content
stringlengths
22
815k
id
int64
0
4.91M
def add_logger_stdout(app): """Creates a StreamHandler logger""" f = ContextFilter() app.logger.addFilter(f) stdout_handler = logging.StreamHandler(sys.stdout) FORMAT = '%(asctime)s %(hostname)s {0} :%(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]'.format('Tester') formatter = logging.Formatter(FORMAT, datefmt='%Y-%m-%dT%H:%M:%S') stdout_handler.setFormatter(formatter) stdout_handler.setLevel(logging.INFO) stdout_handler._name = 'StreamHandler' app.logger.addHandler(stdout_handler)
5,349,000
def main(): """ Performing following actions: 1.) Reading configuration file. 2.) Connecting to database. 3.) Executing queries. """ rootLogger.info("Reading configuration files.") config = configparser.ConfigParser() config.read('dwh.cfg') rootLogger.info("Connecting to database.") conn = psycopg2.connect("host={} dbname={} user={} password={} port={}".format(*config['CLUSTER'].values())) cur = conn.cursor() drop_tables(cur, conn) create_tables(cur, conn) conn.close()
5,349,001
def softmax_mask(w: torch.Tensor, dim=-1, mask: torch.BoolTensor = None ) -> torch.Tensor: """ Allows having -np.inf in w to mask out, or give explicit bool mask :param w: :param dim: :param mask: :return: """ if mask is None: mask = w != -np.inf minval = torch.min(w[~mask]) # to avoid affecting torch.max w1 = w.clone() w1[~mask] = minval # to prevent over/underflow w1 = w1 - torch.max(w1, dim=dim, keepdim=True)[0] w1 = torch.exp(w1) p = w1 / torch.sum(w1 * mask.float(), dim=dim, keepdim=True) p[~mask] = 0. return p
5,349,002
def mocked_captcha_failed_call(app): """Monkey patch Captcha call in case of failure.""" token = app.config['dev_config']['secret_keys']['web'] httpretty.enable() # mock dirbs core imei apis httpretty.register_uri(httpretty.POST, 'https://www.google.com/recaptcha/api/siteverify', data=dict(response='tokenforfailedcaptcha', secret=token), body=json.dumps({"success": None}), content_type='application/json', status=200) yield # disable afterwards when not in use to avoid issues with the sockets # reset states httpretty.disable() httpretty.reset()
5,349,003
def modular_nli_reader(resources_or_conf: Union[dict, SharedResources] = None): """Creates a Modular NLI reader instance. Model defined in config.""" from jack.readers.multiple_choice.shared import MultipleChoiceSingleSupportInputModule from jack.readers.natural_language_inference.modular_nli_model import ModularNLIModel from jack.readers.multiple_choice.shared import SimpleMCOutputModule shared_resources = create_shared_resources(resources_or_conf) input_module = MultipleChoiceSingleSupportInputModule(shared_resources) model_module = ModularNLIModel(shared_resources) output_module = SimpleMCOutputModule(shared_resources) return TFReader(shared_resources, input_module, model_module, output_module)
5,349,004
def test_read_course_proto_correctness(): """Test if read_course_proto() returns the right content with/without lab.""" course_raw_data = check_file_open('tests/test.json') json_obj = course_raw_data['Test Data'] course_list = [] enrollment_dict = {} index = 0 department_name = 'ACCT' each_department = read_course_proto(json_obj, course_list, department_name, enrollment_dict) assert each_department.deptName == 'ACCT' assert len(each_department.courses) == 3 assert len(course_list) == 3 for i in range(len(each_department.courses)): assert each_department.courses[i] == target_output.department_acct.courses[i] for i in range(len(course_list)): assert course_list[i] == target_output.courseList[i] for key in enrollment_dict.keys(): assert enrollment_dict[key] == target_output.seats[index] index += 1 course_list = [] department_name = 'ADMJ' enrollment_dict = {} each_department = read_course_proto(json_obj, course_list, department_name, enrollment_dict) assert each_department.deptName == 'ADMJ' assert len(each_department.courses) == 3 assert len(course_list) == 3 for i in range(len(each_department.courses)): assert each_department.courses[i] == target_output.department_admj.courses[i] for i in range(len(course_list)): assert course_list[i] == target_output.courseList[i + 3] for key in enrollment_dict.keys(): assert enrollment_dict[key] == target_output.seats[index] index += 1
5,349,005
def test_qttexttospeech(): """Test the qtpy.QtTextToSpeech namespace.""" from qtpy import QtTextToSpeech assert QtTextToSpeech.QTextToSpeech is not None assert QtTextToSpeech.QVoice is not None if PYSIDE2: assert QtTextToSpeech.QTextToSpeechEngine is not None
5,349,006
def move_box_and_gtt(n_targets=3, time_limit=DEFAULT_TIME_LIMIT, control_timestep=DEFAULT_CONTROL_TIMESTEP): """Loads `move_box_or_gtt` task.""" return _make_predicate_task( n_boxes=1, n_targets=n_targets, include_gtt_predicates=True, include_move_box_predicates=True, max_num_predicates=2, control_timestep=control_timestep, time_limit=time_limit)
5,349,007
def get_body(data_dict, database_id, media_status, media_type): """ 获取json数据 :param media_type: :param media_status: :param data_dict: :param database_id: :return: """ status = "" music_status = "" if media_status == MediaStatus.WISH.value: status = "想看" music_status = "想听" elif media_status == MediaStatus.DO.value: status = "在看" music_status = "在听" elif media_status == MediaStatus.COLLECT.value: status = "看过" music_status = "听过" else: status = "" music_status = "" log_detail.info(f"【RUN】- {media_type}数据信息整理为json格式") rating = data_dict[MediaInfo.RATING_F.value] # rating = float(rat) if rat == "" else 0 if media_type == MediaType.MUSIC.value: body = { "parent": { "type": "database_id", "database_id": f"{database_id}" }, "properties": { "音乐": { "title": [{ "type": "text", "text": { "content": data_dict[MediaInfo.TITLE.value] } }] }, "封面": { "files": [{ "type": "external", "name": data_dict[MediaInfo.IMG.value][-13:], "external": { "url": data_dict[MediaInfo.IMG.value] } }] }, "表演者": { "rich_text": [{ "type": "text", "text": { "content": data_dict[MediaInfo.PERFORMER.value] } }] }, "发行时间": { "select": { "name": data_dict[MediaInfo.RELEASE_DATE.value][0:4] } }, "标记状态": { "select": { "name": f"{music_status}" } }, "豆瓣链接": { "url": f"{data_dict[MediaInfo.URL.value]}" } } } # 评分 if data_dict[MediaInfo.RATING_F.value]: rating_f = float(data_dict[MediaInfo.RATING_F.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=rating_f) body["properties"]["评分"] = tmp_dict # 评分人数 if data_dict[MediaInfo.ASSESS.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=data_dict[MediaInfo.ASSESS.value]) body["properties"]["评分人数"] = tmp_dict return body elif media_type == MediaType.MOVIE.value: # 导演 编剧 主演 text_director = ' / '.join(data_dict[MediaInfo.DIRECTOR.value]) text_screenwriter = ' / '.join(data_dict[MediaInfo.SCREENWRITER.value]) text_starring = ' / '.join(data_dict[MediaInfo.STARRING.value]) str_type = get_multi_select_body(data_dict[MediaInfo.MOVIE_TYPE.value]) json_type = json.loads(str_type) str_c_or_r = get_multi_select_body(data_dict[MediaInfo.C_OR_R.value]) json_c_or_r = json.loads(str_c_or_r) body = { "parent": { "type": "database_id", "database_id": f"{database_id}" }, "properties": { "名字": { "title": [{ "type": "text", "text": { "content": data_dict[MediaInfo.TITLE.value] } }] }, "导演": { "rich_text": [{ "type": "text", "text": { "content": text_director } }] }, "编剧": { "rich_text": [{ "type": "text", "text": { "content": text_screenwriter } }] }, "主演": { "rich_text": [{ "type": "text", "text": { "content": text_starring } }] }, "类型": { "multi_select": json_type }, "国家地区": { "multi_select": json_c_or_r }, "IMDb": { "url": f"https://www.imdb.com/title/{data_dict[MediaInfo.IMDB.value]}" }, "标记状态": { "select": { "name": f"{status}" } }, "分类": { "select": { "name": f"{data_dict[MediaInfo.CATEGORIES.value]}" } }, "简介": { "rich_text": [{ "type": "text", "text": { "content": data_dict[MediaInfo.RELATED.value] } }] }, "封面": { "files": [{ "type": "external", "name": data_dict[MediaInfo.IMG.value][-15:], "external": { "url": data_dict[MediaInfo.IMG.value] } }] }, "豆瓣链接": { "url": f"{data_dict[MediaInfo.URL.value]}" } } } # 评分 if data_dict[MediaInfo.RATING_F.value]: rating_f = float(data_dict[MediaInfo.RATING_F.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=rating_f) body["properties"]["评分"] = tmp_dict # 评分人数 if data_dict[MediaInfo.ASSESS.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=data_dict[MediaInfo.ASSESS.value]) body["properties"]["评分人数"] = tmp_dict return body elif media_type == MediaType.BOOK.value: body = { "parent": { "type": "database_id", "database_id": f"{database_id}" }, "properties": { "书名": { "title": [{ "type": "text", "text": { "content": data_dict[MediaInfo.TITLE.value] } }] }, "封面": { "files": [{ "type": "external", "name": data_dict[MediaInfo.IMG.value][-13:], "external": { "url": data_dict[MediaInfo.IMG.value] } }] }, "作者": { "rich_text": [{ "type": "text", "text": { "content": data_dict[MediaInfo.AUTHOR.value] } }] }, "出版年份": { "select": { "name": data_dict[MediaInfo.PUB_DATE.value][0:4] } }, "标记状态": { "select": { "name": f"{status}" } }, "豆瓣链接": { "url": f"{data_dict[MediaInfo.URL.value]}" } } } # ISBN if data_dict[MediaInfo.ISBN.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.URL.value, property_params=data_dict[MediaInfo.ISBN.value]) body["properties"]["ISBN"] = tmp_dict # 价格 if data_dict[MediaInfo.PRICE.value]: tmp_float = float(data_dict[MediaInfo.PRICE.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=tmp_float) body["properties"]["价格"] = tmp_dict # 评分 if data_dict[MediaInfo.RATING_F.value]: rating_f = float(data_dict[MediaInfo.RATING_F.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=rating_f) body["properties"]["评分"] = tmp_dict # 评分人数 if data_dict[MediaInfo.ASSESS.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=data_dict[MediaInfo.ASSESS.value]) body["properties"]["评分人数"] = tmp_dict # 页数 if data_dict[MediaInfo.PAGES.value]: pages_num = int(data_dict[MediaInfo.PAGES.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=pages_num) body["properties"]["页数"] = tmp_dict # 出版社 if data_dict[MediaInfo.PUBLISHER.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.SELECT.value, property_params=data_dict[MediaInfo.PUBLISHER.value]) body["properties"]["出版社"] = tmp_dict return body
5,349,008
def _find_full_periods(events, quantity, capacity): """Find the full periods.""" full_periods = [] used = 0 full_start = None for event_date in sorted(events): used += events[event_date]['quantity'] if not full_start and used + quantity > capacity: full_start = event_date elif full_start and used + quantity <= capacity: full_periods.append((full_start, event_date)) full_start = None return full_periods
5,349,009
def crop_image(img, target_size, center): """ crop_image """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = random.randint(0, width - size) h_start = random.randint(0, height - size) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img
5,349,010
def _histogram( data=None, bins="freedman-diaconis", p=None, density=False, kind="step", line_kwargs={}, patch_kwargs={}, **kwargs, ): """ Make a plot of a histogram of a data set. Parameters ---------- data : array_like 1D array of data to make a histogram out of bins : int, array_like, or str, default 'freedman-diaconis' If int or array_like, setting for `bins` kwarg to be passed to `np.histogram()`. If 'exact', then each unique value in the data gets its own bin. If 'integer', then integer data is assumed and each integer gets its own bin. If 'sqrt', uses the square root rule to determine number of bins. If `freedman-diaconis`, uses the Freedman-Diaconis rule for number of bins. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. density : bool, default False If True, normalized the histogram. Otherwise, base the histogram on counts. kind : str, default 'step' The kind of histogram to display. Allowed values are 'step' and 'step_filled'. line_kwargs : dict Any kwargs to be passed to p.line() in making the line of the histogram. patch_kwargs : dict Any kwargs to be passed to p.patch() in making the fill of the histogram. kwargs : dict All other kwargs are passed to bokeh.plotting.figure() Returns ------- output : Bokeh figure Figure populated with histogram. """ if data is None: raise RuntimeError("Input `data` must be specified.") # Instantiate Bokeh plot if not already passed in if p is None: y_axis_label = kwargs.pop("y_axis_label", "density" if density else "count") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 y_range = kwargs.pop("y_range", bokeh.models.DataRange1d(start=0)) p = bokeh.plotting.figure(y_axis_label=y_axis_label, y_range=y_range, **kwargs) # Compute histogram bins = _bins_to_np(data, bins) e0, f0 = _compute_histogram(data, bins, density) if kind == "step": p.line(e0, f0, **line_kwargs) if kind == "step_filled": x2 = [e0.min(), e0.max()] y2 = [0, 0] p = fill_between(e0, f0, x2, y2, show_line=True, p=p, patch_kwargs=patch_kwargs) return p
5,349,011
def select_path() -> None: """Opens popup prompting user to pick a directory. Fills 'path' entry widget with path.""" root.update() directory = str(tkinter.filedialog.askdirectory(title= "Download Path Selection", parent= root)) root.update() entry = find_widgets_by_name("path") entry.delete(0, "end") entry.insert(0, directory)
5,349,012
def write_test_report(project, test_rep_path): """ Given a project that has been evaluated (.evaluate()), extract test data and write it to an HTML document at risk_rep_path """ with open(test_rep_path, 'w') as test_rep: # test_table is a bunch of <tr> rows with <td> columns test_table = create_task_table(project.tests) test_rep.write("""<!DOCTYPE html> <html lang="en"> <head> <title>Test Report: {name}</title> <style>{REPORT_CSS}</style> </head> <body> <h1>Test Report: {name}</h1> <p>Point of Contact: <code>{poc}</code></p> <details class="shaded"><summary>Deliverables</summary> {deliverable} </details> <br> <p>Test duration: <code>{eval_duration}</code> (hours:minutes:seconds)</p> <br> <table> <tr> <th>Tests</th> <th>Status</th> <th>Description</th> </tr> {test_table} </table> <br> <script> function toggleRow(event, element) {{ if (event.target == element || event.target.parentNode == element) {{ element.getElementsByClassName('expanded-row-content')[0].classList.toggle('hide-row'); }} }} </script> <h2>Warnings</h2> <em>These are minor issues detected when saving the project description</em> <pre>{warnings}</pre> </body> </html> """.format( REPORT_CSS=REPORT_CSS, name=html.escape(project.name), poc=html.escape(project.poc), deliverable=project.deliverable.get_report_desc(), eval_duration=datetime.timedelta(seconds=project.evaluation_duration_s), test_table=test_table, warnings=project.get_warning_lines(), )) project.reports.append(test_rep_path)
5,349,013
def getGarbageBlock(): """获取正在标记的众生区块 { ?block_id= } 返回 json { "is_success":bool, "data": {"id": , "election_period": "beings_block_id": "votes": "vote_list": "status": "create_time": """ try: beings_block_id = request.args.get("block_id") res = blockOfGarbage.getGarbageBlockQueue(beings_block_id) if res is None: http_message = HttpMessage(is_success=False, data=res) else: http_message = HttpMessage(is_success=True, data=res) return http_message.getJson() except Exception as err: print(err) http_message = HttpMessage(is_success=False, data="参数错误") return http_message.getJson()
5,349,014
def partition(items, low, high): """Return index `p` after in-place partitioning given items in range `[low...high]` by choosing a pivot (TODO: document your method here) from that range, moving pivot into index `p`, items less than pivot into range `[low...p-1]`, and items greater than pivot into range `[p+1...high]`. TODO: Running time: ??? O(n) TODO: Memory usage: ??? O(1) # TODO: Choose a pivot any way and document your method in docstring above # TODO: Loop through all items in range [low...high] # TODO: Move items less than pivot into front of range [low...p-1] # TODO: Move items greater than pivot into back of range [p+1...high] # TODO: Move pivot item into final position [p] and return index p """ divider = low #keeps track of the pivot index used for comparision pivot = high #default pivot index for i in range(low, high): # Move items less than pivot into front of range [low...p-1] # Move items greater than pivot into back of range [p+1...high] if items[i] < items[pivot]: #this does the work items[i], items[divider] = items[divider], items[i] # by moving the items less than divider += 1 # and leaving items greater where they are # Move pivot item into final position [p] and return index p items[pivot], items[divider] = items[divider], items[pivot] return divider
5,349,015
def describe(module): """ Describe the module object passed as argument including its classes and functions """ wi('[Module: %s]\n' % module.__name__) indent() count = 0 for name in dir(module): obj = getattr(module, name) if inspect.isclass(obj): count += 1; describe_klass(obj) elif (inspect.ismethod(obj) or inspect.isfunction(obj)): count +=1 ; describe_func(obj) elif inspect.isbuiltin(obj): count += 1; describe_builtin(obj) if count==0: wi('(No members)') dedent()
5,349,016
def cluster_confusion_matrix(pred_cluster:Dict, target_cluster:Dict) -> EvalUnit: """ simulate confusion matrix Args: pred_cluster: Dict element: cluster_id (cluster_id from 0 to max_size)| predicted clusters target_cluster: Dict element:cluster_id (cluster_id from 0 to max_size) | target clusters Returns: In order to return detailed data, It will return a EvalUnit, """ pred_elements = list(pred_cluster.keys()) target_elements = list(target_cluster.keys()) it = itertools.product(pred_elements,target_elements) tp,fp,tn,fn = 0,0,0,0 for x,y in it: if x != y:#other word x_cluster = pred_elements[x] x_cluster_ = target_elements[x] y_cluster = pred_elements[y] y_cluster_ = target_elements[y] if x_cluster == y_cluster and x_cluster_ == y_cluster_: tp += 1 elif x_cluster != y_cluster and x_cluster_ != y_cluster_: tn += 1 elif x_cluster == y_cluster and x_cluster_ != y_cluster_: fp += 1 else: fn +=1 return EvalUnit(tp,tn,fp,fn,'rand_index')
5,349,017
def change_short(x, y, limit): """Return abs(y - x) as a fraction of x, but with a limit. >>> x, y = 2, 5 >>> abs(y - x) / x 1.5 >>> change_short(x, y, 100) 1.5 >>> change_short(x, y, 1) # 1 is smaller than 1.5 1 >>> x = 0 >>> change_short(x, y, 100) # No error, even though abs(y - x) / x divides by 0! 100 """ return limited(x, limit if (x == 0) else abs(y - x) / x, limit)
5,349,018
def main(E_USER): """This is the main menu of Checkcryption. E_USER: the encrypted username, used for verification.""" while True: # The 'crypter' loop print('\nWhat would you like to do?') option = input('Type \'e\' to encrypt, \'v\' to verify, or \'q\' to quit: ') if re.match('e', option.lower()): # encrypt data print('\nEncryption menu:') source, source_location = source_menu('e') # Get source data dest = dest_menu('e', source_location) # Get destination location del source_location verify_menu(source, dest, E_USER, 'e') # Verify user and encrypt continue elif re.match('v', option.lower()): # decrypt data print('\nVerification menu:') source, source_location = source_menu('v') # Get source data dest = dest_menu('v') # Get encrypted data del source_location verify_menu(source, dest, E_USER, 'v') # Verify user and decrypt continue elif re.match('q', option.lower()): # quit break else: print('\nThat is not a valid option, please try again.') continue del E_USER
5,349,019
def generate_correlation_map(f, x_data, y_data, method='chisquare_spectroscopic', filter=None, resolution_diag=20, resolution_map=15, fit_args=tuple(), fit_kws={}, distance=5, npar=1): """Generates a correlation map for either the chisquare or the MLE method. On the diagonal, the chisquare or loglikelihood is drawn as a function of one fixed parameter. Refitting to the data each time gives the points on the line. A dashed line is drawn on these plots, with the intersection with the plots giving the correct confidence interval for the parameter. In solid lines, the interval estimated by the fitting routine is drawn. On the offdiagonal, two parameters are fixed and the model is again fitted to the data. The change in chisquare/loglikelihood is mapped to 1, 2 and 3 sigma contourmaps. Parameters ---------- f: :class:`.BaseModel` Instance of the model for which the contour map has to be generated. x_data: array_like or list of array_likes Data on the x-axis for the fit. Must be appropriate input for *f*. y_data: array_like or list of array_likes Data on the y-axis for the fit. Must be appropriate input for *f*. Other parameters ---------------- method: {'chisquare', 'chisquare_spectroscopic', mle'} Chooses between generating the map for the chisquare routine or for the likelihood routine. filter: list of strings Only the parameters matching the names given in this list will be used to generate the maps. resolution_diag: int Number of points for the line plot on each diagonal. resolution_map: int Number of points along each dimension for the meshgrids. fit_kws: dictionary Dictionary of keywords to pass on to the fitting routine. npar: int Number of parameters for which simultaneous predictions need to be made. Influences the uncertainty estimates from the parabola.""" # Save the original goodness-of-fit and parameters for later use mapping = {'chisquare_spectroscopic': (fitting.chisquare_spectroscopic_fit, 'chisqr_chi'), 'chisquare': (fitting.chisquare_fit, 'chisqr_chi'), 'mle': (fitting.likelihood_fit, 'likelihood_mle')} func, attr = mapping.pop(method.lower(), (fitting.chisquare_spectroscopic_fit, 'chisqr_chi')) title = '{}\n${}_{{-{}}}^{{+{}}}$' title_e = '{}\n$({}_{{-{}}}^{{+{}}})e{}$' fit_kws['verbose'] = False fit_kws['hessian'] = False to_save = {'mle': ('fit_mle', 'result_mle')} to_save = to_save.pop(method.lower(), ('chisq_res_par', 'ndof_chi', 'redchi_chi')) saved = [copy.deepcopy(getattr(f, attr)) for attr in to_save] # func(f, x_data, y_data, *fit_args, **fit_kws) orig_value = getattr(f, attr) orig_params = copy.deepcopy(f.params) state = fitting._get_state(f, method=method.lower()) ranges = {} chifunc = lambda x: chi2.cdf(x, npar) - 0.682689492 # Calculate 1 sigma boundary boundary = optimize.root(chifunc, npar).x[0] * 0.5 if method.lower() == 'mle' else optimize.root(chifunc, npar).x[0] # Select all variable parameters, generate the figure param_names = [] no_params = 0 for p in orig_params: if orig_params[p].vary and (filter is None or any([f in p for f in filter])): no_params += 1 param_names.append(p) fig, axes, cbar = _make_axes_grid(no_params, axis_padding=0, cbar=no_params > 1) # Make the plots on the diagonal: plot the chisquare/likelihood # for the best fitting values while setting one parameter to # a fixed value. saved_params = copy.deepcopy(f.params) function_kws = {'method': method.lower(), 'func_args': fit_args, 'func_kwargs': fit_kws} function_kws['orig_stat'] = orig_value for i in range(no_params): params = copy.deepcopy(saved_params) ranges[param_names[i]] = {} # Set the y-ticklabels. ax = axes[i, i] ax.set_title(param_names[i]) if i == no_params-1: if method.lower().startswith('chisquare'): ax.set_ylabel(r'$\Delta\chi^2$') else: ax.set_ylabel(r'$\Delta\mathcal{L}$') # Select starting point to determine error widths. value = orig_params[param_names[i]].value stderr = orig_params[param_names[i]].stderr print(stderr) stderr = stderr if stderr is not None else 0.01 * np.abs(value) stderr = stderr if stderr != 0 else 0.01 * np.abs(value) result_left, success_left = fitting._find_boundary(-stderr, param_names[i], boundary, f, x_data, y_data, function_kwargs=function_kws) result_right, success_right = fitting._find_boundary(stderr, param_names[i], boundary, f, x_data, y_data, function_kwargs=function_kws) success = success_left * success_right ranges[param_names[i]]['left'] = result_left ranges[param_names[i]]['right'] = result_right if not success: print("Warning: boundary calculation did not fully succeed for " + param_names[i]) right = np.abs(ranges[param_names[i]]['right'] - value) left = np.abs(ranges[param_names[i]]['left'] - value) params[param_names[i]].vary = False left_val, right_val = max(value - distance * left, orig_params[param_names[i]].min), min(value + distance * right, orig_params[param_names[i]].max) ranges[param_names[i]]['right_val'] = right_val ranges[param_names[i]]['left_val'] = left_val value_range = np.linspace(left_val, right_val, resolution_diag) value_range = np.sort(np.append(value_range, np.array([value - left, value + right, value]))) chisquare = np.zeros(len(value_range)) # Calculate the new value, and store it in the array. Update the progressbar. with tqdm.tqdm(value_range, desc=param_names[i], leave=True) as pbar: for j, v in enumerate(value_range): chisquare[j] = fitting.calculate_updated_statistic(v, param_names[i], f, x_data, y_data, **function_kws) fitting._set_state(f, state, method=method.lower()) pbar.update(1) # Plot the result ax.plot(value_range, chisquare, color='k') c = '#0093e6' # Indicate the used interval. ax.axvline(value + right, ls="dashed", color=c) ax.axvline(value - left, ls="dashed", color=c) ax.axvline(value, ls="dashed", color=c) ax.axhline(boundary, color=c) up = '{:.2ug}'.format(u.ufloat(value, right)) down = '{:.2ug}'.format(u.ufloat(value, left)) val = up.split('+')[0].split('(')[-1] r = up.split('-')[1].split(')')[0] l = down.split('-')[1].split(')')[0] if 'e' in up or 'e' in down: ex = up.split('e')[-1] ax.set_title(title_e.format(param_names[i], val, l, r, ex)) else: ax.set_title(title.format(param_names[i], val, l, r)) # Restore the parameters. fitting._set_state(f, state, method=method.lower()) for i, j in zip(*np.tril_indices_from(axes, -1)): params = copy.deepcopy(orig_params) ax = axes[i, j] x_name = param_names[j] y_name = param_names[i] if j == 0: ax.set_ylabel(y_name) if i == no_params - 1: ax.set_xlabel(x_name) right = ranges[x_name]['right_val'] left = ranges[x_name]['left_val'] x_range = np.append(np.linspace(left, right, resolution_map), orig_params[x_name].value) x_range = np.sort(x_range) right = ranges[y_name]['right_val'] left = ranges[y_name]['left_val'] y_range = np.append(np.linspace(left, right, resolution_map), orig_params[y_name].value) y_range = np.sort(y_range) X, Y = np.meshgrid(x_range, y_range) Z = np.zeros(X.shape) i_indices, j_indices = np.indices(Z.shape) with tqdm.tqdm(i_indices.flatten(), desc=param_names[j]+' ' + param_names[i], leave=True) as pbar: for k, l in zip(i_indices.flatten(), j_indices.flatten()): x = X[k, l] y = Y[k, l] print(x, y, f.params['Background0'].value) Z[k, l] = fitting.calculate_updated_statistic([x, y], [x_name, y_name], f, x_data, y_data, **function_kws) fitting._set_state(f, state, method=method.lower()) pbar.update(1) Z = -Z npar = 1 bounds = [] for bound in [0.997300204, 0.954499736, 0.682689492]: chifunc = lambda x: chi2.cdf(x, npar) - bound # Calculate 1 sigma boundary bounds.append(-optimize.root(chifunc, npar).x[0]) # bounds = sorted([-number*number for number in np.arange(1, 9, .1)]) bounds.append(1) if method.lower() == 'mle': bounds = [b * 0.5 for b in bounds] norm = mpl.colors.BoundaryNorm(bounds, invcmap.N) contourset = ax.contourf(X, Y, Z, bounds, cmap=invcmap, norm=norm) f.params = copy.deepcopy(orig_params) if method.lower() == 'mle': f.fit_mle = copy.deepcopy(orig_params) else: f.chisq_res_par try: cbar = plt.colorbar(contourset, cax=cbar, orientation='vertical') cbar.ax.yaxis.set_ticks([0, 1/6, 0.5, 5/6]) cbar.ax.set_yticklabels(['', r'3$\sigma$', r'2$\sigma$', r'1$\sigma$']) except: pass setattr(f, attr, orig_value) for attr, value in zip(to_save, saved): setattr(f, attr, copy.deepcopy(value)) for a in axes.flatten(): if a is not None: for label in a.get_xticklabels()[::2]: label.set_visible(False) for label in a.get_yticklabels()[::2]: label.set_visible(False) return fig, axes, cbar
5,349,020
def _botocore_error_serializer_integration_test( service: str, action: str, exception: ServiceException, code: str, status_code: int, message: str, ): """ Performs an integration test for the error serialization using botocore as parser. It executes the following steps: - Load the given service (f.e. "sqs") - Serialize the _error_ response with the appropriate serializer from the AWS Serivce Framework - Parse the serialized error response using the botocore parser - Checks the the metadata is correct (status code, requestID,...) - Checks if the parsed error response content is correct :param service: to load the correct service specification, serializer, and parser :param action: to load the correct service specification, serializer, and parser :param exception: which should be serialized and tested against :param code: expected "code" of the exception (i.e. the AWS specific exception ID, f.e. "CloudFrontOriginAccessIdentityAlreadyExists") :param status_code: expected HTTP response status code :param message: expected error message :return: None """ # Load the appropriate service service = load_service(service) # Use our serializer to serialize the response response_serializer = create_serializer(service) serialized_response = response_serializer.serialize_error_to_response( exception, service.operation_model(action) ) # Use the parser from botocore to parse the serialized response response_parser: ResponseParser = create_parser(service.protocol) parsed_response = response_parser.parse( serialized_response.to_readonly_response_dict(), service.operation_model(action).output_shape, ) # Check if the result is equal to the initial response params assert "Error" in parsed_response assert "Code" in parsed_response["Error"] assert "Message" in parsed_response["Error"] assert parsed_response["Error"]["Code"] == code assert parsed_response["Error"]["Message"] == message assert "ResponseMetadata" in parsed_response assert "RequestId" in parsed_response["ResponseMetadata"] assert len(parsed_response["ResponseMetadata"]["RequestId"]) == 52 assert "HTTPStatusCode" in parsed_response["ResponseMetadata"] assert parsed_response["ResponseMetadata"]["HTTPStatusCode"] == status_code
5,349,021
async def async_write_text(path, text): """Asynchronous IO writes of text data `text` to disk on the file path `path`""" async with aiofiles.open(path, "w", encoding="utf-8") as f: await f.write(text)
5,349,022
def local_ip(): """find out local IP, when running spark driver locally for remote cluster""" ip = ((([ip for ip in socket.gethostbyname_ex(socket.gethostname())[2] if not ip.startswith("127.")] or [[(s.connect( ("8.8.8.8", 53)), s.getsockname()[0], s.close()) for s in [socket.socket(socket.AF_INET, socket.SOCK_DGRAM)]][0][1]]) + ["no IP found"])[0]) return ip
5,349,023
def string_to_int_replacements(setting, item, for_property): """Maps keys to values from setting and item for replacing string templates for settings which need to be converted to/from Strings. """ replacements = common_replacements(setting, item) replacements.update({ '$string_to_int': string_to_int(item, property=for_property), '$int_to_string': int_to_string(item)}) return replacements
5,349,024
def get_polytope(parser: ArgumentParser) -> None: """Adds arguments to parser for outputting polytope of single example""" parser.add_argument("--word", type=str, help="Word representing the one relator", required=True)
5,349,025
def get_var_path(path): """ get the path stored in the 'app/data' directory :param path: string :return: string """ return os.path.join(VAR_DIR, path)
5,349,026
def solr_dt(instance, attribute, value): """A validator for ensuring a datetime string is Solr compatible.""" datetime.strptime(value, '%Y-%m-%dT%H:%M:%SZ')
5,349,027
def GitClone( clone_url: str, destination: pathlib.Path, shallow: bool = False, recursive: bool = False, timeout: int = 3600, ) -> pathlib.Path: """Clone a repository from Github. Args: clone_url: The URL of the repo to clone. destination: The output path. If this is already a non-empty directory, this will fail. shallow: Perform a shallow clone if set. recursive: Clone submodules. timeout: The maximum number of seconds to run a clone for before failing. Returns: The destination argument. Raises: RepoCloneFailed: On error. """ cmd = [ "timeout", "-s9", str(timeout), "git", "clone", clone_url, str(destination), ] if shallow: cmd += ["--depth", "1"] if recursive: cmd.append("--recursive") try: subprocess.check_call(cmd) except subprocess.CalledProcessError: raise RepoCloneFailed(f"Failed to clone repository: {clone_url}") if not (destination / ".git").is_dir(): raise RepoCloneFailed( f"Cloned repo `{clone_url}` but `{destination}/.git` not found" ) return destination
5,349,028
def UnpackU32(buf, offset=0, endian='big'): """ Unpack a 32-bit unsigned integer into 4 bytes. Parameters: buf - Input packed buffer. offset - Offset in buffer. endian - Byte order. Return: 2-tuple of unpacked value, new buffer offset. """ try: return (struct.unpack_from(_EndianCode[endian]+'I', buf, offset)[0], offset+4) except (KeyError, TypeError, DeprecationWarning, struct.error) as inst: _UnpackException('u32', offset, endian, inst)
5,349,029
def get_reset_token(user, expires_sec=1800): """ Create a specify token for reset user password Args: user: expires_sec: Returns: token: string """ hash_token_password = Serializer(APP.config['SECRET_KEY'], expires_sec) return hash_token_password.dumps({'user_name': user.user_name}).decode('utf-8')
5,349,030
def _on_error_resume_next(*sources: Union[Observable, Future]) -> Observable: """Continues an observable sequence that is terminated normally or by an exception with the next observable sequence. Examples: >>> res = rx.on_error_resume_next(xs, ys, zs) Returns: An observable sequence that concatenates the source sequences, even if a sequence terminates exceptionally. """ sources_ = iter(sources) def subscribe(observer, scheduler=None): scheduler = scheduler or current_thread_scheduler subscription = SerialDisposable() cancelable = SerialDisposable() def action(scheduler, state=None): try: source = next(sources_) except StopIteration: observer.on_completed() return # Allow source to be a factory method taking an error source = source(state) if callable(source) else source current = rx.from_future(source) if is_future(source) else source d = SingleAssignmentDisposable() subscription.disposable = d def on_resume(state=None): scheduler.schedule(action, state) d.disposable = current.subscribe_(observer.on_next, on_resume, on_resume, scheduler) cancelable.disposable = scheduler.schedule(action) return CompositeDisposable(subscription, cancelable) return Observable(subscribe)
5,349,031
def convert_literal_tuple_string_index_to_tuple( df: pd.DataFrame, comm_before_user: bool = True, vertex_to_int: bool = False): """ Converts a DataFrame's literal string index of form '(community, vertex)' to a tuple (community, vertex) index. Changes input DataFrame inplace. """ # convert index to column df.reset_index(level=0, inplace=True) # evaluate tuple literal df['evaluated_index'] = [ _index_tuple_literal_eval_with_ordering( string=tup.index, comm_before_user=comm_before_user, vertex_to_int=vertex_to_int) for tup in df.itertuples() ] # convert back to index df.set_index('evaluated_index', inplace=True)
5,349,032
def prompt_for_value(field_name: str, field_type): """Promt the user to input a value for the parameter `field_name`.""" print_formatted_text( f"No value found for field '{field_name}' of type '{field_type}'. " "Please enter a value for this parameter:" ) response = prompt("> ") while response == "": print_formatted_text(f"No input received, please enter a value:") response = prompt("> ") return parse_value_from_string(response)
5,349,033
def _send_kv_msg(sender, msg, recv_id): """Send kvstore message. Parameters ---------- sender : ctypes.c_void_p C sender handle msg : KVStoreMsg kvstore message recv_id : int receiver's ID """ if msg.type == KVMsgType.PULL: tensor_id = F.zerocopy_to_dgl_ndarray(msg.id) _CAPI_SenderSendKVMsg( sender, int(recv_id), msg.type.value, msg.rank, msg.name, tensor_id) elif msg.type in (KVMsgType.INIT, KVMsgType.GET_SHAPE_BACK): tensor_shape = F.zerocopy_to_dgl_ndarray(msg.shape) _CAPI_SenderSendKVMsg( sender, int(recv_id), msg.type.value, msg.rank, msg.name, tensor_shape) elif msg.type in (KVMsgType.IP_ID, KVMsgType.GET_SHAPE): _CAPI_SenderSendKVMsg( sender, int(recv_id), msg.type.value, msg.rank, msg.name) elif msg.type in (KVMsgType.FINAL, KVMsgType.BARRIER): _CAPI_SenderSendKVMsg( sender, int(recv_id), msg.type.value, msg.rank) else: tensor_id = F.zerocopy_to_dgl_ndarray(msg.id) data = F.zerocopy_to_dgl_ndarray(msg.data) _CAPI_SenderSendKVMsg( sender, int(recv_id), msg.type.value, msg.rank, msg.name, tensor_id, data)
5,349,034
def move_j(joints, accel, vel): """ Function that returns UR script for linear movement in joint space. Args: joints: A list of 6 joint angles (double). accel: tool accel in m/s^2 accel: tool accel in m/s^2 vel: tool speed in m/s Returns: script: UR script """ # TODO: Test # TODO: Check acceleration and velocity are below set limit joint_positions = _format_joint_positions(joints) return "movej({}, a = {:.2f}, v = {:.2f})\n".format(joint_positions, abs(accel), abs(vel))
5,349,035
def create_dist_list(dist: str, param1: str, param2: str) -> list: """ Creates a list with a special syntax describing a distribution Syntax: [identifier, param1, param2 (if necessary)] """ dist_list: list = [] if dist == 'fix': dist_list = ["f", float(param1)] elif dist == 'binary': dist_list = ["b", float(param1)] elif dist == 'binomial': dist_list = ["i", float(param1), float(param2)] elif dist == 'normal': dist_list = ["n", float(param1), float(param2)] elif dist == 'uniform': dist_list = ["u", float(param1), float(param2)] elif dist == 'poisson': dist_list = ["p", float(param1)] elif dist == 'exponential': dist_list = ["e", float(param1)] elif dist == 'lognormal': dist_list = ["l", float(param1), float(param2)] elif dist == 'chisquare': dist_list = ["c", float(param1)] elif dist == 'standard-t': dist_list = ["t", float(param1)] return dist_list
5,349,036
def compute_arfgm(t, qd, p, qw=0.0): """computes relative humidity from temperature, pressure and specific humidty (qd) This might be similar to https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.relative_humidity_from_specific_humidity.html algorithm from RemapToRemo addgm **Arguments:** *p:* atmospheric pressure ([Pa], 3d) *t:* temperature fields ([K], 3d) *qd:* specific humidity fields ([kg/kg], 3d) *qw:* liquid water content ([kg/kg], 3d) **Returns:** *relhum:* relative humidity ([%],3d) """ # return fgqd(fgee(t),p) #gqd = np.where(t >= C.B3, fgqd(fgew(t), p), fgqd(fgee(t), p)) fge = np.where(t >= C.B3, fgew(t), fgee(t)) gqd = fgqd(fge, p) relhum = qd / gqd return np.where(relhum > 1.0, (gqd + qw) / gqd, (qd + qw) / gqd)
5,349,037
def getOutputMeshpath(path, meshtype=None): """Returns the folder path for mesh file export as specified in the GUI. Phobos by default creates a directory 'meshes' in the export path and subsequently creates sub-directories of "export/path/meshes" for every format, e.g. resulting in "export/path/mesh/obj" for .obj file export. Args: path(str): export path root (set in the GUI) meshtype(str, optional): a valid mesh type, otherwise the type set in the GUI is used (Default value = None) Returns: string: output path for meshes """ return os.path.join(path, 'meshes', meshtype if meshtype else getOutputMeshtype())
5,349,038
def load_data(): """ loads the data for this task :return: """ fpath = 'images/ball.png' radius = 70 Im = cv2.imread(fpath, 0).astype('float32')/255 # 0 .. 1 # we resize the image to speed-up the level set method Im = cv2.resize(Im, dsize=(0, 0), fx=0.5, fy=0.5) height, width = Im.shape centre = (width // 2, height // 2) Y, X = np.ogrid[:height, :width] phi = radius - np.sqrt((X - centre[0]) ** 2 + (Y - centre[1]) ** 2) return Im, phi
5,349,039
def iteration_recognition(iteration=3, lists=5) -> NoReturn: """ Based on ~ CSC2032: Tutorial 1.4.1/2.1.1 ~ Question 3 Displays an array partially sorted by insertion sort. The original array is display with others that are not the original array. The user must pick out the correct array. """ # Init. obstacles, copy of list, and partial sorted version of list p_answers = [] # p_answers -> possible answers a = return_rarray(size=7) og_list = a.copy() partially_sorted_array = insertion_sort_test(a)[iteration] # Populate p_answers with non-answers and answer i, i2 = 0, 0 # while-loop prevents equal ptrs causing no swap while (i == i2): i, i2 = randint(0, len(a) - 1), randint(0, len(a) - 1) # Swap elements in the original array and display to confuse user for i in range(lists): temp_list = og_list.copy() swap(temp_list, i, i2) p_answers.append(temp_list) # Change a value in each possible answer list to be sorted for pa in p_answers: if (randint(0,1)): pa[randint(1,len(pa)-1)] = randint(0, max(pa)+2) # Sets at least one vector in p_answers to the actual answer p_answers[randint(0, lists - 1)] = og_list # Display question information to user print(f'\nSuppose after {int(iteration)} outer iterations of insertion') print('sort we have the following array:') print(f'{partially_sorted_array}\n') # Display actual trace print('Then which of the following arrays could have been the initial') print('array insertion sort was applied to.\n') for i, vec in enumerate(p_answers): print(f"{i + 1}) {list_to_string(vec)}") # User input is taken and evaluated try: user_inp = int(input('\nEnter the number of any correct array: ')) if not(0 < user_inp <= len(p_answers)): print('\n<Invalid input - question exited>\n') return except ValueError: print('\n<Invalid input - question exited>\n') return try: user_list = insertion_sort_test(p_answers[user_inp-1])[iteration] if (user_list == partially_sorted_array): print('<Answer: Correct!>\n') else: print('<Answer: Incorrect ._. >\n') acceptable = [] for i,arr in enumerate(p_answers): if (insertion_sort_test(arr)[iteration] == partially_sorted_array): acceptable.append(i+1) print(f"Acceptable Answer(s): {list_to_string(acceptable)}") except IndexError: print('<Answer: Incorrect ._. >\n') s = 'Acceptable answers:' for i, pa in enumerate(p_answers): if (pa == og_list): s = s + ' ' + f"[{str(i)}]" print(s)
5,349,040
def validate_args(args, dhis_version): """ Validate arguments. Raises Exception if invalid :param args: the argparse arguments :param dhis_version: DHIS 2 version as an integer (e.g. 32) :return: None """ if args.extend: if not args.groups and not args.public_access: raise PKClientException("ArgumentError: Must supply user groups when extending sharing - check your argument (-g)") else: if not args.public_access or len(args.public_access) not in (1, 2): raise PKClientException("ArgumentError: Must use -a METADATA [DATA] - max. 2 arguments") if args.groups: for group in args.groups: try: metadata_permission = group[1] except IndexError: raise PKClientException("ArgumentError: Missing User Group permission for METADATA access") if metadata_permission not in access.keys(): raise PKClientException('ArgumentError: User Group permission for METADATA access not valid: "{}"'.format(metadata_permission)) if dhis_version >= NEW_SYNTAX: try: data_permission = group[2] except IndexError: pass else: if data_permission not in access.keys(): raise PKClientException( 'ArgumentError: User Group permission for DATA access not valid: "{}"'.format( data_permission))
5,349,041
def create_response_body(input_json): """Create a json response with specific args of input JSON.""" city_name = str(input_json['name']) country_code = str(input_json['sys']['country']) temp_celsius = get_val_unit(input_json, 'main', 'temp', ' °C') wind_speed = get_val_unit(input_json, 'wind', 'speed', ' m/s') wind_deg = get_val_unit(input_json, 'wind', 'deg', ' deg') cloudines = get_cloudines(input_json) pressure = get_val_unit(input_json, 'main', 'pressure', ' hPa') humidity_percent = get_val_unit(input_json, 'main', 'humidity', '%') coord_lon = str(input_json['coord']['lon']) coord_lat = str(input_json['coord']['lat']) sunrise_hour = get_hour_time(input_json, 'sys', 'sunrise') sunset_hour = get_hour_time(input_json, 'sys', 'sunset') requested_time = get_datetime_from_unix(0, input_json, 'dt') output_json = { "location_name": f"{city_name}, {country_code}", "temperature": temp_celsius, "wind": f"{wind_speed}, {wind_deg}", "cloudines": cloudines, "pressure": pressure, "humidity": humidity_percent, "sunrise": sunrise_hour, "sunset": sunset_hour, "geo_coordinates": [coord_lat, coord_lon], "requested_time": requested_time } return output_json
5,349,042
def get_GESLA_surge_filename(city): """Get the path to the file containing GESLA-2 surge data for ‘city’.""" if city == "Brest": filename = "brest-brest-france-refmar_SkewSurges.txt" elif city == "La Rochelle": filename = "la_rochelle_la_palli-la_rochelle_la_palli-france-refmar_SkewSurges.txt" elif city == "Saint-Jean-de-Luz": filename = "saint_jean_de_luz_so-saint_jean_de_luz_so-france-refmar_SkewSurges.txt" elif city == "Cherbourg": filename = "cherbourg-cherbourg-france-refmar_SkewSurges.txt" elif city == "Le Havre": filename = "le_havre-le_havre-france-refmar_SkewSurges.txt" elif city == "Newlyn": # Choose one of the following files # filename = "newlyn,_cornwall-294a-united_kingdom-uhslc_SkewSurges.txt" # 1915-2010, 2 MB # filename = "newlyn-newlyn-glossdm-bodc_SkewSurges.txt" # 1916-1944, 600 kB filename = "newlyn-p001-uk-bodc_SkewSurges.txt" # 1915-2014, 1.7 MB elif city == "Vigo": filename = "vigo-vigo-spain-ieo_SkewSurges.txt" elif city == "La Coruna": filename = "la_coruna-830a-spain-uhslc_SkewSurges.txt" elif city == "Santander": filename = "santander-sant-spain-ieo_SkewSurges.txt" else: raise ValueError("unknown city: " + repr(city)) return os.path.join(GESLA_DIR, filename)
5,349,043
def getAllTraj () : """ get all trajectories from C.TRAJ_DIR """ def loadPickle (f) : with open(osp.join(C.TRAJ_DIR, f), 'rb') as fd : return pickle.load(fd) return list(map(loadPickle, os.listdir(C.TRAJ_DIR)))
5,349,044
def _get_count(_khoros_object, _user_id, _object_type): """This function returns the count of a specific user object (e.g. ``albums``, ``followers``, etc.) for a user. :param _khoros_object: The core :py:class:`khoros.Khoros` object :type _khoros_object: class[khoros.Khoros] :param _user_id: The User ID associated with the user :type _user_id: int, str :param _object_type: The type of object for which to get the count (e.g. ``albums``, ``followers``, etc.) :returns: The user object count as an integer :raises: :py:exc:`khoros.errors.exceptions.GETRequestError` """ _api_response = query_users_table_by_id(_khoros_object, f'{_object_type}.count(*)', _user_id) return int(_api_response['data']['items'][0][_object_type]['count'])
5,349,045
def antiSymmetrizeSignal(y, symmetryStep): """ Dischard symmetric part of a signal by taking the difference of the signal at x[n] and x[n + symmetry_step] get your corresponding x data as x[0:len(y)/2] Parameters ---------- y : array_like numpy array or list of data values to anti symmtetrize symmetryStep : scalar expected symmetry of the signal at x[n] occurs at x[n+symmetryStep] Returns ---------- y_symmetrized : ndarray numpy array of dimension size(y)/2 of the antisymmetrized data """ y = np.array(y) s = np.zeros(len(y)/2) for idx in range(0, len(s)): # (positive field - negative field)/2 s[idx] = (y[idx] - y[idx+symmetryStep])/2.-(y[0] - y[0+symmetryStep])/2. return s
5,349,046
def lms_to_rgb(img): """ rgb_matrix = np.array( [[0.0809444479, -0.130504409, 0.116721066], [0.113614708, -0.0102485335, 0.0540193266], [-0.000365296938, -0.00412161469, 0.693511405] ] ) """ rgb_matrix = np.array( [[ 2.85831110e+00, -1.62870796e+00, -2.48186967e-02], [-2.10434776e-01, 1.15841493e+00, 3.20463334e-04], [-4.18895045e-02, -1.18154333e-01, 1.06888657e+00]] ) return np.tensordot(img, rgb_matrix, axes=([2], [1]))
5,349,047
def merge(output, students, **kwargs): """Read lists of students downloaded from Xidian, merge them to create a unified list.""" students_all = {} fields = [kwargs["name_xdu"], kwargs["sid_xdu"]] for xlsfile in students: data = load_xls(xlsfile) name_col, sid_col = find_column_index(data[0], fields) stus = value_dict(data, sid_col, name_col) students_all = merge_students(students_all, stus) l_sid, l_name = kwargs["sid_baidu"], kwargs["name_baidu"] form = student_form(students_all, l_sid, l_name) # write_csv(form, output.replace(".xls", ".csv")) write_xls(form, output, kwargs["sheet_baidu"])
5,349,048
def timeit(func): """ Decorator that returns the total runtime of a function @param func: function to be timed @return: (func, time_taken). Time is in seconds """ def wrapper(*args, **kwargs) -> float: start = time.time() func(*args, **kwargs) total_time = time.time() - start return total_time return wrapper
5,349,049
def merge_count(data1, data2): """Auxiliary method to merge the lengths.""" return data1 + data2
5,349,050
def orthogonal_procrustes(fixed, moving): """ Implements point based registration via the Orthogonal Procrustes method. Based on Arun's method: Least-Squares Fitting of two, 3-D Point Sets, Arun, 1987, `10.1109/TPAMI.1987.4767965 <http://dx.doi.org/10.1109/TPAMI.1987.4767965>`_. Also see `this <http://eecs.vanderbilt.edu/people/mikefitzpatrick/papers/2009_Medim_Fitzpatrick_TRE_FRE_uncorrelated_as_published.pdf>`_ and `this <http://tango.andrew.cmu.edu/~gustavor/42431-intro-bioimaging/readings/ch8.pdf>`_. :param fixed: point set, N x 3 ndarray :param moving: point set, N x 3 ndarray of corresponding points :returns: 3x3 rotation ndarray, 3x1 translation ndarray, FRE :raises: ValueError """ validate_procrustes_inputs(fixed, moving) # This is what we are calculating R = np.eye(3) T = np.zeros((3, 1)) # Arun equation 4 p = np.ndarray.mean(moving, 0) # Arun equation 6 p_prime = np.ndarray.mean(fixed, 0) # Arun equation 7 q = moving - p # Arun equation 8 q_prime = fixed - p_prime # Arun equation 11 H = np.matmul(q.transpose(), q_prime) # Arun equation 12 # Note: numpy factors h = u * np.diag(s) * v svd = np.linalg.svd(H) # Replace Arun Equation 13 with Fitzpatrick, chapter 8, page 470, # to avoid reflections, see issue #19 X = _fitzpatricks_X(svd) # Arun step 5, after equation 13. det_X = np.linalg.det(X) if det_X < 0 and np.all(np.flip(np.isclose(svd[1], np.zeros((3, 1))))): # Don't yet know how to generate test data. # If you hit this line, please report it, and save your data. raise ValueError("Registration fails as determinant < 0" " and no singular values are close enough to zero") if det_X < 0 and np.any(np.isclose(svd[1], np.zeros((3, 1)))): # Implement 2a in section VI in Arun paper. v_prime = svd[2].transpose() v_prime[0][2] *= -1 v_prime[1][2] *= -1 v_prime[2][2] *= -1 X = np.matmul(v_prime, svd[0].transpose()) # Compute output R = X tmp = p_prime.transpose() - np.matmul(R, p.transpose()) T[0][0] = tmp[0] T[1][0] = tmp[1] T[2][0] = tmp[2] fre = compute_fre(fixed, moving, R, T) return R, T, fre
5,349,051
def make_model(arch_params, patch_size): """ Returns the model. Used to select the model. """ return RDN(arch_params, patch_size)
5,349,052
def calc_error(frame, gap, method_name): """Calculate the error between the ground truth and the GAP prediction""" frame.single_point(method_name=method_name, n_cores=1) pred = frame.copy() pred.run_gap(gap=gap, n_cores=1) error = np.abs(pred.energy - frame.energy) logger.info(f'|E_GAP - E_0| = {np.round(error, 3)} eV') return error
5,349,053
def find_model(sender, model_name): """ Register new model to ORM """ MC = get_mc() model = MC.get((MC.c.model_name==model_name) & (MC.c.uuid!='')) if model: model_inst = model.get_instance() orm.set_model(model_name, model_inst.table_name, appname=__name__, model_path='') return orm.__models__.get(model_name)
5,349,054
def list_subtitles(videos, languages, pool_class=ProviderPool, **kwargs): """List subtitles. The `videos` must pass the `languages` check of :func:`check_video`. All other parameters are passed onwards to the provided `pool_class` constructor. :param videos: videos to list subtitles for. :type videos: set of :class:`~subliminal.video.Video` :param languages: languages to search for. :type languages: set of :class:`~babelfish.language.Language` :param pool_class: class to use as provider pool. :type: :class:`ProviderPool`, :class:`AsyncProviderPool` or similar :return: found subtitles per video. :rtype: dict of :class:`~subliminal.video.Video` to list of :class:`~subliminal.subtitle.Subtitle` """ listed_subtitles = defaultdict(list) # check videos checked_videos = [] for video in videos: if not check_video(video, languages=languages): logger.info('Skipping video %r', video) continue checked_videos.append(video) # return immediately if no video passed the checks if not checked_videos: return listed_subtitles # list subtitles with pool_class(**kwargs) as pool: for video in checked_videos: logger.info('Listing subtitles for %r', video) subtitles = pool.list_subtitles(video, languages - video.subtitle_languages) listed_subtitles[video].extend(subtitles) logger.info('Found %d subtitle(s)', len(subtitles)) return listed_subtitles
5,349,055
def public_incursion_no_expires(url, request): """ Mock endpoint for incursion. Public endpoint without cache """ return httmock.response( status_code=200, content=[ { "type": "Incursion", "state": "mobilizing", "staging_solar_system_id": 30003893, "constellation_id": 20000568, "infested_solar_systems": [ 30003888, ], "has_boss": True, "faction_id": 500019, "influence": 1 } ] )
5,349,056
def test_get_rows_none_selected(): """Assert that an error is raised when no rows are selected.""" atom = ATOMClassifier(X_idx, y_idx, index=True, random_state=1) with pytest.raises(ValueError, match=r".*has to be selected.*"): atom._get_rows(index=slice(1000, 2000))
5,349,057
def bad_topics(): """ Manage Inappropriate topics """ req = request.vars view_info = {} view_info['errors'] = [] tot_del = 0 if req.form_submitted: for item in req: if item[:9] == 'inapp_id_': inapp_id = int(req[item]) db(db.zf_topic_inappropriate.id==inapp_id).update(read_flag=True) tot_del += 1 topics = db((db.zf_topic_inappropriate.read_flag==False) & (db.zf_topic.id==db.zf_topic_inappropriate.topic_id)).select(db.zf_topic_inappropriate.ALL, db.zf_topic.title, orderby=~db.zf_topic_inappropriate.creation_date) view_info.update({'removed': tot_del}) return dict(request=request, topics=topics, view_info=view_info) else: topics = db((db.zf_topic_inappropriate.read_flag==False) & (db.zf_topic.id==db.zf_topic_inappropriate.topic_id)).select(db.zf_topic_inappropriate.ALL, db.zf_topic.title, orderby=~db.zf_topic_inappropriate.creation_date) return dict(request=request, topics=topics, view_info=view_info)
5,349,058
def run(tl_key, p_bans=tuple(), g_bans=tuple(), p_open=True, g_open=True, qr=2, enable_cfg=False, cfg_name="wxReply"): """ 启动 :param tl_key: 图灵key :param p_bans: 好友黑名单 :param g_bans: 群组黑名单 :param p_open: 开启自动回复 :param g_open: 开启群艾特回复 :param qr: 二维码类型 :param enable_cfg: 是否启用配置文件 :return: """ print(""" ,---------. .-./`) ____ ,---. .--. .-'''-. .---. .---. .---. \ \\ .-.') .' __ `. | \ | | / _ \| | |_ _| | ,_| `--. ,---'/ `-' \/ ' \ \| , \ | | (`' )/`--'| | ( ' ) ,-./ ) | \ `-'`"`|___| / || |\_ \| |(_ o _). | '-(_{;}_)\ '_ '`) :_ _: .---. _.-` || _( )_\ | (_,_). '. | (_,_) > (_) ) (_I_) | | .' _ || (_ o _) |.---. \ :| _ _--. | ( . .-' (_(=)_) | | | _( )_ || (_,_)\ |\ `-' ||( ' ) | | `-'`-'|___ (_I_) | | \ (_ o _) /| | | | \ / (_{;}_)| | | \ '---' '---' '.(_,_).' '--' '--' `-...-' '(_,_) '---' `--------` """) global OPEN_CHAT, OPEN_GROUP, ENABLE_CFG, CFG_NAME # 配置文件名称 CFG_NAME = cfg_name # 设置图灵key tl_data['key'] = tl_key ENABLE_CFG = enable_cfg # 配置信息 if ENABLE_CFG: # 读配置 cfg = get_cfg() if cfg: p_open = cfg.get('p_open') g_open = cfg.get('g_open') p_bans = cfg.get('p_bans') g_bans = cfg.get('g_bans') # 设置回复状态 OPEN_CHAT = p_open OPEN_GROUP = g_open # 配置itchat itchat.auto_login(hotReload=True, enableCmdQR=qr, statusStorageDir=pkl_path) # 默认黑名单 for ban in p_bans: try: add_p_ban(ban) except Exception as ex: print(ex) continue # 设置群黑名单 for ban in g_bans: try: add_g_ban(ban) except Exception as ex: print(ex) continue # 获取公众号列表 for ban in itchat.get_mps(update=True): m_ban.add(ban['UserName']) # 提示信息 send_to_file_helper('输入“/菜单”指令,获得帮助。') # 写配置 set_cfg(ENABLE_CFG) # 定时清理历史消息 t = threading.Thread(target=clear, args=(msgs,)) t.setDaemon(True) t.start() # 启动 itchat.run()
5,349,059
def test_items_Exception_for_elasticsearch_errs(monkeypatch): """An Elasticsearch error response other than a 400 results in a 500""" monkeypatch.setattr(requests, 'post', mock_es_post_response_err) # Simulate some unsuccessful status code from Elasticsearch, other than a # 400 Bad Request. Say a 500 Server Error, or a 404. sq = SearchQuery({'q': 'goodquery', 'from': 0, 'page': 1, 'page_size': 1}) with pytest.raises(Exception): v2_handlers.items(sq)
5,349,060
def main_loop(): # noqa: C901 """Contain all the logic for the app""" menu = Menu(CONFIG) files = get_files() current_position = 0 quit_early = False files_exhausted = False while not (quit_early or files_exhausted): filename = files[current_position] files_message = "Current_file: {0} of {1}: {2}".format(current_position + 1, len(files), os.path.split(filename)[1]) # message will be shown only when we are on the files tab result = menu.run(message={'files': files_message}) if result == ("subdirs", "create_subdirs"): create_subdirectories() elif result == ("subdirs", "help"): print_help() elif result == ("subdirs", "quit"): quit_early = True elif result[0] == "files" and result[1] in ["interesting", "boring"]: if not os.path.isdir(result[1]): raise ValueError("Directory must be created first") move_to_subdir(files[current_position], result[1]) print('File moved to {}'.format(result[1])) current_position += 1 files_exhausted = current_position >= len(files) elif result == ("files", "skip"): current_position += 1 files_exhausted = current_position >= len(files) else: raise AssertionError("Unrecognized input, this should have been caught by Menu validator") if files_exhausted: print("All files done.") else: print("Program quit early.")
5,349,061
def get_min_id_for_repo_mirror_config(): """ Gets the minimum id for a repository mirroring. """ return RepoMirrorConfig.select(fn.Min(RepoMirrorConfig.id)).scalar()
5,349,062
def check_series( Z, enforce_univariate=False, allow_empty=False, allow_numpy=True, enforce_index_type=None, ): """Validate input data. Parameters ---------- Z : pd.Series, pd.DataFrame Univariate or multivariate time series enforce_univariate : bool, optional (default=False) If True, multivariate Z will raise an error. allow_empty : bool enforce_index_type : type, optional (default=None) type of time index Returns ------- y : pd.Series, pd.DataFrame Validated time series Raises ------ ValueError, TypeError If Z is an invalid input """ # Check if pandas series or numpy array if not allow_numpy: valid_data_types = tuple( filter(lambda x: x is not np.ndarray, VALID_DATA_TYPES) ) else: valid_data_types = VALID_DATA_TYPES if not isinstance(Z, valid_data_types): raise TypeError( f"Data must be a one of {valid_data_types}, but found type: {type(Z)}" ) if enforce_univariate: _check_is_univariate(Z) # check time index check_time_index( Z.index, allow_empty=allow_empty, enforce_index_type=enforce_index_type ) return Z
5,349,063
def save_json(data, source_airport, dest_airport, date): """ Saves the scraped airfares as a .json file. Parameters ---------- data: List. Required. A list containing all the flight information from the source airport to the destination airport on the date specified. source_airport: String. Required. The source airport code we scraped data for. dest_airport: String. Required. The destination airport code we scraped data for. date: String. Required. The date we scraped data for. Must be in 'DD/MM/YYYY' format. Returns ---------- None. The .json file is saved as '<source_airport>_<dest_aiport>_<day>_<month>_<year>.json' """ dt = datetime.strptime(args["date"], "%d/%m/%Y") fname = "{0}_{1}_{2}_{3}_{4}.json".format(args["source_airport"], args["dest_airport"], dt.day, dt.month, dt.year) with open(fname,'w') as fp: json.dump(scraped_data,fp,indent = 4) print("Saved data to {0}".format(fname))
5,349,064
def __ensure_project_registered(): """ Ensure the project configured in project.yaml has been registered. """ client = get_ai_flow_client() project_meta = client.get_project_by_name(current_project_config().get_project_name()) pp = {} for k, v in current_project_config().items(): pp[k] = str(v) if project_meta is None: project_meta = client.register_project(name=current_project_config().get_project_name(), properties=pp) else: project_meta = client.update_project(project_name=current_project_config().get_project_name(), properties=pp) current_project_config().set_project_uuid(str(project_meta.uuid))
5,349,065
def B(s): """string to byte-string in Python 2 (including old versions that don't support b"") and Python 3""" if type(s)==type(u""): return s.encode('utf-8') # Python 3 return s
5,349,066
def gather_tiling_strategy(data, axis): """Custom tiling strategy for gather op""" strategy = list() base = 0 for priority_value, pos in enumerate(range(len(data.shape) - 1, axis, -1)): priority_value = priority_value + base strategy.append(ct_util.create_constraint_on_tensor(tensor=data, values=priority_value, constraints=ct_util.TileConstraint.SET_PRIORITY, tensor_pos=pos)[0]) return strategy
5,349,067
def fetch( uri: str, auth: Optional[str] = None, endpoint: Optional[str] = None, **data ) -> OAuthResponse: """Perform post given URI with auth and provided data.""" req = requests.Request("POST", uri, data=data, auth=auth) prepared = req.prepare() timeout = time.time() + app.config["OAUTH_FETCH_TOTAL_TIMEOUT"] retry = 0 result = _error( errors.SERVER_ERROR, "An unknown error occurred talking to provider." ) for i in range(app.config["OAUTH_FETCH_TOTAL_RETRIES"]): prefix = "attempt #%d %s" % (i + 1, uri) # TODO: Add jitter to backoff and/or retry after? backoff = (2**i - 1) * app.config["OAUTH_FETCH_BACKOFF_FACTOR"] remaining_timeout = timeout - time.time() if (retry or backoff) > remaining_timeout: app.logger.debug("Abort %s no timeout remaining.", prefix) break elif (retry or backoff) > 0: app.logger.debug("Retry %s [sleep %.3f]", prefix, retry or backoff) time.sleep(retry or backoff) result, status, retry = _fetch(prepared, remaining_timeout, endpoint) labels = {"endpoint": endpoint, "status": stats.status(status)} stats.ClientRetryHistogram.labels(**labels).observe(i) if status is not None and "error" in result: error = result["error"] error = app.config["OAUTH_FETCH_ERROR_TYPES"].get(error, error) if error not in errors.DESCRIPTIONS: error = "invalid_error" stats.ClientErrorCounter.labels(error=error, **labels).inc() if status is None: pass # We didn't even get a response, so try again. elif status not in app.config["OAUTH_FETCH_RETRY_STATUS_CODES"]: break elif "error" not in result: break # No error reported so might as well return it. app.logger.debug( "Result %s [status %s] [retry after %s]", prefix, status, retry ) # TODO: consider returning retry after time so it can be used. return result
5,349,068
def redscreen(main_filename, back_filename): """ Implements the notion of "redscreening". That is, the image in the main_filename has its "sufficiently" red pixels replaced with pized from the corresponding x,y location in the image in the file back_filename. Returns the resulting "redscreened" image. """ image = SimpleImage(main_filename) back = SimpleImage(back_filename) for pixel in image: average = (pixel.red + pixel.green + pixel.blue) // 3 # See if this pixel is "sufficiently" red if pixel.red >= average * INTENSITY_THRESHOLD: # If so, we get the corresponding pixel from the # back image and overwrite the pixel in # the main image with that from the back image. x = pixel.x y = pixel.y image.set_pixel(x, y, back.get_pixel(x, y)) return image
5,349,069
def density_speed_conversion(N, frac_per_car=0.025, min_val=0.2): """ Fraction to multiply speed by if there are N nearby vehicles """ z = 1.0 - (frac_per_car * N) # z = 1.0 - 0.04 * N return max(z, min_val)
5,349,070
async def test_remove_all_outputs(): """ GIVEN ChannelMultiple with multiple output channels. WHEN All output channels are removed then a item is put on src channel. EXPECT Item is not copied to former output channels, but is removed from src channel. """ src = create_channel() out1 = create_channel() out2 = create_channel() m = create_multiple(src) assert m.add_output(out1) assert m.add_output(out2) await asyncio.sleep(0.05) m.remove_all_outputs() x = 'x' src.offer(x) await asyncio.sleep(0.05) assert src.empty() assert out1.empty() assert out2.empty() src.close() await asyncio.sleep(0.05)
5,349,071
def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ service_principal = demisto.params().get('credentials').get('identifier') secret = demisto.params().get('credentials').get('password') # Remove trailing slash to prevent wrong URL path to service server_url = demisto.params()['url'][:-1] \ if (demisto.params()['url'] and demisto.params()['url'].endswith('/')) else demisto.params()['url'] api_version = demisto.params().get('api_version') verify_certificate = not demisto.params().get('insecure', False) # How many time before the first fetch to retrieve incidents fetch_time = demisto.params().get('fetch_time', '3 days') threat_status = argToList(demisto.params().get('threat_status')) threat_type = argToList(demisto.params().get('threat_type')) event_type_filter = demisto.params().get('events_type') fetch_limit = 50 # Remove proxy if not set to true in params proxies = handle_proxy() LOG('Command being called is %s' % (demisto.command())) try: client = Client(server_url, api_version, verify_certificate, service_principal, secret, proxies) if demisto.command() == 'test-module': results = test_module(client, fetch_time, event_type_filter) return_outputs(results, None) elif demisto.command() == 'fetch-incidents': integration_context = demisto.getIntegrationContext() next_run, incidents, remained_incidents = fetch_incidents( client=client, last_run=demisto.getLastRun(), first_fetch_time=fetch_time, event_type_filter=event_type_filter, threat_status=threat_status, threat_type=threat_type, limit=fetch_limit, integration_context=integration_context ) # Save last_run, incidents, remained incidents into integration demisto.setLastRun(next_run) demisto.incidents(incidents) # preserve context dict integration_context['incidents'] = remained_incidents demisto.setIntegrationContext(integration_context) elif demisto.command() == 'proofpoint-get-events': return_outputs(*get_events_command(client, demisto.args())) except Exception as e: return_error(str(e))
5,349,072
def connect_to_amqp(sysconfig): """ Connect to an AMQP Server, and return the connection and Exchange. :param sysconfig: The slickqaweb.model.systemConfiguration.amqpSystemConfiguration.AMQPSystemConfiguration instance to use as the source of information of how to connect. :return: (connection, exchange) on success, exception on error """ assert isinstance(sysconfig, AMQPSystemConfiguration) configuration = dict() configuration['AMQP'] = dict() if hasattr(sysconfig, 'hostname') and sysconfig.hostname is not None: configuration['AMQP']['hostname'] = sysconfig.hostname else: raise AMQPConnectionError(message="No hostname defined for AMQP connection.") if hasattr(sysconfig, 'port') and sysconfig.port is not None: configuration['AMQP']['port'] = sysconfig.port if hasattr(sysconfig, 'username') and sysconfig.username is not None: configuration['AMQP']['username'] = sysconfig.username if hasattr(sysconfig, 'password') and sysconfig.password is not None: configuration['AMQP']['password'] = sysconfig.password if hasattr(sysconfig, 'virtualHost') and sysconfig.virtualHost is not None: configuration['AMQP']['virtual host'] = sysconfig.virtualHost if hasattr(sysconfig, 'exchangeName') and sysconfig.exchangeName is not None: configuration['AMQP']['exchange'] = sysconfig.exchangeName else: raise AMQPConnectionError(message="No exchange defined for AMQP connection.") logger = logging.getLogger("slickqaweb.amqpcon.connect_to_amqp") url = str.format("amqp://{hostname}:{port}", **dict(list(configuration['AMQP'].items()))) if 'virtual host' in configuration['AMQP'] and configuration['AMQP']['virtual host'] != '': url = str.format("{}/{}", url, configuration['AMQP']['virtual host']) logger.debug("AMQPConnection configured with url %s", url) exchange = Exchange(configuration['AMQP'].get('exchange', "amqp.topic"), type='topic', durable=True) logger.debug("AMQPConnection is using exchange %s", exchange) connection = None if 'username' in configuration['AMQP'] and 'password' in configuration['AMQP']: username = configuration['AMQP']['username'] password = configuration['AMQP']['password'] logger.debug("Using username %s and password %s to connect to AMQP Broker", username, password) connection = Connection(url, userid=username, password=password) else: connection = Connection(url) # typically connection connect on demand, but we want to flush out errors before proceeding connection.connect() exchange = exchange(connection) exchange.declare() return (connection, exchange)
5,349,073
def int_to_datetime(int_date, ds=None): """Convert integer date indices to datetimes.""" if ds is None: return TIME_ZERO + int_date * np.timedelta64(1, 'D') if not hasattr(ds, 'original_time'): raise ValueError('Dataset with no original_time cannot be used to ' 'convert ints to datetimes.') first_int = ds.time.values[0] delta_int = _get_delta(ds.time) first_date = ds.original_time.values[0] delta_date = _get_delta(ds.original_time) return first_date + ((int_date - first_int) / delta_int) * delta_date
5,349,074
def show_plugin(name, path, user): """ Show a plugin in a wordpress install and check if it is installed name Wordpress plugin name path path to wordpress install location user user to run the command as CLI Example: .. code-block:: bash salt '*' wordpress.show_plugin HyperDB /var/www/html apache """ ret = {"name": name} resp = __salt__["cmd.shell"]( ("wp --path={0} plugin status {1}").format(path, name), runas=user ).split("\n") for line in resp: if "Status" in line: ret["status"] = line.split(" ")[-1].lower() elif "Version" in line: ret["version"] = line.split(" ")[-1].lower() return ret
5,349,075
def test_trium2flat_idx(): """Test the conversion from triangular upper index to flat array index.""" td = np.array([[1, 0], [0, 1], [0, 1]]) cm = BiCM(td) assert cm.triumat2flat_idx(3, 5, 8) == 19 for k in range(45): ij = cm.flat2triumat_idx(k, 10) assert cm.triumat2flat_idx(ij[0], ij[1], 10) == k for i in range(10): for j in range(i + 1, 10): k = cm.triumat2flat_idx(i, j, 10) assert (i, j) == cm.flat2triumat_idx(k, 10)
5,349,076
def send_notification(request, type_id, receipient, message): """Method to send out notifications.""" try: if type_id == 2: # Get users from this Organization unit title = "Child tranfer IN" org_ids = [receipient] person_ids = get_organization_persons(org_ids) users = get_users(person_ids) for user in users: notify.send(user, recipient=user, verb=title, description=message) except Exception as e: print ('Error sending notifications - %s' % (str(e))) pass
5,349,077
def get_receiver_type(rinex_fname): """ Return the receiver type (header line REC # / TYPE / VERS) found in *rinex_fname*. """ with open(rinex_fname) as fid: for line in fid: if line.rstrip().endswith('END OF HEADER'): break elif line.rstrip().endswith('REC # / TYPE / VERS'): return line[20:40].strip() raise ValueError('receiver type not found in header of RINEX file ' '{}'.format(rinex_fname))
5,349,078
def is_cyclone_phrase(phrase): """Returns whether all the space-delimited words in phrases are cyclone words A phrase is a cyclone phrase if and only if all of its component words are cyclone words, so we first split the phrase into words using .split(), and then check if all of the words are cyclone words. """ return all([is_cyclone_word(word) for word in phrase.split()])
5,349,079
def _append_iwc_sensitivity(data_handler): """Calculates sensitivity of ice water content.""" iwc_sensitivity = _z_to_iwc(data_handler, 'Z_sensitivity') data_handler.append_data(iwc_sensitivity, 'iwc_sensitivity')
5,349,080
def wl_to_wavenumber(wl, angular=False): """Given wavelength in meters, convert to wavenumber in 1/cm. The wave number represents the number of wavelengths in one cm. If angular is true, will calculate angular wavenumber. """ if angular: wnum = (2*np.pi)/(wl*100) else: wnum = 1/(wl*100) return wnum
5,349,081
def easeOutCubic(n): """A cubic tween function that begins fast and then decelerates. Args: n (float): The time progress, starting at 0.0 and ending at 1.0. Returns: (float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). """ _checkRange(n) n = n - 1 return n**3 + 1
5,349,082
def _evaluate_batch_beam(model, params, dico, batch, lengths, positions, langs, src_lens, trg_lens, \ gen_type, alpha, beta, gamma, dec_len, iter_mult, selected_pos, beam_size, length_penalty): """Run on one example""" n_iter = dec_len * iter_mult # log probabilities of previously present tokens at each position vocab_size = len(dico) mask_tok = dico.word2id[MASK_WORD] total_topbeam_scores = np.array([0.] * beam_size) batch = batch.repeat((1, beam_size)) lengths = lengths.repeat((beam_size)) positions = positions.repeat((1, beam_size)) langs = langs.repeat((1, beam_size)) for dec_iter in range(n_iter): # predict the token depending on selected_pos pred_mask = torch.zeros_like(batch).byte() if gen_type == "src2trg": pred_mask[src_lens[0] + selected_pos[dec_iter%dec_len] + 1, :] = 1 elif gen_type == "trg2src": pred_mask[selected_pos[dec_iter%dec_len] + 1, :] = 1 # NOTE(Alex): shouldn't there be some masking here? tensor = model('fwd', x=batch, lengths=lengths, positions=positions, langs=langs, causal=False) # beam_size x |V| scores_pred = model('predict_wo_targets', tensor=tensor, pred_mask=pred_mask) # get top_beam scores and tokens; need to take log softamx so scores are on same scale log_probs_pred = torch.log_softmax(scores_pred, dim=-1) # beam_size x beam_size topbeam_scores, topbeam_toks = log_probs_pred.topk(beam_size, dim=-1) ### exception for first if dec_iter == 0: total_topbeam_scores = total_topbeam_scores + np.diagonal(topbeam_scores.cpu().numpy())# + selected_pos_scores for i_beam, topbeam_tok in enumerate(torch.diagonal(topbeam_toks)): # substitute that token in if gen_type == "src2trg": batch[src_lens[0] + selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok elif gen_type == "trg2src": batch[selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok else: sys.exit("something is wrong") continue ### all iterations except first # compute updated beam scores topbeam_scores = topbeam_scores.cpu().numpy() new_total_topbeam_scores = np.expand_dims(total_topbeam_scores, 1) + topbeam_scores # sort and take beam_size highest new_topbeam_tok_flat = new_total_topbeam_scores.reshape(-1).argsort()[-beam_size:] # create clones of the tokens and scores so far so we don't overwrite when updating batch_clone = batch.clone() total_topbeam_scores_clone = copy.deepcopy(total_topbeam_scores) # iterate over the highest scoring beams for i_beam, topbeam_tok_flat in enumerate(new_topbeam_tok_flat): topbeam_tok_row = int(np.floor(topbeam_tok_flat / beam_size)) topbeam_tok_col = int(topbeam_tok_flat % beam_size) topbeam_tok = topbeam_toks[topbeam_tok_row][topbeam_tok_col] batch[:,i_beam] = batch_clone[:, topbeam_tok_row] total_topbeam_scores[i_beam] = total_topbeam_scores_clone[topbeam_tok_row] + \ topbeam_scores[topbeam_tok_row][topbeam_tok_col] # substitute that token in if gen_type == "src2trg": batch[src_lens[0] + selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok elif gen_type == "trg2src": batch[selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok else: sys.exit("something is wrong") return batch, total_topbeam_scores / (dec_len ** length_penalty)
5,349,083
def tetrahedron(a, b, c, d, depth, vertices, edges, surfaces, config): """ Recursive tetrahedron fractal generation. ARGUMENTS: a, b, c, d - tetrahedron vertices depth - how deep in interations vertices, edges, surfaces - mesh data lists config - config tuple to generate from """ # if zero depth, final iteration, draw tetrahedron if depth == 0: draw_tetrahedron(a, b, c, d, vertices, edges, surfaces) else: # create sub-tetrahedrons and iterate over them tetrahedrons = generate_sub_tetrahedrons(a, b, c, d) for index, item in enumerate(tetrahedrons): depth_iter = depth-1 # helper variable # setup next tetrahedron according to config if index in config[0]: if index in config[1]: depth_iter = 0 # recursive call tetrahedron(item[0], item[1], item[2], item[3], depth_iter, vertices, edges, surfaces, config)
5,349,084
def _fix_entries(entries): """recursive function to collapse entries into correct format""" cur_chapter_re, chapter_entry = None, None new_entries = [] for entry in entries: title, doxy_path, subentries = entry if subentries is not None: new_subentries = _fix_entries(subentries) new_entries.append([title, doxy_path, new_subentries]) elif cur_chapter_re and cur_chapter_re.match(title): chapter_entry[2].append(entry) else: new_entries.append(entry) chapter_match = CHAPTER_RE.match(title) if chapter_match: cur_chapter_re = re.compile( chapter_match.group('num') + r'\.\d+:') chapter_entry = entry chapter_entry[-1] = [] else: cur_chapter_re, chapter_entry = None, None return new_entries
5,349,085
def _check_bulk_delete(attempted_pairs, result): """ Checks if the RCv3 bulk delete command was successful. """ response, body = result if response.code == 204: # All done! return body errors = [] non_members = pset() for error in body["errors"]: match = _SERVER_NOT_A_MEMBER_PATTERN.match(error) if match is not None: pair = match.groupdict() non_members = non_members.add( (normalize_lb_id(pair["lb_id"]), pair["server_id"])) continue match = _LB_INACTIVE_PATTERN.match(error) if match is not None: errors.append(LBInactive(match.group("lb_id"))) continue match = _LB_DOESNT_EXIST_PATTERN.match(error) if match is not None: del_lb_id = normalize_lb_id(match.group("lb_id")) # consider all pairs with this LB to be removed removed = [(lb_id, node_id) for lb_id, node_id in attempted_pairs if lb_id == del_lb_id] non_members |= pset(removed) continue match = _SERVER_DOES_NOT_EXIST.match(error) if match is not None: del_server_id = match.group("server_id") # consider all pairs with this server to be removed removed = [(lb_id, node_id) for lb_id, node_id in attempted_pairs if node_id == del_server_id] non_members |= pset(removed) else: raise UnknownBulkResponse(body) if errors: raise BulkErrors(errors) elif non_members: to_retry = pset(attempted_pairs) - non_members return bulk_delete(to_retry) if to_retry else None else: raise UnknownBulkResponse(body)
5,349,086
def get_frontend_ui_base_url(config: "CFG") -> str: """ Return ui base url """ return as_url_folder(urljoin(get_root_frontend_url(config), FRONTEND_UI_SUBPATH))
5,349,087
def read_image(name): """ Reads image into a training example. Might be good to threshold it. """ im = Image.open(name) pix = im.load() example = [] for x in range(16): for y in range(16): example.append(pix[x, y]) return example
5,349,088
def insert_info_data(xml_root, result_annotation): """Fill available information of annotation Args: xml_root: root for xml parser result_annotation: output annotation in COCO representation """ log.info('Reading information data...') version = '' date = '' description = '' year = '' for child in xml_root: if child.tag == 'version': version = child.text if child.tag == 'meta': for task in child: for entry in task: if entry.tag == 'name': description = entry.text if entry.tag == 'created': date = entry.text date = date.split(' ')[0] year = date.split('-')[0] result_annotation['info'] = { 'contributor': '', 'date_created': date, 'description': description, 'url': '', 'version': version, 'year': year } log.info('Found the next information data: {}'.format(result_annotation['info']))
5,349,089
def l3tc_underlay_lag_config_unconfig(config, dut1, dut2, po_name, members_dut1, members_dut2): """ :param config: :param dut1: :param dut2: :param po_name: :param members_dut1: :param members_dut2: :return: """ st.banner("{}Configuring LAG between Spine and Leaf node.".format('Un' if config != 'yes' else '')) result = True if config == 'yes': # configure po and add members [out, exceptions] = \ utils.exec_all(fast_start, [[poapi.config_portchannel, dut1, dut2, po_name, members_dut1, members_dut2, "add"]]) st.log([out, exceptions]) else: # del po and delete members [out, exceptions] = \ utils.exec_all(fast_start, [[poapi.config_portchannel, dut1, dut2, po_name, members_dut1, members_dut2, "del"]]) st.log([out, exceptions]) return result
5,349,090
def _xrdcp_copyjob(wb, copy_job: CopyFile, xrd_cp_args: XrdCpArgs, printout: str = '') -> int: """xrdcp based task that process a copyfile and it's arguments""" if not copy_job: return overwrite = xrd_cp_args.overwrite batch = xrd_cp_args.batch sources = xrd_cp_args.sources chunks = xrd_cp_args.chunks chunksize = xrd_cp_args.chunksize makedir = xrd_cp_args.makedir tpc = xrd_cp_args.tpc posc = xrd_cp_args.posc # hashtype = xrd_cp_args.hashtype streams = xrd_cp_args.streams cksum = xrd_cp_args.cksum timeout = xrd_cp_args.timeout rate = xrd_cp_args.rate cmdline = f'{copy_job.src} {copy_job.dst}' return retf_print(_xrdcp_sysproc(cmdline, timeout))
5,349,091
def merge_preclusters_ld(preclusters): """ Bundle together preclusters that share one LD snp * [ Cluster ] Returntype: [ Cluster ] """ clusters = list(preclusters) for cluster in clusters: chrom = cluster.gwas_snps[0].snp.chrom start = min(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) end = max(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) # A dictionary that maps from snp to merged clusters snp_owner = dict() for cluster in preclusters: for ld_snp in cluster.ld_snps: # If this SNP has been seen in a different cluster if ld_snp in snp_owner and snp_owner[ld_snp] is not cluster: # Set other_cluster to that different cluster other_cluster = snp_owner[ld_snp] merged_cluster = merge_clusters(cluster, other_cluster) # Remove the two previous clusters and replace them with # the merged cluster clusters.remove(cluster) clusters.remove(other_cluster) clusters.append(merged_cluster) # Set the new cluster as the owner of these SNPs. for snp in merged_cluster.ld_snps: snp_owner[snp] = merged_cluster for snp in cluster.ld_snps: snp_owner[snp] = merged_cluster # Skip the rest of this cluster. break else: snp_owner[ld_snp] = cluster for cluster in clusters: chrom = cluster.gwas_snps[0].snp.chrom start = min(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) end = max(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) logging.info("\tFound %i clusters from the GWAS peaks" % (len(clusters))) return clusters
5,349,092
def cross_recurrence_matrix( xps, yps ): """Cross reccurence matrix. Args: xps (numpy.array): yps (numpy.array): Returns: numpy.array : A 2D numpy array. """ return recurrence_matrix( xps, yps )
5,349,093
def define_panels(x, y, N=40): """ Discretizes the geometry into panels using 'cosine' method. Parameters ---------- x: 1D array of floats x-coordinate of the points defining the geometry. y: 1D array of floats y-coordinate of the points defining the geometry. N: integer, optional Number of panels; default: 40. Returns ------- panels: 1D Numpy array of Panel objects. The list of panels. """ R = (x.max()-x.min())/2.0 # circle radius x_center = (x.max()+x.min())/2.0 # x-coordinate of circle center theta = numpy.linspace(0.0, 2.0*numpy.pi, N+1) # array of angles x_circle = x_center + R*numpy.cos(theta) # x-coordinates of circle x_ends = numpy.copy(x_circle) # x-coordinate of panels end-points y_ends = numpy.empty_like(x_ends) # y-coordinate of panels end-points # extend coordinates to consider closed surface x, y = numpy.append(x, x[0]), numpy.append(y, y[0]) # compute y-coordinate of end-points by projection I = 0 for i in range(N): while I < len(x)-1: if (x[I] <= x_ends[i] <= x[I+1]) or (x[I+1] <= x_ends[i] <= x[I]): break else: I += 1 a = (y[I+1]-y[I])/(x[I+1]-x[I]) b = y[I+1] - a*x[I+1] y_ends[i] = a*x_ends[i] + b y_ends[N] = y_ends[0] # create panels panels = numpy.empty(N, dtype=object) for i in range(N): panels[i] = Panel(x_ends[i], y_ends[i], x_ends[i+1], y_ends[i+1]) return panels
5,349,094
def compile_for_llvm(function_name, def_string, optimization_level=-1, globals_dict=None): """Compiles function_name, defined in def_string to be run through LLVM. Compiles and runs def_string in a temporary namespace, pulls the function named 'function_name' out of that namespace, optimizes it at level 'optimization_level', -1 for the default optimization, and marks it to be JITted and run through LLVM. """ namespace = {} if globals_dict is None: globals_dict = globals() exec def_string in globals_dict, namespace func = namespace[function_name] if optimization_level is not None: if optimization_level >= DEFAULT_OPT_LEVEL: func.__code__.co_optimization = optimization_level func.__code__.co_use_jit = True return func
5,349,095
def setup(): """ This just moves the initial setup-commands to the top for better readability :return: - """ plugin.add_config("api_base", is_required=True) plugin.add_config("api_key", is_required=True) plugin.add_config("room_id", is_required=True) plugin.add_config("series_tracking", is_required=False, default_value=True) plugin.add_command( "series", print_series, "Get a list of currently tracked series", room_id=[plugin.read_config("room_id")], ) plugin.add_command( "episodes", current_episodes, "Post a new message that is tracking episodes", room_id=[plugin.read_config("room_id")], ) # initially post current episodes at the start of the week plugin.add_timer(current_episodes, frequency="weekly") # check for updates to the episodes' status and update the message accordingly plugin.add_timer(update_current_episodes, frequency=datetime.timedelta(minutes=5)) # check for changes to currently tracked series plugin.add_timer(check_series_changes, frequency="daily")
5,349,096
def setup_svm_classifier(training_data, y_training, testing_data, features, method="count", ngrams=(1,1)): """ Setup SVM classifier model using own implementation Parameters ---------- training_data: Pandas dataframe The dataframe containing the training data for the classifier testing_data: Pandas dataframe The dataframe containing the testing data for the classifier y_training: Pandas dataframe The dataframe containing the y training data for the classifier features: String or list of strings if using multiple features Names of columns of df that are used for trainig the classifier method: String Can be either "count" or "tfidf" for specifying method of feature weighting ngrams: tuple (min_n, max_n), with min_n, max_n integer values range for ngrams used for vectorization Returns ------- model: SVM Classifier (scratch implementation) Trained SVM Classifier from own implementation vec: sklearn CountVectorizer or TfidfVectorizer CountVectorizer or TfidfVectorizer fit and transformed for training data x_testing: Pandas dataframe The dataframe containing the test data for the SVM classifier """ # generate x and y training data if method == "count": vec, x_training, x_testing = define_features_vectorizer(features, training_data, testing_data,ngramrange=ngrams) elif method == "tfidf": vec, x_training, x_testing = define_features_tfidf(features, training_data, testing_data,ngramrange=ngrams) else: print("Method has to be either count or tfidf") return 1 # train classifier model = SVMClassifier_scratch() model.fit(x_training, y_training) return model, vec, x_testing
5,349,097
def buildHeaderString(keys): """ Use authentication keys to build a literal header string that will be passed to the API with every call. """ headers = { # Request headers 'participant-key': keys["participantKey"], 'Content-Type': 'application/json', 'Ocp-Apim-Subscription-Key': keys["subscriptionKey"] } return headers
5,349,098
def parametrize_environment_file(metafunc): """ This param runs tests for every environment file in the template dir """ env_files = get_filenames_list(metafunc, [".env"]) metafunc.parametrize("env_file", env_files)
5,349,099