f, slot_size, task_latency)) latency_data[demand] = pdata_lat slot_count_data[demand] = pdata_slt fig, axes = plt.subplots(nrows=1, ncols=4) for i, destination in enumerate(destinations): fmts = { 0.6: ("-.", "0.8"), 0.7: ("--", "0.6"), 0.8: ("-", "0.4"), 0.9: ("-", "0.2") } for demand in latency_data.keys(): if demand[1] != destination: continue pdata = latency_data[demand] spdata = sorted(pdata) xdata = [d[0] for d in spdata] ydata = [d[1] for d in spdata] fidelity = round(demand[2], 2) label = "F={}".format(fidelity) fmt, c = fmts[fidelity] axes[i].plot(xdata, ydata, linestyle=fmt, color=c, label=label) axes[i].set(xlabel="Slot Size(s)", ylabel="Latency(s)") for demand in slot_count_data.keys(): if demand[1] != destination: continue pdata = slot_count_data[demand] spdata = sorted(pdata) xdata = [d[0] for d in spdata] ydata = [d[1] for d in spdata] fidelity = round(demand[2], 2) label = "F={}".format(fidelity) fmt, c = fmts[fidelity] axes[i+2].plot(xdata, ydata, linestyle=fmt, color=c, label=label) axes[i+2].set(xlabel="Slot Size(s)", ylabel="Num Slots") axes[0].set_title("Link") axes[1].set_title("Two Hop") axes[2].set_title("Link") axes[3].set_title("Two Hop") handles, labels = axes[-1].get_legend_handles_labels() fig.legend(handles, labels, bbox_to_anchor=(0.96, 0.35), loc='lower right', fontsize=14) def on_resize(event): fig.tight_layout() fig.canvas.draw() fig.canvas.mpl_connect('resize_event', on_resize) plt.autoscale() plt.show()
5,346,641
def flush_after(handler, delay): """Add 'handler' to the queue so that it is flushed after 'delay' seconds by the flush thread. Return the scheduled event which may be used for later cancellation (see cancel()). """ if not isinstance(handler, logging.Handler): raise TypeError("handler must be a logging.Handler instance") return _FLUSH_THREAD.submit(handler.flush, delay)
5,346,642
def _ExtractCLPath(output_of_where): """Gets the path to cl.exe based on the output of calling the environment setup batch file, followed by the equivalent of `where`.""" # Take the first line, as that's the first found in the PATH. for line in output_of_where.strip().splitlines(): if line.startswith('LOC:'): return line[len('LOC:'):].strip()
5,346,643
def test_graph_get_node(full_graph): """Passing get_node an invalid node raises a KeyError.""" assert full_graph.get_node('top1') == {'mid1': 78, 'mid2': 113} assert full_graph.get_node('mid2') == {'third4': 78, 'third5': 91}
5,346,644
def model_location(model): """ Set ODAHUFLOW_MODEL_LOCATION_ENV_VAR to `model` if `model` is not None Add ODAHUFLOW_MODEL_LOCATION_ENV_VAR to sys.path Clean state in context manager exit :param model: :return: """ model_location_for_use = original_model_location = os.environ.get(ODAHUFLOW_MODEL_LOCATION_ENV_VAR, "") if original_model_location: _logger.debug(f'{ODAHUFLOW_MODEL_LOCATION_ENV_VAR} env var is set in a system ' f'({ODAHUFLOW_MODEL_LOCATION_ENV_VAR}={original_model_location})') else: _logger.debug(f'{ODAHUFLOW_MODEL_LOCATION_ENV_VAR} env is not set in a system') if model: _logger.debug(f'--model option is passed. {ODAHUFLOW_MODEL_LOCATION_ENV_VAR} will be replaced ' f'with {model}') model_location_for_use = os.environ[ODAHUFLOW_MODEL_LOCATION_ENV_VAR] = model if not model_location_for_use: raise RuntimeError(f'Either {ODAHUFLOW_MODEL_LOCATION_ENV_VAR} env var or --model option MUST be specified') sys.path.append(model_location_for_use) _logger.debug(f'{model_location_for_use} is added to sys.path') try: yield finally: if model: os.environ[ODAHUFLOW_MODEL_LOCATION_ENV_VAR] = original_model_location _logger.debug(f'{ODAHUFLOW_MODEL_LOCATION_ENV_VAR} is set to original value={original_model_location}') if model_location_for_use: sys.path.remove(model_location_for_use) _logger.debug(f'{model_location_for_use} is removed from sys.path')
5,346,645
def getprotobyname(*args,**kw): """getprotobyname(name) -> integer Return the protocol number for the named protocol. (Rarely used.)""" pass
5,346,646
async def test_bad_coin_name(get_auto_switching_and_profits_statistics_response): """Tests an API call with a non-existent coin name""" session = aiohttp.ClientSession() miningpoolhubapi = MiningPoolHubAPI(session=session) assert miningpoolhubapi.api_key_set() is True with aioresponses() as m: m.get( "https://doggy_coin.miningpoolhub.com/index.php?action=getuserbalance&api_key=test&page=api", exception=aiohttp.ClientConnectionError(), ) m.get( GET_AUTO_SWITCHING_URL, status=200, body=json.dumps(get_auto_switching_and_profits_statistics_response), headers=CONTENT_HEADERS, ) with pytest.raises(InvalidCoinError): await miningpoolhubapi.async_get_user_balance(coin_name="doggy_coin") await session.close()
5,346,647
def logGamma(x): """The natural logarithm of the gamma function. Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz<BR> Applied Mathematics Division<BR> Argonne National Laboratory<BR> Argonne, IL 60439<BR> <P> References: <OL> <LI>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203. <LI>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969. <LI>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968. </OL></P><P> From the original documentation: </P><P> This routine calculates the LOG(GAMMA) function for a positive real argument X. Computation is based on an algorithm outlined in references 1 and 2. The program uses rational functions that theoretically approximate LOG(GAMMA) to at least 18 significant decimal digits. The approximation for X > 12 is from reference 3, while approximations for X < 12.0 are similar to those in reference 1, but are unpublished. The accuracy achieved depends on the arithmetic system, the compiler, the intrinsic functions, and proper selection of the machine-dependent constants. </P><P> Error returns:<BR> The program returns the value XINF for X .LE. 0.0 or when overflow would occur. The computation is believed to be free of underflow and overflow.""" y = x if y < 0.0 or y > LOG_GAMMA_X_MAX_VALUE: # Bad arguments return float("inf") if y <= EPS: return -math.log(y) if y <= 1.5: if (y < pnt68): corr = -math.log(y) xm1 = y else: corr = 0.0; xm1 = y - 1.0; if y <= 0.5 or y >= pnt68: xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm1 + lg_p1[i]; xden = xden * xm1 + lg_q1[i]; return corr + xm1 * (lg_d1 + xm1 * (xnum / xden)); else: xm2 = y - 1.0; xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm2 + lg_p2[i]; xden = xden * xm2 + lg_q2[i]; return corr + xm2 * (lg_d2 + xm2 * (xnum / xden)); if (y <= 4.0): xm2 = y - 2.0; xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm2 + lg_p2[i]; xden = xden * xm2 + lg_q2[i]; return xm2 * (lg_d2 + xm2 * (xnum / xden)); if y <= 12.0: xm4 = y - 4.0; xden = -1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm4 + lg_p4[i]; xden = xden * xm4 + lg_q4[i]; return lg_d4 + xm4 * (xnum / xden); assert y <= lg_frtbig res = lg_c[6]; ysq = y * y; for i in xrange(6): res = res / ysq + lg_c[i]; res /= y; corr = math.log(y); res = res + LOGSQRT2PI - 0.5 * corr; res += y * (corr - 1.0); return res
5,346,648
def regional_validity(query_point, regional_inclusion, regional_exclusions): """ regional_validity Returns whether a coordinate point is inside a polygon and outside of excluded regions. Input: A Point object, a Polygon Object of the inclusion region; a list of Polygon Objects of excluded regions. Output: True if the query point is both inside the regional polygon and outside all exlusions; False otherwise. """ if query_point.within(regional_inclusion): # Check if the point co-occurs with city areas... for city in regional_exclusions: if query_point.within(city): return False return True return False
5,346,649
def get_word_vector_list(doc, w2v): """Get all the vectors for a text""" vectors = [] for word in doc: try: vectors.append(w2v.wv[word]) except KeyError: continue return vectors
5,346,650
def solve(lines, n): """Apply the rules specified in the input lines to the starting pattern for n iterations. The number of lit pixels in the final pattern is returned. """ rules = load_rulebook(lines) pattern = START for _ in range(n): pattern = enhance(pattern, rules) return sum([row.count('#') for row in pattern])
5,346,651
def _to_plotly_color(scl, transparence=None): """ converts a rgb color in format (0-1,0-1,0-1) to a plotly color 'rgb(0-255,0-255,0-255)' """ plotly_col = [255 * _c for _c in mplc.to_rgba(scl)] if len(scl) == 3 else [255 * _c for _c in mplc.to_rgb(scl)] if transparence is not None: assert 0. <= transparence <= 1.0 plotly_col[3] = transparence return "rgba({:.0f}, {:.0f}, {:.0f}, {:.4f})".format(*plotly_col) else: return "rgb({:.0f}, {:.0f}, {:.0f})".format(*plotly_col[:3])
5,346,652
def dense_attention_block(seqs_repr, is_training, num_layers, decay_variable, decay_constant, units, dropout, query_dropout, l2_scale, name=''): """ """ for i in range(num_layers): with tf.variable_scope('dense_attention{}'.format(i), reuse=tf.AUTO_REUSE): #seqs_repr = tf.Print(seqs_repr, [tf.shape(seqs_repr)], "{}".format(i)) seqs_repr = attention_block(seqs_repr, is_training, decay_variable, decay_constant, dropout, query_dropout, l2_scale) layer_reprs.append(seqs_repr) return seqs_repr
5,346,653
def reset_get_unique_name(): """Reset the heaps that store previously-assigned names.""" global name_heap, prefix_counts name_heap = set([None]) prefix_counts = collections.Counter()
5,346,654
def _pp(data, title=None, prefix=''): """ pretty printer :param data: single enty or list of key-value tuples :param title: optional title :param quiet: if true print only the values """ ctx = click.get_current_context() if title is not None: print(title) if not isinstance(data, list): data = [data] for kv in data: value = kv[1] if kv[1] is not None else 'N/A' if isinstance(value, list): value = ', '.join(value) if ctx.obj.get(CTX_QUIET, False): print(value) else: label = f"{prefix}{kv[0]}" print(f"{label.ljust(30, '_')} {value}")
5,346,655
def generate_schema_type(app_name: str, model: object) -> DjangoObjectType: """ Take a Django model and generate a Graphene Type class definition. Args: app_name (str): name of the application or plugin the Model is part of. model (object): Django Model Example: For a model with a name of "Device", the following class definition is generated: Class DeviceType(DjangoObjectType): Meta: model = Device fields = ["__all__"] if a FilterSet exist for this model at '<app_name>.filters.<ModelName>FilterSet' The filterset will be store in filterset_class as follow Class DeviceType(DjangoObjectType): Meta: model = Device fields = ["__all__"] filterset_class = DeviceFilterSet """ main_attrs = {} meta_attrs = {"model": model, "fields": "__all__"} # We'll attempt to find a FilterSet corresponding to the model # Not all models have a FilterSet defined so the function return none if it can't find a filterset meta_attrs["filterset_class"] = get_filterset_for_model(model) main_attrs["Meta"] = type("Meta", (object,), meta_attrs) schema_type = type(f"{model.__name__}Type", (DjangoObjectType,), main_attrs) return schema_type
5,346,656
def do_authorize(): """ Send a token request to the OP. """ oauth2.client_do_authorize() try: redirect = flask.session.pop("redirect") return flask.redirect(redirect) except KeyError: return flask.jsonify({"success": "connected with fence"})
5,346,657
def run(number, gens, neat_stats, hyperneat_stats, es_hyperneat_small_stats, es_hyperneat_medium_stats, es_hyperneat_large_stats): """ Run the experiments. """ print(f"This is run #{str(number)}") neat_stats.append(neat_xor.run(gens)[1]) hyperneat_stats.append(hyperneat_xor.run(gens)[1]) es_hyperneat_small_stats.append(es_hyperneat_xor.run(gens, "S")[1]) es_hyperneat_medium_stats.append(es_hyperneat_xor.run(gens, "M")[1]) es_hyperneat_large_stats.append(es_hyperneat_xor.run(gens, "L")[1])
5,346,658
def get_windows(): """ Return all windows found by WM with CPU, fullscreen, process name, and class information. """ # Basic window information result = check_output('nice -n 19 wmctrl -l -p', shell=True) lines = [a for a in result.decode('utf8').split('\n') if a != ''] windows = [re.split(r'\s+', a, maxsplit=4) for a in lines] # Window properties window_index = {} for window in windows: window_id = window[0] r = check_output('nice -n 19 xprop -id {}'.format(window_id), shell=True) wm_classes = [] r_class = re.search(br'WM_CLASS\(STRING\) = (.*)\n', r) if r_class: wm_classes = re.findall('\"(.*?)\"', r_class.group(1).decode('ascii')) fullscreen = b'WM_STATE_FULLSCREEN' in r window_index[window_id] = (fullscreen, wm_classes) # Basic process information usable_lines = [] result = check_output('nice -n 19 top -b -n 2', shell=True) lines = [a for a in result.decode('utf8').split('\n') if a != ''] first_found = False for i, line in enumerate(lines): r = re.search(r'PID\s+USER\s+PR\s+NI', line) if r: if first_found: usable_lines = lines[i + 1:] break else: first_found = True processes = [re.split(r'\s+', a.strip()) for a in usable_lines] process_index = {a[0]: (a[8], a[11]) for a in processes} result = [] for window in windows: cpu, name = process_index.get(window[2], (None, None)) fullscreen, wm_classes = window_index.get(window[0], None) result.append(Window(*window, cpu=cpu, fullscreen=fullscreen, name=name, wm_classes=wm_classes)) return result
5,346,659
def get_google_open_id_connect_token(service_account_credentials): """Get an OpenID Connect token issued by Google for the service account. This function: 1. Generates a JWT signed with the service account's private key containing a special "target_audience" claim. 2. Sends it to the OAUTH_TOKEN_URI endpoint. Because the JWT in #1 has a target_audience claim, that endpoint will respond with an OpenID Connect token for the service account -- in other words, a JWT signed by *Google*. The aud claim in this JWT will be set to the value from the target_audience claim in #1. For more information, see https://developers.google.com/identity/protocols/OAuth2ServiceAccount . The HTTP/REST example on that page describes the JWT structure and demonstrates how to call the token endpoint. (The example on that page shows how to get an OAuth2 access token; this code is using a modified version of it to get an OpenID Connect token.) """ service_account_jwt = ( service_account_credentials._make_authorization_grant_assertion()) request = google.auth.transport.requests.Request() body = { 'assertion': service_account_jwt, 'grant_type': google.oauth2._client._JWT_GRANT_TYPE, } token_response = google.oauth2._client._token_endpoint_request( request, OAUTH_TOKEN_URI, body) return token_response['id_token']
5,346,660
def test_date_expression( dask_client, # pylint: disable=redefined-outer-name,unused-argument ): """Test of expressions handling dates..""" ds = make_dataset(5 * 24) partitioning = Date(("dates", ), "D") for partition, _ in partitioning.split_dataset(ds, "num_lines"): variables = dict(partitioning.parse("/".join(partition))) expr = Expression("year==2000") assert expr(variables) expr = Expression("year==2000 and month==1") assert expr(variables) expr = Expression("year==2000 and month==1 and day in range(1, 12)") assert expr(variables)
5,346,661
def main(): """ Handles the execution of the code """ parser = argparse.ArgumentParser() parser.add_argument("--snpEff_jar", default=None, required=False, help="path of local snpEff jar") parser.add_argument("--vcf", type=str, required=True, help="path of vcf to annotate") parser.add_argument("--outpath", type=str, help="path to write out the vcf") parser.add_argument('--ver', default='GRCh37.75', required=False, help='genome assembly') parser.add_argument("--all", required=False, action='store_true', help='run all the annotations') parser.add_argument("--var_eff", required=False, action='store_true', help='parse variant effect') parser.add_argument("--total_depth", required=False, action='store_true', help='compute total depth for variants') parser.add_argument("--alt_depth", required=False, action='store_true', help='compute alt depth for variants') parser.add_argument("--vaf", required=False, action='store_true', help='compute vaf') parser.add_argument("--allele_freq", required=False, action='store_true', help='ExaAC allele_frequency') parser.add_argument("--var_type", required=False, action='store_true', help='annotate variant type') parser.add_argument("--verbose", required=False, action='store_true', help='enable verbose output') parser.add_argument("--simple_output", required=False, default=None, help='outpath for simplified report of data') args = parser.parse_args() if args.verbose: def verboseprint(message): print(message) else: verboseprint = lambda *a: None # parse the header header_str, header_file = extract_vcf_header(args.vcf, args.outpath) verboseprint(f"{','.join(header_str)} extracted from {args.vcf}") # load the annotated vcf vcf_pd = pd.read_csv(args.vcf, sep='\t', comment='#', names=header_str) verboseprint("Loaded vcf...") # extract the var effect if args.allele_freq or args.var_eff or args.all: verboseprint("Running ExAC annontation...") decoded, track_idx, key = restExAC(vcf_pd) if args.var_eff or args.all: addExACcscq(decoded, track_idx, key, vcf_pd) verboseprint("ExAC variant consequences added...") if args.allele_freq or args.all: addExACFreq(decoded, track_idx, key, vcf_pd) verboseprint("ExAC variant frequencies added...") if args.total_depth or args.all or args.alt_depth or args.vaf: verboseprint("Computing depth metrics...") add_format = True for sample in vcf_pd.columns[9:]: sample_pd = parseSampleField(vcf_pd, sample) read_count_pd = parseDepthData(sample_pd) if args.total_depth or args.all: computeTotalDepth(read_count_pd, sample, vcf_pd, add_format) verboseprint(f"Total depth added to {sample}...") if args.alt_depth or args.all: parseAltSeqDepth(read_count_pd, sample, vcf_pd, add_format) verboseprint(f"Alt depth added to {sample}...") if args.vaf or args.all: computeVAF(read_count_pd, sample, vcf_pd, add_format) verboseprint(f"VAF added to {sample}...") add_format = False if args.outpath: vcf_pd.to_csv(header_file, sep='\t', index=False) verboseprint(f"annotated vcf was saved to {args.outpath}") else: verboseprint("File was annotated, but not written out as \ --outpath was missing") header_file.close() # annotate the vcf with snpEff if args.snpEff_jar: verboseprint("Running snpEff...") runSnpEff(jar_path=args.snpEff_jar, input_vcf=args.outpath, output_vcf=args.outpath, version=args.ver) if type(args.simple_output) == str: verboseprint(f"Generating simplified report {args.simple_output}") simple_df = vcf_pd[['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER']] if args.var_eff or args.all: simple_df['ExAC_CSQS'] = vcf_pd.INFO.str.extract('ExAC_CSQS=(.*?);') verboseprint(f"added variant effect to {args.simple_output}") if args.allele_freq or args.all: simple_df['ExAC_AF'] = vcf_pd.INFO.str.extract('(?:ExAC_AF=)(.*)') verboseprint(f"added variant frequency to {args.simple_output}") if args.total_depth or args.all: loc = vcf_pd.FORMAT[0].split(':').index('TD') for sample in vcf_pd.columns[9:]: simple_df[f'TD_{sample}'] = vcf_pd[sample].str.split(':', expand=True)[loc] verboseprint(f"added variant depth to {args.simple_output}") if args.alt_depth or args.all: loc = vcf_pd.FORMAT[0].split(':').index('AS') for sample in vcf_pd.columns[9:]: simple_df[f'AS_{sample}'] = vcf_pd[sample].str.split(':', expand=True)[loc] verboseprint(f"added alternative depth to {args.simple_output}") if args.vaf or args.all: loc = vcf_pd.FORMAT[0].split(':').index('VAF') for sample in vcf_pd.columns[9:]: simple_df[f'VAF{sample}'] = vcf_pd[sample].str.split(':', expand=True)[loc] verboseprint(f"added vaf to {args.simple_output}") if args.var_type or args.all: simple_df['TYPE'] = vcf_pd.INFO.str.extract('TYPE=(.*?);') verboseprint(f"added variant type to {args.simple_output}") simple_df.to_csv(args.simple_output, index=False)
5,346,662
def term_to_atoms(terms): """Visitor to list atoms in term.""" if not isinstance(terms, list): terms = [terms] new_terms = [] for term in terms: if isinstance(term, And): new_terms += term_to_atoms(term.to_list()) elif isinstance(term, Or): new_terms += term_to_atoms(term.to_list()) elif isinstance(term, Not): new_terms.append(term.child) else: new_terms.append(term) return new_terms
5,346,663
def expr_max(argv): """ Max aggregator function for :class:`Expression` objects Returns ------- exp : :class:`Expression` Max of given arguments Examples -------- >>> x = so.VariableGroup(10, name='x') >>> y = so.expr_max(2*x[i] for i in range(10)) """ return expr_nested(argv, 'max')
5,346,664
def test_get_url(test_dict: FullTestDict, page_number: int): """ - GIVEN a list of words and a page number - WHEN the url is generated - THEN test it is returns the expected url """ word_list = convert_list_of_str_to_kaki(test_dict['input']) expected_url = test_dict['ojad']['url'] % page_number assert ojad.get_url(word_list, page_number) == expected_url
5,346,665
def handle_size(bytes_in=False, bytes_out=False): """ a function that converts bytes to human readable form. returns a string like: 42.31 TB. example: your_variable_name = make_readable(value_in_bytes) """ tib = 1024 ** 4 gib = 1024 ** 3 mib = 1024 ** 2 kib = 1024 if bytes_in: data = float(bytes_in) if data >= tib: symbol = 'TB' new_data = data / tib elif data >= gib: symbol = 'GB' new_data = data / gib elif data >= mib: symbol = 'MB' new_data = data / mib elif data >= kib: symbol = 'KB' new_data = data / kib elif data >= 0: symbol = ' B' new_data = data formated_data = "{0:.2f}".format(new_data) converted_data = str(formated_data) + symbol return converted_data elif bytes_out: symbol = bytes_out[-1].lower() data = bytes_out[0:-1] try: bytes = int(data) except Exception as e: print("couldnt convert " + data + " to int!") print(e) exit() if symbol == 't': converted_data = bytes * tib elif symbol == 'g': converted_data = bytes * gib elif symbol == 'm': converted_data = bytes * mib elif symbol == 'k': converted_data = bytes * kib else: print("unsupported size type! expected t, g, m, or k!") exit() return converted_data
5,346,666
def return_elapsed(gs): """Returns a description of the elapsed time of recent operations. Args: gs: global state. Returns: A dictionary containing the count, minimum elapsed time, maximum elapsed time, average elapsed time, and list of elapsed time records. """ assert isinstance(gs, global_state.GlobalState) elapsed_list = [] elapsed_sum = 0.0 elapsed_min = None elapsed_max = None for elapsed_record in gs.get_elapsed(): duration = elapsed_record.elapsed_seconds elapsed_list.append( {'start_time': utilities.seconds_to_timestamp( elapsed_record.start_time), 'what': elapsed_record.what, 'threadIdentifier': elapsed_record.thread_identifier, 'elapsed_seconds': duration}) elapsed_sum += duration if (elapsed_min is None) or (elapsed_max is None): elapsed_min = duration elapsed_max = duration else: elapsed_min = min(elapsed_min, duration) elapsed_max = max(elapsed_max, duration) return {'count': len(elapsed_list), 'min': elapsed_min, 'max': elapsed_max, 'average': elapsed_sum / len(elapsed_list) if elapsed_list else None, 'items': elapsed_list}
5,346,667
def mirror(): """Runs dump, sync_media, sync_dump and sqlimport.""" dump() sync_dump() local('python manage.py sqlimport') sync_media()
5,346,668
def calculate_per_class_lwlrap(truth, scores): """Calculate label-weighted label-ranking average precision. Arguments: truth: np.array of (num_samples, num_classes) giving boolean ground-truth of presence of that class in that sample. scores: np.array of (num_samples, num_classes) giving the classifier-under- test's real-valued score for each class for each sample. Returns: per_class_lwlrap: np.array of (num_classes,) giving the lwlrap for each class. weight_per_class: np.array of (num_classes,) giving the prior of each class within the truth labels. Then the overall unbalanced lwlrap is simply np.sum(per_class_lwlrap * weight_per_class) """ assert truth.shape == scores.shape num_samples, num_classes = scores.shape # Space to store a distinct precision value for each class on each sample. # Only the classes that are true for each sample will be filled in. precisions_for_samples_by_classes = np.zeros((num_samples, num_classes)) for sample_num in range(num_samples): pos_class_indices, precision_at_hits = ( _one_sample_positive_class_precisions(scores[sample_num, :], truth[sample_num, :])) precisions_for_samples_by_classes[sample_num, pos_class_indices] = ( precision_at_hits) labels_per_class = np.sum(truth > 0, axis=0) weight_per_class = labels_per_class / float(np.sum(labels_per_class)) # Form average of each column, i.e. all the precisions assigned to labels in # a particular class. per_class_lwlrap = (np.sum(precisions_for_samples_by_classes, axis=0) / np.maximum(1, labels_per_class)) # overall_lwlrap = simple average of all the actual per-class, per-sample precisions # = np.sum(precisions_for_samples_by_classes) / np.sum(precisions_for_samples_by_classes > 0) # also = weighted mean of per-class lwlraps, weighted by class label prior across samples # = np.sum(per_class_lwlrap * weight_per_class) return per_class_lwlrap, weight_per_class
5,346,669
def test_uci_getLineParts(): """ Test the UCI getLineParts utility function """ from paradrop.lib.utils import uci line = "config interface wan" result = uci.getLineParts(line) assert result == line.split() # It should eat the apostrophes and give same result. line2 = "config 'interface' 'wan'" result2 = uci.getLineParts(line) assert result2 == result line = "option key 'my password has spaces'" result = uci.getLineParts(line) assert result == ["option", "key", "my password has spaces"] line = "config interface 'oops" result = uci.getLineParts(line) assert result == ["config", "interface", "oops"]
5,346,670
def chan_faces(n1: int, n2: int, xform, dim1: Tuple[float, float, float, float], dim2: Tuple[float, float, float, float]): """ ^y | 0--------7 | | | | | 5-----6 | | | +--|--|-------> z | | | 4-----3 | | 1--------2 <----> e/zsc <--------> bflange """ faces = [ # front face [0, 5, 6, 7], [0, 1, 4, 5], [1, 2, 3, 4], # back face [8, 13, 14, 15], [8, 9, 12, 13], [9, 10, 11, 12], # around the C (counter-clockwise) [0, 8, 9, 1], [1, 9, 10, 2], [2, 10, 11, 3], [3, 11, 12, 4], [4, 12, 13, 5], [5, 13, 14, 6], [6, 14, 15, 7], [7, 15, 8, 0], ] points_list = [] for nid, dim in [(n1, dim1), (n2, dim2)]: bflange, hall, tweb, tflange = dim # distance from shear center to neutral axis #zsc_na = 3 * bflange ** 2 / (6 * bflange + h) # per msc 2018 refman zsc = 0. ## TODO: consider the shear center #if 0: # pragma: no cover # msc 2018 refman; p.670 #h = hall - tflange #tw = tweb #tf = tflange #b = bflange - tw / 2. #bf = bflange - tw #hw = hall - 2. * tf #A = 2 * tf * bf + (h + tf) * tw #zc = bf * tf * (bf + tw) / A #zsc = b**2 * tf / (2*b*tw + 1/3. * h * tf) #E = zs - tw / 2. #zna = zc + zsc points = np.array([ [0., hall/2, zsc], # 0 [0., -hall/2, zsc], # 1 [0., -hall/2, zsc + bflange], # 2 [0., -hall/2 + tflange, zsc + bflange], # 3 [0., -hall/2 + tflange, zsc + tweb], # 4 [0., hall/2 - tflange, zsc + tweb], # 5 [0., hall/2 - tflange, zsc + bflange], # 6 [0., hall/2, zsc + bflange], # 7 ]) # 16 x 3 pointsi = points @ xform + nid points_list.append(pointsi) return faces, np.vstack(points_list)
5,346,671
def generate_manifest(name, p, h=None): """ generate_manifest(name, p, h) -> mapping Generates a mapping used as the manifest file. :param name: a dotted package name, as in setup.py :param p: the zip file with package content. :param h: optional hash function to use. :returns: the path to the created manifest file. """ if h is None: h = hashlib.sha256 m = {} fh = m["files"] = {} order = [] with zipfile.ZipFile(p) as zf: for fi in zf.filelist: order.append(fi.filename) hash_all = h() for fn in sorted(order): contents = zf.read(fn) hash_all.update(contents) fh[fn] = h(contents).hexdigest() m["name"] = name m["sum"] = hash_all.hexdigest() m["date"] = datetime.datetime.now().isoformat() return m
5,346,672
def benchrun(methods, model, case_args, filename, cpus=1,): """ Parameters ---------- methods : list of str Voter systems to be assessed by the election model. model : func Election model running function as >>> e = func(**kwargs) Where - `e` is an Election object - `kwargs` is a dict of arguments generated by `case_args` case_args : generator Generator that creates the parametric arguments to input into the model. Must accept argument `methods` -- >>> generator = case_args(methods) >>> args = next(generator) filename : str Naming prefix for output files cpus : int Number of processes or CPU's to use Returns ------- df : Dataframe Results for every election iteration assessed """ b = _BenchRunner(model=model, case_args=case_args, filename=filename) if cpus > 1: return b.runmult(methods, cpus=cpus) else: return b.run(methods)
5,346,673
def retry( exceptions,times=3,sleep_second=0): """ Retry Decorator Retries the wrapped function/method `times` times if the exceptions listed in ``exceptions`` are thrown :param times: The number of times to repeat the wrapped function/method :type times: Int :param Exceptions: Lists of exceptions that trigger a retry attempt :type Exceptions: Tuple of Exceptions """ if not py.iterable(exceptions):exceptions=[exceptions] def decorator(func): def newfn(*args, **kwargs): attempt = 0 while attempt < times: try: return func(*args, **kwargs) except Exception as e: for i in exceptions: if isinstance(e,i): log( 'Exception thrown when attempting to run %s, attempt ' '%d of %d' % (func, attempt, times), exc_info=True ) attempt += 1 if sleep_second:sleep(sleep_second) break else:#when no break raise e return func(*args, **kwargs) return newfn return decorator
5,346,674
def positiveId(obj): """Return id(obj) as a non-negative integer.""" result = id(obj) if result < 0: result += _address_mask assert result > 0 return result
5,346,675
def get_vroitems_from_package(package): """Get all the items from the vRO Package. Args: package (str): Path to a package file. Returns: VROElementMetadata[]: a list of VROElementMetadata. """ vro_items_id, vro_items = [], [] with zipfile.ZipFile(package, 'r') as zip_ref: for x in zip_ref.namelist(): if x.startswith("elements"): item_id = os.path.basename(os.path.split(x)[0]) if item_id not in vro_items_id: with zip_ref.open('elements/' + item_id + '/info', 'r') as xml_info_file: xml_info = xml_info_file.read() with zip_ref.open('elements/' + item_id + '/data', 'r') as data_file: data = data_file.read() vro_item = VROElementMetadata(item_id, xml_info, data) vro_items.append(vro_item) vro_items_id.append(item_id) logger.info("New item %s" % vro_item) return vro_items
5,346,676
def compute_annualized_total_return_over_months(df, column_price, months): """ Computed the annualized total return over the specified number of months. This is equivalent to Compound Annual Growth Rate (CAGR). Note: If the period is less than one year, it is best not to use annualized total return as it could result in a very large (positive or negative) number that is not meaningful. :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute annualized total return :param months: time period in months (e.g. 1 = 1 month, 2 = 2 months, 2.5 = 1 month and ~15 days, etc.) :return: annualized total return over months """ # calculate cumulative total return total_return = compute_cumulative_total_return(df, column_price) # calculate annualized total returns over months annualized_total_return = ((1 + total_return)**(12/months)) - 1 return annualized_total_return
5,346,677
def build_sparse_ts_from_distributions(start_date, end_date, seasonalities, time_interval, dist_dict, **kwargs): """constructs a time series with given distributions and seasonalities in a given frequency time_interval""" ts_list = [] for (name, dist), seasonality in zip(dist_dict.items(), seasonalities): ts_list.append(build_sparse_ts_by_seasonality(dist, start_date, end_date, seasonality, time_interval, **kwargs.get(name, {}))) ts = reduce(lambda x, y: add_ts_with_different_dates(x, y), ts_list) # add time series together return ts
5,346,678
def preprocess_label(labels, scored_classes, equivalent_classes): """ convert string labels to binary labels """ y = np.zeros((len(scored_classes)), np.float32) for label in labels: if label in equivalent_classes: label = equivalent_classes[label] if label in scored_classes: y[scored_classes.index(label)] = 1 return y
5,346,679
def compile_on_disk(source_file: str, parser_name: str = '', compiler_suite: str = "", extension: str = ".xml") -> Iterable[Error]: """ Compiles the a source file with a given compiler and writes the result to a file. If no ``compiler_suite`` is given it is assumed that the source file is an EBNF grammar. In this case the result will be a Python script containing a parser for that grammar as well as the skeletons for a preprocessor, AST transformation table, and compiler. If the Python script already exists only the parser name in the script will be updated. (For this to work, the different names need to be delimited section marker blocks.). `compile_on_disk()` returns a list of error messages or an empty list if no errors occurred. :param source_file: The file name of the source text to be compiled. :param parser_name: The name of the generated parser. If the empty string is passed, the default name "...Parser.py" will be used. :param compiler_suite: The file name of the parser/compiler-suite (usually ending with 'Parser.py'), with which the source file shall be compiled. If this is left empty, the source file is assumed to be an EBNF-Grammar that will be compiled with the internal EBNF-Compiler. :param extension: The result of the compilation (if successful) is written to a file with the same name but a different extension than the source file. This parameter sets the extension. :returns: A (potentially empty) list of error or warning messages. """ filepath = os.path.normpath(source_file) rootname = os.path.splitext(filepath)[0] if not parser_name: parser_name = rootname + 'Parser.py' f = None # Optional[TextIO] with open(source_file, encoding="utf-8") as f: source = f.read() # dhpath = relative_path(os.path.dirname(rootname), DHPARSER_PARENTDIR) compiler_name = as_identifier(os.path.basename(rootname)) if compiler_suite: sfactory, pfactory, tfactory, cfactory = load_compiler_suite(compiler_suite) compiler1 = cfactory() else: sfactory = get_ebnf_preprocessor # PreprocessorFactoryFunc pfactory = get_ebnf_grammar # ParserFactoryFunc tfactory = get_ebnf_transformer # TransformerFactoryFunc cfactory = get_ebnf_compiler # CompilerFactoryFunc compiler1 = cfactory() # Compiler is_ebnf_compiler = False # type: bool if isinstance(compiler1, EBNFCompiler): is_ebnf_compiler = True compiler1.set_grammar_name(compiler_name, source_file) result, messages, _ = compile_source(source, sfactory(), pfactory(), tfactory(), compiler1) if has_errors(messages): return messages elif is_ebnf_compiler: # trans == get_ebnf_transformer or trans == EBNFTransformer: # either an EBNF- or no compiler suite given ebnf_compiler = cast(EBNFCompiler, compiler1) # type: EBNFCompiler global SECTION_MARKER, RX_SECTION_MARKER, PREPROCESSOR_SECTION, PARSER_SECTION, \ AST_SECTION, COMPILER_SECTION, END_SECTIONS_MARKER, RX_WHITESPACE f = None try: f = open(parser_name, 'r', encoding="utf-8") source = f.read() sections = split_source(parser_name, source) intro, imports, preprocessor, _, ast, compiler, outro = sections ast_trans_python_src = imports + ast ast_trans_table = dict() # type: TransformationDict try: ast_trans_table = compile_python_object(ast_trans_python_src, r'(?:\w+_)?AST_transformation_table$') except Exception as e: if isinstance(e, NameError): err_str = 'NameError "{}" while compiling AST-Transformation. ' \ 'Possibly due to a forgotten import at the beginning ' \ 'of the AST-Block (!)'.format(str(e)) else: err_str = 'Exception {} while compiling AST-Transformation: {}' \ .format(str(type(e)), str(e)) messages.append(Error(err_str, 0, CANNOT_VERIFY_TRANSTABLE_WARNING)) if is_logging(): with open(os.path.join(log_dir(), rootname + '_AST_src.py'), 'w', encoding='utf-8') as f: f.write(ast_trans_python_src) messages.extend(ebnf_compiler.verify_transformation_table(ast_trans_table)) # TODO: Verify compiler except (PermissionError, FileNotFoundError, IOError): intro, imports, preprocessor, _, ast, compiler, outro = '', '', '', '', '', '', '' finally: if f: f.close() f = None if RX_WHITESPACE.fullmatch(intro): intro = '#!/usr/bin/env python3' if RX_WHITESPACE.fullmatch(outro): outro = read_template('DSLParser.pyi').format(NAME=compiler_name) if RX_WHITESPACE.fullmatch(imports): imports = DHParser.ebnf.DHPARSER_IMPORTS if RX_WHITESPACE.fullmatch(preprocessor): preprocessor = ebnf_compiler.gen_preprocessor_skeleton() if RX_WHITESPACE.fullmatch(ast): ast = ebnf_compiler.gen_transformer_skeleton() if RX_WHITESPACE.fullmatch(compiler): compiler = ebnf_compiler.gen_compiler_skeleton() try: f = open(parser_name, 'w', encoding="utf-8") f.write(intro) f.write(SECTION_MARKER.format(marker=SYMBOLS_SECTION)) f.write(imports) f.write(SECTION_MARKER.format(marker=PREPROCESSOR_SECTION)) f.write(preprocessor) f.write(SECTION_MARKER.format(marker=PARSER_SECTION)) f.write(cast(str, result)) f.write(SECTION_MARKER.format(marker=AST_SECTION)) f.write(ast) f.write(SECTION_MARKER.format(marker=COMPILER_SECTION)) f.write(compiler) f.write(SECTION_MARKER.format(marker=END_SECTIONS_MARKER)) f.write(outro) except (PermissionError, FileNotFoundError, IOError) as error: print(f'# Could not write file "{parser_name}" because of: ' + "\n# ".join(str(error).split('\n)'))) print(result) finally: if f: f.close() if platform.system() != "Windows": # set file permissions so that the parser_name can be executed st = os.stat(parser_name) os.chmod(parser_name, st.st_mode | stat.S_IEXEC) else: f = None try: f = open(rootname + extension, 'w', encoding="utf-8") if isinstance(result, Node): if extension.lower() == '.xml': f.write(result.as_xml()) else: f.write(result.as_sxpr()) elif isinstance(result, str): f.write(result) else: raise AssertionError('Illegal result type: ' + str(type(result))) except (PermissionError, FileNotFoundError, IOError) as error: print('# Could not write file "' + rootname + '.py" because of: ' + "\n# ".join(str(error).split('\n)'))) print(result) finally: if f: f.close() return messages
5,346,680
def load_settings(filename='settings.yaml'): """Read settings from a file. Keyword arguments: filename -- the source file (default settings.yaml) """ with open(filename, 'r') as settings_yaml: logging.debug("Reading settings from file: %s", filename) return yaml.load(settings_yaml)
5,346,681
def enforce_types(data): """Convert lists to sets. """ # We properly set 'title', 'text', 'pretext' and 'alias' as unicode for _, node in data.iter_all_nodes(): # This avoid warnings about mix of types in 'rank' later if node.data['alias'] is not None: node.data['alias'] = unicode(node.data['alias']) for graph_data in node.data['graphs']: graph_data['title'] = unicode(graph_data['title']) graph_data['text'] = unicode(graph_data['text']) graph_data['pretext'] = unicode(graph_data['pretext']) # We properly set 'index' as a set for _, node in data.iter_all_nodes(): for graph_data in node.data['graphs']: graph_data['index'] = set(sanitize(graph_data['index'], apply_=handle_index)) # We properly set 'labels' as a set of dict for _, node in data.iter_all_nodes(): node.data['labels'] = set(sanitize(node.data['labels'], apply_=handle_label)) for graph_data in node.data['graphs']: graph_data['labels'] = set(sanitize(graph_data['labels'], apply_=handle_label))
5,346,682
def pytest_configure(config): """ pytest hook, used here to register custom marks to get rid of spurious warnings """ config.addinivalue_line( "markers", "mock_device_proxy: the test requires tango.DeviceProxy to be mocked" )
5,346,683
def main(): """ Hook for command line interface """ npix = (1800, 900) skydir_gc = coordinates.SkyCoord(0., 0., frame=coordinates.Galactic, unit="deg") wcs_gc = create_wcs(skydir_gc, coordsys='GAL', projection="AIT", cdelt=0.2, crpix=(900.5, 450.5)) t_all = table.Table.read("new_srcs_filtered.fits") glat_all = t_all['GLAT'] glon_all = t_all['GLON'] pix_crds_all = wcs_gc.wcs_world2pix(glon_all, glat_all, 1) clusters = yaml.load(open("clustered_idx_dict.yaml")) fig = plt.figure() axout = fig.add_subplot(111) axout.set_xlim(0, npix[0]) axout.set_ylim(0, npix[1]) for key, val in list(clusters.items()): if len(val) < 10: continue clust = [key] + val print(clust) axout.plot(pix_crds_all[0][clust], pix_crds_all[1][clust]) axout.plot(pix_crds_all[0], pix_crds_all[1], 'r,')
5,346,684
def extract_ocr_region( datasets_root_path, img_extracted_path, labels_out_path ): """ Description: To extract ocr regions from the raw imgs, and record corresponding label. params: path_with_raw_imgs_and_labels, path to save imgs extracted, path to save labels by lines return: None """ if os.path.exists(labels_out_path): os.remove(labels_out_path) # get paths label_axis_paths = sorted( os.listdir(os.path.join(datasets_root_path, 'txt_9000')) ) for i in range(len(label_axis_paths)): label_axis_paths[i] = os.path.join( datasets_root_path, 'txt_9000', label_axis_paths[i] ) image_paths = sorted( os.listdir(os.path.join(datasets_root_path, 'image_9000')) ) for i in range(len(image_paths)): image_paths[i] = os.path.join( datasets_root_path, 'image_9000', image_paths[i] ) img_idx = 0 for image_path_idx in range(len(image_paths))[:100]: img = cv2.imread(image_paths[image_path_idx]) if img is None: print("Error img " + image_paths[image_path_idx]) continue print('image_path:', image_paths[image_path_idx]) lab_ax_path = label_axis_paths[image_path_idx] with open(lab_ax_path, 'r') as fin: for line in fin.readlines(): (axis, label) = (line.strip().split(',')[:-1], line.strip().split(',')[-1]) if label == '###': continue point_axis_1 = [round(float(axis[0])), round(float(axis[1]))] point_axis_2 = [round(float(axis[2])), round(float(axis[3]))] point_axis_3 = [round(float(axis[4])), round(float(axis[5]))] point_axis_4 = [round(float(axis[6])), round(float(axis[7]))] canvas = np.zeros_like(img) point_axis = np.array([[point_axis_1, point_axis_2, point_axis_3, point_axis_4]]) mask = cv2.fillPoly( canvas, point_axis, (255, 255, 255) ) text = cv2.bitwise_and(img, mask) # 怎样才能保证 全为字白背景黑 或 全为字黑背景白呢? # 矫正ocr区域的角度 # centroid_x, centroid_y = (np.mean(point_axis[0][:, 0]), # np.mean(point_axis[0][:, 1])) # Get diagonal point pairs idx_dis_max = np.argmax( np.sum((point_axis[0] - point_axis_1)**2, axis=1) ) point_axis_pair_1 = [point_axis[0][0], point_axis[0][idx_dis_max]] pair_2_idx = list(set(range(1, 4)) - {idx_dis_max}) point_axis_pair_2 = [point_axis[0][pair_2_idx[0]], point_axis[0][pair_2_idx[1]]] # correcting_angle = ( # np.arctan((point_axis_1[1] - centroid_y) / # (point_axis_1[0] - centroid_x)) + # np.arctan((point_axis_2[1] - centroid_y) / # (point_axis_2[0] - centroid_x)) + # np.arctan((point_axis_3[1] - centroid_y) / # (point_axis_3[0] - centroid_x)) + # np.arctan((point_axis_4[1] - centroid_y) / # (point_axis_4[0] - centroid_x)) # ) / 4 if not ((point_axis_pair_1[1][0] - point_axis_pair_1[0][0]) and (point_axis_pair_2[1][0] - point_axis_pair_2[0][0])): correcting_angle = 0 else: correcting_angle = ((point_axis_pair_1[1][1] - point_axis_pair_1[0][1]) / (point_axis_pair_1[1][0] - point_axis_pair_1[0][0]) + (point_axis_pair_2[1][1] - point_axis_pair_2[0][1]) / (point_axis_pair_2[1][0] - point_axis_pair_2[0][0])) / 2 correcting_angle = np.rad2deg(correcting_angle) print("correcting_angle:", correcting_angle) text_rot = get_img_rot_broa.get_img_rot_broa(text, correcting_angle) # text_rot = corr_ang_by_radon.corr_ang_by_radon(text)[0] text_cropped = elim_pure_borders.elim_pure_borders(text_rot) cv2.imwrite(os.path.join(img_extracted_path, str(img_idx)+'.jpg'), text_cropped) # import matplotlib.pyplot as plt # fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(10, 4)) # ax0.imshow(cv2.cvtColor(text, cv2.COLOR_BGR2RGB)) # ax0.set_title('text') # ax1.imshow(cv2.cvtColor(text_rot, cv2.COLOR_BGR2RGB)) # ax1.set_title('text_rot') # ax2.imshow(cv2.cvtColor(text_cropped, cv2.COLOR_BGR2RGB)) # ax2.set_title('text_cropped') # plt.show() # thresholding # blur = cv2.cvtColor(cv2.GaussianBlur(text, (5, 5), 0), # cv2.COLOR_BGR2GRAY) # thr = cv2.threshold(blur, 127, 255, # cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] # plt.figure(1) # plt.imshow(blur, cmap='gray') # plt.figure(2) # plt.imshow(thr, cmap='gray') # plt.title('thr') # plt.show() img_idx += 1 # Test by tesseract # import pytesseract # from PIL import Image # cv2.imwrite('./t.png', thr) # res = pytesseract.image_to_string( # Image.open('./t.png'), # lang='chi_sim+eng' # ) # print('Prediction by tesseract is:', res) # Use NN to replace tesseract # single labels with open('./labels_out.txt', 'a+') as fout: fout.write(label + '\n')
5,346,685
def vec_abs(field: SampledField): """ See `phi.math.vec_abs()` """ if isinstance(field, StaggeredGrid): field = field.at_centers() return field.with_values(math.vec_abs(field.values))
5,346,686
def print_filters(): """This method will print list of filters fields used by ``buildtest build --filter``. This method is invoked by running ``buildtest build --helpfilter``. """ table = Table("[blue]Field", "[blue]Description", title="Buildtest Filters") table.add_row("[green]tags", "[red]Filter tests by 'tag' field") table.add_row("[green]type", "[red]Filter test by 'type' field") table.add_row("[green]maintainers", "[red]Filter test by 'maintainers' field") console.print(table)
5,346,687
def spoofRequest(app): """ Make REQUEST variable to be available on the Zope application server. This allows acquisition to work properly """ _policy=PermissiveSecurityPolicy() _oldpolicy=setSecurityPolicy(_policy) newSecurityManager(None, OmnipotentUser().__of__(app.acl_users)) info = {'SERVER_NAME': 'isaw4.atlantides.org', 'SERVER_PORT': '8083', 'REQUEST_METHOD': 'GET'} return makerequest(app, environ=info)
5,346,688
def plot_precision_recall(AP, precisions, recalls): """Draw the precision-recall curve. AP: Average precision at IoU >= 0.5 precisions: list of precision values recalls: list of recall values """ # Plot the Precision-Recall curve _, ax = plt.subplots(1) ax.set_title("Precision-Recall Curve. AP@50 = {:.3f}".format(AP)) ax.set_ylim(0, 1.1) ax.set_xlim(0, 1.1) _ = ax.plot(recalls, precisions)
5,346,689
def data_to_percentage(data_list: pd.DataFrame) -> pd.DataFrame: """ Takes a dataframe with one or more columns filled with digits and returns a dataframe with the percentages corresponding to the number of times the numbers 1-9 appear in each column. Args: data_list: a dataframe of integers representing all of the leading digits from a dataset (in this case, the number of vote counts). Each columns is a category and is a Series with digits. threshold: (int) minimum number of integers in column for percentage to be found in it and for it to be returned. Returns: returns a dataframe of Series with the percentages of each column that are each unique number in that column. Any numbers outside of [1, 9] are not included and any column with fewer unique digits than another column is dropped. """ def per_column_percentage(column: pd.Series) -> pd.Series: number_of_occurrences = column.value_counts() number_of_occurrences = number_of_occurrences[ (number_of_occurrences.index > 0) & (number_of_occurrences.index < 10) ] return number_of_occurrences.multiply( 100 / sum(number_of_occurrences) ).sort_index() return data_list.apply(per_column_percentage).dropna(axis=1)
5,346,690
def is_not_none_or_whitespace(param_name: str, value_to_check: str) -> None: """ Raises ValueError if the value is None or a whitespace/empty string :param param_name: Name of the parameter to validate :param value_to_check: Value to of the parameter being validated """ if value_to_check is None or value_to_check.strip() == '': raise ValueError(f'Parameter {param_name} contains a None, empty, or whitespace string')
5,346,691
def create_classifier_from_encoder(data:DataBunch, encoder_path:str=None, path=None, dropout1=0.5, device: torch.device = torch.device('cuda', 0), **kwargs): """Factory function to create classifier from encoder to allow transfer learning.""" from .models.models import EncoderClassifier path = data.path if path is None else path if encoder_path is None: logger.info("WARNING: `encoder_path` is None, not using pretrained feature extractor") encoder = None else: encoder = torch.load(encoder_path, map_location='cpu') model = EncoderClassifier(data.train_ds.shape, encoder, len(data.classes),dropout1=dropout1) learn = Learner(data, model, path, model_type="classifier", device=device, **kwargs) learn.freeze_encoder() return learn
5,346,692
def gz_compression(filepath, delete_source=True): """ Compress the given file using gzip. Delete the source file if asked. :param filepath: path pointing to the source file :param delete_source: boolean indicating if the source file should be deleted """ # compress the file using gzip with open(filepath, 'rb') as f_in: with gzip.open(filepath + ".gz", 'wb') as f_out: shutil.copyfileobj(f_in, f_out) # delete source file if asked if delete_source: os.remove(filepath)
5,346,693
def clone(job): """ Action that creates a clone of a machine. """ service = job.service vdc = service.parent if 'g8client' not in vdc.producers: raise j.exceptions.RuntimeError("No producer g8client found. Cannot continue clone of %s" % service) g8client = vdc.producers["g8client"][0] config_instance = "{}_{}".format(g8client.aysrepo.name, g8client.model.data.instance) cl = j.clients.openvcloud.get(instance=config_instance, create=False, die=True, sshkey_path="/root/.ssh/ays_repos_key") acc = cl.account_get(vdc.model.data.account) space = acc.space_get(vdc.model.dbobj.name, vdc.model.data.location) if service.name not in space.machines: raise j.exceptions.RuntimeError("Machine with name %s doesn't exist in the cloud space" % service.name) machine = space.machines[service.name] clone_name = service.model.data.cloneName machine.clone(clone_name) machine.start()
5,346,694
def test_force_overwrite_two_pages(overwrite_pages, tmp_path, setup_page): """Checks for multiple pages force overwrite flag is set <=> page is updated if author is changed""" pages_obj = {1: {}, 2: {}} config_file, ( pages_obj[1]["page_id"], pages_obj[1]["page_title"], pages_obj[2]["page_id"], pages_obj[2]["page_title"], ) = setup_page(2) new_config = replace_new_author(config_file, tmp_path) for page_no in range(2): if overwrite_pages[page_no]: new_config = _set_page_to_overwrite( config_file=new_config, page_no=page_no + 1, tmp_path=tmp_path ) rewrite_page_file(Config(new_config).pages[page_no].page_file) result: Result = run_with_config(new_config) assert result.exit_code == 0 for page_no in range(2): assert ( f"Updating page #{pages_obj[page_no+1]['page_id']}" in result.stdout ) == overwrite_pages[page_no]
5,346,695
def filter_string( df: pd.DataFrame, column_name: Hashable, search_string: str, complement: bool = False, case: bool = True, flags: int = 0, na=None, regex: bool = True, ) -> pd.DataFrame: """Filter a string-based column according to whether it contains a substring. This is super sugary syntax that builds on top of `pandas.Series.str.contains`. It is meant to be the method-chaining equivalent of the following: ```python df = df[df[column_name].str.contains(search_string)]] ``` This method does not mutate the original DataFrame. Example: Retain rows whose column values contain a particular substring. >>> import pandas as pd >>> import janitor >>> df = pd.DataFrame({"a": range(3, 6), "b": ["bear", "peeL", "sail"]}) >>> df a b 0 3 bear 1 4 peeL 2 5 sail >>> df.filter_string(column_name="b", search_string="ee") a b 1 4 peeL >>> df.filter_string(column_name="b", search_string="L", case=False) a b 1 4 peeL 2 5 sail Example: Filter names does not contain `'.'` (disable regex mode). >>> import pandas as pd >>> import janitor >>> df = pd.Series(["JoseChen", "Brian.Salvi"], name="Name").to_frame() >>> df Name 0 JoseChen 1 Brian.Salvi >>> df.filter_string(column_name="Name", search_string=".", regex=False, complement=True) Name 0 JoseChen :param df: A pandas DataFrame. :param column_name: The column to filter. The column should contain strings. :param search_string: A regex pattern or a (sub-)string to search. :param complement: Whether to return the complement of the filter or not. If set to True, then the rows for which the string search fails are retained instead. :param case: If True, case sensitive. :param flags: Flags to pass through to the re module, e.g. re.IGNORECASE. :param na: Fill value for missing values. The default depends on dtype of the array. For object-dtype, `numpy.nan` is used. For `StringDtype`, `pandas.NA` is used. :param regex: If True, assumes `search_string` is a regular expression. If False, treats the `search_string` as a literal string. :returns: A filtered pandas DataFrame. """ # noqa: E501 criteria = df[column_name].str.contains( pat=search_string, case=case, flags=flags, na=na, regex=regex, ) if complement: return df[~criteria] return df[criteria]
5,346,696
def on_demand_feature_view( features: List[Feature], inputs: Dict[str, Union[FeatureView, RequestDataSource]] ): """ Declare an on-demand feature view :param features: Output schema with feature names :param inputs: The inputs passed into the transform. :return: An On Demand Feature View. """ def decorator(user_function): on_demand_feature_view_obj = OnDemandFeatureView( name=user_function.__name__, inputs=inputs, features=features, udf=user_function, ) functools.update_wrapper( wrapper=on_demand_feature_view_obj, wrapped=user_function ) return on_demand_feature_view_obj return decorator
5,346,697
def get_error_string(ftdi): """ get_error_string(context ftdi) -> char * Get string representation for last error code Parameters: ----------- ftdi: pointer to ftdi_context Returns: -------- Pointer: to error string """ errstr = ftdi_get_error_string(ftdi) return cast(errstr, c_char_p).value.decode('ascii')
5,346,698
def DenseNet52k12(growth_rate = 12, reduction = 0.5): """ Parameters: ---------- Returns ------- """ return DenseNet(reduction = reduction, growth_rate = growth_rate, layers=52)
5,346,699