content
stringlengths
22
815k
id
int64
0
4.91M
def expand_template(template, variables, imports, raw_imports=None): """Expand a template.""" if raw_imports is None: raw_imports = imports env = jinja2.Environment(loader=OneFileLoader(template)) template = env.get_template(template) return template.render(imports=imports, variables=variables, raw_imports=raw_imports)
5,346,800
def __contains__(container: Any, item: Any, /) -> bool: """Check if the first item contains the second item: `b in a`.""" container_type = type(container) try: contains_method = debuiltins._mro_getattr(container_type, "__contains__") except AttributeError: # Cheating until `for` is unravelled (and thus iterators). return debuiltins.any(x is item or x == item for x in container) else: if contains_method is None: raise TypeError(f"{container_type.__name__!r} object is not a container") is_contained = contains_method(container, item) return truth(is_contained)
5,346,801
def generate_search_url(request_type): """Given a request type, generate a query URL for kitsu.io.""" url = BASE_URL_KITSUIO.format(request_type) return url
5,346,802
def register_magic(func: Callable[[Expr], Expr]): """ Make a magic command more like Julia's macro system. Instead of using string, you can register a magic that uses Expr as the input and return a modified Expr. It is usually easier and safer to execute metaprogramming this way. Parameters ---------- func : Callable[[Expr], Expr] Function that will used as a magic command. Returns ------- Callable Registered function itself. Examples -------- .. code-block:: python @register_magic def print_code(expr): print(expr) return expr The ``print_code`` magic is registered as an ipython magic. .. code-block:: python %print_code a = 1 .. code-block:: python %%print_code def func(a): return a + 1 """ @register_line_cell_magic @needs_local_scope @wraps(func) def _ipy_magic(line: str, cell: str = None, local_ns=None): if cell is None: cell = line block = parse(cell) block_out = func(block) return block_out.eval(local_ns, local_ns) return func
5,346,803
def flowcellDirFastqToBwaBamFlow(self, taskPrefix="", dependencies=set()) : """ Takes as input 'flowcellFastqDir' pointing to the CASAVA 1.8 flowcell project/sample fastq directory structure. For each project/sample, the fastqs are aligned using BWA, sorted and merged into a single BAM file. The bam output is placed in a parallel project/sample directory structure below 'flowcellBamDir' params: samtoolsBin flowcellFastqDir flowcellBamDir calls: FastqPairToBwaBamFlow supplies: bamFile fastq1File fastq2File """ # # 1. separate fastqs into matching pairs: # fqs = {} fqDigger = FileDigger(".fastq.gz", ["Project_", "Sample_"]) for (project, sample, fqPath) in fqDigger.getNextFile(self.params.flowcellFastqDir) : if (self.params.sampleNameList != None) and \ (len(self.params.sampleNameList) != 0) and \ (sample not in self.params.sampleNameList) : continue fqFile = os.path.basename(fqPath) w = (fqFile.split(".")[0]).split("_") if len(w) != 5 : raise Exception("Unexpected fastq filename format: '%s'" % (fqPath)) (sample2, index, lane, read, num) = w if sample != sample2 : raise Exception("Fastq name sample disagrees with directory sample: '%s;" % (fqPath)) key = (project, sample, index, lane, num) if key not in fqs : fqs[key] = [None, None] readNo = int(read[1]) if fqs[key][readNo - 1] != None : raise Exceptoin("Unresolvable repeated fastq file pattern in sample: '%s'" % (fqPath)) fqs[key][readNo - 1] = fqPath ensureDir(self.params.flowcellBamDir) # # 2. run all fastq pairs through BWA: # nextWait = set() for key in fqs.keys() : (project, sample, index, lane, num) = key sampleBamDir = os.path.join(self.params.flowcellBamDir, "Project_" + project, "Sample_" + sample) ensureDir(sampleBamDir) keytag = "_".join(key) self.params.bamFile = os.path.join(sampleBamDir, keytag + ".bam") self.params.fastq1File = fqs[key][0] self.params.fastq2File = fqs[key][1] nextWait.add(self.addWorkflowTask(preJoin(taskPrefix, keytag), FastqPairToBwaBamFlow(self.params), dependencies=dependencies)) return nextWait
5,346,804
def ValidatePregnum(resp): """Validate pregnum in the respondent file. resp: respondent DataFrame """ # read the pregnancy frame preg = nsfg.ReadFemPreg() # make the map from caseid to list of pregnancy indices preg_map = nsfg.MakePregMap(preg) # iterate through the respondent pregnum series for index, pregnum in resp.pregnum.items(): caseid = resp.caseid[index] indices = preg_map[caseid] # check that pregnum from the respondent file equals # the number of records in the pregnancy file if len(indices) != pregnum: print(caseid, len(indices), pregnum) return False return True
5,346,805
def is_super_admin(view, view_args, view_kwargs, *args, **kwargs): """ Permission function for things allowed exclusively to super admin. Do not use this if the resource is also accessible by a normal admin, use the is_admin decorator instead. :return: """ user = current_user if not user.is_super_admin: return ForbiddenError({'source': ''}, 'Super admin access is required').respond() return view(*view_args, **view_kwargs)
5,346,806
def normalize_depth(val, min_v, max_v): """ print 'nomalized depth value' nomalize values to 0-255 & close distance value has high value. (similar to stereo vision's disparity map) """ return (((max_v - val) / (max_v - min_v)) * 255).astype(np.uint8)
5,346,807
def main(): """Build and package OpenSSL.""" parser = argparse.ArgumentParser(prog='OpenSSL setup', description='This script will compile ' 'OpenSSL 1.0.1+ and optionally create ' 'a native macOS package.') parser.add_argument('-b', '--build', action='store_true', help='Compile the OpenSSL binary') parser.add_argument('-s', '--skip', action='store_true', help='Skip recompiling if possible. Only recommended ' 'for development purposes.') parser.add_argument('-p', '--pkg', action='store_true', help='Package the OpenSSL output directory.') parser.add_argument('-i', '--install', action='store_true', help='Install the OpenSSL package.') parser.add_argument('-v', '--verbose', action='count', default=1, help="Increase verbosity level. Repeatable up to " "2 times (-vv)") if len(sys.argv) < 2: parser.print_help() sys.exit(1) args = parser.parse_args() # set argument variables log.verbose = args.verbose skip = args.skip root.root_check() if args.build: log.info("Bulding OpenSSL...") check_dir = os.path.isdir(PKG_PAYLOAD_DIR) # When the skip option is passed and the build directory exists, skip # download and compiling of openssl. Note we still do linking. if (skip and check_dir): log.debug("Skip flag was provided. We will not compile OpenSSL " "on this run.") else: download_and_extract_openssl() build() current_certs() if args.pkg: log.info("Building a package for OpenSSL...") # Change back into our local directory so we can output our package # via relative paths os.chdir(CURRENT_DIR) version = CONFIG['openssl_version'] rc = package.pkg(root=PKG_PAYLOAD_DIR, version=version, identifier="{}.openssl".format(CONFIG['pkgid']), output='openssl-{}.pkg'.format(version), ) if rc == 0: log.info("OpenSSL packaged properly") else: log.error("Looks like package creation failed") if args.install: log.info("Installing OpenSSL pacakge...") os.chdir(CURRENT_DIR) cmd = ['/usr/sbin/installer', '-pkg', 'openssl-{}.pkg'.format(version), '-tgt', '/'] runner.Popen(cmd)
5,346,808
def test_matrix_split_7(interactions_ds): """Test if error is thrown with an invalid value of item_test_ratio (> 1).""" try: matrix_split(interactions_ds, item_test_ratio=2) except Exception as e: assert str(e) == 'Invalid item_test_ratio of 2: must be in the range (0, 1]'
5,346,809
def parse_iori_block(block): """Turn IORI data blocks into `IoriData` objects. Convert rotation from Quaternion format to Euler angles. Parameters ---------- block: list of KVLItem A list of KVLItem corresponding to a IORI data block. Returns ------- iori_data: IoriData A IoriData object holding the IORI information of a block. """ block_dict = { s.key: s for s in block } data = block_dict['IORI'].value * 1.0 / block_dict["SCAL"].value rotation = np.array([R.from_quat(q).as_euler('zyx', degrees=True) for q in data]) z, y, x = rotation.T return IoriData( cts = block_dict['STMP'].value, z = z, y = y, x = x, )
5,346,810
def signal_process(logger, pid, signalnum): """Signal process with signal, N/A on Windows.""" try: os.kill(pid, signalnum) logger.info("Waiting for process to report") time.sleep(5) except OSError as err: logger.error("Hit OS error trying to signal process: %s", err) except AttributeError: logger.error("Cannot send signal to a process on Windows")
5,346,811
def ungap_all(align): """ Removes all gaps (``-`` symbols) from all sequences of the :class:`~data.Align` instance *align* and returns the resulting ~data.Container instance. """ result = data.Container() for n,s,g in align: result.append(n, s.translate(None, '-'), g) return result
5,346,812
def expandBcv(bcv): """If the bcv is an interval, expand if. """ if len(bcv) == 6: return bcv else: return "-".join(splitBcv(bcv))
5,346,813
def plot_makers(args): """ Visualize the differential expression of marker genes across clusters. """ adata = sc.read_h5ad(input_file) # choose the plotting types if len(plot_type) != 0: if "violin" in plot_type: print("plotting violin") sc.pl.violin(adata, gene_list, groupby=groupby, show=show, use_raw=use_raw, save=project+"."+figure_type) if "dotplot" in plot_type: print("plotting dotplot") sc.pl.dotplot(adata, gene_list, groupby=groupby, show=show, use_raw=use_raw, save=project+"."+figure_type) if "stacked_violin" in plot_type: print("plotting stacked_violin") sc.pl.stacked_violin(adata, gene_list, groupby=groupby, rotation=90, show=show, use_raw=use_raw, save=project+"."+figure_type) if "rank_genes_groups_violin" in plot_type: print("plotting rank_genes_groups_violin") sc.pl.rank_genes_groups_violin(adata, groups=groups, n_genes=n_genes, show=show, use_raw=use_raw, save=project+"."+figure_type) if "umap" in plot_type: print("plotting umap") sc.pl.umap(adata, color=gene_list, show=show, use_raw=use_raw, save="_gene_expr"+project+"."+figure_type) else: print("No such type of plot")
5,346,814
def web(): """Start the salmon web server""" app = create_app() # noqa: F841 click.secho(f"Running webserver on http://127.0.0.1:{config.WEB_PORT}", fg="cyan") loop.run_forever()
5,346,815
def get_starting_dir_abs_path() -> str: """ Returns the absolute path to the starting directory of the project. Starting directory is used for example for turning relative paths (from Settings) into absolute paths (those paths are relative to the starting directory). """ if _starting_dir is None: dir_path = os.getenv("QF_STARTING_DIRECTORY") if dir_path is None: raise KeyError("Starting directory wasn't set. Use set_starting_dir_abs_path() function " "or set the environment variable QF_STARTING_DIRECTORY to the proper value") else: return dir_path else: return _starting_dir
5,346,816
def cluster_profile_platform(cluster_profile): """Translate from steps.cluster_profile to workflow.as slugs.""" if cluster_profile == 'azure4': return 'azure' if cluster_profile == 'packet': return 'metal' return cluster_profile
5,346,817
def get_price_lambda_star_lp_1_cvxpy(w: np.ndarray, c_plus: np.ndarray, psi_plus: np.ndarray) \ -> float: """ Computes lambda_star based on dual program of the projection of w_star. :param w: current state in workload space. :param c_plus: vector normal to the level set in the monotone region 'right above' the face. :param psi_plus: vector normal to the closest face. :return: lambda_star: price of random oscillations along the closest face. """ assert not StrategicIdlingHedging._is_w_inside_artificial_monotone_region(w, psi_plus) num_wl = w.shape[0] lambda_var = cvx.Variable(1) v_dagger_var = cvx.Variable((num_wl, 1)) objective = cvx.Maximize(v_dagger_var.T @ w) constraints = [c_plus - v_dagger_var - lambda_var * psi_plus == 0, v_dagger_var >= 0] prob = cvx.Problem(objective, constraints) _ = prob.solve(solver=cvx.SCS, eps=1e-8) lambda_star = lambda_var.value[0] if prob.status != 'optimal': lambda_star = None return lambda_star
5,346,818
def _get_nodes( network: typing.Union[NetworkIdentifier, Network], sample_size: typing.Optional[int], predicate: typing.Callable, ) -> typing.List[Node]: """Decaches domain objects: Node. """ nodeset = [i for i in get_nodes(network) if predicate(i)] if sample_size is not None: sample_size = min(sample_size, len(nodeset)) return nodeset if sample_size is None else random.sample(nodeset, sample_size)
5,346,819
def cdl_key(): """Four-class system (grain, forage, vegetable, orchard. Plus 5: non-ag/undefined""" key = {1: ('Corn', 1), 2: ('Cotton', 1), 3: ('Rice', 1), 4: ('Sorghum', 1), 5: ('Soybeans', 1), 6: ('Sunflower', 1), 7: ('', 5), 8: ('', 5), 9: ('', 5), 10: ('Peanuts', 1), 11: ('Tobacco', 2), 12: ('Sweet Corn', 1), 13: ('Pop or Orn Corn', 1), 14: ('Mint', 2), 15: ('', 5), 16: ('', 5), 17: ('', 5), 18: ('', 5), 19: ('', 5), 20: ('', 5), 21: ('Barley', 1), 22: ('Durum Wheat', 1), 23: ('Spring Wheat', 1), 24: ('Winter Wheat', 1), 25: ('Other Small Grains', 1), 26: ('Dbl Crop WinWht/Soybeans', 1), 27: ('Rye', 1), 28: ('Oats', 1), 29: ('Millet', 1), 30: ('Speltz', 1), 31: ('Canola', 1), 32: ('Flaxseed', 1), 33: ('Safflower', 1), 34: ('Rape Seed', 1), 35: ('Mustard', 1), 36: ('Alfalfa', 3), 37: ('Other Hay/Non Alfalfa', 3), 38: ('Camelina', 1), 39: ('Buckwheat', 1), 40: ('', 5), 41: ('Sugarbeets', 2), 42: ('Dry Beans', 2), 43: ('Potatoes', 2), 44: ('Other Crops', 2), 45: ('Sugarcane', 2), 46: ('Sweet Potatoes', 2), 47: ('Misc Vegs & Fruits', 2), 48: ('Watermelons', 2), 49: ('Onions', 2), 50: ('Cucumbers', 2), 51: ('Chick Peas', 2), 52: ('Lentils', 2), 53: ('Peas', 2), 54: ('Tomatoes', 2), 55: ('Caneberries', 2), 56: ('Hops', 2), 57: ('Herbs', 2), 58: ('Clover/Wildflowers', 3), 59: ('Sod/Grass Seed', 3), 60: ('Switchgrass', 3), 61: ('Fallow/Idle Cropland', 3), 62: ('Pasture/Grass', 3), 63: ('Forest', 5), 64: ('Shrubland', 5), 65: ('Barren', 5), 66: ('Cherries', 4), 67: ('Peaches', 4), 68: ('Apples', 4), 69: ('Grapes', 4), 70: ('Christmas Trees', 4), 71: ('Other Tree Crops', 4), 72: ('Citrus', 4), 73: ('', 5), 74: ('Pecans', 4), 75: ('Almonds', 4), 76: ('Walnuts', 4), 77: ('Pears', 4), 78: ('', 5), 79: ('', 5), 80: ('', 5), 81: ('Clouds/No Data', 5), 82: ('Developed', 5), 83: ('Water', 5), 84: ('', 5), 85: ('', 5), 86: ('', 5), 87: ('Wetlands', 5), 88: ('Nonag/Undefined', 5), 89: ('', 5), 90: ('', 5), 91: ('', 5), 92: ('Aquaculture', 5), 93: ('', 5), 94: ('', 5), 95: ('', 5), 96: ('', 5), 97: ('', 5), 98: ('', 5), 99: ('', 5), 100: ('', 5), 101: ('', 5), 102: ('', 5), 103: ('', 5), 104: ('', 5), 105: ('', 5), 106: ('', 5), 107: ('', 5), 108: ('', 5), 109: ('', 5), 110: ('', 5), 111: ('Open Water', 5), 112: ('Perennial Ice/Snow', 5), 113: ('', 5), 114: ('', 5), 115: ('', 5), 116: ('', 5), 117: ('', 5), 118: ('', 5), 119: ('', 5), 120: ('', 5), 121: ('Developed/Open Space', 5), 122: ('Developed/Low Intensity', 5), 123: ('Developed/Med Intensity', 5), 124: ('Developed/High Intensity', 5), 125: ('', 5), 126: ('', 5), 127: ('', 5), 128: ('', 5), 129: ('', 5), 130: ('', 5), 131: ('Barren', 5), 132: ('', 5), 133: ('', 5), 134: ('', 5), 135: ('', 5), 136: ('', 5), 137: ('', 5), 138: ('', 5), 139: ('', 5), 140: ('', 5), 141: ('Deciduous Forest', 5), 142: ('Evergreen Forest', 5), 143: ('Mixed Forest', 5), 144: ('', 5), 145: ('', 5), 146: ('', 5), 147: ('', 5), 148: ('', 5), 149: ('', 5), 150: ('', 5), 151: ('', 5), 152: ('Shrubland', 5), 153: ('', 5), 154: ('', 5), 155: ('', 5), 156: ('', 5), 157: ('', 5), 158: ('', 5), 159: ('', 5), 160: ('', 5), 161: ('', 5), 162: ('', 5), 163: ('', 5), 164: ('', 5), 165: ('', 5), 166: ('', 5), 167: ('', 5), 168: ('', 5), 169: ('', 5), 170: ('', 5), 171: ('', 5), 172: ('', 5), 173: ('', 5), 174: ('', 5), 175: ('', 5), 176: ('Grassland/Pasture', 5), 177: ('', 5), 178: ('', 5), 179: ('', 5), 180: ('', 5), 181: ('', 5), 182: ('', 5), 183: ('', 5), 184: ('', 5), 185: ('', 5), 186: ('', 5), 187: ('', 5), 188: ('', 5), 189: ('', 5), 190: ('Woody Wetlands', 5), 191: ('', 5), 192: ('', 5), 193: ('', 5), 194: ('', 5), 195: ('Herbaceous Wetlands', 5), 196: ('', 5), 197: ('', 5), 198: ('', 5), 199: ('', 5), 200: ('', 5), 201: ('', 5), 202: ('', 5), 203: ('', 5), 204: ('Pistachios', 4), 205: ('Triticale', 1), 206: ('Carrots', 2), 207: ('Asparagus', 2), 208: ('Garlic', 2), 209: ('Cantaloupes', 2), 210: ('Prunes', 2), 211: ('Olives', 2), 212: ('Oranges', 3), 213: ('Honeydew Melons', 2), 214: ('Broccoli', 2), 215: ('Avocados', 2), 216: ('Peppers', 2), 217: ('Pomegranates', 4), 218: ('Nectarines', 4), 219: ('Greens', 2), 220: ('Plums', 4), 221: ('Strawberries', 2), 222: ('Squash', 2), 223: ('Apricots', 4), 224: ('Vetch', 3), 225: ('Dbl Crop WinWht/Corn', 1), 226: ('Dbl Crop Oats/Corn', 1), 227: ('Lettuce', 2), 228: ('', 1), 229: ('Pumpkins', 2), 230: ('Dbl Crop Lettuce/Durum Wht', 2), 231: ('Dbl Crop Lettuce/Cantaloupe', 2), 232: ('Dbl Crop Lettuce/Cotton', 2), 233: ('Dbl Crop Lettuce/Barley', 2), 234: ('Dbl Crop Durum Wht/Sorghum', 1), 235: ('Dbl Crop Barley/Sorghum', 1), 236: ('Dbl Crop WinWht/Sorghum', 1), 237: ('Dbl Crop Barley/Corn', 1), 238: ('Dbl Crop WinWht/Cotton', 1), 239: ('Dbl Crop Soybeans/Cotton', 1), 240: ('Dbl Crop Soybeans/Oats', 1), 241: ('Dbl Crop Corn/Soybeans', 1), 242: ('Blueberries', 2), 243: ('Cabbage', 2), 244: ('Cauliflower', 2), 245: ('Celery', 2), 246: ('Radishes', 2), 247: ('Turnips', 2), 248: ('Eggplants', 2), 249: ('Gourds', 2), 250: ('Cranberries', 2), 251: ('', 5), 252: ('', 5), 253: ('', 5), 254: ('Dbl Crop Barley/Soybeans', 1), 255: ('', 5)} return key
5,346,820
def create_signal(fs,N): """ create signal with gaussian noise""" dt = 1./fs t = np.linspace(0,N*dt,N)
5,346,821
def test_ebm(ra, dec, smap=0, nest=False): """Make some tests.""" # Parse input coordinates = SkyCoord(ra=ra, dec=dec, unit=units.degree) # Convert to galactic coordinates. l = coordinates.galactic.l.degree b = coordinates.galactic.b.degree theta = (90. - b) * np.pi / 180. phi = l * np.pi / 180. print("l, b = %.3f, %.3f" % (l, b)) print("theta, phi = %.3f, %.3f" % (theta, phi)) m = load_map(smap) # from this code if smap == 5: nest = True ebv = healpy.get_interp_val(m, theta, phi, nest=nest) # from astroquery t = others.astroquery.get_extinction_table('%.4f %.4f' % (ra, dec)) if smap in [0, 2, 3]: t = t[9]['A_SFD'] / t[9]['A_over_E_B_V_SFD'] else: t = t[9]['A_SandF'] / t[9]['A_over_E_B_V_SandF'] print(t) # from SNf code (ned) f = snfactory.sfd_ebmv(ra, dec) # from sncosmo sn = sncosmo.get_ebv_from_map([ra, dec], mapdir='/home/chotard/.extinction/maps/') # from other query ebv_sfd = argonaut.query(ra, dec, coordsys='equ', mode='sfd')['EBV_SFD'][0] print("\nAll results:") print(" - Healpy (lambda/nasa map): %.5f" % ebv) print(" - Astropy/IrsaDust: %.5f" % t) print(" - SNf code (irsa or ned): %.5f" % f, f) print(" - sncosmo (local N/S maps): %.5f" % sn) print(" - argonaut.skypams: %.5f" % ebv_sfd)
5,346,822
def colmeta(colname, infile=None, name=None, units=None, ucd=None, desc=None, outfile=None): """ Modifies the metadata of one or more columns. Some or all of the name, units, ucd, utype and description of the column(s), identified by "colname" can be set by using some or all of the listed flags. Typically, "colname" will simply be the name of a single column. :param colname: string, name of the column to change meta data for :param infile: string, the location and file name for the input file, if not defined will return the STILTS command string :param outfile: string, the location and file name for the output file, if not defined will default to infile :param name: string, new name for the column :param units: string, new unit for the column :param ucd: string, new UCD for the column :param desc: string, new description for the column :return: """ cmdstr = "colmeta " if name is None and units is None and ucd is None and desc is None: return 0 if name is not None: cmdstr += '-name {0} '.format(__checkq__(str(name))) if units is not None: cmdstr += '-units {0} '.format(__checkq__(str(units))) if ucd is not None: cmdstr += '-ucd {0} '.format(__checkq__(str(ucd))) if desc is not None: cmdstr += '-desc {0} '.format(__checkq__(str(desc))) cmdstr += '{0}'.format(colname) if infile is None: return cmdstr if outfile is not None: tpipe(cmdstr, infile=infile, outfile=outfile) else: tpipe(cmdstr, infile=infile, outfile=infile)
5,346,823
def get_confusion_matrix_chart(cm, title): """Plot custom confusion matrix chart.""" source = pd.DataFrame([[0, 0, cm['TN']], [0, 1, cm['FP']], [1, 0, cm['FN']], [1, 1, cm['TP']], ], columns=["actual values", "predicted values", "count"]) base = alt.Chart(source).encode( y='actual values:O', x='predicted values:O', ).properties( width=200, height=200, title=title, ) rects = base.mark_rect().encode( color='count:Q', ) text = base.mark_text( align='center', baseline='middle', color='black', size=12, dx=0, ).encode( text='count:Q', ) return rects + text
5,346,824
def get_ppo_plus_eco_params(scenario): """Returns the param for the 'ppo_plus_eco' method.""" assert scenario in DMLAB_SCENARIOS, ( 'Non-DMLab scenarios not supported as of today by PPO+ECO method') if scenario == 'noreward' or scenario == 'norewardnofire': return md(get_common_params(scenario), { 'action_set': '' if scenario == 'noreward' else 'nofire', '_gin.create_single_env.run_oracle_before_monitor': True, '_gin.CuriosityEnvWrapper.scale_task_reward': 0.0, '_gin.create_environments.scale_task_reward_for_eval': 0, '_gin.create_environments.scale_surrogate_reward_for_eval': 1, '_gin.OracleExplorationReward.reward_grid_size': 30, 'r_checkpoint': '', '_gin.CuriosityEnvWrapper.scale_surrogate_reward': 0.03017241379310345, '_gin.train.ent_coef': 0.002053525026457146, '_gin.create_environments.online_r_training': True, '_gin.RNetworkTrainer.observation_history_size': 60000, '_gin.RNetworkTrainer.training_interval': -1, '_gin.CuriosityEnvWrapper.exploration_reward_min_step': 60000, '_gin.RNetworkTrainer.num_epochs': 10, }) else: return md(get_common_params(scenario), { 'action_set': '', 'r_checkpoint': '', '_gin.EpisodicMemory.capacity': 200, '_gin.similarity_to_memory.similarity_aggregation': 'percentile', '_gin.EpisodicMemory.replacement': 'random', '_gin.CuriosityEnvWrapper.scale_task_reward': 1.0, '_gin.CuriosityEnvWrapper.scale_surrogate_reward': 0.03017241379310345, '_gin.train.ent_coef': 0.002053525026457146, '_gin.create_environments.online_r_training': True, '_gin.RNetworkTrainer.observation_history_size': 60000, '_gin.RNetworkTrainer.training_interval': -1, '_gin.CuriosityEnvWrapper.exploration_reward_min_step': 60000, '_gin.RNetworkTrainer.num_epochs': 10, })
5,346,825
def field_display(name): """ Works with Django's get_FOO_display mechanism for fields with choices set. Given the name of a field, returns a producer that calls get_<name>_display. """ return qs.include_fields(name), producers.method(f"get_{name}_display")
5,346,826
def set_trace(response): """ Set a header containing the request duration and push detailed trace to the MQ :param response: :return: """ if TRACE_PERFORMANCE: req_time = int((time.time() - g.request_start) * 1000) trace = { "duration": req_time, "depth": g.request_depth, "method": g.request_method, "url": g.request_url, "uuid": g.request_uuid, "sequence": g.request_seq_this, "responseCode": response.status_code, "dbTime": g.db_time } if g.first_request: trace["totalRequestCount"] = g.request_seq_next trace_publisher.push('trace', trace) flask_logger.debug(f'request trace: {req_time} ms ({g.request_method} {g.request_url})') response.headers.add('x-trace-request-time', str(req_time)) response.headers.add('x-trace-seq-next', str(g.request_seq_next)) return response
5,346,827
def extract_attachments(payload: Dict) -> List[Image]: """ Extract images from attachments. There could be other attachments, but currently we only extract images. """ attachments = [] for item in payload.get('attachment', []): # noinspection PyProtectedMember if item.get("type") in ("Document", "Image") and item.get("mediaType") in Image._valid_media_types: if item.get('pyfed:inlineImage', False): # Skip this image as it's indicated to be inline in content and source already continue attachments.append( ActivitypubImage( url=item.get('url'), name=item.get('name') or "", media_type=item.get("mediaType"), ) ) return attachments
5,346,828
def yolo3_mobilenet1_0_custom( classes, transfer=None, pretrained_base=True, pretrained=False, norm_layer=BatchNorm, norm_kwargs=None, **kwargs): """YOLO3 multi-scale with mobilenet base network on custom dataset. Parameters ---------- classes : iterable of str Names of custom foreground classes. `len(classes)` is the number of foreground classes. transfer : str or None If not `None`, will try to reuse pre-trained weights from yolo networks trained on other datasets. pretrained_base : boolean Whether fetch and load pretrained weights for base network. norm_layer : object Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`) Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`. norm_kwargs : dict Additional `norm_layer` arguments, for example `num_devices=4` for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`. Returns ------- mxnet.gluon.HybridBlock Fully hybrid yolo3 network. """ if transfer is None: base_net = get_mobilenet(multiplier=1, pretrained=pretrained_base, norm_layer=norm_layer, norm_kwargs=norm_kwargs, **kwargs) stages = [base_net.features[:33], base_net.features[33:69], base_net.features[69:-2]] anchors = [ [10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]] strides = [8, 16, 32] net = get_yolov3( 'mobilenet1.0', stages, [512, 256, 128], anchors, strides, classes, 'voc', pretrained=pretrained, norm_layer=norm_layer, norm_kwargs=norm_kwargs, **kwargs) else: from ...model_zoo import get_model net = get_model( 'yolo3_mobilenet1.0_' + str(transfer), pretrained=True, **kwargs) net.reset_class(classes) return net
5,346,829
def calculate_levenshtein_distance(str_1, str_2): """ The Levenshtein distance is a string metric for measuring the difference between two sequences. It is calculated as the minimum number of single-character edits necessary to transform one string into another """ distance = 0 buffer_removed = buffer_added = 0 for x in ndiff(str_1, str_2): code = x[0] # Code ? is ignored as it does not translate to any modification if code == ' ': distance += max(buffer_removed, buffer_added) buffer_removed = buffer_added = 0 elif code == '-': buffer_removed += 1 elif code == '+': buffer_added += 1 distance += max(buffer_removed, buffer_added) return distance
5,346,830
def make_datetime(value, *, format_=DATETIME_FORMAT): """ >>> make_datetime('2001-12-31T23:59:59') datetime.datetime(2001, 12, 31, 23, 59, 59) """ return datetime.datetime.strptime(value, format_)
5,346,831
def log_batch_account_list(batch_mgmt_client, config, resource_group=None): # type: (azure.mgmt.batch.BatchManagementClient, dict, str) -> None """Log Batch account properties from ARM :param azure.mgmt.batch.BatchManagementClient batch_mgmt_client: batch management client :param dict config: configuration dict :param str resource_group: resource group of Batch account """ if batch_mgmt_client is None: raise RuntimeError( 'Batch management client is invalid, please specify management ' 'aad credentials and valid subscription_id') if resource_group is None: accounts = batch_mgmt_client.batch_account.list() else: accounts = batch_mgmt_client.batch_account.list_by_resource_group( resource_group) mgmt_aad = settings.credentials_management(config) log = ['all batch accounts in subscription {}'.format( mgmt_aad.subscription_id)] for ba in accounts: log.extend(_generate_batch_account_log_entry(ba)) if len(log) == 1: logger.error('no batch accounts found in subscription {}'.format( mgmt_aad.subscription_id)) else: logger.info(os.linesep.join(log))
5,346,832
def named_struct_dict(typename, field_names=None, default=None, fixed=False, *, structdict_module=__name__, base_dict=None, sorted_repr=None, verbose=False, rename=False, module=None, qualname_prefix=None, frame_depth=1): """Returns a new subclass of StructDict with all fields as properties.""" # Validate the field names. At the user's option, either generate an error # message or automatically replace the field name with a valid name. if fixed: mixin_type = NamedFixedStructDictMixin.__name__ else: mixin_type = NamedStructDictMixin.__name__ if inspect.isclass(base_dict): base_dict = base_dict.__name__ if base_dict is None: base_dict = 'dict' elif base_dict not in ('dict', 'OrderedDict', 'SortedDict'): raise NotImplementedError(f"base_dict: {base_dict} is not supported.") if sorted_repr is None: sorted_repr = True if base_dict in ('dict',) else False if isinstance(field_names, str): field_names = field_names.replace(',', ' ').split() field_names = list(map(str, field_names)) if field_names else [] typename = str(typename) if rename: seen = set() for index, name in enumerate(field_names): if (not name.isidentifier() or _iskeyword(name) or name.startswith('_') or name in seen): field_names[index] = f"_{index}" seen.add(name) for name in [typename, structdict_module] + field_names: if type(name) is not str: raise TypeError('Type names, field names and structdict_module must be strings') if name is not structdict_module and not name.isidentifier(): raise ValueError(f"Type names and field names must be valid identifiers: {name!r}") if _iskeyword(name): raise ValueError(f"Type names and field names cannot be a keyword: {name!r}") seen = set() for name in field_names: if name.startswith('_') and not rename: raise ValueError(f"Field names cannot start with an underscore: {name!r}") if name in seen: raise ValueError(f"Encountered duplicate field name: {name!r}") seen.add(name) default_val = "None" if default is None else 'default_val' # Fill-in the class template class_definition = _struct_prop_dict_class_template.format( structdict_module=structdict_module, mixin_type=mixin_type, base_dict=base_dict, typename=typename, field_names=tuple(field_names), kwargs_map=(", ".join([f"{field_name}={default_val}" for field_name in field_names]).replace("'", "")) + ( "," if field_names else ""), kwargs_eq_map=(", ".join([f"{field_name}={field_name}" for field_name in field_names]).replace("'", "")) + ( "," if field_names else ""), sorted_repr=sorted_repr ) # Execute the template string in a temporary namespace and support # tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(__name__=f"struct_prop_dict_{typename}") namespace.update(default_val=default) exec(class_definition, namespace) result = namespace[typename] result._source = class_definition if verbose: print(result._source) # For pickling to work, the __module__ variable needs to be set to the frame # where the named structdict is created. Bypass this step in environments where # _sys._getframe is not defined (Jython for example) or _sys._getframe is not # defined for arguments greater than 0 (IronPython), or where the user has # specified a particular module. try: frame = _sys._getframe(frame_depth) except (AttributeError, ValueError): pass else: if module is None: module = frame.f_globals.get('__name__', '__main__') if qualname_prefix is None: qualname_prefix = frame.f_locals.get('__qualname__', '') if module is not None: result.__module__ = module if qualname_prefix: result.__qualname__ = f'{qualname_prefix}.' + result.__qualname__ return result
5,346,833
def PytorchONNXRuntimeModel(model, input_sample=None, onnxruntime_session_options=None): """ Create a ONNX Runtime model from pytorch. :param model: 1. Pytorch model to be converted to ONNXRuntime for inference 2. Path to ONNXRuntime saved model. :param input_sample: A set of inputs for trace, defaults to None if you have trace before or model is a LightningModule with any dataloader attached, defaults to None. :param onnxruntime_session_options: A session option for onnxruntime accelerator. :return: A PytorchONNXRuntimeModel instance """ from .pytorch.pytorch_onnxruntime_model import PytorchONNXRuntimeModel return PytorchONNXRuntimeModel(model, input_sample, onnxruntime_session_options=onnxruntime_session_options)
5,346,834
def get_model_python_path(): """ Returns the python path for a model """ return os.path.dirname(__file__)
5,346,835
def intensity_variance(mask: np.ndarray, image: np.ndarray) -> float: """Returns variance of all intensity values in region of interest.""" return np.var(image[mask])
5,346,836
def permute_array(arr, axis=0): """Permute array along a certain axis Args: arr: numpy array axis: axis along which to permute the array """ if axis == 0: return np.random.permutation(arr) else: return np.random.permutation(arr.swapaxes(0, axis)).swapaxes(0, axis)
5,346,837
def convertGMLToGeoJSON(config, outputDir, gmlFilepath, layerName, t_srs='EPSG:4326', flip_gml_coords=False): """ Convert a GML file to a shapefile. Will silently exit if GeoJSON already exists @param config A Python ConfigParser containing the section 'GDAL/OGR' and option 'PATH_OF_OGR2OGR' @param outputDir String representing the absolute/relative path of the directory into which GeoJSON should be written @param gmlFilepath String representing the absolute path of the GML file to convert @param layerName String representing the name of the layer contained in the GML file to write to a GeoJSON @param t_srs String representing the spatial reference system of the output GeoJSON, of the form 'EPSG:XXXX' @return String representing the name of the GeoJSON written @exception Exception if the conversion failed. """ pathToOgrCmd = config.get('GDAL/OGR', 'PATH_OF_OGR2OGR') if not os.path.isdir(outputDir): raise IOError(errno.ENOTDIR, "Output directory %s is not a directory" % (outputDir,)) if not os.access(outputDir, os.W_OK): raise IOError(errno.EACCES, "Not allowed to write to output directory %s" % (outputDir,)) outputDir = os.path.abspath(outputDir) geojsonFilename = "%s.geojson" % (layerName,) geojsonFilepath = os.path.join(outputDir, geojsonFilename) if not os.path.exists(geojsonFilepath): # Need to flip coordinates in GML as SSURGO WFS now returns coordinates in lat, lon order # rather than lon, lat order that OGR expects. For more information, see: # http://trac.osgeo.org/gdal/wiki/FAQVector#HowdoIflipcoordinateswhentheyarenotintheexpectedorder if flip_gml_coords and t_srs =='EPSG:4326': ogrCommand = "%s -f 'GeoJSON' -nln %s -s_srs '+proj=latlong +datum=WGS84 +axis=neu +wktext' -t_srs %s %s %s" % (pathToOgrCmd, layerName, t_srs, geojsonFilepath, gmlFilepath) else: ogrCommand = "%s -f 'GeoJSON' -nln %s -t_srs %s %s %s" % (pathToOgrCmd, layerName, t_srs, geojsonFilepath, gmlFilepath) returnCode = os.system(ogrCommand) if returnCode != 0: raise Exception("GML to GeoJSON command %s returned %d" % (ogrCommand, returnCode)) return geojsonFilename
5,346,838
def interactive(pluginpath, preselect=None, content_type="video", compact_mode=False, no_crop=False): """ Execute a given kodi plugin :param unicode pluginpath: The path to the plugin to execute. :param list preselect: A list of pre selection to make. :param str content_type: The content type to list, if more than one type is available. e.g. video, audio :param bool compact_mode: If True the listitems view will be compacted, else full detailed. (default => False) :param bool no_crop: Disable croping of long lines of text if True, (default => False) """ plugin_id = os.path.basename(pluginpath) callback_url = base_url = u"plugin://{}/".format(plugin_id) # Keep track of parents so we can have a '..' option to go back parent_stack = [] while callback_url is not None: if not callback_url.startswith(base_url): raise RuntimeError("callback url is outside the scope of this addon: {}".format(callback_url)) # Execute the addon in a separate process data = execute_addon(pluginpath, callback_url, content_type) if data["succeeded"] is False: print("Failed to execute addon. Please check log.") try: input_raw("Press enter to continue:") except KeyboardInterrupt: break # Revert back to previous callback if one exists if parent_stack: callback_url = parent_stack.pop() continue else: break # Item list with first item as the previous directory item items = [{"label": "..", "path": parent_stack[-1]}] if parent_stack else [] # Display listitem selection if listitems are found if data["listitem"]: items.extend(item[1] for item in data["listitem"]) elif data["resolved"]: items.append(data["resolved"]) items.extend(data["playlist"][1:]) # Display the list of listitems for user to select if compact_mode: selected_item = compact_item_selector(items, callback_url, preselect) else: selected_item = detailed_item_selector(items, preselect, no_crop) if selected_item: if parent_stack and selected_item["path"] == parent_stack[-1]: callback_url = parent_stack.pop() else: parent_stack.append(callback_url) callback_url = selected_item["path"] else: break
5,346,839
def dsmatch(name, dataset, fn): """ Fuzzy search best matching object for string name in dataset. Args: name (str): String to look for dataset (list): List of objects to search for fn (function): Function to obtain a string from a element of the dataset Returns: First element with the maximun fuzzy ratio. """ max_ratio = 0 matching = None for e in dataset: if fuzz and name: ratio = fuzz.token_sort_ratio(normalize(name), normalize(fn(e))) if ratio > max_ratio: max_ratio = ratio matching = e elif normalize(name) == normalize(fn(e)): matching = e break return matching
5,346,840
def populate_listings(num_listings): """Populates the database with seed data.""" fake = Faker() listing_types = [] listing_types_str = ["Houses", "Condos", "Apartments", "Town Houses"] for listing_type_str in listing_types_str: listing_type = ListingType(type_string=listing_type_str) listing_types.append(listing_type) db.session.add(listing_type) db.session.commit() listing_statuses = [] listing_statuses_str = ["Posted", "Verified", "Rejected", "Occupied"] for listing_status_str in listing_statuses_str: listing_status = ListingStatus(status_string=listing_status_str) listing_statuses.append(listing_status) db.session.add(listing_status) db.session.commit() listing_info = [ { "title": "Isolated House", "description": "House with a nice garden around", "media_obj": {"title": "View from the ranch", "image_name": "Alone-house.jpg"}, "house_type": 1 }, { "title": "Colorful apartment", "description": "Apartments with balcony and blue borders", "media_obj": {"title": "View from across the street", "image_name": "Apartments.jpg"}, "house_type": 3 }, { "title": "Amazing palace", "description": "Fully furnished palace", "media_obj": {"title": "View from the garden", "image_name": "Big-building.jpg"}, "house_type": 1 }, { "title": "Beach side house", "description": "A safe home with amazing view of a beach", "media_obj": {"title": "View across the street", "image_name": "Blue-brown.jpg"}, "house_type": 1 }, { "title": "Victorian house", "description": "Victorian houses with funky colors", "media_obj": {"title": "View across the street", "image_name": "Colored-apartments.jpg"}, "house_type": 1 }, { "title": "Serene country-side cottage", "description": "Cozy cottage on a hill side", "media_obj": {"title": "View with chimney", "image_name": "Cottage.jpg"}, "house_type": 1 }, { "title": "House surrounded by plants", "description": "House tucked inside a forest", "media_obj": {"title": "View with pool", "image_name": "Forest-house.jpg"}, "house_type": 1 }, { "title": "House with big glass windows", "description": "Futuristic glass walled house", "media_obj": {"title": "View from garden with snow", "image_name": "Glass-building.jpg"}, "house_type": 1 }, { "title": "House on a lake between mountains", "description": "Floating house on the lake, with view of mountain", "media_obj": {"title": "Good view", "image_name": "good-house.jpg"}, "house_type": 1 }, { "title": "House with a nice pool", "description": "House with a nice garden and a pool", "media_obj": {"title": "View with the pool", "image_name": "House-with-pool.jpg"}, "house_type": 1 }, { "title": "House with a hill-side view", "description": "House on a hill side with a nice pool", "media_obj": {"title": "View with mountains", "image_name": "Infinity-pool.jpg"}, "house_type": 1 }, { "title": "House on a lake", "description": "Lake house, ideal for horror movies", "media_obj": {"title": "View across the lake", "image_name": "Lake-house.jpg"}, "house_type": 1 }, { "title": "Simple house", "description": "Simple house, ready to move in", "media_obj": {"title": "House with pumpkins", "image_name": "Single-house.jpg"}, "house_type": 1 }, { "title": "Cozy house beside a lake", "description": "Cozy house in a cold climate beside the lake", "media_obj": {"title": "House across the lake", "image_name": "Snow-house.jpg"}, "house_type": 1 }, { "title": "Moroccan house", "description": "Clean and simple architecture", "media_obj": {"title": "House with small windows", "image_name": "White-house.jpg"}, "house_type": 1 }, { "title": "Condo on the corner", "description": "On the corner, closer to everything", "media_obj": {"title": "Condo", "image_name": "condo.jpg"}, "house_type": 2 } ] listings = [] verified_status_id = list(filter(lambda ltype: ltype.status_string == "Verified", listing_statuses))[0].id for idx in range(num_listings): listings.append( Listing( title=listing_info[idx]["title"], description=listing_info[idx]["description"], for_rent_flag=choice([True, False]), building_number=choice(["#", "No.", ""]) + str(randint(0, 100)), apartment=choice(["Sofi", "Aragon", "Northpoint", "Southpoint", ""]), street_name=fake.street_name(), city=choice(["San Francisco", "San Jose", "Sunnywale"]), state="California", zip_code=fake.zipcode(), country="United States of America", listing_price=randint(10, 50) * choice([50, 100, 200, 300]), listing_status=verified_status_id, listing_type=listing_info[idx]["house_type"], listing_user=choice([1, 2, 3, 4, 5]), listing_views=0, is_furnished=choice([False, True]), square_footage=choice([10, 30, 40]) * choice([50, 75, 100]), num_baths=randint(1, 4), num_beds=randint(1, 4), distance=randint(1,100), num_parking_spots=randint(1, 3), pet_policy=choice([False, True]), smoking_policy=choice([False, True]), media=[], ) ) for listing in listings: db.session.add(listing) db.session.commit() media_list = [] for idx in range(num_listings): media_obj = listing_info[idx]["media_obj"] media = Media( listing_id=(idx+1), media_title=media_obj["title"], media_path=media_obj["image_name"], ) media_list.append(media) db.session.add(media) db.session.commit()
5,346,841
def _generate_flame_clip_name(item, publish_fields): """ Generates a name which will be displayed in the dropdown in Flame. :param item: The publish item being processed. :param publish_fields: Publish fields :returns: name string """ # this implementation generates names on the following form: # # Comp, scene.nk (output background), v023 # Comp, Nuke, v023 # Lighting CBBs, final.nk, v034 # # (depending on what pieces are available in context and names, names # may vary) context = item.context name = "" # If we have template fields passed in, then we'll try to extract # some information from them. If we don't, then we fall back on # some defaults worked out below. publish_fields = publish_fields or dict() # the shot will already be implied by the clip inside Flame (the clip # file which we are updating is a per-shot file. But if the context # contains a task or a step, we can display that: if context.task: name += "%s, " % context.task["name"].capitalize() elif context.step: name += "%s, " % context.step["name"].capitalize() # If we have a channel set for the write node or a name for the scene, # add those. If we don't have a name from the template fields, then we # fall back on the file sequence's basename without the extension or # frame number on the end (if possible). default_name, _ = os.path.splitext( os.path.basename(item.properties["sequence_paths"][0]) ) # Strips numbers off the end of the file name, plus any underscore or # . characters right before it. # # foo.1234 -> foo # foo1234 -> foo # foo_1234 -> foo default_name = re.sub(r"[._]*\d+$", "", default_name) rp_name = publish_fields.get("name", default_name,) rp_channel = publish_fields.get("channel") if rp_name and rp_channel: name += "%s.nk (output %s), " % (rp_name, rp_channel) elif not rp_name: name += "Nuke output %s, " % rp_channel elif not rp_channel: name += "%s.nk, " % rp_name else: name += "Nuke, " # Do our best to get a usable version number. If we have data extracted # using a template, we use that. If we don't, then we can look to see # if this publish item came with a clip PublishedFile, in which case # we use the version_number field from that entity +1, as a new version # of that published clip will be created as part of this update process, # and that is what we want to associate ourselves with here. version = publish_fields.get("version") if version is None and "flame_clip_publish" in item.properties: version = item.properties["flame_clip_publish"]["version_number"] + 1 version = version or 0 name += "v%03d" % version return name
5,346,842
def f(q): """Constraint map for the origami.""" return 0.5 * (np.array([ q[0] ** 2, (q[1] - q[0]) ** 2 + q[2] ** 2 + q[3] ** 2, (q[4] - q[1]) ** 2 + (q[5] - q[2]) ** 2 + (q[6] - q[3]) ** 2, q[4] ** 2 + q[5] ** 2 + q[6] ** 2, q[7] ** 2 + q[8] ** 2 + q[9] ** 2, (q[7] - q[1]) ** 2 + (q[8] - q[2]) ** 2 + (q[9] - q[3]) ** 2, (q[7] - q[4]) ** 2 + (q[8] - q[5]) ** 2 + (q[9] - q[6]) ** 2, q[10] ** 2 + q[11] ** 2, (q[10] - q[0]) ** 2 + q[11] ** 2, (q[10] - q[1]) ** 2 + (q[11] - q[2]) ** 2 + q[3] ** 2, (q[10] - q[7]) ** 2 + (q[11] - q[8]) ** 2 + q[9] ** 2, ]) - lengths2) / (lengths)
5,346,843
def resize(clip, newsize=None, height=None, width=None): """ Returns a video clip that is a resized version of the clip. Parameters ------------ newsize: Can be either - ``(height,width)`` in pixels or a float representing - A scaling factor, like 0.5 - A function of time returning one of these. width: width of the new clip in pixel. The height is then computed so that the width/height ratio is conserved. height: height of the new clip in pixel. The width is then computed so that the width/height ratio is conserved. Examples ---------- >>> myClip.resize( (460,720) ) # New resolution: (460,720) >>> myClip.resize(0.6) # width and heigth multiplied by 0.6 >>> myClip.resize(width=800) # height computed automatically. >>> myClip.resize(lambda t : 1+0.02*t) # slow swelling of the clip """ w, h = clip.size if newsize != None: def trans_newsize(ns): if isinstance(ns, (int, float)): return [ns * w, ns * h] else: return ns if hasattr(newsize, "__call__"): newsize2 = lambda t : trans_newsize(newsize(t)) if clip.ismask: fun = lambda gf,t: (1.0*resizer((255 * gf(t)) .astype('uint8'), newsize2(t))/255) else: fun = lambda gf,t: resizer(gf(t).astype('uint8'), newsize2(t)) return clip.fl(fun, keep_duration=True, apply_to='mask') else: newsize = trans_newsize(newsize) elif height != None: newsize = [w * height / h, height] elif width != None: newsize = [width, h * width / w] if clip.ismask: fl = lambda pic: 1.0*resizer((255 * pic).astype('uint8'), newsize)/255 else: fl = lambda pic: resizer(pic.astype('uint8'), newsize) return clip.fl_image(fl, apply_to='mask')
5,346,844
def test_put_available(): """Test put available.""" env = simpy.Environment() container = core.EventsContainer(env=env) container.initialize_container([{"id": "default", "capacity": 10, "level": 5}]) def process(): at_most_5 = container.get_container_event(level=5, operator="le") at_most_6 = container.get_container_event(level=6, operator="le") at_most_3 = container.get_container_event(level=3, operator="le") assert at_most_5.triggered, "a" assert at_most_6.triggered, "b" assert not at_most_3.triggered, "c" yield container.get(1) at_most_3 = container.get_container_event(level=3, operator="le") assert not at_most_3.triggered, "d" yield container.put(1) at_most_3 = container.get_container_event(level=3, operator="le") assert not at_most_3.triggered, "e" yield container.get(2) at_most_3 = container.get_container_event(level=3, operator="le") assert at_most_3.triggered, "f" env.process(process()) env.run()
5,346,845
def tearDown(self): """ Replacement function of original unittest **tearDown** function """ # call options modules function if registered try: if hasattr(self, '__libs_options'): for opt in self.__libs_options: if 'teardown' in opt.REGISTERED: self.__syslogger.info('Call teardown() of "%s" options module...' % opt.fullname) CONFIG.TEST.CURRENT_STATE = 'teardown of "%s" module' % opt.fullname opt.teardown() except Exception as e: self.__syslogger.exception(e) raise # change state name CONFIG.TEST.CURRENT_STATE = "tearDown %s" % self.shortDescription() # call original function try: self.__originalTearDown() except Exception as e: self.__syslogger.exception(e) raise
5,346,846
def save_yaml( input_dict: dict, output_path="output.yaml", parents: bool = False, exist_ok: bool = False, ): """Save dictionary as yaml. Args: input_dict (dict): A variable of type 'dict'. output_path (str or pathlib.Path): Path to save the output file. parents (bool): Make parent directories if they do not exist. Default is False. exist_ok (bool): Overwrite the output file if it exists. Default is False. Returns: Examples: >>> from tiatoolbox import utils >>> input_dict = {'hello': 'Hello World!'} >>> utils.misc.save_yaml(input_dict, './hello.yaml') """ path = pathlib.Path(output_path) if path.exists() and not exist_ok: raise FileExistsError("File already exists.") if parents: path.parent.mkdir(parents=True, exist_ok=True) with open( # skipcq: PTC-W6004: PTC-W6004 str(pathlib.Path(output_path)), "w" ) as yaml_file: yaml.dump(input_dict, yaml_file)
5,346,847
def calc_rt_pytmm(pol, omega, kx, n, d): """API-compatible wrapper around pytmm """ vec_omega = omega.numpy() vec_lambda = C0/vec_omega*2*np.pi vec_n = n.numpy() vec_d = d.numpy() vec_d = np.append(np.inf, vec_d) vec_d = np.append(vec_d, np.inf) vec_kx = kx.numpy().reshape([-1,1]) vec_k0 = 2 * np.pi / vec_lambda.reshape([1,-1]) vec_theta = np.arcsin(vec_kx / vec_k0) r = np.zeros((len(kx), len(omega)), dtype=np.complex64) t = np.zeros((len(kx), len(omega)), dtype=np.complex64) for i, theta in enumerate(vec_theta): for j, lam in enumerate(vec_lambda): out = coh_tmm(pol, vec_n, vec_d, theta[j], lam) r[i, j] = out['r'] t[i, j] = out['t'] t = tf.constant(t) r = tf.constant(r) return tf.constant(t), tf.constant(r)
5,346,848
def associate_ms(image_id): """ Associate the monitoring sources, i.e., their forced fits, of the current image with the ones in the running catalog. These associations are treated separately from the normal associations and there will only be 1-to-1 associations. The runcat-monitoring source pairs will be inserted in a temporary table. Of these, the runcat and runcat_flux tables are updated with the new datapoints if the (monitoring) source already existed, otherwise they are inserted as a new source. The source pair is appended to the light-curve table (assocxtrsource), with a type = 8 (for the first occurence) or type = 9 (for existing runcat sources). After all this, the temporary table is emptied again. """ _del_tempruncat() _insert_tempruncat(image_id) _insert_1_to_1_assoc() _update_1_to_1_runcat() n_updated = _update_1_to_1_runcat_flux() if n_updated: logger.debug("Updated flux for %s monitor sources" % n_updated) n_inserted = _insert_1_to_1_runcat_flux() if n_inserted: logger.debug("Inserted new-band flux measurement for %s monitor sources" % n_inserted) _insert_new_runcat(image_id) _insert_new_runcat_flux(image_id) _insert_new_1_to_1_assoc(image_id) _update_monitor_runcats(image_id) _del_tempruncat()
5,346,849
def statistic_bbox(dic, dic_im): """ Statistic number of bbox of seed and image-level data for each class Parameters ---------- dic: seed roidb dictionary dic_im: image-level roidb dictionary Returns ------- num_bbox: list for number of 20 class's bbox num_bbox_im: list for number of 20 class's bbox """ num_bbox = [0] * 20 num_bbox_im = [0] * 20 for d in dic: for c in d['gt_classes']: num_bbox[c-1] += 1 for d in dic_im: for c in d['gt_classes']: num_bbox_im[c-1] += 1 print("Statistic for seed data bbox: ", num_bbox) print("Statistic for image-level data bbox: ", num_bbox_im) return num_bbox, num_bbox_im
5,346,850
def test_apply_filter_sweep( frequencies: List[float], frame_rate: int, kind: str, bands: List[Tuple[Optional[float], Optional[float]]], invert: bool, order: int, frequency: float, waveform: str, spectrogram_params: Dict[str, Any], expected: np.ndarray ) -> None: """Test `apply_filter_sweep` function.""" waves = [ generate_mono_wave( 'sine', frequency, np.ones(frame_rate), frame_rate ) for frequency in frequencies ] sound = sum(waves) sound = np.vstack((sound, sound)) event = Event( instrument='any_instrument', start_time=0, duration=1, frequency=min(frequencies), velocity=1, effects='', frame_rate=frame_rate ) sound = apply_filter_sweep( sound, event, kind, bands, invert, order, frequency, waveform ) spc = spectrogram(sound[0], frame_rate, **spectrogram_params)[2] result = spc.sum(axis=1)[:len(expected)] np.testing.assert_almost_equal(result, expected)
5,346,851
def github_youtube_config_files(): """ Function that returns a list of pyGithub files with youtube config channel data Returns: A list of pyGithub contentFile objects """ if settings.GITHUB_ACCESS_TOKEN: github_client = github.Github(settings.GITHUB_ACCESS_TOKEN) else: github_client = github.Github() repo = github_client.get_repo(CONFIG_FILE_REPO) return repo.get_contents(CONFIG_FILE_FOLDER, ref=settings.OPEN_VIDEO_DATA_BRANCH)
5,346,852
def reverse_uint(uint,num_bits=None): """ This function takes an unsigned integer and reverses all of its bits. num_bits is number of bits to assume are present in the unsigned integer. If num_bits is not specified, the minimum number of bits needed to represent the unsigned integer is assumed. If num_bits is specified, it must be greater than the minimum number of bits needed to represent the unsigned integer. >>> reverse_uint(3,8) 192 >>> bin(192) '0b11000000' """ if not isinstance(uint,int): raise Exception('input must be an integer, not %s' % repr(type(uint))) if uint < 0: raise Exception('input must be non-negative: %s' % repr(uint)) if min_bits_uint(uint) > num_bits: raise Exception('Input uint must be storable in at most num_bits (%d) number of bits, but requires %d bits' % (num_bits,min_bits_uint(uint))) result = 0 extracted_bits = 0 while (num_bits is not None and extracted_bits < num_bits) or uint != 0: uint,rem = divmod(uint,2) result = (result<<1) | rem extracted_bits += 1 return result
5,346,853
def min_by_tail(lhs, ctx): """Element ↓ (any) -> min(a, key=lambda x: x[-1]) """ lhs = iterable(lhs, ctx=ctx) if len(lhs) == 0: return [] else: return min_by(lhs, key=tail, cmp=less_than, ctx=ctx)
5,346,854
def tests_transaction_is_affordable_agent_is_the_seller(): """Check if the agent has the goods (the agent=sender is the seller).""" currency_endowment = {"FET": 0} good_endowment = {"good_id": 0} ownership_state = OwnershipState( amount_by_currency_id=currency_endowment, quantities_by_good_id=good_endowment, ) tx_message = TransactionMessage( performative=TransactionMessage.Performative.PROPOSE_FOR_SETTLEMENT, skill_callback_ids=[PublicId(AUTHOR, "a_skill", "0.1.0")], tx_id="transaction0", tx_sender_addr="agent_1", tx_counterparty_addr="pk", tx_amount_by_currency_id={"FET": 10}, tx_sender_fee=0, tx_counterparty_fee=0, tx_quantities_by_good_id={"good_id": 0}, info={"some_info_key": "some_info_value"}, ledger_id="fetchai", tx_nonce="transaction nonce", ) assert ownership_state.is_affordable_transaction( tx_message=tx_message ), "We must reject the transaction."
5,346,855
def SecureBytesEqual( a, b ): """Returns the equivalent of 'a == b', but avoids content based short circuiting to reduce the vulnerability to timing attacks.""" # Consistent timing matters more here than data type flexibility # We do NOT want to support py2's str type because iterating over them # (below) produces different results. if type( a ) != bytes or type( b ) != bytes: raise TypeError( "inputs must be bytes instances" ) # We assume the length of the expected digest is public knowledge, # thus this early return isn't leaking anything an attacker wouldn't # already know if len( a ) != len( b ): return False # We assume that integers in the bytes range are all cached, # thus timing shouldn't vary much due to integer object creation result = 0 for x, y in zip( a, b ): result |= x ^ y return result == 0
5,346,856
def encode(something): """ We encode all messages as base64-encoded pickle objects in case later on, we want to persist them or send them to another system. This is extraneous for now. """ return base64.b64encode(pickle.dumps(something))
5,346,857
def scrape_proposal_page(browser, proposal_url): """ Navigates to the page giving details about a piece of legislation, scrapes that data, and adds a model to the database session. Returns the new DB model. """ browser.get(proposal_url) file_number = int(extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblFile2' ))) proposal_title = extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblTitle2' )) proposal_type = extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblIntroduced2' )) proposal_status = extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblStatus2' )) introduction_date = parse_date(extract_text( browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblIntroduced2' ) )) db_proposal = db.Proposal(file_number, proposal_title) db_proposal.status = proposal_status db_proposal.proposal_type = proposal_type db_proposal.introduction_date = introduction_date db.session.add(db_proposal) db.session.flush() # TODO probably should refactor this out a t least return db_proposal
5,346,858
def installRecommendation(install, uninstall, working_set=working_set, tuples=False): """Human Readable advice on which modules have to be installed on current Working Set. """ installList = [] for i in install: is_in = False for p in working_set: if i[0] == p.key and i[1] == p.version: is_in = True break if not is_in: if not tuples: print('~~ Install: '+i[0]+' version '+i[1]) else: installList.append((i[0], i[1])) for u in uninstall: is_in = False for p in working_set: if u[0] == p.key and u[1] == p.version: is_in = True break if is_in: if not tuples: print('~~ Uninstall: '+u[0]+' version '+u[1]) return installList
5,346,859
def obsangle(thetas, phis, alpha_obs): """ Return the cosine of the observer angle for the different shockwave segments and and and observer at and angle alpha_obs with respect to the jet axis (contained in yz plane) """ #u_obs_x, u_obs_y, u_obs_z = 0., sin(alpha_obs), cos(alpha_obs) u_obs_y, u_obs_z = sin(alpha_obs), cos(alpha_obs) #seg_x = seg_y = sin(thetas)*sin(phis) seg_z = cos(thetas) #return arccos(u_obs_x*seg_x + u_obs_y*seg_y + u_obs_z*seg_z) return u_obs_y*seg_y + u_obs_z*seg_z
5,346,860
def writeJSON(dbFile: str, db: dict, prettyPrint=False): """Write the given json-serializable dictionary to the given file path. All objects in the dictionary must be JSON-serializable. :param str dbFile: Path to the file which db should be written to :param dict db: The json-serializable dictionary to write :param bool prettyPrint: When False, write minified JSON. When true, write JSON with basic pretty printing (indentation) """ with open(dbFile, "w") as f: if prettyPrint: json.dump(db, f, indent=4, sort_keys=True) else: json.dump(db, f)
5,346,861
def _image_tensor_input_placeholder(input_shape=None): """Returns input placeholder and a 4-D uint8 image tensor.""" if input_shape is None: input_shape = (None, None, None, 3) input_tensor = tf.placeholder( dtype=tf.uint8, shape=input_shape, name='image_tensor') return input_tensor, input_tensor
5,346,862
def _load_top_bonds(f, topology, **kwargs): """Take a mol2 file section with the heading '@<TRIPOS>BOND' and save to the topology.bonds attribute.""" while True: line = f.readline() if _is_end_of_rti(line): line = line.split() bond = Bond( connection_members=( topology.sites[int(line[1]) - 1], topology.sites[int(line[2]) - 1], ) ) topology.add_connection(bond) else: break return line
5,346,863
def timelength_to_phrase( timelength: spec.Timelength, from_representation: spec.TimelengthRepresentation = None, ) -> spec.TimelengthPhrase: """convert Timelength to TimelengthPhrase ## Inputs - timelength: Timelength - from_representation: str representation name of input timelength ## Returns - TimelengthPhrase timelength """ return convert_timelength( timelength=timelength, to_representation='TimelengthPhrase', from_representation=from_representation, )
5,346,864
def order_columns(self: DataFrame, order: str = "asc", by_dtypes: bool = False): """ Rearrange the columns in alphabetical order. An option of rearrangement by dtypes is possible. :param self: :param by_dtypes: boolean to rearrange by dtypes first """ if order not in ['asc', 'desc']: raise Exception("'{}' is not an acceptable ordering value, you can only use {'asc','desc'}".format(order)) if by_dtypes: dtypes_dict = dict() for col, dtype in self.dtypes: dtypes_dict.setdefault(dtype, list()) dtypes_dict[dtype].append(col) dtypes_dict = dict(sorted(dtypes_dict.items())) columns = [col for values in dtypes_dict.values() for col in sorted(values)] return self.select(columns) else: return self.select(sorted(self.columns, reverse=False if order == "asc" else True))
5,346,865
def main(): """ Place videos in test_videos folder Usage python3 pupil_detect.py --video_file "/test_videos/filename.mkv" Default video python3 pupil_detect.py """ try: default_video = "/pupil_detect/test_videos/sample.mkv" parser = argparse.ArgumentParser() parser.add_argument('--video_file', nargs='?', const=1, type=str, default=default_video) args = parser.parse_args() # Run pupil tracking track_pupil = PupilDetect(args.video_file) track_pupil.track_frame() except Exception as e: print("Error encountered ", e)
5,346,866
def main(): """ do main work """ cmdArgs = sys.argv[1:] if not cmdArgs: msg = "There is no version in args. Current version: " msg += version.current() print(msg) if GIT_EXE: print("Result of 'git describe': ") print(_runGitCmd('describe')) msg = "\nUsage: " + sys.argv[0] + " x.y.z where x,y,z are numbers" print(msg) return 0 newVer = cmdArgs[0] if not version.checkFormat(newVer): print('Version %r has invalid format' % newVer) return 1 if not GIT_EXE: print("There is no 'git'. Install 'git' to use this script.") return 2 if not _checkChangeLog(newVer): print('There is no records for the version %r in changelog file' % newVer) return 3 question = 'Bump version to %s?' question += ' It will write the version to file,' question += '\nadd it to git repo, commit it and add git tag with the version.' answer = _getAnswerYesNo(question % newVer) if not answer: return 0 print("Bumping version to %r .." % newVer) _bumpVersion(newVer) print("Building distribution ..") _runPyScript('setup.py clean sdist bdist_wheel') answer = _getAnswerYesNo('Distribution was built successfully. Publish it to pypi?') if answer: print("Publishing distribution ..") _runPyScript('setup.py publish') print("Distribution was published.") answer = _getAnswerYesNo('Publish release to github?') if answer: scriptPath = os.path.join('scripts', 'publish-github-release.py') args = '%s %s' % (scriptPath, newVer) print("Publishing release to github ..") _runPyScript(args, tryPy3 = True) print("Release was published on github.") print("Writing new dev version to file %r .." % version.VERSION_FILE_PATH) nextVer = _writeNewDevVersion(newVer) print("New dev version %r was written to file." % nextVer) return 0
5,346,867
def reorderWithinGroup(players_by_wins): """Shuffle players with the same score. Args: players_by_wins: a dictionary returned by splitByScore(). Returns a list of the re-ordered player ids. """ for score in players_by_wins.keys(): random.shuffle(players_by_wins[score]) # players_by_wins is a dictionary with scores as keys. When # converting to a list, need to make sure it is sorted by score, # from highest to lowest. players_ordered = [] score_keys = players_by_wins.keys() score_keys.sort(reverse=True) for score in score_keys: players_ordered.append(players_by_wins[score]) # Convert back to a list. players_ordered = list(chain.from_iterable(players_ordered)) # Return the ordered ids. ordered_ids = [x[0] for x in players_ordered] return(ordered_ids)
5,346,868
def writebr(text): """@deprecated: (since='0.8', replacement=logging.debug)""" write(text + "\n")
5,346,869
def selection(population, method): """Apply selection method of a given population. Args: population: (list of) plans to apply the selection on. method: (str) selection method: - rws (Roulette Wheel Selection) - sus (Stochastic Universal Selection) - ts (Tournament Selection) Returns: (list of) plans representing the new pool """ if method == "rws": return roulette_wheel_selection(population) elif method == "sus": return stochastic_universal_sampling(population) elif method == "ts": return tournament_selection(population)
5,346,870
def PSL_prefix(row, cols): """Returns the prefix a domain (www.images for www.images.example.com)""" psl_data = psl.search_tree(row[cols[0]]) if psl_data: return(psl_data[1], psl_data[0]) return (None, None)
5,346,871
def build_model(sess,t,Y,model='sde',sf0=1.0,ell0=[2,2],sfg0=1.0,ellg0=[1e5], W=6,ktype="id",whiten=True, fix_ell=False,fix_sf=False,fix_Z=False,fix_U=False,fix_sn=False, fix_ellg=False,fix_sfg=False,fix_Zg=True,fix_Ug=False): """ Args: sess: TensowFlow session needed for initialization and optimization t: Python array of numpy vectors storing observation times Y: Python array of numpy matrices storing observations. Observations are stored in rows. model: 'sde' or 'ode' sf0: Integer initial value of the signal variance of drift GP ell0: Python/numpy array of floats for the initial value of the lengthscale of drift GP sfg0: Integer initial value of the signal variance of diffusion GP ellg0: Python/numpy array of a single float for the initial value of the lengthscale of diffusion GP W: Integer denoting the width of the inducing point grid. If the problem dimension is D, total number of inducing points is W**D ktype: Kernel type. We have made experiments only with Kronecker kernel, denoted by 'id'. The other kernels are not supported. whiten: Boolean. Currently we perform the optimization only in the white domain fix_ell: Boolean - whether drift GP lengthscale is fixed or optimized fix_sf: Boolean - whether drift GP signal variance is fixed or optimized fix_Z: Boolean - whether drift GP inducing locations are fixed or optimized fix_U: Boolean - whether drift GP inducing vectors are fixed or optimized fix_sn: Boolean - whether noise variance is fixed or optimized fix_ellg: Boolean - whether diffusion GP lengthscale is fixed or optimized fix_sfg: Boolean - whether diffusion GP signal variance is fixed or optimized fix_Zg: Boolean - whether diffusion GP inducing locations are fixed or optimized fix_Ug: Boolean - whether diffusion GP inducing vectors are fixed or optimized Returns: npde: A new NPDE model """ print('Model being initialized...') def init_U0(Y=None,t=None,kern=None,Z0=None,whiten=None): Ug = (Y[1:,:] - Y[:-1,:]) / np.reshape(t[1:]-t[:-1],(-1,1)) with tf.name_scope("init_U0"): tmp = NPODE(Z0=Y[:-1,:],U0=Ug,sn0=0,kern=kern,jitter=0.25,whiten=False, fix_Z=True,fix_U=True,fix_sn=True) U0 = tmp.f(X=Z0) if whiten: Lz = tf.cholesky(kern.K(Z0)) U0 = tf.matrix_triangular_solve(Lz, U0, lower=True) U0 = sess.run(U0) return U0 D = len(ell0) Nt = len(Y) x0 = np.zeros((Nt,D)) Ys = np.zeros((0,D)) for i in range(Nt): x0[i,:] = Y[i][0,:] Ys = np.vstack((Ys,Y[i])) maxs = np.max(Ys,0) mins = np.min(Ys,0) grids = [] for i in range(D): grids.append(np.linspace(mins[i],maxs[i],W)) vecs = np.meshgrid(*grids) Z0 = np.zeros((0,W**D)) for i in range(D): Z0 = np.vstack((Z0,vecs[i].T.flatten())) Z0 = Z0.T tmp_kern = OperatorKernel(sf0,ell0,ktype="id",fix_ell=True,fix_sf=True) U0 = np.zeros(Z0.shape,dtype=np.float64) for i in range(len(Y)): U0 += init_U0(Y[i],t[i],tmp_kern,Z0,whiten) U0 /= len(Y) sn0 = 0.5*np.ones(D) Ug0 = np.ones([Z0.shape[0],1])*0.01 ell0 = np.asarray(ell0,dtype=np.float64) ellg0 = np.asarray(ellg0,dtype=np.float64) kern = OperatorKernel(sf0=sf0, ell0=ell0, ktype=ktype, fix_ell=fix_ell, fix_sf=fix_sf) if model is 'ode': npde = NPODE(Z0=Z0, U0=U0, sn0=sn0, kern=kern, whiten=whiten, fix_Z=fix_Z, fix_U=fix_U, fix_sn=fix_sn) sess.run(tf.global_variables_initializer()) return npde elif model is 'sde': diffus = BrownianMotion(sf0=sfg0, ell0=ellg0, U0=Ug0, Z0=Z0, whiten=whiten,\ fix_sf=fix_sfg, fix_ell=fix_ellg, fix_Z=fix_Zg, fix_U=fix_Ug) npde = NPSDE(Z0=Z0, U0=U0, sn0=sn0, kern=kern, diffus=diffus, whiten=whiten,\ fix_Z=fix_Z, fix_U=fix_U, fix_sn=fix_sn) sess.run(tf.global_variables_initializer()) return npde else: raise NotImplementedError("model parameter should be either 'ode' or 'sde', not {:s}\n".format(model))
5,346,872
def region(): """Get current default region. Defaults to the region of the instance on ec2 if not otherwise defined. """ parser = _get_parser() parser.parse_args() print(client_region())
5,346,873
def paginatedUrls(pattern, view, kwargs=None, name=None): """ Takes a group of url tuples and adds paginated urls. Extends a url tuple to include paginated urls. Currently doesn't handle url() compiled patterns. """ results = [(pattern, view, kwargs, name)] tail = '' mtail = re.search('(/+\+?\\*?\??\$?)$', pattern) if mtail: tail = mtail.group(1) pattern = pattern[:len(pattern) - len(tail)] results += [(pattern + "/(?P<page_number>\d+)" + tail, view, kwargs)] results += [(pattern + "/(?P<page_number>\d+)\|(?P<page_limit>\d+)" + tail, view, kwargs)] if not kwargs: kwargs = dict() kwargs['page_limit'] = 0 results += [(pattern + "/?\|(?P<page_limit>all)" + tail, view, kwargs)] return results
5,346,874
def invoke(name, region, namespace, eventdata, type, no_color): """ \b Invoke the SCF remote function. \b Common usage: \b * Invoke the function test in ap-guangzhou and in namespace default $ scf remote invoke --name test --region ap-guangzhou --namespace default """ type_dict = { "sync": "RequestResponse", "async": "Event" } logtype = "tail" if type.lower() not in type_dict: Operation("Log type must in {l}".format(l=INVOCATION_TYPE)).warning() return if type.lower == "async": Operation('invoke start ,you can get the invoke logs by excute `scf logs -r %s -ns %s -n %s`' % ( region, namespace, name)).information() if eventdata: try: eventdata = get_data(eventdata) except Exception as e: raise EventFileException("Read file error: %s" % (str(e))) else: eventdata = json.dumps({"key1": "value1", "key2": "value2"}) Invoke.do_cli(name, region, namespace, eventdata, logtype, type_dict[type.lower()])
5,346,875
def set_context(logger, value): """ Walks the tree of loggers and tries to set the context for each handler :param logger: logger :param value: value to set """ _logger = logger while _logger: for handler in _logger.handlers: try: handler.set_context(value) except AttributeError: # Not all handlers need to have context passed in so we ignore # the error when handlers do not have set_context defined. pass if _logger.propagate is True: _logger = _logger.parent else: _logger = None
5,346,876
def write_index(feat_values, chrom, start, stop, stranded_genome_index, unstranded_genome_index): """ Writing the features info in the proper index files. """ # Writing info to the stranded indexes if feat_values[0] != {}: write_index_line(feat_values[0], chrom, start, stop, "+", stranded_genome_index) else: stranded_genome_index.write("\t".join((chrom, start, stop, "+", "antisense\n"))) if feat_values[1] != {}: write_index_line(feat_values[1], chrom, start, stop, "-", stranded_genome_index) else: stranded_genome_index.write("\t".join((chrom, start, stop, "-", "antisense\n"))) # Writing info to the unstranded index unstranded_feat = dict(feat_values[0], **feat_values[1]) for name in set(feat_values[0]) & set(feat_values[1]): unstranded_feat[name] += feat_values[0][name] write_index_line(unstranded_feat, chrom, start, stop, ".", unstranded_genome_index)
5,346,877
def _to_intraday_trix(date: pd.Timestamp, provider: providers.DataProvider, period: int)-> Tuple[nd.NDArray, nd.NDArray]: """ Returns an ndarray containing the TRIX for a given +data+ and +provider+, averaged across a given +period+. """ # First, get the triple-smoothed 15 period exponential moving average data = _get_intraday_data(date, provider) ewm1 = pd.Series.ewm(data['close'], span=period).mean() ewm2 = pd.Series.ewm(ewm1, span=period).mean() ewm3 = pd.Series.ewm(ewm2, span=period).mean() # Return the percentage change from last period ewm3_yesterday = ewm3.shift(periods=1, fill_value=ewm3[0]) trix = (ewm3 / ewm3_yesterday) - 1 return nd.array(trix.values, utils.try_gpu(0))
5,346,878
def _decode(integer): """ Decode the given 32-bit integer into a MAX_LENGTH character string according to the scheme in the specification. Returns a string. """ if integer.bit_length() > 32: raise ValueError("Can only decode 32-bit integers.") decoded_int = 0 # Since each byte has its bits distributed along the given integer at # BIT_SHIFT intervals, we'll get the bits from one byte at a time. for input_start in range(4): # Move to the beginning of the correct output byte. output_pos = input_start * 8 # Read the bits from the input at BIT_SHIFT intervals, lowest-order # bits first. for input_bit in range(input_start, integer.bit_length(), BIT_SHIFT): current_bit = getBit(integer, input_bit) # If the current bit is 1, set the corresponding bit in the result. # Otherwise, we can leave the result bit as 0. if current_bit: decoded_int = setBit(decoded_int, output_pos) # Move to the next position in the output byte. output_pos += 1 # Get a byte array from the decoded integer. We're reversing the byte order # because we read the input integer from lowest-order bit to highest-order. decoded_bytes = decoded_int.to_bytes(4, byteorder="little") # Get the characters represented by each byte, ignoring empty bytes. chars = [] for byte in decoded_bytes: if byte: chars.append(chr(byte)) return "".join(chars)
5,346,879
def register(name): """Registers a new data loader function under the given name.""" def add_to_dict(func): _LOADERS[name] = func return func return add_to_dict
5,346,880
def get_api_host(staging): """If 'staging' is truthy, return staging API host instead of prod.""" return STAGING_API_HOST if staging else PROD_API_HOST
5,346,881
def get(path, params={}): """Make an authenticated GET request to the GitHub API.""" return requests.get( os.path.join("https://api.github.com/", path), auth=(USER, PASS), params=params ).json()
5,346,882
def delete_user(auth, client): """ Delete a user :auth: dict :client: users_client object """ log("What user you want to delete?") user_to_delete = find_user_by_username(auth, client) if user_to_delete is False: log("Could not find user.", serv="ERROR") return False confirmation = yes_or_no("You really want to delete %s?" % user_to_delete["username"]) if confirmation is False: log("Aborted...") return False try: client.users_user_id_delete(int(user_to_delete["id"])) log("Successfully deleted user %s" % user_to_delete["username"], serv="SUCCESS") return True except: log("Could not delete user %s. Error by backend" % user_to_delete["username"], serv="ERROR") return False
5,346,883
def downloadComic(url): """ Downloads the latest comic from a range of sites. """ print('Downloading page ' + url + '...') # Request the url, check the status res = requests.get(url, headers={'User-Agent': 'Mozilla/5.0'}) res.raise_for_status() soup = bs4.BeautifulSoup(res.text, 'html.parser') # Find url of comic image, the element is unique to each of these # sites if url == 'http://www.lefthandedtoons.com/': comicElem = soup.select('#comicwrap > div.comicdata > img') elif url == 'https://www.buttersafe.com/': comicElem = soup.select('#comic img') elif url == 'https://www.exocomics.com/': comicElem = soup.select('img', class_='image-style-main-comic') # checks if element retrieve, if it is, downloads the image if comicElem == []: print('Could not find comic image.') else: comicUrl = comicElem[0].get('src') # Download and save the image. res = requests.get(comicUrl, headers={'User-Agent': 'Mozilla/5.0'}) res.raise_for_status() imageFileName = os.path.join('comix', os.path.basename(comicUrl)) if os.path.exists(imageFileName) == True: print('Image ' + os.path.basename(comicUrl) + ' has already been downloaded.') else: imageFile = open(os.path.join( 'comix', os.path.basename(comicUrl)), 'wb' ) print('Downloading image %s...' % (comicUrl)) for chunk in res.iter_content(100000): imageFile.write(chunk) imageFile.close()
5,346,884
def plot_figure(ms_label, ms_counts, left, right, params_dict, save_directory, localizations=None, sumof=None): """ Plots amino acid spatistics. Parameters ---------- ms_label : str Mass shift in string format. ms_counts : int Number of peptides in a mass shift. left : list Amino acid statistics data [[values], [errors]] right : list Amino acid frequences in peptides params_dict : dict Parameters dict. save_directory: str Saving directory. localizations : Counter Localization counter using ms/ms level. sumof : List List of str tuples for constituent mass shifts. """ b = 0.1 # shift in bar plots width = 0.2 # for bar plots labels = params_dict['labels'] labeltext = ms_label + ' Da mass shift,\n' + str(ms_counts) + ' peptides' x = np.arange(len(labels)) distributions = left[0] errors = left[1] fig, ax_left = plt.subplots() fig.set_size_inches(params_dict['figsize']) ax_left.bar(x - b, distributions.loc[labels], yerr=errors.loc[labels], width=width, color=colors[2], linewidth=0) ax_left.set_ylabel('Relative AA abundance', color=colors[2]) ax_left.set_xticks(x) ax_left.set_xticklabels(labels) ax_left.hlines(1, -1, x[-1] + 1, linestyles='dashed', color=colors[2]) ax_right = ax_left.twinx() ax_right.bar(x + b, right, width=width, linewidth=0, color=colors[0]) ax_right.set_ylim(0, 125) ax_right.set_yticks(np.arange(0, 120, 20)) ax_right.set_ylabel('Peptides with AA, %', color=colors[0]) ax_left.spines['left'].set_color(colors[2]) ax_right.spines['left'].set_color(colors[2]) ax_left.spines['right'].set_color(colors[0]) ax_right.spines['right'].set_color(colors[0]) ax_left.tick_params('y', colors=colors[2]) ax_right.tick_params('y', colors=colors[0]) pright = matplotlib.lines.Line2D([], [], marker=None, label=labeltext, alpha=0) ax_left.set_xlim(-1, x[-1] + 1) ax_left.set_ylim(0, distributions.loc[labels].max() * 1.4) logger.debug('Localizations for %s figure: %s', ms_label, localizations) if localizations: ax3 = ax_left.twinx() ax3.spines['right'].set_position(('axes', 1.1)) ax3.set_frame_on(True) ax3.patch.set_visible(False) ax3.set_ylabel('Localization count', color=colors[3]) for sp in ax3.spines.values(): sp.set_visible(False) ax3.spines['right'].set_visible(True) ax3.spines['right'].set_color(colors[3]) ax3.tick_params('y', colors=colors[3]) # plot simple modifications (not sum) with the first style, # then parts of sum values = [localizations.get(key + '_' + ms_label) for key in labels] maxcount = _get_max(values) label_prefix = 'Location of ' ax3.scatter(x, values, marker=_marker_styles[0], color=colors[3], label=label_prefix + ms_label) if isinstance(sumof, list): for pair, (color, style) in zip(sumof, _generate_pair_markers()): values_1 = [localizations.get(key + '_' + pair[0]) for key in labels] maxcount = max(maxcount, _get_max(values_1)) ax3.scatter(x, values_1, marker=style[0], color=color, label=label_prefix + pair[0]) if pair[0] != pair[1]: values_2 = [localizations.get(key + '_' + pair[1]) for key in labels] if values_2: maxcount = max(maxcount, _get_max(values_2)) ax3.scatter(x, values_2, marker=style[1], color=color, label=label_prefix + pair[1]) terms = {key for key in localizations if key[1:6] == '-term'} # logger.debug('Found terminal localizations: %s', terms) for t in terms: label = '{} at {}: {}'.format(*reversed(t.split('_')), localizations[t]) p = ax3.plot([], [], label=label)[0] p.set_visible(False) pright.set_label(pright.get_label() + '\nNot localized: {}'.format(localizations.get('non-localized', 0))) if maxcount: ax3.legend(loc='upper left', ncol=2) ax3.set_ylim(0, 1.4 * max(maxcount, 1)) ax_right.legend(handles=[pright], loc='upper right', edgecolor='dimgrey', fancybox=True, handlelength=0) fig.tight_layout() fig.savefig(os.path.join(save_directory, ms_label + '.png'), dpi=500) fig.savefig(os.path.join(save_directory, ms_label + '.svg')) plt.close()
5,346,885
def get_buildbot_stats(time_window : datetime.datetime) -> BuildStats: """Get the statistics for the all builders.""" print('getting list of builders...') stats = BuildStats() for builder in requests.get(BASE_URL).json().keys(): # TODO: maybe filter the builds to the ones we care about stats += get_builder_stats(builder, time_window ) return stats
5,346,886
def remove_empty(s): """\ Remove empty strings from a list. >>> a = ['a', 2, '', 'b', ''] >>> remove_empty(a) [{u}'a', 2, {u}'b'] """ while True: try: s.remove('') except ValueError: break return s
5,346,887
def quantum_ia(nb_stick: int, past: list, backend_sim: Aer) -> list: """Quantum IA. Args: nb_stick: nb of stick left past: past turn backend_sim: backend for quantum Return: Prediction to use """ def quadratibot(nb_stick: int, past: list, backend_sim: Aer) -> list: """Quadratic + QAOA function Args: nb_stick: nb of stick left past: past turn backend_sim: backend for quantum Return: Gates to use """ def get_quantum_solution_for( quadprog: QuadraticProgram, quantumInstance: QuantumInstance, optimizer=None ): _eval_count = 0 def callback(eval_count, parameters, mean, std): nonlocal _eval_count _eval_count = eval_count # Create solver and optimizer solver = QAOA( optimizer=optimizer, quantum_instance=quantumInstance, callback=callback, max_evals_grouped=3, ) # Create optimizer for solver optimizer = MinimumEigenOptimizer(solver) # Get result from optimizer result = optimizer.solve(quadprog) return result, _eval_count # Check number of stick max if nb_stick >= 3: max_stick = 3 else: max_stick = nb_stick # Check the past poten_stick = nb_stick for i in range(len(past)): if past[i] == "/": poten_stick += 0.5 if past[i] == "¬": u = 1 if len(past) - 1 >= i + u: while past[i + u] == "¬": u += 1 if past[i + u] == "/": poten_stick += 0.5 # Check last turn last_st = 0 if past[0] == "¬": u = 1 while past[0 + u] == "¬": u += 1 if past[0 + u] == "/": last_st = 0.5 if past[0] == "/": last_st = 0.5 quadprog = QuadraticProgram(name="qnim") quadprog.integer_var(name="x", lowerbound=0, upperbound=max_stick) quadprog.integer_var(name="sup", lowerbound=0, upperbound=max_stick) quadprog.integer_var(name="intric", lowerbound=0, upperbound=max_stick) quadprog.maximize( linear={"x": 1, "sup": 0.5, "intric": last_st}, quadratic={("sup", "intric"): 0.5}, ) # General constraints quadprog.linear_constraint( linear={"x": 1, "sup": 1, "intric": 1}, sense=">", rhs=0, name="gen_min" ) quadprog.linear_constraint( linear={"x": 1, "sup": 1, "intric": 1}, sense="<=", rhs=max_stick, name="gen_max", ) # Mod4 constraints if math.ceil(poten_stick % 4) - 0.5 > 0: quadprog.linear_constraint( linear={"x": 1, "sup": 1}, sense="<=", rhs=math.ceil(poten_stick % 4), name="qua_mod4", ) if nb_stick % 4 - 1 > 0: quadprog.linear_constraint( linear={"x": 1, "sup": 1, "intric": 1}, sense="<=", rhs=nb_stick % 4 - 1, name="cla_mod4", ) # Get QAOA result final_result = [] simulator_instance = QuantumInstance(backend=backend_sim) qaoa_result, qaoa_eval_count = get_quantum_solution_for( quadprog, simulator_instance ) # Format and print result for cropHectares, cropName in zip(qaoa_result.x, qaoa_result.variable_names): for i in range(int(cropHectares)): final_result.append(cropName) return final_result def gronim(output: list, backend_sim: Aer) -> Tuple[Any, ...]: """Grover for best predict. Args: output: every possible prediction backend_sim: backend for quantum Return: best predict """ def diffuser(nqubits): qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) for qubit in range(nqubits): qc.x(qubit) qc.h(nqubits - 1) qc.mct(list(range(nqubits - 1)), nqubits - 1) qc.h(nqubits - 1) for qubit in range(nqubits): qc.x(qubit) for qubit in range(nqubits): qc.h(qubit) U_s = qc.to_gate() U_s.name = "$Diff$" return U_s def ram(nqubits, lists_final): list_qram = [i for i in range(nqubits)] qram = QuantumRegister(nqubits, "qram") qalgo = QuantumRegister(nqubits, "algo") qc = QuantumCircuit(qram, qalgo) control_h = MCMT("h", nqubits, 1).to_gate() map_ram_2 = [["x", "x"], ["o", "x"], ["x", "o"], ["o", "o"]] map_ram_3 = [ ["x", "x", "x"], ["o", "x", "x"], ["x", "o", "x"], ["o", "o", "x"], ["x", "x", "o"], ["o", "x", "o"], ["x", "o", "o"], ["o", "o", "o"], ] if len(bin(len(lists_final))[2:]) == 3: map_ram = map_ram_3 if len(bin(len(lists_final))[2:]) == 2: map_ram = map_ram_2 for i, m_ram in zip(range(len(lists_final)), map_ram): # qc.barrier() for index, gate in enumerate(m_ram): if gate == "x": qc.x(qram[index]) if lists_final[i][0] == "x" or lists_final[i][0] == "sup": qc.mcx(qram, qalgo[0]) else: qc.append(control_h, [*list_qram, qalgo[0]]) if len(lists_final[i]) == 3: if lists_final[i][1] == "x": qc.mcx(qram, qalgo[1]) elif lists_final[i][1] == "intric": qc.mcx([qram[0], qram[1], qram[2], qalgo[0]], qalgo[1]) else: qc.append(control_h, [*list_qram, qalgo[1]]) if lists_final[i][-1] == "x": qc.mcx(qram, qalgo[-1]) elif lists_final[i][-1] == "intric": if len(lists_final[i]) == 3: qc.mcx([qram[0], qram[1], qram[2], qalgo[1]], qalgo[-1]) else: qc.mcx([qram[0], qram[1], qalgo[0]], qalgo[-1]) else: qc.append(control_h, [*list_qram, qalgo[-1]]) for index, gate in enumerate(m_ram): if gate == "x": qc.x(qram[index]) # print(qc.draw()) U_s = qc.to_gate() U_s.name = "$Qram$" return U_s def algo(nqubits): qc = QuantumCircuit(nqubits) qc.h(0) qc.x(0) U_s = qc.to_gate() U_s.name = "$Algo$" return U_s lists_final = [] lists_full = list(itertools.permutations(output, len(output))) for u in lists_full: if u not in lists_final: lists_final.append(u) len_qram = len(bin(len(lists_final))[2:]) qram = QuantumRegister(len_qram, "qram") qalgo = QuantumRegister(len_qram, "algo") oracle = QuantumRegister(1, "oracle") c = ClassicalRegister(len_qram, "measurement") qc = QuantumCircuit(qram, qalgo, oracle, c) # Init qc.h(qram) qc.x(oracle) qc.h(oracle) qc.barrier() # Qram qc.append(ram(len_qram, lists_final), [*[i for i in range(len_qram * 2)]]) qc.barrier() # Algorithm qc.append(algo(len_qram), [*[i for i in range(len_qram, len_qram * 2)]]) qc.barrier() # Oracle qc.mcx([qalgo[0], qalgo[-1]], oracle) qc.barrier() # Revert Algo + Qram qc.append( algo(len_qram).inverse(), [*[i for i in range(len_qram, len_qram * 2)]] ) qc.append( ram(len_qram, lists_final).inverse(), [*[i for i in range(len_qram * 2)]] ) qc.barrier() # Diffuser qc.append(diffuser(len_qram), [*[i for i in range(len_qram)]]) # Measure of the outputs qc.barrier() qc.measure(qram, c) job = execute(qc, backend_sim, shots=512, memory=True) result_job = job.result() result_count = result_job.get_counts() result_memory = job.result().get_memory() if len(result_count) == 1: final_result = int(result_memory[0], 2) else: final_result = max(result_count, key=result_count.get) final_result = int(final_result, 2) to_return = lists_final[final_result] return to_return gates = quadratibot(nb_stick, past, backend_sim) if len(gates) < 2: predict = gates elif len(set(gates)) != len(gates): predict = gates else: predict = gronim(gates, backend_sim) return predict
5,346,888
def test_generate_fn(): """Test generating filename.""" assert generate_fn(var1="this", var2="that", num=7, zero=0) == "marsdata_var1_this-var2_that-num_7-zero_0.txt"
5,346,889
def construct_model_cnn_gram(num_classes, input_shape): """ construct model architecture :param num_classes: number of output classes of the model [int] :return: model - Keras model object """ model = Sequential() model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(MaxPool2D((2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(num_classes, activation='softmax')) return model
5,346,890
def test_failed_forecasting_invalid_horizon(app, clean_redis, setup_test_data): """ This one (as well as the fallback) should fail as the horizon is invalid.""" solar_device1: Asset = Asset.query.filter_by(name="solar-asset-1").one_or_none() create_forecasting_jobs( timed_value_type="Power", start_of_roll=as_server_time(datetime(2015, 1, 1, 21)), end_of_roll=as_server_time(datetime(2015, 1, 1, 23)), horizons=[timedelta(hours=18)], asset_id=solar_device1.id, custom_model_params=custom_model_params(), ) work_on_rq(app.queues["forecasting"], exc_handler=handle_forecasting_exception) check_failures(app.queues["forecasting"], 2 * ["InvalidHorizonException"])
5,346,891
def get_basic_data(match_info, event): """input: dictionary | output: dictionary updated""" match_info['status'] = event['status']['type']['name'] match_info['start_time'] = event['date'] match_info['match_id'] = event['id'] match_info['time'] = event['status']['displayClock'] match_info['period'] = event['status']['period'] match_info['display_period'] = give_display_period(match_info['period']) match_info['detail'] = event['status']['type']['detail'] match_info['match_type_id'] = event['status']['type']['id'] return match_info
5,346,892
def run(): """ Main method run for Cloudkeeper-OS """ configuration.configure() server.serve()
5,346,893
def handle_solution(f, problem_id, user, lang): """ When user uploads the solution, this function takes care of it. It runs the grader, saves the running time and output and saves the submission info to database. :param f: submission file (program) :param problem_id: the id of the problem user submitted solution to :param user: user id of user that made submission :param lang: what language did user use :return grade: grade that user got in this submission :return submission.grade: best grade user got on this problem :return error: -1 if no errors, otherwise output of agrader.sh """ # Get directory where files are stored. directory = os.popen('echo $CG_FILES_UPLOADED').read().strip() # Create directory where user's problem submission stuff will get stored. problem_dir = "{0}/{1}/{2}".format(directory, user, problem_id) try: os.mkdir(problem_dir) except OSError: pass # directory already exists # Write the submission file to previously created directory, rename it. _, end = f.name.split('.') f_local = '{2}_{0}.{1}'.format(user, end, problem_id) with open('{0}/{1}'.format(problem_dir, f_local), 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) # Grade the task using agrader.sh. First compile the program if necessary and then copy # files to docker container. Then run the program and check the grade # with grader. runner_ret_val = -1 grade = -1 error = -1 compiler_output = \ subprocess.check_output('bash problem/grader/compile_and_copy.sh {0} {1} {2}'.format(f_local, problem_id, user), shell=True).split('\n')[-2] if compiler_output == 'OK': if end == 'py': if lang == 'Python 2': runner_ret_val = subprocess.call('bash problem/grader/run_py.sh {0} {1}'.format(user, problem_id), shell=True) elif lang == 'Python 3': runner_ret_val = subprocess.call('bash problem/grader/run_py3.sh {0} {1}'.format(user, problem_id), shell=True) elif end == 'java': runner_ret_val = subprocess.call('bash problem/grader/run_java.sh {0} {1}'.format(user, problem_id), shell=True) elif end == 'cs': runner_ret_val = subprocess.call('bash problem/grader/run_cs.sh {0} {1}'.format(user, problem_id), shell=True) else: runner_ret_val = subprocess.call('bash problem/grader/run_c.sh {0} {1}'.format(user, problem_id), shell=True) if runner_ret_val == 0: grader_out = subprocess.check_output('bash problem/grader/grade.sh {0} {1}'.format(user, problem_id), shell=True).split('\n')[-2] try: grade = int(grader_out) except ValueError: grade = -1 error = grader_out else: error = "RTE" else: error = compiler_output # Add submission user = User.objects.get(username=user) today = date.today() today_str = '{0}-{1}-{2}'.format(today.year, today.month, today.day) try: # if user has already submitted solution for this problem before submission = Submission.objects.get(user=user.id, problem=problem_id) submission.tries += 1 if grade > submission.grade: submission.grade = grade submission.date = today_str # Save newer solution with same points. if grade >= submission.grade: os.system('bash problem/grader/move_output.sh {0} {1} {2}'.format(user.username, problem_id, 1)) else: os.system('bash problem/grader/move_output.sh {0} {1} {2}'.format(user.username, problem_id, 0)) except ObjectDoesNotExist: # this is user's first submission submission = Submission() submission.user_id = user.id submission.problem_id = problem_id submission.grade = grade submission.date = today_str submission.tries = 1 os.system('bash problem/grader/move_output.sh {0} {1} {2}'.format(user.username, problem_id, 1)) finally: # at the end we need to update some data about best submissions if grade == 10 and submission.tries_until_correct == 0: submission.tries_until_correct = submission.tries # Update number of people that solved this problem. problem = Problem.objects.get(pk=problem_id) if problem.solved_by_how_many == 0: problem.first_solved_by = user problem.first_solved_on = today_str problem.solved_by_how_many += 1 problem.last_successful_try = today_str submission.save() return grade, submission.grade, error
5,346,894
def convert_blockgrad(node, **kwargs): """ Skip operator """ return create_basic_op_node('Identity', node, kwargs)
5,346,895
def is_complete(node): """ all children of a sum node have same scope as the parent """ assert node is not None for sum_node in reversed(get_nodes_by_type(node, Sum)): nscope = set(sum_node.scope) if len(sum_node.children) == 0: return False, "Sum node %s has no children" % sum_node.id for child in sum_node.children: if nscope != set(child.scope): return False, "children of (sum) node %s do not have the same scope as parent" % sum_node.id return True, None
5,346,896
def step_inplace(Ts, ae, target, weight, depth, intrinsics, lm=.0001, ep=10.0): """ dense gauss newton update with computing similiarity matrix """ pts = pops.inv_project(depth, intrinsics) pts = pts.permute(0,3,1,2).contiguous() # tensor representation of SE3 se3 = Ts.data.permute(0,3,1,2).contiguous() ae = ae / 8.0 # build the linear system H, b = SE3BuilderInplace.apply(se3, ae, pts, target, weight, intrinsics) I = torch.eye(6, device=H.device)[...,None,None] H = H + (lm*H + ep) * I # damping dx = SE3Solver.apply(H, b) dx = dx.permute(0,3,4,1,2).squeeze(-1).contiguous() Ts = SE3.exp(dx) * Ts return Ts
5,346,897
def _compute_extent_axis(axis_range, grid_steps): """Compute extent for matplotlib.pyplot.imshow() along one axis. :param axis_range: 1D numpy float array with 2 elements; axis range for plotting :param grid_steps: positive integer, number of grid steps in each dimension :return: 1D numpy float array with 2 elements """ delta = (axis_range[1] - axis_range[0]) / (2.0 * (grid_steps - 1)) # the range is covered by grid_steps - 1 pixels with one half of a pixel overlapping on each side; delta is half the # pixel width return np.array([axis_range[0] - delta, axis_range[1] + delta])
5,346,898
def normalize_path(filepath, expand_vars=False): """ Fully normalizes a given filepath to an absolute path. :param str filepath: The filepath to normalize :param bool expand_vars: Expands embedded environment variables if True :returns: The fully noralized filepath :rtype: str """ filepath = str(pathlib.Path(filepath).expanduser().resolve()) if expand_vars: filepath = os.path.expandvars(filepath) return filepath
5,346,899