content
stringlengths
22
815k
id
int64
0
4.91M
def collect_targets_from_attrs(rule_attrs, attrs): """Returns a list of targets from the given attributes.""" result = [] for attr_name in attrs: _collect_target_from_attr(rule_attrs, attr_name, result) return [target for target in result if is_valid_aspect_target(target)]
5,348,900
def quit(*modules): """Quit the given module.""" if len(modules) == 0: modules = (sdl2.SDL_INIT_EVERYTHING,) for module in modules: try: sdl2.SDL_QUIT(module) except: pass
5,348,901
def extract_codes(text: str) -> Tuple[str, ...]: """Extract names of warnings from full warning text.""" match = CODES_PAT.search(text) if not match: raise ValueError("No warning code found") return tuple(match.group(1).split(","))
5,348,902
def task_list(request, pk): """ View to get task list based on user list for forms """ user_model = User.objects.filter(is_staff=False) task_model = Task.objects.filter(user=pk) user_detail = User.objects.get(pk=pk) query = request.GET.get('q') if query: task_model = task_model.filter( Q(title__icontains=query) ) return render(request, 'home.html', {"user_model": user_model, 'task_model': task_model, 'user_detail': user_detail})
5,348,903
def load_credentials(): """ load_credentials :return: dict """ with open("credentials.json", "r", encoding="UTF-8") as stream: content = json.loads(stream.read()) return content
5,348,904
def get_utm_string_from_sr(spatialreference): """ return utm zone string from spatial reference instance """ zone_number = spatialreference.GetUTMZone() if zone_number > 0: return str(zone_number) + 'N' elif zone_number < 0: return str(abs(zone_number)) + 'S' else: return str(zone_number)
5,348,905
def messages_count(name): """ Get message count for queue curl -X GET -H 'Accept: application/json' http://localhost:8080/queues/C13470112/msgs/count curl -X GET -H 'Accept: application/json' 83.212.127.232:8080/queues/C13470112/msgs/count """ conn = get_conn() queue = conn.get_queue(name) count = queue.count() resp = "Queue "+name+" has "+str(count)+" messages\n" return Response(response=resp, mimetype="application/json")
5,348,906
def return_intersect(cameraList): """ Calculates the intersection of the Camera objects in the *cameraList*. Function returns an empty Camera if there exists no intersection. Parameters: cameraList : *list* of *camera.Camera* objects A list of cameras from the camera.Camera class, each containing a *poly* and a *coordsList*. Returns: intersectCam : *camera.Camera* object An object from the camera.Camera class that is the intersection between all cameras in the cameraList. If there exists no intersection between any cameras in the camerList, an empty Camera will be returned. """ intersectCam = None for camera in cameraList: if intersectCam is None: # Initiates the intersectCam variable intersectCam = camera else: intersectCam = intersectCam.intersect(camera) return intersectCam
5,348,907
def get_returned_attr_set_node(tree): """ Get the NODE_ATTR_SET containing the attributes which are returned by the module """ # TODO: fix HACK, currently we assume the node containing `imports` is the returned attr set # but this may not always be the case? imports_node = get_imports_node(tree) imports_key_node, _ = [e for e in imports_node.elems if isinstance(e, syntax_tree.Node)] imports_key_value_node = tree.get_parent(imports_key_node) returned_attr_set_node = tree.get_parent(imports_key_value_node) return returned_attr_set_node
5,348,908
def choose_time_format_method(expression,format): """ :Summary: strftime("%s") is not a valid string formatting method in python, therefore it works on linux servers but not windows. To handle this, this function checks for python version and decides what conversion method to use. the "format" parameter makes sure that that the correct required type is always returned """ # if we are running python3.3 or greater if(version >= version_3_3): # if the datetime object is offset aware if(expression.tzinfo != None): if(format == "str"): return str(int(expression.timestamp())) else: return int(expression.timestamp()) # else if the datetime object is offset naive else: if(format == "str"): return str(int((expression - datetime(1970, 1, 1)).total_seconds())) else: return int((expression - datetime(1970, 1, 1)).total_seconds()) # else if we are running python version lower than python3.3 i.e most linux servers else: if(format == "str"): return expression.strftime("%s") else: return int(expression.strftime("%s"))
5,348,909
def import_measurements(task, subject, gsrn, session): """ Imports measurements for a single MeteringPoint, and starts a start_submit_measurement_pipeline() pipeline for each of the newly imported measurements. :param celery.Task task: :param str subject: :param str gsrn: :param sqlalchemy.orm.Session session: """ __log_extra = { 'gsrn': gsrn, 'subject': subject, 'pipeline': 'import_measurements', 'task': 'import_measurements', } @atomic def __import_measurements(session): """ Import and save to DB as an atomic operation """ return importer.import_measurements_for(meteringpoint, session) # Load MeteringPoint from DB try: meteringpoint = MeteringPointQuery(session) \ .is_active() \ .has_gsrn(gsrn) \ .one() except orm.exc.NoResultFound: raise except Exception as e: raise task.retry(exc=e) # Import measurements into DB try: measurements = __import_measurements() except Exception as e: logger.exception('Failed to import measurements from ElOverblik, retrying...', extra=__log_extra) raise task.retry(exc=e) # Submit each measurement to ledger in parallel for measurement in measurements: task = build_submit_measurement_pipeline( measurement, meteringpoint, session) task.apply_async() # if measurements: # tasks = [ # build_submit_measurement_pipeline(measurement, meteringpoint, session) # for measurement in measurements # ] # # group(*tasks).apply_async()
5,348,910
def main(): """run synergy commands """ # args MODEL_DIR = sys.argv[1] MODEL = sys.argv[2] INFER_DIR = sys.argv[3] OUT_DIR = sys.argv[4] motifs_file = "{}/motifs.sig/motifs.adjust.diff.rna_filt.dmim/summary/ggr.pwms_patterns_summary.txt".format( INFER_DIR) bash_script = "/datasets/software/git/tronn/scripts/ggr/kube/sims.predict.spacing.ggr.bash" # prediction sample prediction_sample_dir = "/datasets/inference.2019-02-05/motifs.input_x_grad.background" # first get the desired motif list motifs = pd.read_csv(motifs_file, sep="\t", header=0, index_col=0) motifs = list(motifs.index) # go through motifs for motif in motifs: # set up out dir (but if it exists don't run) out_dir = "{}/{}".format(OUT_DIR, motif) if os.path.isdir(out_dir): continue os.system("mkdir -p {}".format(out_dir)) # set up input file (grammar file) pwm_idx = int(motif.split("_")[0].split("-")[1]) grammar_file = "{}/input.gml".format(out_dir) graph = nx.Graph() graph.add_node("{}-A".format(motif), pwmidx=pwm_idx) graph.add_node("{}-B".format(motif), pwmidx=pwm_idx) nx.write_gml(graph, grammar_file) # set up run cmd run_cmd = "{0} {1} {2} {3} {4} {5}".format( bash_script, MODEL_DIR, MODEL, prediction_sample_dir, grammar_file, out_dir) print run_cmd os.system(run_cmd) return
5,348,911
def add_agg_series_to_df( df: pandas.DataFrame, grouped_levels: List[str], bottom_levels: List[str] ) -> pandas.DataFrame: """ Add aggregate series columns to wide dataframe. Parameters ---------- df : pandas.DataFrame Wide dataframe containing bottom level series. grouped_levels : List[str] Grouped level, underscore delimited, column names. bottom_levels : List[str] Bottom level, underscore delimited, column names. Returns ------- pandas.DataFrame Wide dataframe with all series in hierarchy. """ component_cols = _get_bl(grouped_levels, bottom_levels) # Add series as specified grouping levels for i, cols in enumerate(component_cols): df[grouped_levels[i]] = df[cols].sum(axis=1) return df
5,348,912
def conv_relu_pool_forward(x, w, b, conv_param, pool_param): """ Convenience layer that performs a convolution, a ReLU, and a pool. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer - pool_param: Parameters for the pooling layer Returns a tuple of: - out: Output from the pooling layer - cache: Object to give to the backward pass """ convOut, conv_cache = layers.conv_forward(x, w, b, conv_param) reluOut, relu_cache = layers.relu_forward(convOut) out, pool_cache = layers.max_pool_forward(reluOut, pool_param) cache = (conv_cache, relu_cache, pool_cache) return out, cache
5,348,913
def avg_pixelwise_var(images_seen: np.int16): """ Computes the variance for every pixel p across all images, resulting in a matrix holding the variance for eack pixel p, then calculates the average of that variance across all pixels. This allows us to compensate for different fov sizes. Note: images are normalized to [-1,1] before calculations Params ------ images_seen A numpy matrix holding numpy versions of all of our images Returns ------- The aaverage pixelwise variation across all images, as a float """ # Computes the variance images = (images_seen.astype(np.float32) - 127.5) / 127.5 # Normalize to [-1,1] variance_matrix = np.var(images, 0) # Returns the average of that variance return(np.sum(variance_matrix)/variance_matrix.size)
5,348,914
def test_wrong_patterns_in_values( code, first, second, assert_errors, parse_ast_tree, default_options, ): """Testing safe in patterns.""" tree = parse_ast_tree(code.format(first, second)) visitor = ImplicitBoolPatternsVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ImplicitInConditionViolation])
5,348,915
def main(ip_address: str, count: int = 3): """ Ping IP_ADDRESS """ status = ping_ip(ip_address, count) if status: typer.secho(f"ICMP reply received from address {ip_address}", fg="green") else: typer.secho(f"No ICMP reply received from address {ip_address}", fg="red")
5,348,916
def get_r2_matrix(ts): """ Returns the matrix for the specified tree sequence. This is computed via a straightforward Python algorithm. """ n = ts.get_sample_size() m = ts.get_num_mutations() A = np.zeros((m, m), dtype=float) for t1 in ts.trees(): for sA in t1.sites(): assert len(sA.mutations) == 1 mA = sA.mutations[0] A[sA.id, sA.id] = 1 fA = t1.get_num_samples(mA.node) / n samples = list(t1.samples(mA.node)) for t2 in ts.trees(tracked_samples=samples): for sB in t2.sites(): assert len(sB.mutations) == 1 mB = sB.mutations[0] if sB.position > sA.position: fB = t2.get_num_samples(mB.node) / n fAB = t2.get_num_tracked_samples(mB.node) / n D = fAB - fA * fB r2 = D * D / (fA * fB * (1 - fA) * (1 - fB)) A[sA.id, sB.id] = r2 A[sB.id, sA.id] = r2 return A
5,348,917
def load_or_run(filepath, fun, *args, **kwargs): """ 계산된 결과 파일이 있으면 로딩하고, 없으면 계산후 저장 ex) res = load_or_run('file_loadorsave', funlongtime, ...., force=False) :param filepath: :param fun: :param force: :return: """ force = kwargs.pop('force', False) compress = kwargs.pop('compress', True) if not filepath.startswith('/') or not filepath.startswith('~'): filepath = os.path.join('/tmp/snipy/load_or_run/', filepath) if not force and os.path.exists(filepath): # 저장되어 있는 것 로딩 mmap_mode = 'r+' if not compress else None return loadfile(filepath, mmap_mode=mmap_mode) res = fun(*args, **kwargs) savefile(res, filepath, compress=compress) return res
5,348,918
def main(): """ Find the common kmers between the two input files """ args = get_args() file1 = args.file1.read().split() file2 = args.file2.read().split() words1 = count_kmers(file1, args.kmer) words2 = count_kmers(file2, args.kmer) common = set(words1).intersection(set(words2)) for word in common: if len(common) != 0: print(f'{word:10} {words1.get(word):5} {words2.get(word):5}')
5,348,919
def init_build_env(): """ Cleans and initializes the build environment. """ BUILD_DIR.rmtree() if not BUILD_DIR.exists(): BUILD_DIR.makedirs() if not BUILD_WORK_DIR.exists(): BUILD_WORK_DIR.makedirs() # FIXME - maybe a full tree not needed? for subdir in ('RPMS', 'SPECS', 'SOURCES', 'BUILD', 'SRPMS'): (RPM_TOPDIR / path(subdir)).makedirs() DIST_DIR.rmtree() if not DIST_DIR.exists(): DIST_DIR.makedirs()
5,348,920
def seq2seq_output_ids_to_file(output_ids, trg_vocab, out_file): """ Devectorize and Detokenize the translated token ids and write the translations to a text file """ output_tokens = devectorize(output_ids.tolist(), trg_vocab.id2tok, trg_vocab.EOS_id, strip_eos=True, pp=True) with open(out_file, "w") as fo: for sent in output_tokens: text = trg_vocab.detokenize(sent) fo.write(text + "\n")
5,348,921
def omdb_title( api_key: str, id_imdb: str = None, media: str = None, title: str = None, season: int = None, episode: int = None, year: int = None, plot: str = None, cache: bool = True, ) -> dict: """ Looks up media by id using the Open Movie Database. Online docs: http://www.omdbapi.com/#parameters """ if (not title and not id_imdb) or (title and id_imdb): raise MnamerException("either id_imdb or title must be specified") elif plot and plot not in OMDB_PLOT_TYPES: raise MnamerException( "plot must be one of %s" % ",".join(OMDB_PLOT_TYPES) ) url = "http://www.omdbapi.com" parameters = { "apikey": api_key, "i": id_imdb, "t": title, "y": year, "season": season, "episode": episode, "type": media, "plot": plot, } parameters = clean_dict(parameters) status, content = request_json(url, parameters, cache=cache) error = content.get("Error") if isinstance(content, dict) else None if status == 401: raise MnamerException("invalid API key") elif status != 200 or not isinstance(content, dict): raise MnamerNetworkException("OMDb down or unavailable?") elif error: raise MnamerNotFoundException(error) return content
5,348,922
def get_status(addr): """Get the current status of a minecraft server. addr -- server address Returns an mcstatus object. """ server = MinecraftServer.lookup(addr) try: return server.status() except Exception: return None
5,348,923
def calculate_losses(estimator, input_fn, labels): """Get predictions and losses for samples. The assumptions are 1) the loss is cross-entropy loss, and 2) user have specified prediction mode to return predictions, e.g., when mode == tf.estimator.ModeKeys.PREDICT, the model function returns tf.estimator.EstimatorSpec(mode=mode, predictions=tf.nn.softmax(logits)). Args: estimator: model to make prediction input_fn: input function to be used in estimator.predict labels: array of size (n_samples, ), true labels of samples (integer valued) Returns: preds: probability vector of each sample loss: cross entropy loss of each sample """ pred = np.array(list(estimator.predict(input_fn=input_fn))) loss = log_loss(labels, pred) return pred, loss
5,348,924
def text_cleaning(value, stopwords=None): """Applies the four cleaning funtions to a value. Turns value into string, makes lowercase, strips trailing and leading spaces, and removes digits, punctuation, and stopwords Args: value (str): string to be cleaned Returns: str_out (str): string after cleaning """ value = str_lower_strip(value) value = remove_digits(value) value = remove_punctuation(value) value = remove_stopwords(value, stopwords) str_out = value return str_out
5,348,925
def calc_pts_lag(npts=20): """ Returns Gauss-Laguerre quadrature points rescaled for line scan integration Parameters ---------- npts : {15, 20, 25}, optional The number of points to Notes ----- The scale is set internally as the best rescaling for a line scan integral; it was checked numerically for the allowed npts. Acceptable pts/scls/approximate line integral scan error: (pts, scl ) : ERR ------------------------------------ (15, 0.072144) : 0.002193 (20, 0.051532) : 0.001498 (25, 0.043266) : 0.001209 The previous HG(20) error was ~0.13ish """ scl = { 15:0.072144, 20:0.051532, 25:0.043266}[npts] pts0, wts0 = np.polynomial.laguerre.laggauss(npts) pts = np.sinh(pts0*scl) wts = scl*wts0*np.cosh(pts0*scl)*np.exp(pts0) return pts, wts
5,348,926
def APPEND(*ext, **kw): """Decorator to call XDWAPI with trailing arguments *ext. N.B. Decorated function must be of the same name as XDWAPI's one. """ def deco(api): @wraps(api) def func(*args, **kw): args = list(args) if "codepage" in kw: args.append(kw["codepage"]) args.extend(ext) return TRY(getattr(DLL, api.__name__), *args) return func return deco
5,348,927
def stations_within_radius(stations, centre, r): """Returns a list of all stations (type MonitoringStation) within radius r of a geographic coordinate x.""" stations_inside_radius = [] for station, distance in stations_by_distance(stations, centre): # Check if distance is inside the requried radius if distance < r: stations_inside_radius.append(station) # Return the list return stations_inside_radius
5,348,928
def manage_topseller(request, template_name="manage/marketing/topseller.html"): """ """ inline = manage_topseller_inline(request, as_string=True) # amount options amount_options = [] for value in (10, 25, 50, 100): amount_options.append({ "value": value, "selected": value == request.session.get("topseller-amount") }) return render_to_string(template_name, request=request, context={ "topseller_inline": inline, "amount_options": amount_options, })
5,348,929
def create_stabil_mat(problem): """Using the stabilization material stub make it the true material.""" from sfepy.base.base import dict_to_struct, debug from sfepy.fem.functions import Function # Identity map... ns = {'p' : 'p', 'q' : 'q', 'u' : 'u', 'b' : 'b', 'v' : 'v', 'fluid' : 'fluid', 'omega' : 'omega', 'i1' : 'i1', 'i2' : 'i2'} variables = problem.get_variables() # Indices to the state vector. ii = {} ii['u'] = variables.get_indx(ns['u']) ii['us'] = variables.get_indx(ns['u'], stripped=True) ii['ps'] = variables.get_indx(ns['p'], stripped=True) stabil_mat = problem.materials['stabil'] stabil = dict_to_struct(stabil_mat.datas['special'], flag=(1,)) # The viscosity. fluid_mat = problem.materials[ns['fluid']] viscosity = fluid_mat.function()['viscosity'] # The Friedrich's constant. c_friedrichs = problem.domain.get_diameter() sigma = 1e-12 # 1 / dt. # Element diameter modes. diameter_modes = {'edge' : 0, 'volume' : 1, 'max' : 2} def mat_fun(ts, coor, mode=None, region=None, ig=None, b_norm=1.0): if mode != 'qp': return print '|b|_max (mat_fun):', b_norm gamma = viscosity + b_norm * c_friedrichs data = {} if stabil.gamma is None: data['gamma'] = stabil.gamma_mul * gamma else: data['gamma'] = nm.asarray( stabil.gamma_mul * stabil.gamma, dtype = nm.float64 ) data['gamma'] = nm.tile(data['gamma'], (coor.shape[0], 1, 1)) if stabil.delta is None: term = problem.equations['balance'].terms['dw_lin_convect'] for ig in term.iter_groups(): # This sets term.ig - for 1 group only!!! break var = variables[ns['u']] ap, vg = term.get_approximation(var) delta = 1.0 mode = diameter_modes[stabil.diameter_mode] cells = region.get_cells( ig ) diameters2 = problem.domain.get_element_diameters( ig, cells, vg, mode ) val1 = min( 1.0, 1.0 / sigma ) val2 = sigma * c_friedrichs**2 val3 = (b_norm**2) * min( (c_friedrichs**2) / viscosity, 1.0 / sigma ) # print val1, gamma, val2, val3 delta = stabil.delta_mul * val1 * diameters2 / (gamma + val2 + val3) n_qp = coor.shape[0] / diameters2.shape[0] data['diameters2'] = nm.repeat(diameters2, n_qp) data['diameters2'].shape = data['diameters2'].shape + (1, 1) data['delta'] = nm.repeat(delta, n_qp) data['delta'].shape = data['delta'].shape + (1, 1) else: val = stabil.delta_mul * stabil.delta data['delta'] = nm.tile(data['delta'], (coor.shape[0], 1, 1)) if stabil.tau is None: data['tau'] = stabil.tau_red * data['delta'] else: data['tau'] = nm.asarray( stabil.tau_mul * stabil.tau, dtype = nm.float64 ) data['tau'] = nm.tile(data['tau'], (coor.shape[0], 1, 1)) return data stabil_mat.set_function(Function('stabil', mat_fun)) return stabil_mat, ns, ii
5,348,930
def embedded_services(request: FixtureRequest) -> Optional[str]: """ Enable parametrization for the same cli option """ return getattr(request, 'param', None) or request.config.getoption('embedded_services', None)
5,348,931
def vigenere(plaintext,cypher): """Implementation of vigenere cypher""" i = 0 cyphertext = "" for character in plaintext: n = ord(cypher[i%len(cypher)].lower())-97 new_char = rot_char(character, n) cyphertext += new_char if new_char != ' ': i += 1 return cyphertext
5,348,932
def get_local_unit_slip_vector_SS(strike, dip, rake): """ Compute the STRIKE SLIP components of a unit slip vector. Args: strike (float): Clockwise angle (deg) from north of the line at the intersection of the rupture plane and the horizontal plane. dip (float): Angle (degrees) between rupture plane and the horizontal plane normal to the strike (0-90 using right hand rule). rake (float): Direction of motion of the hanging wall relative to the foot wall, as measured by the angle (deg) from the strike vector. Returns: Vector: Unit slip vector in 'local' N-S, E-W, U-D coordinates. """ strike = np.radians(strike) dip = np.radians(dip) rake = np.radians(rake) sx = np.cos(rake) * np.sin(strike) sy = np.cos(rake) * np.cos(strike) sz = 0.0 return Vector(sx, sy, sz)
5,348,933
def caWaitStable(pvs, values, vallo, valhi, **kwargs): """read pvs and wait until the std less than epsilon Parameters ----------- pvs : list or tuple. A list of PVs values : list or tuple. Same size as elemfld vallo : list or tuple with low boundary values. valhi : list or tuple with high boundary values. sample : int, optional, default 3, averaged over to compare timeout : int, optional, default 5, in seconds. dt : float, default 0.1 second. waiting between each check. verbose : int. Examples --------- >>> cors = getElements("COR") >>> pvs = [cors[0].pv(field='x', handle="readback")[0], ] >>> cors[0].x = 0 >>> waitReadback(pvs, [0.0, ], [-0.001,], [0.001,]) """ nsample = kwargs.pop("sample", 3) dt = kwargs.pop("dt", 0.2) verbose = kwargs.get("verbose", 0) n, t0 = len(pvs), datetime.now() buf = np.zeros((nsample, n), 'd') iloop = 0 while True: for i in range(nsample): # delay a bit time.sleep(dt/(nsample+1.0)) buf[i,:] = caget(pvs, **kwargs) avg = np.average(buf, axis=0) #if verbose > 0: # print "V:", avg # print vallo # print valhi if all([vallo[i] <= avg[i] <= valhi[i] for i in range(n)]): break t1 = datetime.now() if (t1 - t0).total_seconds() > kwargs.get("timeout", CA_TIMEOUT): vdiff = [avg[i] - values[i] for i in range(n)] raise RuntimeError("Timeout, tried {0} times, pv={1} " "avg_vals= {2} lo= {3} hi={4}\n" "above: {5}\nbelow: {6}".format( iloop, pvs, avg, vallo, valhi, avg-vallo, valhi-avg)) iloop = iloop + 1 time.sleep(dt)
5,348,934
def get_country_code(country_name): """Gets the code of the country given its name""" for code, name in COUNTRIES.items(): if name == country_name: return code
5,348,935
def build_model(cfg, train_cfg=None, test_cfg=None): """Build model.""" if train_cfg is None and test_cfg is None: return build(cfg, MODELS) else: return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
5,348,936
def send_plot_convergence(results, experiment=None, channel_name='convergence'): """Logs skopt plot_convergence figure to neptune. Image channel `convergence` is created and the output of the plot_convergence function is first covented to `neptune.Image` and then sent to neptune. Args: results('scipy.optimize.OptimizeResult'): Results object that is typically an output of the function like `skopt.forest_minimize(...)` experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. Examples: Run skopt training:: ... results = skopt.forest_minimize(objective, space, base_estimator='ET', n_calls=100, n_random_starts=10) Send skopt plot_convergence figure to neptune:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') sk_monitor.send_plot_convergence(results) """ _exp = experiment if experiment else neptune fig, ax = plt.subplots(figsize=(16, 12)) sk_plots.plot_convergence(results, ax=ax) with tempfile.NamedTemporaryFile(suffix='.png') as f: fig.savefig(f.name) _exp.send_image(channel_name, f.name)
5,348,937
def find_instruction_type(opcode: str) -> InstructionType: """Finds instruction type for object instruction Parameters ---------- opcode : str opcode of instruction in hex Returns ------- InstructionType type of instruction using InstructionType enum """ # R type instructions always have opcode = 00 if opcode == "00": i_type = InstructionType.R # I type instructions have opcode > 03 elif opcode > "03": i_type = InstructionType.I return i_type
5,348,938
def gen_tier_id(inst, id_base, tier_type=None, alignment=None, no_hyphenate=False): """ Unified method to generate a tier ID string. (See: https://github.com/goodmami/xigt/wiki/Conventions) """ # In order to number this item correctly, we need to decide how many tiers of the same type # there are. This is done by systematically adding filters to the list. filters = [] # First, do we align with another item? (Either segmentation, alignment, or head/dep) if alignment is not None: filters.append(lambda x: aln_match(alignment)(x) or seg_match(alignment)(x) or ref_match(x, alignment, DS_HEAD_ATTRIBUTE)) # Next, does the type match ours? if tier_type is not None: filters.append(type_match(tier_type)) # Get the number of tiers that match this. if not filters: prev_tiers = [] num_tiers = 0 else: prev_tiers = inst.findall(others=filters) num_tiers = len(prev_tiers) id_str = id_base # Now, if we have specified the alignment, we also want to prepend # that to the generated id string. if alignment is not None: if no_hyphenate: return '{}{}'.format(alignment, id_str) else: id_str = '{}-{}'.format(alignment, id_str) # Finally, if we have multiple tiers of the same type that annotate the # same item, we should append a letter for the different analyses. if num_tiers > 0 and inst.find(id=id_str) is not None: while True: letters = string.ascii_lowercase assert num_tiers < 26, "More than 26 alternative analyses not currently supported" potential_id = id_str + '_{}'.format(letters[num_tiers]) if inst.find(id=potential_id) is None: id_str = potential_id break else: num_tiers += 1 return id_str
5,348,939
def create_temporary_file(filename, contents=""): """ Decorator for constructing a file which is available during a single test and is deleted afterwards. Example usage:: @grader.test @create_temporary_file('hello.txt', 'Hello world!') def hook_test(m): with open('hello.txt') as file: txt = file.read() """ def _inner(test_function): before_test(create_file(filename, contents))(test_function) after_test(delete_file(filename))(test_function) return test_function return _inner
5,348,940
def find_post_translational_modifications(filter=None, page=0, pageSize=100): # noqa: E501 """Find values for an specific property, for example possible taxonomy values for Organism property # noqa: E501 :param filter: Keyword to filter the list of possible values :type filter: str :param page: Number of the page with the possible values for the property :type page: int :param pageSize: Number of values with the possible values for the property :type pageSize: int :rtype: List[PostTranslationalModification] """ unimod_database = UnimodDatabase() l = unimod_database.search_mods_by_keyword(keyword=filter) list_found = l[(page * pageSize):(page * pageSize) + pageSize] return list_found
5,348,941
def random_vector(A, b): """ Generates a random vector satisfying Ax <= b through rejection sampling. """ dimension = A.shape[1] not_feasible = True while not_feasible == True: config.reject_counter = config.reject_counter + 1 if config.reject_counter == config.milestone: config.milestone = config.milestone * 10 print(config.reject_counter, 'random vectors have been generated so far') rand_vec = np.random.uniform(-0.5, 0.5, dimension) if np.all(np.dot(A, rand_vec) <= b) == True: not_feasible = False return rand_vec
5,348,942
def mapi(mapper: Callable[[TSource, int], TResult]) -> Projection[TSource, TResult]: """Returns an observable sequence whose elements are the result of invoking the mapper function and incorporating the element's index on each element of the source.""" from .transform import mapi return mapi(mapper)
5,348,943
def game_to_screen(position): """ Converts coordinates from game view into screen coordinates for mouse interaction """ return (GAME_LEFT + position[0], GAME_TOP + position[1])
5,348,944
def get_graph_params(filename, nsize=1): """Load and process graph adjacency matrix and upsampling/downsampling matrices.""" data = np.load(filename, encoding='latin1') A = data['A'] U = data['U'] D = data['D'] U, D = scipy_to_pytorch(A, U, D) A = [adjmat_sparse(a, nsize=nsize) for a in A] return A, U, D
5,348,945
def register_task(kind, task_class, override=False): """ Register a new task implementation with the execution system """ if kind in _task_registry and not override: raise KeyError('Task of type %s is already defined and ' 'override is False') _task_registry[kind] = task_class
5,348,946
async def list_trainers_pokemon(message): """Lists all Pokemon caught by a trainer Command from discord: p!ka list p!ka - Bot command prefix list - Specifies to list all Pokemon caught by trainer """ await list_pokemon(message.message, registered_trainers, sqlite_conn)
5,348,947
def _(dbmodel, backend): """ get_backend_entity for DummyModel DbComputer. DummyModel instances are created when QueryBuilder queries the Django backend. """ from . import computers djcomputer_instance = djmodels.DbComputer( id=dbmodel.id, uuid=dbmodel.uuid, name=dbmodel.name, hostname=dbmodel.hostname, description=dbmodel.description, transport_type=dbmodel.transport_type, scheduler_type=dbmodel.scheduler_type, metadata=dbmodel.metadata ) return computers.DjangoComputer.from_dbmodel(djcomputer_instance, backend)
5,348,948
def persist(key, value): """ Write into ini file """ parser.set(SECTION, key, value) with open(INI_FILE, 'w') as f: parser.write(f)
5,348,949
def retrieve(filename, conf, return_format='dict', save_to_local=False, delete_remote=False, timeout=60): """Retrieving Processed Session File from server via sFTP 1. Get xml file string from server and return object 2. If save_to_local, save to local file system Args: filename: filename of file in outbound folder at remote server with '.asc' as extension. conf: An instance of utils.Configuration. return_format: Return format. The default is ‘dict’. Could be one of ‘dict’, ‘object’ or ‘xml’. save_to_local: whether save file to local. default is false. delete_remote: If delete the remote file after download. The default is False timeout: Timeout in second for ssh connection for sftp. Returns: response XML in desired format. Raises: Exception depends on when get it. """ if not isinstance(conf, utils.Configuration): raise utils.VantivException('conf must be an instance of utils.Configuration') if not isinstance(filename, six.string_types) or len(filename) < 4: raise utils.VantivException('filename must be a string, and at least 4 chars') if not isinstance(timeout, six.integer_types) or timeout < 0: raise utils.VantivException('timeout must be an positive int') response_xml = _get_file_str_from_sftp(filename, conf, delete_remote, timeout) if save_to_local: _save_str_file(response_xml, conf.batch_response_path, filename) return _generate_response(response_xml, return_format, conf)
5,348,950
def test_Minimal(): """Test the Minimal strategy.""" # Try to load the confounds, whithout PCA reduction conf = lc.Minimal() assert conf.strategy == ["high_pass", "motion", "wm_csf", "non_steady_state"] assert hasattr(conf, "global_signal") == False conf.load(file_confounds) assert isinstance(conf.confounds_, pd.DataFrame) # Check that all model categories have been successfully loaded list_check = [ "trans_y", "trans_z", "rot_z", "cosine00", "csf", "white_matter", ] for check in list_check: assert check in conf.confounds_.columns # maker sure global signal works conf = lc.Minimal(global_signal="basic") assert conf.strategy == ["high_pass", "motion", "wm_csf", "non_steady_state", "global"] assert conf.global_signal == "basic"
5,348,951
def get_simulate_func_options( params, options, method="n_step_ahead_with_sampling", df=None, n_simulation_periods=None, ): """Rewrite respy's get_simulation_function such that options can be passed and therefore the seed be changed before any run. Documentation is adapted from :func:`respy.simulate.get_simulate_func()` Parameters ---------- params : pandas.DataFrame DataFrame containing the model parameters. options : dict Dictionary containing the model options. method : {"n_step_ahead_with_sampling", "n_step_ahead_with_data", "one_step_ahead"} The simulation method which can be one of three and is explained in more detail in :func:`respy.simulate.simulate()`. df : pandas.DataFrame or None, default None DataFrame containing one or multiple observations per individual. n_simulation_periods : int or None, default None Simulate data for a number of periods. This options does not affect ``options["n_periods"]`` which controls the number of periods for which decision rules are computed. Returns ------- simulate_function : :func:`simulate` Simulation function where all arguments except the parameter vector and the options are set. """ optim_paras, options = process_params_and_options(params, options) n_simulation_periods, options = _harmonize_simulation_arguments( method, df, n_simulation_periods, options, ) df = _process_input_df_for_simulation(df, method, options, optim_paras) solve = get_solve_func(params, options) n_observations = ( df.shape[0] if method == "one_step_ahead" else df.shape[0] * n_simulation_periods ) shape = (n_observations, len(optim_paras["choices"])) base_draws_sim = create_base_draws( shape, next(options["simulation_seed_startup"]), "random", ) base_draws_wage = create_base_draws( shape, next(options["simulation_seed_startup"]), "random", ) simulate_function = partial( simulate, base_draws_sim=base_draws_sim, base_draws_wage=base_draws_wage, df=df, method=method, n_simulation_periods=n_simulation_periods, solve=solve, ) return simulate_function
5,348,952
def read_xspec_log_files(es_dir, out_rel_name, boot_num=2): """ Read in all XSPEC log files (with chatter set to 4) that were generated in sed_fit_bootstrap.sh, and append each bootstrap iteration's values to its sed_pars.Parameter. Parameters ---------- es_dir : str The directory with all the energy spectroscopy files from sed_fit_bootstrap.sh. out_rel_name : str The relative (i.e. local) name for the output files. boot_num : int Number of bootstrap iterations implemented. Returns ------- var_pars : np.array of sed_pars.Parameter() 2-D array of the SED parameters that vary with QPO phase, over all the bootstrap iterations. """ all_par_vals = np.zeros((N_SPECTRA, N_PARAMS)) for i in range(1, boot_num + 1): # for i in range(1, 10): boot_log_file = es_dir + "/" + out_rel_name + "_b-" + str(i) + \ "_xspec.log" # print log_file if os.path.isfile(boot_log_file): par_vals = xspec_boot_log_to_array(boot_log_file) # print "Shape of par vals:", np.shape(par_vals) all_par_vals = np.dstack((all_par_vals, par_vals)) else: pass # print "All par vals:", np.shape(all_par_vals) all_par_vals = all_par_vals[:,:,1:] # print "All par vals:", np.shape(all_par_vals) good_boots = np.shape(all_par_vals)[-1] # print "Good boots:", good_boots n_varpars = 0 delete_index = [] for j in range(N_PARAMS): if not check_equal(all_par_vals[:,j,0].flatten()): n_varpars += 1 else: delete_index.append(j) # print "Shape all par vals:", np.shape(all_par_vals) untied_varpar_vals = np.delete(all_par_vals, delete_index, axis=1) # print "Shape untied par vals:", np.shape(untied_varpar_vals) # print untied_varpar_vals return untied_varpar_vals, n_varpars, good_boots
5,348,953
def transformLimits(*args, **kwargs): """ The transformLimits command allows us to set, edit, or query the limits of the transformation that can be applied to objects. We can also turn any limits off which may have been previously set. When an object is first created, all the transformation limits are off by default.Transformation limits allow us to control how much an object can be transformed. This is most useful for joints, although it can be used any place we would like to limit the movement of an object.Default values are:( -1, 1) for translation, ( -1, 1) for scaling, and (-45,45) for rotation. In query mode, return type is based on queried flag. Flags: - enableRotationX : erx (bool, bool) [query] enable/disable the lower and upper x-rotation limitsWhen queried, it returns boolean boolean - enableRotationY : ery (bool, bool) [query] enable/disable the lower and upper y-rotation limitsWhen queried, it returns boolean boolean - enableRotationZ : erz (bool, bool) [query] enable/disable the lower and upper z-rotation limitsWhen queried, it returns boolean boolean - enableScaleX : esx (bool, bool) [query] enable/disable the lower and upper x-scale limitsWhen queried, it returns boolean boolean - enableScaleY : esy (bool, bool) [query] enable/disable the lower and upper y-scale limitsWhen queried, it returns boolean boolean - enableScaleZ : esz (bool, bool) [query] enable/disable the lower and upper z-scale limitsWhen queried, it returns boolean booleanFlag can have multiple arguments, passed either as a tuple or a list. - enableTranslationX : etx (bool, bool) [query] enable/disable the ower and upper x-translation limitsWhen queried, it returns boolean boolean - enableTranslationY : ety (bool, bool) [query] enable/disable the lower and upper y-translation limitsWhen queried, it returns boolean boolean - enableTranslationZ : etz (bool, bool) [query] enable/disable the lower and upper z-translation limitsWhen queried, it returns boolean boolean - remove : rm (bool) [create] turn all the limits off and reset them to their default values - rotationX : rx (float, float) [query] set the lower and upper x-rotation limitsWhen queried, it returns angle angle - rotationY : ry (float, float) [query] set the lower and upper y-rotation limitsWhen queried, it returns angle angle - rotationZ : rz (float, float) [query] set the lower and upper z-rotation limitsWhen queried, it returns angle angle - scaleX : sx (float, float) [query] set the lower and upper x-scale limitsWhen queried, it returns float float - scaleY : sy (float, float) [query] set the lower and upper y-scale limitsWhen queried, it returns float float - scaleZ : sz (float, float) [query] set the lower and upper z-scale limitsWhen queried, it returns float float - translationX : tx (float, float) [query] set the lower and upper x-translation limitsWhen queried, it returns linear linear - translationY : ty (float, float) [query] set the lower and upper y-translation limitsWhen queried, it returns linear linear - translationZ : tz (float, float) [query] set the lower and upper z-translation limitsWhen queried, it returns linear linear Derived from mel command `maya.cmds.transformLimits` """ pass
5,348,954
def get_host_user_and_ssh_key_path(instance_name, project, zone): """Return a tuple of (hostname, username and ssh_key_path).""" output = api.local( 'gcloud compute ssh --project "%s" --zone "%s" %s --dry-run' % (project, zone, instance_name), capture=True) print output m = re.match('/usr/bin/ssh .*-i ([^ ]+)(?: -o [^ ]+)* ([^ ]+)@([^ ]+)', output) return (m.group(3), m.group(2), m.group(1))
5,348,955
def TDataStd_TreeNode_Find(*args): """ * class methods working on the node =================================== Returns true if the tree node T is found on the label L. Otherwise, false is returned. :param L: :type L: TDF_Label & :param T: :type T: Handle_TDataStd_TreeNode & :rtype: bool """ return _TDataStd.TDataStd_TreeNode_Find(*args)
5,348,956
def make_group_corr_mat(df): """ This function reads in each subject's aal roi time series files and creates roi-roi correlation matrices for each subject and then sums them all together. The final output is a 3d matrix of all subjects roi-roi correlations, a mean roi-roi correlation matrix and a roi-roi covariance matrix. **NOTE WELL** This returns correlations transformed by the Fisher z, aka arctanh, function. """ # for each subject do the following for i, (sub, f_id) in enumerate(df[['SUB_ID', 'FILE_ID']].values): #read each subjects aal roi time series files ts_df = pd.read_table('DATA/{}_rois_aal.1D'.format(f_id)) #create a correlation matrix from the roi all time series files corr_mat_r = ts_df.corr() #the correlations need to be transformed to Fisher z, which is #equivalent to the arctanh function. corr_mat_z = np.arctanh(corr_mat_r) #for the first subject, add a correlation matrix of zeros that is the same dimensions as the aal roi-roi matrix if i == 0: all_corr_mat = np.zeros([corr_mat_z.shape[0], corr_mat_z.shape[1], len(df)]) #now add the correlation matrix you just created for each subject to the all_corr_mat matrix (3D) all_corr_mat[:, :, i] = corr_mat_z #create the mean correlation matrix (ignore nas - sometime there are some...) av_corr_mat = np.nanmean(all_corr_mat, axis=2) #create the group covariance matrix (ignore nas - sometime there are some...) var_corr_mat = np.nanvar(all_corr_mat, axis=2) return all_corr_mat, av_corr_mat, var_corr_mat
5,348,957
def get_tradedate(begin, end): """ get tradedate between begin date and end date Params: begin: str,eg: '1999-01-01' end: str,eg: '2017-12-31' Return: pd.DataFrame """ try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT calendar_date FROM trade_calendar WHERE is_trade_day= 1 AND \ calendar_date>='" + begin + "' AND calendar_date<='" + end + "';" cursor.execute(query) date = pd.DataFrame(list(cursor.fetchall())) date.columns = ['date'] date = pd.DataFrame(pd.to_datetime(date['date'])) return date finally: if conn: conn.close()
5,348,958
def collect_tweet(update: Update, context: CallbackContext) -> int: """Tweet caption collection for tweet without attachments""" logger.info("'{update.message.text}' tweet type selected") update.message.reply_text("Enter the tweet") return TWEET
5,348,959
def get_unhandled_crictical_errors(req:HttpRequest, n:int): """ Preprocess errors before injection and gets `n` unhandled errors Typical Return Value if `n` errors were found... {"es":[ { "id": "192.168.1.51", "title":"hey there" } ] } """ errors:Dict = {} # define return object # get the neccessary errors errors_query = Error.objects.filter(isHandled=False, ecode__lt=2000, ecode__gt=1000)[:n] es_tmp:list = [] for error in errors_query: e_tmp:dict victim:object # e_tmp["id"] = error.victim code = error.ecode # if ecode > 1500, then it belongs to the child if code > 1500 and code < 2000: victim = Child.objects.get(ip=error.victim).first() e_tmp["id"] = victim.nickname | victim.ip # if not then belongs to smart task elif code > 1000 and code < 1500: e_tmp["id"] = STask.objects.get(sid=error.victim).first().name # rarely error record may be corrupted else: raise Exception(f"Given ecode{error.ecode} in the error{error.eid} obj is invalid") e_tmp["title"] = get_error_title(error.ecode) es_tmp.append(e_tmp) del e_tmp, victim # compile the return object errors["es"] = es_tmp del es_tmp return JsonResponse(errors)
5,348,960
def ADO_mappings(N, K, level_cutoff): """ ADO (auxilary density operators) are indexed by a N by (K + 1) matrix consisting of non-negative integers. ADO_mappings calculates all possible matrices "ado_index" of size N by (K+1) where np.sum(m) < level_cutoff Parameters ---------- N : integer number of states K : integer number of exponentials to include in the spectral density correlation function level_cutoff : integer number of levels at which to terminate the heiarchy expansion Returns ------- ind_to_mat : list of matrices maps index to np.array mat_to_ind : function maps the np.array to the index --------------------------------------------------------------------------- Define S to be the set of all matrices of size N by (K + 1) with non-negative integer values. Define level L_i as: L_i = {m \in S | np.sum(m) == i} L_i can be found using the multichoose function. We will preserve the order that multichoose uses in ordering L_i L_i corresponds to the set of ADOs in the ith heiarchy. L_0 is a singleton set, corresponding to the RDO (reduced density matrix) """ bins = N * (K + 1) permutations = [] for c in range(level_cutoff): permutations.extend(multichoose(bins, c)) inverted_permutations = {tuple(v): i for i, v in enumerate(permutations)} def mat_to_ind(mat): """maps np.array to index""" vec = mat.flatten() try: return inverted_permutations[tuple(vec)] except KeyError: return None ind_to_mat = [np.array(vec).reshape((N, K + 1)) for vec in permutations] return ind_to_mat, mat_to_ind
5,348,961
def f_beta(precision, recall, beta): """ Returns the F score for precision, recall and a beta parameter :param precision: a double with the precision value :param recall: a double with the recall value :param beta: a double with the beta parameter of the F measure, which gives more or less weight to precision vs. recall :return: a double value of the f(beta) measure. """ if np.isnan(precision) or np.isnan(recall) or (precision == 0 and recall == 0): return np.nan return ((1 + beta ** 2) * precision * recall) / (((beta ** 2) * precision) + recall)
5,348,962
def convert_image_to_dicom(image_file): """Read an image file, convert it to Dicom and return the file path""" # Load pixel array from image. img = Image.open(image_file) if ('RGB' == img.mode) or ('RGBA' == img.mode): # Assuming greyscale image, keep only one channel. pix = np.array(img)[:, :, 0] elif 'L' == img.mode: # One black and white channel. pix = np.array(img)[:, :] else: raise ValueError('Unhandled Image mode: {}'.format(img.mode)) # Write pixel array to Dicom file. stk = sitk.GetImageFromArray(pix) writer = sitk.ImageFileWriter() writer.KeepOriginalImageUIDOn() img_basename = os.path.splitext(os.path.basename(image_file))[0] + '_' dicom_file = tempfile.NamedTemporaryFile(prefix=img_basename).name + '.dcm' writer.SetFileName(dicom_file) writer.Execute(stk) return dicom_file
5,348,963
def get_highly_variable_genes( adata, normalized_counts_per_cell=10000, min_counts=3, min_cells=3, min_gene_vscore_pctl=85, ): """ Get highly variable genes. We assume that data preprocessing are already done, like removing low quality cells. It first perform count normalization, then variable gene selection. Parameters ---------- adata: :class:`~anndata.AnnData` object normalized_counts_per_cell: `int`, optional (default: 1000) count matrix normalization min_counts: `int`, optional (default: 3) Minimum number of UMIs per cell to be considered for selecting highly variable genes. min_cells: `int`, optional (default: 3) Minimum number of cells per gene to be considered for selecting highly variable genes. min_gene_vscore_pctl: `int`, optional (default: 85) Gene expression variability threshold, in the unit of percentile, for selecting highly variable genes. Range: [0,100], with a higher number selecting more variable genes. Returns ------- Modify adata.var['highly_variable']. If 'highly_variable' existed before, save a copy at adata.obs['highly_variable_old'] """ sc.pp.normalize_per_cell(adata, counts_per_cell_after=normalized_counts_per_cell) verbose = logg._settings_verbosity_greater_or_equal_than( 2 ) # the highest level is 3 logg.info("Finding highly variable genes...") gene_list = adata.var_names gene_idx = hf.filter_genes( adata.X, min_counts=min_counts, min_cells=min_cells, min_vscore_pctl=min_gene_vscore_pctl, show_vscore_plot=verbose, ) highvar_genes = gene_list[gene_idx] if "highly_variable" in adata.var.keys(): adata.var["highly_variable_old"] = adata.var["highly_variable"].copy() adata.var["highly_variable"] = False adata.var.loc[highvar_genes, "highly_variable"] = True logg.info(f"Keeping {len(highvar_genes)} genes")
5,348,964
async def sysdetails(sysd): """ For .sysd command, get system info using neofetch. """ if not sysd.text[0].isalpha() and sysd.text[0] not in ("/", "#", "@", "!"): try: fetch = await asyncrunapp( "neofetch", "--stdout", stdout=asyncPIPE, stderr=asyncPIPE, ) stdout, stderr = await fetch.communicate() result = str(stdout.decode().strip()) + str(stderr.decode().strip()) await sysd.edit("`" + result + "`") except FileNotFoundError: await sysd.edit("**Instale o neofetch primeiro!**")
5,348,965
def get_cfg(existing_cfg, _log): """ generates """ _sanity_check(existing_cfg, _log) import ntpath, os, yaml with open(os.path.join(os.path.dirname(__file__), "{}.yml".format(ntpath.basename(__file__).split(".")[0])), 'r') as stream: try: ret = yaml.load(stream) except yaml.YAMLError as exc: assert "Default config yaml for '{}' not found!".format(os.path.splitext(__file__)[0]) return ret
5,348,966
def download_alphafold_cif( proteins: list, out_folder: str, out_format: str = "{}.cif", alphafold_cif_url: str = 'https://alphafold.ebi.ac.uk/files/AF-{}-F1-model_v1.cif', timeout: int = 60, verbose_log: bool = False, ) -> tuple: """ Function to download .cif files of protein structures predicted by AlphaFold. Parameters ---------- proteins : list List (or any other iterable) of UniProt protein accessions for which to download the structures. out_folder : str Path to the output folder. alphafold_cif_url : str The base link from where to download cif files. The brackets {} are replaced by a protein name from the proteins list. Default is 'https://alphafold.ebi.ac.uk/files/AF-{}-F1-model_v1.cif'. timeout : int Time to wait for reconnection of downloads. Default is 60. verbose_log: bool Whether to write verbose logging information. Default is False. Returns ------- : (list, list, list) The lists of valid, invalid and existing protein accessions. """ socket.setdefaulttimeout(timeout) valid_proteins = [] invalid_proteins = [] existing_proteins = [] if not os.path.exists(out_folder): os.makedirs(out_folder) for protein in tqdm.tqdm(proteins): name_in = alphafold_cif_url.format(protein) name_out = os.path.join( out_folder, out_format.format(protein) ) if os.path.isfile(name_out): existing_proteins.append(protein) else: try: urllib.request.urlretrieve(name_in, name_out) valid_proteins.append(protein) except urllib.error.HTTPError: if verbose_log: logging.info(f"Protein {protein} not available for CIF download.") invalid_proteins.append(protein) logging.info(f"Valid proteins: {len(valid_proteins)}") logging.info(f"Invalid proteins: {len(invalid_proteins)}") logging.info(f"Existing proteins: {len(existing_proteins)}") return(valid_proteins, invalid_proteins, existing_proteins)
5,348,967
def test_staff_user_cannot_create_youth_profile_if_profile_does_not_exist( rf, staff_user_gql_client, mocker, profile_api_response ): """Creating a youth profile will query Helsinki profile for the given profile id.""" mocker.patch.object(ProfileAPI, "fetch_profile", return_value={"id": ""}) profile_id = from_global_id(profile_api_response["id"])[1] profile_global_id = to_global_id(type="YouthProfileNode", id=profile_id) user = staff_user_gql_client.user request = rf.post("/graphql") request.user = user today = date.today() birth_date = today.replace(year=today.year - 13) - timedelta(days=1) youth_profile_data = { "birth_date": birth_date.strftime("%Y-%m-%d"), "approver_email": "[email protected]", } t = Template( """ mutation { createYouthProfile( input: { id: \"${id}\", youthProfile: { birthDate: \"${birth_date}\", approverEmail: \"${approver_email}\", } profileApiToken: "token" } ) { youthProfile { id } } } """ ) query = t.substitute( id=profile_global_id, birth_date=youth_profile_data["birth_date"], approver_email=youth_profile_data["approver_email"], ) executed = staff_user_gql_client.execute(query, context=request) assert ( executed["errors"][0].get("extensions").get("code") == PROFILE_DOES_NOT_EXIST_ERROR )
5,348,968
def test_show_tables(): """ Tests show tables command. """ ret = {} ret["stdout"] = "bad_hosts" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(pf.__salt__, {"cmd.run_all": mock_cmd}): res = pf.show("tables") mock_cmd.assert_called_once_with( "pfctl -s Tables", output_loglevel="trace", python_shell=False ) assert not res["changes"]
5,348,969
def secret_age_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[SecretsManager.1] Secrets over 90 days old should be rotated""" secret = list_secrets(cache=cache) for secrets in secret["SecretList"]: secretArn = str(secrets["ARN"]) secretName = str(secrets["Name"]) lastChangedDate = secrets["LastChangedDate"] todaysDatetime = datetime.datetime.now(datetime.timezone.utc) secretAgeFinder = todaysDatetime - lastChangedDate # ISO Time iso8601Time = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() if secretAgeFinder >= datetime.timedelta(days=90): finding = { "SchemaVersion": "2018-10-08", "Id": secretArn + "/secrets-manager-age-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": secretArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[SecretsManager.1] Secrets over 90 days old should be rotated", "Description": secretName + " is over 90 days old and should be rotated. Refer to the remediation instructions if this configuration is not intended", "Remediation": { "Recommendation": { "Text": "For more information on Secret Rotation refer to the Rotating Your AWS Secrets Manager Secrets section of the AWS Secrets Manager User Guide", "Url": "https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsSecretsManagerSecret", "Id": secretArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"AwsSecretsManagerSecret": {"Name": secretName}} } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.AC-1", "NIST SP 800-53 AC-1", "NIST SP 800-53 AC-2", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-3", "NIST SP 800-53 IA-4", "NIST SP 800-53 IA-5", "NIST SP 800-53 IA-6", "NIST SP 800-53 IA-7", "NIST SP 800-53 IA-8", "NIST SP 800-53 IA-9", "NIST SP 800-53 IA-10", "NIST SP 800-53 IA-11", "AICPA TSC CC6.1", "AICPA TSC CC6.2", "ISO 27001:2013 A.9.2.1", "ISO 27001:2013 A.9.2.2", "ISO 27001:2013 A.9.2.3", "ISO 27001:2013 A.9.2.4", "ISO 27001:2013 A.9.2.6", "ISO 27001:2013 A.9.3.1", "ISO 27001:2013 A.9.4.2", "ISO 27001:2013 A.9.4.3", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": secretArn + "/secrets-manager-age-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": secretArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[SecretsManager.1] Secrets over 90 days old should be rotated", "Description": secretName + " is over 90 days old and should be rotated.", "Remediation": { "Recommendation": { "Text": "For more information on Secret Rotation refer to the Rotating Your AWS Secrets Manager Secrets section of the AWS Secrets Manager User Guide", "Url": "https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsSecretsManagerSecret", "Id": secretArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"AwsSecretsManagerSecret": {"Name": secretName}} } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.AC-1", "NIST SP 800-53 AC-1", "NIST SP 800-53 AC-2", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-3", "NIST SP 800-53 IA-4", "NIST SP 800-53 IA-5", "NIST SP 800-53 IA-6", "NIST SP 800-53 IA-7", "NIST SP 800-53 IA-8", "NIST SP 800-53 IA-9", "NIST SP 800-53 IA-10", "NIST SP 800-53 IA-11", "AICPA TSC CC6.1", "AICPA TSC CC6.2", "ISO 27001:2013 A.9.2.1", "ISO 27001:2013 A.9.2.2", "ISO 27001:2013 A.9.2.3", "ISO 27001:2013 A.9.2.4", "ISO 27001:2013 A.9.2.6", "ISO 27001:2013 A.9.3.1", "ISO 27001:2013 A.9.4.2", "ISO 27001:2013 A.9.4.3", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding
5,348,970
def _gecko_path(): """Either get the executable or raise an error""" if sys.platform == "win32": return os.path.join(PCKG_PATH, "win32", "geckodriver.exe") if sys.platform == 'linux': return os.path.join(PCKG_PATH, "linux", "geckodriver") if sys.platform == 'darwin': return os.path.join(PCKG_PATH, "macos", "geckodriver") raise OSError("not supported yet")
5,348,971
def generate_makefiles(target_config, verbose, parts, tracing): """ Generate the makefiles to build everything. target_config is the target configuration. verbose is set if the output is to be displayed. parts is the number of parts the generated code should be split into. tracing is set if the generated code should include tracing calls. """ # For the top-level .pro file. toplevel_pro = 'PyQt5.pro' subdirs = [] # Set the SIP platform, version and feature flags. sip_flags = get_sip_flags(target_config) # Go through the modules. pyqt_modules = list(target_config.pyqt_modules) # Add the internal modules if they are required. if not target_config.no_tools: pyqt_modules.append('pylupdate') pyqt_modules.append('pyrcc') for mname in pyqt_modules: metadata = MODULE_METADATA[mname] if metadata.qpy_lib: sp_qpy_dir = source_path('qpy', mname) qpy_c_sources = [os.path.relpath(f, mname) for f in glob.glob(os.path.join(sp_qpy_dir, '*.c'))] qpy_cpp_sources = [os.path.relpath(f, mname) for f in glob.glob(os.path.join(sp_qpy_dir, '*.cpp'))] qpy_headers = [os.path.relpath(f, mname) for f in glob.glob(os.path.join(sp_qpy_dir, '*.h'))] qpy_sources = qpy_c_sources + qpy_cpp_sources else: qpy_sources = [] qpy_headers = [] generate_sip_module_code(target_config, verbose, parts, tracing, mname, sip_flags, metadata.public, qpy_sources, qpy_headers) subdirs.append(mname) # Generate the composite module. qtmod_sipdir = os.path.join('sip', 'Qt') mk_clean_dir(qtmod_sipdir) qtmod_sipfile = os.path.join(qtmod_sipdir, 'Qtmod.sip') f = open_for_writing(qtmod_sipfile) f.write('''%CompositeModule PyQt5.Qt ''') for mname in COMPOSITE_COMPONENTS: if mname in target_config.pyqt_modules: f.write('%%Include %s/%smod.sip\n' % (mname, mname)) f.close() generate_sip_module_code(target_config, verbose, parts, tracing, 'Qt', sip_flags, False) subdirs.append('Qt') wrappers = [] if not target_config.no_tools: # Generate the pylupdate5 and pyrcc5 wrappers. for tool in ('pylupdate', 'pyrcc'): wrappers.append((tool, generate_tool_wrapper(target_config, tool + '5', 'PyQt5.%s_main' % tool))) # Generate the pyuic5 wrapper. wrappers.append(('pyuic', generate_tool_wrapper(target_config, 'pyuic5', 'PyQt5.uic.pyuic'))) # Generate the Qt Designer plugin. if not target_config.no_designer_plugin and 'QtDesigner' in target_config.pyqt_modules: if generate_plugin_makefile(target_config, verbose, 'designer', target_config.designer_plugin_dir, "Qt Designer"): subdirs.append('designer') # Generate the qmlscene plugin. if not target_config.no_qml_plugin and 'QtQml' in target_config.pyqt_modules: if generate_plugin_makefile(target_config, verbose, 'qmlscene', target_config.qml_plugin_dir, "qmlscene"): subdirs.append('qmlscene') rewrite_qmldir(target_config, 'Charts', source_path('examples', 'quick', 'tutorials', 'extending', 'chapter6-plugins')) # Generate the QScintilla API file. if target_config.qsci_api: inform("Generating the QScintilla API file...") f = open_for_writing('PyQt5.api') for mname in target_config.pyqt_modules: if MODULE_METADATA[mname].public: api = open(mname + '.api') for l in api: f.write('PyQt5.' + l) api.close() os.remove(mname + '.api') f.close() # Generate the Python dbus module. if target_config.pydbus_module_dir != '': mname = 'dbus' mk_dir(mname) sp_src_dir = source_path(mname) lib_dirs = ['-L' + l for l in target_config.dbus_lib_dirs] lib_names = ['-l' + l for l in target_config.dbus_libs] libs = ' '.join(lib_dirs + lib_names) generate_module_makefile(target_config, verbose, mname, include_paths=target_config.dbus_inc_dirs, libs=libs, install_path=target_config.pydbus_module_dir, src_dir=sp_src_dir) subdirs.append(mname) # Generate the top-level .pro file. inform("Generating the top-level .pro file...") out_f = open_for_writing(toplevel_pro) root_dir = qmake_quote(target_config.pyqt_module_dir + '/PyQt5') out_f.write('''TEMPLATE = subdirs CONFIG += ordered nostrip SUBDIRS = %s init_py.files = %s init_py.path = %s INSTALLS += init_py ''' % (' '.join(subdirs), source_path('__init__.py'), root_dir)) # Install the uic module. out_f.write(''' uic_package.files = %s uic_package.path = %s INSTALLS += uic_package ''' % (source_path('pyuic', 'uic'), root_dir)) # Install the tool main scripts and wrappers. if wrappers: wrapper_exes = [] for tool, wrapper in wrappers: if tool != 'pyuic': out_f.write(''' %s.files = %s %s.path = %s INSTALLS += %s ''' % (tool, source_path('sip', tool, tool + '_main.py'), tool, root_dir, tool)) wrapper_exes.append(wrapper) out_f.write(''' tools.files = %s tools.path = %s INSTALLS += tools ''' % (' '.join(wrapper_exes), qmake_quote(target_config.pyqt_bin_dir))) # Install the stub files. if target_config.py_version >= 0x030500 and target_config.pyqt_stubs_dir: out_f.write(''' pep484_stubs.files = %s Qt.pyi pep484_stubs.path = %s INSTALLS += pep484_stubs ''' % (' '.join([mname + '.pyi' for mname in target_config.pyqt_modules]), qmake_quote(target_config.pyqt_stubs_dir))) # Install the QScintilla .api file. if target_config.qsci_api: out_f.write(''' qscintilla_api.files = PyQt5.api qscintilla_api.path = %s INSTALLS += qscintilla_api ''' % qmake_quote(target_config.qsci_api_dir + '/api/python')) out_f.close() # Make the wrappers executable on platforms that support it. If we did it # after running qmake then (on Linux) the execute bits would be stripped on # installation. if target_config.py_platform != 'win32': for tool, wrapper in wrappers: inform("Making the %s wrapper executable..." % wrapper) sbuf = os.stat(wrapper) mode = sbuf.st_mode mode |= (stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) os.chmod(wrapper, mode) # Generate the makefiles. inform("Generating the Makefiles...") run_qmake(target_config, verbose, toplevel_pro, recursive=True)
5,348,972
def readShort(f): """Read 2 bytes as BE integer in file f""" read_bytes = f.read(2) return struct.unpack(">h", read_bytes)[0]
5,348,973
def get_color(thing): """Get color for thing. :param thing: Thing to get color for. :return: Color tuple if rule exists otherwise None. """ for rule in _COLOR_RULES: color = rule(thing) if color is not None: return color return None
5,348,974
def build_table(infos): """ Builds markdown table. """ table_str = '| ' for key in infos[0].keys(): table_str += key + ' | ' table_str += '\n' table_str += '| ' for key in infos[0].keys(): table_str += '--- | ' table_str += '\n' for info in infos: table_str += '| ' for value in info.values(): table_str += str(value) + ' | ' table_str += '\n' return table_str
5,348,975
def notify_telegram(title, content, token=None, chat=None, mention_user=None, **kwargs): """ Sends a telegram notification and returns *True* on success. The communication with the telegram API might have some delays and is therefore handled by a thread. """ # test import import telegram # noqa: F401 cfg = Config.instance() # get default token and chat if not token: token = cfg.get_expanded("notifications", "telegram_token") if not chat: chat = cfg.get_expanded("notifications", "telegram_chat") if not token or not chat: logger.warning("cannot send Telegram notification, token ({}) or chat ({}) empty".format( token, chat)) return False # append the user to mention to the title # unless explicitly set to empty string mention_text = "" if mention_user is None: mention_user = cfg.get_expanded("notifications", "telegram_mention_user") if mention_user: mention_text = " (@{})".format(mention_user) # request data for the API call request = { "parse_mode": "Markdown", } # standard or attachment content? if isinstance(content, six.string_types): request["text"] = "{}{}\n\n{}".format(title, mention_text, content) else: # content is a dict, add some formatting request["text"] = "{}{}\n\n".format(title, mention_text) for key, value in content.items(): request["text"] += "_{}_: {}\n".format(key, value) # extend by arbitrary kwargs request.update(kwargs) # threaded, non-blocking API communication thread = threading.Thread(target=_notify_telegram, args=(token, chat, request)) thread.start() return True
5,348,976
def convert_to_dapr_duration(td: timedelta) -> str: """Converts date.timedelta to Dapr duration format. Args: td (datetime.timedelta): python datetime object. Returns: str: dapr duration format string. """ total_minutes, secs = divmod(td.total_seconds(), 60.0) hours, mins = divmod(total_minutes, 60.0) return f'{hours:.0f}h{mins:.0f}m{secs:.0f}s'
5,348,977
def test_main_ls(): """ If the ls command is issued, check the appropriate function is called. """ mock_serial = mock.MagicMock() mock_class = mock.MagicMock() mock_class.__enter__.return_value = mock_serial with mock.patch( "microfs.ls", return_value=["foo", "bar"] ) as mock_ls, mock.patch( "microfs.get_serial", return_value=mock_class ), mock.patch.object( builtins, "print" ) as mock_print: microfs.main(argv=["ls"]) mock_ls.assert_called_once_with() mock_print.assert_called_once_with("foo bar")
5,348,978
def get_slot(handler_input, slot_name): # type: (HandlerInput, AnyStr) -> Optional[Slot] """Return the slot information from intent request. The method retrieves the slot information :py:class:`ask_sdk_model.slot.Slot` from the input intent request for the given ``slot_name``. More information on the slots can be found here : https://developer.amazon.com/docs/custom-skills/request-types-reference.html#slot-object If there is no such slot, then a ``None`` is returned. If the input request is not an :py:class:`ask_sdk_model.intent_request.IntentRequest`, a :py:class:`TypeError` is raised. :param handler_input: The handler input instance that is generally passed in the sdk's request and exception components :type handler_input: ask_sdk_core.handler_input.HandlerInput :param slot_name: Name of the slot that needs to be retrieved :type slot_name: str :return: Slot information for the provided slot name if it exists, or a `None` value :rtype: Optional[ask_sdk_model.slot.Slot] :raises: TypeError if the input is not an IntentRequest """ request = handler_input.request_envelope.request if isinstance(request, IntentRequest): if request.intent.slots is not None: return request.intent.slots.get(slot_name, None) else: return None raise TypeError("The provided request is not an IntentRequest")
5,348,979
def password_to_key( hash_implementation: Callable[[bytes], TDigestable], padding_length: int ) -> Callable[[bytes, bytes], bytes]: """ Create a helper function to convert passwords to SNMP compliant keys according to :rfc:`3414`. >>> hasher = password_to_key(hashlib.sha1, 20) >>> key = hasher(b"mypasswd", b"target-engine-id") >>> key.hex() '999ec23ca66b9d3f187ab5208840c30b0450b452' :param hash_implementation: A callable that creates an object with a ".digest()" method from a bytes-object. Usable examples are `hashlib.md5` and `hashlib.sha1` :param padding_length: The padding length to be used during hashing (as defined in the SNMP rfc) :returns: A callable which can be used to derive an SNMP compliant key from a password. """ @lru_cache(maxsize=None) def hasher(password: bytes, engine_id: bytes) -> bytes: """ Derive a key from a password and engine-id. :param password: The user password :param engine_id: The target engine ID :returns: The derived key """ # Repeat the password for a total of 1MB worth of data (as per SNMP rfc) hash_size = 1024 * 1024 num_words = hash_size // len(password) tmp = (password * (num_words + 1))[:hash_size] hash_instance = hash_implementation(tmp) key = hash_instance.digest() localised_buffer = ( key[:padding_length] + engine_id + key[:padding_length] ) final_key = hash_implementation(localised_buffer).digest() return final_key hasher.__name__ = f"<hasher:{hash_implementation}>" # type: ignore return hasher
5,348,980
def categorize_tag_key_characters(OSM_FILE = "data\\round_rock.xml", category = 'Summary'): """Categorizes attributes into those with: all lower character, all lower after colon(:), containing special/problem characters and all all others that were not listed in above which includes uppercase characters and/or multiple colons. Keyword arguments: OSM_File -- .osm or .xml file (default "data\\round_rock.xml") category -- print specific keys of categories of characters from regex search (default 'Summary' ['All', 'lower', 'lower_colon', 'porblemchars', 'other']) """ if category == 'All': category = ('lower', 'lower_colon', 'porblemchars', 'other') category_list = list(category) lower = re.compile(r'^([a-z]|_)*$') lower_colon = re.compile(r'^([a-z]|_)*:([a-z]|_)*$') problemchars = re.compile(r'[=\+/&<>;\'"\?%#$@\,\. \t\r\n]') lower_set = set() lower_colon_set = set() problemchars_set = set() other_set = set() def key_type(element, keys): if element.tag == "tag": if lower.match(element.attrib['k']): lower_set.add(element.attrib['k']) keys["lower"] += 1 elif lower_colon.match(element.attrib['k']): lower_colon_set.add(element.attrib['k']) keys["lower_colon"] += 1 elif problemchars.match(element.attrib['k']): problemchars_set.add(element.attrib['k']) keys["problemchars"] += 1 else: other_set.add(element.attrib['k']) keys["other"] += 1 return keys def process_map(filename): keys = {"lower": 0, "lower_colon": 0, "problemchars": 0, "other": 0} for _, element in ET.iterparse(filename): keys = key_type(element, keys) print(keys) print( "\nThere are:\n\ {} unique keys in lower,\n\ {} unique keys in lower_colon,\n\ {} unique keys in problemchars and\n\ {} unique keys in other.\n" .format(len(lower_set), len(lower_colon_set), len(problemchars_set), len(other_set)) ) if 'lower' in category_list: print('\n\nlower set has {} items. The unique items are: \n\n{} \n\n' .format(keys["lower"], sorted(lower_set))) if 'lower_colon' in category_list: print('lower_colon set has {} items. The unique items are: \n\n{} \n\n' .format(keys["lower_colon"], sorted(lower_colon_set))) if 'problemchars' in category_list: print('problemchars set has {} items. The unique items are: \n\n{} \n\n' .format(keys["problemchars"], sorted(problemchars_set))) if 'other' in category_list: print('other set has {} items. The unique items are: \n\n{} \n\n' .format(keys["other"], sorted(other_set))) return keys keys_dicts = process_map(OSM_FILE) return keys_dicts
5,348,981
def rotate_left(value, count, nbits, offset): """ Rotate a value to the left (or right) @param value: value to rotate @param count: number of times to rotate. negative counter means rotate to the right @param nbits: number of bits to rotate @param offset: offset of the first bit to rotate @return: the value with the specified field rotated all other bits are not modified """ assert offset >= 0, "offset must be >= 0" assert nbits > 0, "nbits must be > 0" mask = 2**(offset+nbits) - 2**offset tmp = value & mask if count > 0: for x in xrange(count): if (tmp >> (offset+nbits-1)) & 1: tmp = (tmp << 1) | (1 << offset) else: tmp = (tmp << 1) else: for x in xrange(-count): if (tmp >> offset) & 1: tmp = (tmp >> 1) | (1 << (offset+nbits-1)) else: tmp = (tmp >> 1) value = (value-(value&mask)) | (tmp & mask) return value
5,348,982
def set_categories(categories): """ Take a dictionary mapping video category IDs to name and retrieval time. All items are stored into cache node 'videoCategories', but for the ones with a retrieval time too long ago, the v3 API is queried before. """ timestamp = time.time() idlist = [cid for cid, item in categories.items() if item.get('updated', 0) < timestamp - g.lifespan] if len(idlist) > 0: query = {'id': ','.join(idlist), 'part': 'snippet'} catinfo = call_gdata('videoCategories', query) try: for item in catinfo.get('items', []): cid = item['id'] title = item.get('snippet', {}).get('title', 'unknown') categories[cid] = {'title':title, 'updated':timestamp} except Exception: raise IOError("Error fetching category name for IDs %s" % idlist) cache('categories').update(categories)
5,348,983
def geo_to_string(value): """ Convert geo objects to strings, because they don't support equality. """ if isinstance(value, list): return [geo_to_string(x) for x in value] if isinstance(value, dict): result = {} for dict_key, dict_value in value.iteritems(): result[dict_key] = geo_to_string(dict_value) return result if isinstance(value, aerospike.GeoJSON): return str(value) return value
5,348,984
def setMaxSharedMemory(): """ Check and verify that the kernel.shmmax kernel parameter is above 35mb """ # First verify that kernel.shmmax is not set and is below the requested value. logging.debug("loading %s", basedefs.FILE_SYSCTL) txtHandler = utils.TextConfigFileHandler(basedefs.FILE_SYSCTL) txtHandler.open() # Compare to basedefs.CONST_SHMMAX currentShmmax = txtHandler.getParam("kernel.shmmax") if currentShmmax and (int(currentShmmax) >= basedefs.CONST_SHMMAX): logging.debug("current shared memory max in kernel is %s, there is no need to update the kernel parameters", currentShmmax) return # If we got here, it means we need to update kernel.shmmax in sysctl.conf logging.debug("setting SHARED MEMORY MAX to: %s", basedefs.CONST_SHMMAX) txtHandler.editParam("kernel.shmmax", basedefs.CONST_SHMMAX) txtHandler.close() # Execute sysctl -a utils.execExternalCmd("%s -e -p" % basedefs.EXEC_SYSCTL, True, output_messages.ERR_EXP_FAILED_KERNEL_PARAMS)
5,348,985
def magma_dposv_gpu(uplo, n, nhrs, a_gpu, lda, b_gpu, ldb): """ Solve linear system with positive semidefinite coefficient matrix. """ uplo = _uplo_conversion[uplo] info = c_int_type() status = _libmagma.magma_dposv_gpu(uplo, n, nhrs, int(a_gpu), lda, int(b_gpu), ldb, ctypes.byref(info)) magmaCheckStatus(status)
5,348,986
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description="I'm a snitch", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('FILE1', help='Input file 1', metavar='FILE', type=argparse.FileType('rt')) parser.add_argument('FILE2', help='Input file 2', metavar='FILE', type=argparse.FileType('rt')) parser.add_argument('-o', '--outfile', help='Output filename', metavar='FILE', type=argparse.FileType('wt'), default=sys.stdout) return parser.parse_args()
5,348,987
def page_not_found(request, template_name='404.html'): """ Default 404 handler. Templates: `404.html` Context: request_path The path of the requested URL (e.g., '/app/pages/bad_page/') """ t = loader.get_template(template_name) # You need to create a 404.html template. return http.HttpResponseNotFound(t.render(RequestContext(request, {'request_path': request.path})))
5,348,988
def test_create_new_file_version__use_existing_file_handle(mocker, syn): """Verify the behavior of create_new_file_version when we can use an existing file handle""" key = _MigrationKey('syn123', _MigrationType.FILE, 1, None, None) from_file_handle_id = 1234 to_file_handle_id = 4321 storage_location_id = 9876 file_size = 123456 mock_file = mock.MagicMock(spec=synapseclient.File) mock_syn_get = mocker.patch.object(syn, 'get') mock_syn_store = mocker.patch.object(syn, 'store') mock_multipart_copy = mocker.patch.object(migrate_functions, 'multipart_copy') mock_syn_get.return_value = mock_file assert to_file_handle_id == _create_new_file_version( syn, key, from_file_handle_id, to_file_handle_id, file_size, storage_location_id ) mock_syn_get.assert_called_once_with(key.id, downloadFile=False) mock_syn_store.assert_called_once_with(mock_file) assert mock_multipart_copy.called is False
5,348,989
def load_data(filename): """ Load shopping data from a CSV file `filename` and convert into a list of evidence lists and a list of labels. Return a tuple (evidence, labels). evidence should be a list of lists, where each list contains the following values, in order: - Administrative, an integer - Administrative_Duration, a floating point number - Informational, an integer - Informational_Duration, a floating point number - ProductRelated, an integer - ProductRelated_Duration, a floating point number - BounceRates, a floating point number - ExitRates, a floating point number - PageValues, a floating point number - SpecialDay, a floating point number - Month, an index from 0 (January) to 11 (December) - OperatingSystems, an integer - Browser, an integer - Region, an integer - TrafficType, an integer - VisitorType, an integer 0 (not returning) or 1 (returning) - Weekend, an integer 0 (if false) or 1 (if true) labels should be the corresponding list of labels, where each label is 1 if Revenue is true, and 0 otherwise. """ with open("shopping.csv") as f: reader = csv.reader(f) next(reader) months = ["Jan", "Feb", "Mar", "Apr", "May", "June", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] data = [] for row in reader: data.append({ "evidence": [int(row[0]), float(row[1]), int(row[2]), float(row[3]), int(row[4]), float(row[5]), float(row[6]), float(row[7]), float(row[8]), float(row[9]), months.index(row[10]), int(row[11]), int(row[12]), int(row[13]), int(row[14]), 0 if row[15] == "New_Visitor" else 1, 0 if row[16] == "FALSE" else 1], "label": 0 if row[17] == "FALSE" else 1 }) evidence = [row["evidence"] for row in data] labels = [row["label"] for row in data] return (evidence, labels)
5,348,990
def instance_mock(cls, request, name=None, spec_set=True, **kwargs): """ Return a mock for an instance of *cls* that draws its spec from the class and does not allow new attributes to be set on the instance. If *name* is missing or |None|, the name of the returned |Mock| instance is set to *request.fixturename*. Additional keyword arguments are passed through to the Mock() call that creates the mock. """ if name is None: name = request.fixturename return create_autospec(cls, _name=name, spec_set=spec_set, instance=True, **kwargs)
5,348,991
def plot_data(y): """ y is a 1D vector """ x = np.arange(y.size) _ = plt.plot(x, y, 'o')
5,348,992
def auto_fp16(apply_to=None, out_fp32=False): """Decorator to enable fp16 training automatically. This decorator is useful when you write custom modules and want to support mixed precision training. If inputs arguments are fp32 tensors, they will be converted to fp16 automatically. Arguments other than fp32 tensors are ignored. Args: apply_to (Iterable, optional): The argument names to be converted. `None` indicates all arguments. out_fp32 (bool): Whether to convert the output back to fp32. Example: >>> import torch.nn as nn >>> class MyModule1(nn.Module): >>> >>> # Convert x and y to fp16 >>> @auto_fp16() >>> def forward(self, x, y): >>> pass >>> import torch.nn as nn >>> class MyModule2(nn.Module): >>> >>> # convert pred to fp16 >>> @auto_fp16(apply_to=('pred', )) >>> def do_something(self, pred, others): >>> pass """ def auto_fp16_wrapper(old_func): @functools.wraps(old_func) def new_func(*args, **kwargs): # check if the module has set the attribute `fp16_enabled`, if not, # just fallback to the original method. if not isinstance(args[0], torch.nn.Module): raise TypeError('@auto_fp16 can only be used to decorate the ' 'method of nn.Module') if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled): return old_func(*args, **kwargs) # get the arg spec of the decorated method args_info = getfullargspec(old_func) # get the argument names to be casted args_to_cast = args_info.args if apply_to is None else apply_to # convert the args that need to be processed new_args = [] # NOTE: default args are not taken into consideration if args: arg_names = args_info.args[:len(args)] for i, arg_name in enumerate(arg_names): if arg_name in args_to_cast: new_args.append( cast_tensor_type(args[i], torch.float, torch.half)) else: new_args.append(args[i]) # convert the kwargs that need to be processed new_kwargs = {} if kwargs: for arg_name, arg_value in kwargs.items(): if arg_name in args_to_cast: new_kwargs[arg_name] = cast_tensor_type( arg_value, torch.float, torch.half) else: new_kwargs[arg_name] = arg_value # apply converted arguments to the decorated method output = old_func(*new_args, **new_kwargs) # cast the results back to fp32 if necessary if out_fp32: output = cast_tensor_type(output, torch.half, torch.float) return output return new_func return auto_fp16_wrapper
5,348,993
def get_loci_score(state, loci_w, data_w, species_w, better_loci, species_counts, total_individuals, total_species, individuals): """ Scoring function with user-specified weights. :param state: :param loci_w: the included proportion of loci from the original data set (higher is better). :param data_w: 1 - the proportion of missing data for the selected loci (higher is better). :param species_w: the average proportion of species represented per locus (higher is better). :param better_loci: :param species_counts: :param total_individuals: :param total_species: :param individuals: :return: """ num_loci = sum(state) species_loci_counts = {species: 0 for species in species_counts} individual_count = 0 missing_counts = {individual: 0 for individual in individuals} total_loci = len(better_loci) for i in range(total_loci): if state[i] == 0: continue found_species = set() found_individuals = set() lines = better_loci[i].split("\n") for line in lines: if line == "": continue (individual, sequence) = line[1:].split() found_individuals.add(individual) individual_count += 1 species = individual.split("_")[-1] found_species.add(species) for species in found_species: species_loci_counts[species] += 1 # Keep track of the amount of missing data for each individual. for individual in individuals: if individual not in found_individuals: missing_counts[individual] += 1 num_missing = num_loci * total_individuals - individual_count score_comps = [loci_w * float(num_loci) / float(total_loci), data_w * (1 - float(num_missing) / float(num_loci * total_individuals)), species_w * float(sum([species_loci_counts[species] for species in species_loci_counts])) / (float(num_loci) * float(total_species))] return score_comps, missing_counts
5,348,994
def make_per_cell_fastqs( reads, outdir, channel_id, output_format, cell_barcode_pattern, good_barcodes_filename): """Write the filtered cell barcodes in reads from barcodes_with_significant_umi_file fastq.gzs to outdir Parameters ---------- reads : str read records from fasta path greater than or equal to min_umi_per_cell outdir: str write the per cell barcode fastq.gzs to outdir channel_id: str prefix to fastq output_format: str format of output files, can be either fastq or fastq.gz cell_barcode_pattern: regex pattern cell barcode pattern to detect in the record name barcodes_with_significant_umi_file: list list of containing barcodes that have significant umi counts Returns ------- Write the filtered cell barcodes in reads from barcodes_with_significant_umi_file fastq.gzs to outdir """ if channel_id is None: channel_id = "" good_barcodes = read_barcodes_file(good_barcodes_filename) fastqs = [] record_count = 0 for record in screed.open(reads): record_count += 1 if record_count == 0: return fastqs good_cell_barcode_records = get_good_cell_barcode_records( reads, good_barcodes, cell_barcode_pattern) for cell_barcode, records in good_cell_barcode_records.items(): if channel_id == "": filename = "{}/{}.{}".format( outdir, cell_barcode, output_format) else: filename = "{}/{}_{}.{}".format( outdir, channel_id, cell_barcode, output_format) write_fastq(records, filename) fastqs.append(filename) return fastqs
5,348,995
def _find_app(settings, app): """Looks for an installed application in the user's local $PATH. Raises an ImportError if the application is not found. """ # Save in settings name = app['name'].lower() settings[name] = None # Retrieve local paths split_token = ';' if mh.__iswin__ else ':' local_paths = os.environ['PATH'].rsplit(split_token) # Look for app in local paths for local_path in local_paths: path = os.path.join(local_path, app['exec']) # If the path exists, store & exit the loop if os.path.isfile(path): settings[name] = path break # Try .exe for windows if mh.__iswin__: win_path = path + '.exe' if os.path.isfile(win_path): settings[name] = win_path break # If app not found, raise ImportError if settings[name] is None: error = '{0} application not found'.format(app['name']) raise ImportError(error)
5,348,996
def plot_roc_curve(data, cls_name, title='ROC curve'): """ :param data: list [(fpr, tpr), (), ...] :param cls_name: tuple of names for each class :param title: plot title :return: """ def cal_auc(tpr, fpr): return np.trapz(tpr, fpr) def plot_single_curve(fpr, tpr, cls_ind): auc = cal_auc(tpr, fpr) plt.plot(fpr, tpr, label="%s ROC curve (area = %.2f)" % (cls_name[cls_ind], auc)) return auc assert isinstance(data, list) if len(cls_name) == 2: assert len(data) == 1 else: assert len(data) == len(cls_name) fig = plt.figure() args = [(fpr, tpr, i) for i, (fpr, tpr) in enumerate(data)] if len(cls_name) > 2: auc = np.mean(list(map(lambda x: plot_single_curve(*x), args))) else: fpr, tpr = data[0] auc = cal_auc(tpr, fpr) plt.plot(fpr, tpr, label="%s vs. %s ROC curve (area = %.2f)" % (cls_name[1], cls_name[0], auc)) ax = plt.gca() ax.plot([0, 1], [0, 1], ls="--", c=".3") plt.title(title + ' (mean area = %.4f)' % auc) plt.ylabel('True positive rate') plt.xlabel('False positive rate') plt.legend() return fig, auc
5,348,997
def train(elastic_coordinator, train_step, state): """ This is the main elastic data parallel loop. It starts from an initial 'state'. Each iteration calls 'train_step' and returns a new state. 'train_step' has the following interface: state, worker_stats = train_step(state) When 'train_step' exhausts all the data, a StopIteration exception should be thrown. """ assert isinstance(state, torchelastic.State) failure_count = 0 rank = 0 checkpoint_util = CheckpointUtil(elastic_coordinator) while not elastic_coordinator.should_stop_training(): # See: https://github.com/pytorch/elastic/issues/7 if failure_count >= MAX_FAILURES: e = RuntimeError( "Exceeded max number of recoverable failures: {}".format(failure_count) ) elastic_coordinator.on_error(e) raise e start_time = time.time() snapshot = state.capture_snapshot() try: store, rank, world_size = elastic_coordinator.rendezvous_barrier() elastic_coordinator.init_process_group() # load checkpoint if necessary state = checkpoint_util.load_checkpoint(state, rank) state_sync_start_time = time.time() state.sync(world_size, rank) publish_metric( "torchelastic", "state_sync.duration.ms", get_elapsed_time_ms(state_sync_start_time), ) checkpoint_util.set_checkpoint_loaded() elastic_coordinator.barrier() log.info("Rank {0} synced state with other nodes".format(rank)) except StopException: log.info("Rank {0} received stopped signal. Exiting training.".format(rank)) break except RuntimeError as e: # See: https://github.com/pytorch/elastic/issues/7 elastic_coordinator.on_error(e) state.apply_snapshot(snapshot) failure_count += 1 continue except (NonRetryableException, Exception) as e: elastic_coordinator.on_error(e) raise finally: publish_metric( "torch_elastic", "outer_train_loop.duration.ms", get_elapsed_time_ms(start_time), ) # Note that the loop might not even start if the rendezvous was closed # due to one of the trainer processes completing earlier. while not elastic_coordinator.should_stop_training(): start_time = time.time() snapshot = state.capture_snapshot() try: train_step_start_time = time.time() state, worker_stats = train_step(state) publish_metric( "torchelastic", "train_step.duration.ms", get_elapsed_time_ms(train_step_start_time), ) elastic_coordinator.monitor_progress(state, worker_stats) checkpoint_util.save_checkpoint(state, rank) if elastic_coordinator.should_rendezvous(state): log.info("Rank {0} will re-rendezvous".format(rank)) # Executor told us, for whatever reason, to re-rendezvous. # This can occur if another node encounters an error, # if a new node becomes available to train, # or potentially even if it's time to checkpoint. break elastic_coordinator.report_progress(state) except StopIteration: log.info("Rank {0} finished all the iterations".format(rank)) # Current trainer process completed processing assigned subset of # examples. Other trainer processes need to stop as well. # This sends an explicit signal on training completion. elastic_coordinator.signal_training_done() break except RuntimeError as e: # See: https://github.com/pytorch/elastic/issues/7 elastic_coordinator.on_error(e) state.apply_snapshot(snapshot) failure_count += 1 break except Exception as e: elastic_coordinator.on_error(e) raise finally: publish_metric( "torchelastic", "inner_train_loop.duration.ms", get_elapsed_time_ms(start_time), ) if elastic_coordinator.should_stop_training(): return state else: # This is an error condition and should not happen. raise Exception( "Exiting without training complete. rank: {0}," " should_stop_training: {1}".format( rank, elastic_coordinator.should_stop_training() ) )
5,348,998
def make_animation(data_list, **kwargs): """ Creates an animation from list of McStasData objects Parameters ---------- data_list : list of McStasData List of McStasData objects for animation Keyword arguments ----------------- filename : str Filename for saving the gif fps : float Number of frames per second """ figsize, data_list = _handle_kwargs(data_list, **kwargs) if "fps" in kwargs: period_in_ms = 1000 / kwargs["fps"] else: period_in_ms = 200 # find limits for entire dataset maximum_values = [] minimum_values = [] is_1D = False is_2D = False for data in data_list: if isinstance(data.metadata.dimension, int): is_1D = True elif len(data.metadata.dimension) == 2: is_2D = True min_value, max_value = _find_min_max_I(data) # When data empty, min and max value is 0, skip if not (min_value == 0 and max_value == 0): minimum_values.append(min_value) maximum_values.append(max_value) if is_1D and is_2D: raise ValueError( "Both 1D and 2D data in animation, only one allowed.") if len(minimum_values) == 0: raise ValueError( "No data found for animation!") maximum_value = np.array(maximum_values).max() minimum_value = np.array(minimum_values).min() if "orders_of_mag" in kwargs: orders_of_mag = kwargs["orders_of_mag"] mag_diff = np.log10(maximum_value) - np.log10(minimum_value) if mag_diff > orders_of_mag: minimum_value_log10 = np.log10(maximum_value) - orders_of_mag minimum_value = 10**(minimum_value_log10) kwargs["fixed_minimum_value"] = minimum_value kwargs["fixed_maximum_value"] = maximum_value fig, ax0 = plt.subplots(figsize=figsize) im = _plot_fig_ax(data_list[0], fig, ax0, **kwargs) def animate_2D(index): data = data_list[index] intensity = data.Intensity im.set_array(intensity.ravel()) return im, anim = animation.FuncAnimation(fig, animate_2D, frames=len(data_list), interval=period_in_ms, blit=False, repeat=True) plt.show() # The animation doesn't play unless it is saved. Bug. if "filename" in kwargs: filename = kwargs["filename"] if not filename.endswith(".gif"): filename = filename + ".gif" # check if imagemagick available? print("Saving animation with filename : \"" + filename + "\"") anim.save(filename, writer="imagemagick")
5,348,999