content
stringlengths
22
815k
id
int64
0
4.91M
def org_repos(info): """ 处理组织的仓库 :param info: 字典 :return: 两个列表,第一个包含字典(id,全名,url),第二个包含所用到的语言 """ repo_info = [] languages = [] if info: for repo in info: temp = {"id": repo["id"], "full_name": repo["full_name"], "url": repo["url"], "language": repo["language"]} repo_info.append(temp) languages.append(repo["language"]) return repo_info, languages
5,349,500
def year(yyyy_mm_dd: Union[str, datetime.date]) -> int: """ Extracts the year of a given date, similar to yyyy function but returns an int >>> year('2020-05-14') 2020 """ date, _ = _parse(yyyy_mm_dd, at_least="%Y") return date.year
5,349,501
def getTypeLevel(Type): """Checks whether a spectral data type is available in the endmember library. Args: Type: the type of spectra to select. Returns: level: the metadata "level" of the group for subsetting. returns 0 if not found. """ for i in range(4): level = i + 1 available_types = listTypes(level=level) if Type in available_types: return level return 0
5,349,502
def main(): """The main entry.""" app = wx.App(False) frame = SuhpysisFrame(None, title='Jarry Test') app.MainLoop()
5,349,503
def construct_creator(creator: Union[dict, str], ignore_email): """Parse input and return an instance of Person.""" if not creator: return None, None if isinstance(creator, str): person = Person.from_string(creator) elif isinstance(creator, dict): person = Person.from_dict(creator) else: raise errors.ParameterError("Invalid creator type") message = 'A valid format is "Name <email> [affiliation]"' if not person.name: # pragma: no cover raise errors.ParameterError(f'Name is invalid: "{creator}".\n{message}') if not person.email: if not ignore_email: # pragma: no cover raise errors.ParameterError(f'Email is invalid: "{creator}".\n{message}') else: no_email_warning = creator else: no_email_warning = None return person, no_email_warning
5,349,504
def _encode_query(items: dict, *, mask=False) -> str: """Encode a dict to query string per CLI specifications.""" pairs = [] for key in sorted(items.keys()): value = _MASK if mask and key in _MASKED_PARAMS else items[key] item = "{}={}".format(key, _quote(value)) # Ensure 'url' goes last per CLI spec if key == "url": pairs.append(item) else: pairs.insert(0, item) return "&".join(pairs)
5,349,505
def spatial_shape_after_conv(input_spatial_shape, kernel_size, strides, dilation, padding): """ This function calculates the spatial shape after conv layer. The formula is obtained from: https://www.tensorflow.org/api_docs/python/tf/nn/convolution It should be note that current function assumes PS is done before conv :param input_spatial_shape: :param kernel_size: :param strides: :param dilation: :param padding: :return: """ if isinstance(input_spatial_shape, (list, tuple)): return [spatial_shape_after_conv( one_shape, kernel_size, strides, dilation, padding) for one_shape in input_spatial_shape] else: if padding in ['same', 'SAME']: return np.int(np.ceil(input_spatial_shape / strides)) else: return np.int(np.ceil((input_spatial_shape - (kernel_size - 1) * dilation) / strides))
5,349,506
def sample_partition(dependency_tensor, null_distribution, updates=100, initial_partition=None ): """ Sample partition for a multilayer network with specified interlayer dependencies :param dependency_tensor: dependency tensor :param null_distribution: null distribution (function that takes a state-node as input and returns a random mesoset assignment :param updates: expected number of (pseudo-)Gibbs-sampling updates per state-node (has no effect for fully ordered dependency tensor. (optional, default=100) :param initial_partition: mapping of state-nodes to initial meso-set assignment. (optional, default=sampled from null distribution) :return: sampled partition as a mapping (dict) from state-nodes to meso-set assignments. """ if initial_partition is None: partition = {node: null_distribution(node) for node in dependency_tensor.state_nodes()} else: partition = {node: initial_partition[node] for node in dependency_tensor.state_nodes()} random_layers = list(dependency_tensor.random_aspect_layers()) if len(random_layers) <= 1: n_updates = 1 else: n_updates = updates * len(random_layers) for ordered_layer in dependency_tensor.ordered_aspect_layers(): for it in range(n_updates): random_layer = _rand.choice(random_layers) layer = tuple(o+r for o, r in zip(ordered_layer, random_layer)) for node in dependency_tensor.state_nodes(layer): update_node = dependency_tensor.getrandneighbour(node) if update_node == node: partition[node] = null_distribution(node) else: partition[node] = partition[update_node] return partition
5,349,507
def normalize_spaces(s: str) -> str: """ 連続する空白を1つのスペースに置き換え、前後の空白を削除した新しい文字列を取得する。 """ return re.sub(r'\s+', ' ', s).strip()
5,349,508
def power_iter(mat_g, error_tolerance=1e-6, num_iters=100): """Power iteration. Args: mat_g: the symmetric PSD matrix. error_tolerance: Iterative exit condition. num_iters: Number of iterations. Returns: eigen vector, eigen value, num_iters """ mat_g_size = mat_g.shape[-1] def _iter_condition(state): i, unused_v, unused_s, unused_s_v, run_step = state return jnp.logical_and(i < num_iters, run_step) def _iter_body(state): """One step of power iteration.""" i, new_v, s, s_v, unused_run_step = state new_v = new_v / jnp.linalg.norm(new_v) s_v = jnp.einsum( 'ij,j->i', mat_g, new_v, precision=_INVERSE_PTH_ROOT_PRECISION) s_new = jnp.einsum( 'i,i->', new_v, s_v, precision=_INVERSE_PTH_ROOT_PRECISION) return (i + 1, s_v, s_new, s_v, jnp.greater(jnp.abs(s_new - s), error_tolerance)) # Figure out how to use step as seed for random. v_0 = onp.random.uniform(-1.0, 1.0, mat_g_size).astype(mat_g.dtype) init_state = tuple([0, v_0, jnp.zeros([], dtype=mat_g.dtype), v_0, True]) num_iters, v_out, s_out, _, _ = lax.while_loop( _iter_condition, _iter_body, init_state) v_out = v_out / jnp.linalg.norm(v_out) return v_out, s_out, num_iters
5,349,509
def _get_values_target_representation( val: Union[str, Any], target_representation: str, conversion_type: str, conversion_rate: float, n_round: int, split: bool, input_symbol: str, target_symbol: str, ) -> Any: """ Returns the value of the converted currency in the specified format. The two formats specified are "abbr", "decimal". """ val_new = 0.0 val = float(val) # 1. for fiat-to-fiat and crypto-to-fiat we multiply # 2. for fiat-to-crypto we divide if conversion_type in ("fiat_to_fiat", "crypto_to_fiat"): val_new = val * conversion_rate else: val_new = val / conversion_rate if target_representation == "abbr": val = "{:,.{a}f}".format(val, a=n_round) target_val = "{:,.{a}f}".format(val_new, a=n_round) if split: return val, target_val else: return input_symbol.upper() + str(val), target_symbol.upper() + str(target_val) else: return np.round(val, n_round), np.round(val_new, n_round)
5,349,510
def GetResidues(mol, atom_list=None): """Create dictrionary that maps residues to atom IDs: (res number, res name, chain id) --> [atom1 idx, atom2 idx, ...] """ residues = OrderedDict() if atom_list is None: atom_list = range(mol.GetNumAtoms()) for aid in atom_list: res_id = GetAtomResidueId(mol.GetAtomWithIdx(aid)) if res_id not in residues: residues[res_id] = [] residues[res_id].append(aid) return residues
5,349,511
def _parse_tokenize(filter_rule): """Tokenizer for the attribute filtering language. Most of the single-character tokens are specified in the _tokenize_re; however, parentheses need to be handled specially, because they can appear inside a check string. Thankfully, those parentheses that appear inside a check string can never occur at the very beginning or end ("%(variable)s" is the correct syntax). """ main_tokens = _tokenize_re.split(filter_rule) index = 0 for tok in main_tokens: # Skip empty tokens if not tok or tok.isspace(): continue # Handle leading parens on the token clean = tok.lstrip('(') for i in range(len(tok) - len(clean)): yield '(', '(' # If it was only parentheses, continue if not clean: continue else: tok = clean # Handle trailing parens on the token clean = tok.rstrip(')') trail = len(tok) - len(clean) # Yield the cleaned token lowered = clean.lower() if lowered in (';', 'and'): # Special tokens yield lowered, clean elif clean: # Not a special token, but not composed solely of ')' if len(tok) >= 2 and ((tok[0], tok[-1]) in [('"', '"'), ("'", "'")]): # It's a quoted string yield 'string', tok[1:-1] else: yield 'filter', _parse_filter(clean) # Yield the trailing parens for i in range(trail): yield ')', ')' if (index < len(main_tokens) - 1) and len(main_tokens) > 1: yield 'and', 'and' index += 1
5,349,512
def main(n): """Stream the video into a Kafka producer in an infinite loop""" topic = choose_channel(n) video_reader = imageio.get_reader(DATA + topic + '.mp4', 'ffmpeg') metadata = video_reader.get_meta_data() fps = metadata['fps'] producer = KafkaProducer(bootstrap_servers='localhost:9092', batch_size=15728640, linger_ms=1000, max_request_size=15728640, value_serializer=lambda v: json.dumps(v.tolist())) while True: video_loop(video_reader, producer, topic, fps)
5,349,513
def create_huoguoml_folders(huoguoml_path: str): """ Create HuoguoML folders if not exist Args: huoguoml_path: path to the huoguoml dir NOTE: Required for later stages, when huoguoml folder gets larger """ os.makedirs(huoguoml_path, exist_ok=True)
5,349,514
def cli(obj, username, password, hostname, session): """ CLI for the GAMS-Hydra application. """ obj['hostname'] = hostname obj['username'] = username obj['password'] = password obj['session'] = session
5,349,515
def BIC(y_pred, y, k, llf = None): """Bayesian Information Criterion Args: y_pred (array-like) y (array-like) k (int): number of featuers llf (float): result of log-likelihood function """ n = len(y) if llf is None: llf = np.log(SSE(y_pred, y)) return np.log(n) * k - 2 * llf
5,349,516
def create_abstract_insert(table_name, row_json, return_field=None): """Create an abstracted raw insert psql statement for inserting a single row of data :param table_name: String of a table_name :param row_json: dictionary of ingestion data :param return_field: String of the column name to RETURNING in statement :return: String of an insert statement """ columns = [] for key, value in row_json.items(): if key in columns: continue else: columns.append(key) values = [':' + item for item in columns] values = ', '.join(map(str, values)) list_columns = ', '.join(map(str, columns)) if return_field is not None: statement = 'INSERT INTO ' + str(table_name) + '(' + list_columns + ')' \ + ' VALUES (' + values + ') RETURNING ' + str(return_field) else: statement = 'INSERT INTO ' + str(table_name) + '(' + list_columns + ')' \ + ' VALUES (' + values + ')' return statement
5,349,517
def get_childs(root_dir, is_dir=False, extension='.jpg', max_depth=0): """ get files or directories related root dir :param root_dir: :param is_dir: :param extension: :param max_depth: :return: """ if os.path.exists(root_dir) is False: raise FileNotFoundError("not exist dir : {}".format(root_dir)) target_items = [] childs, next_dirs = _get_sub_childs(root_dir, is_dir, extension) target_items.extend(childs) while max_depth > 0: next_sub_dirs = [] for sub in next_dirs: if not os.path.isdir(sub): continue sub_child_items, sub_dirs = _get_sub_childs(sub, is_dir, extension) next_sub_dirs.extend(sub_dirs) target_items.extend(sub_child_items) max_depth -= 1 next_dirs = next_sub_dirs return target_items
5,349,518
def descsum_create(s): """Add a checksum to a descriptor without""" symbols = descsum_expand(s) + [0, 0, 0, 0, 0, 0, 0, 0] checksum = descsum_polymod(symbols) ^ 1 return s + '#' + ''.join(CHECKSUM_CHARSET[(checksum >> (5 * (7 - i))) & 31] for i in range(8))
5,349,519
def test(device): """ Test if read_measured_values_raw() returns the expected values. """ device.start_measurement() time.sleep(1.1) # check the read values raw_humidity, raw_temperature, raw_voc_ticks, raw_nox_ticks = \ device.read_measured_values_raw() # raw types assert type(raw_humidity) is Humidity assert type(raw_humidity.ticks) is int assert type(raw_humidity.percent_rh) is float assert type(raw_temperature) is Temperature assert type(raw_temperature.ticks) is int assert type(raw_temperature.degrees_celsius) is float assert type(raw_temperature.degrees_fahrenheit) is float assert type(raw_voc_ticks) is int assert type(raw_nox_ticks) is int
5,349,520
def _get_header(key): """Return message header""" try: return request.headers[key] except KeyError: abort(400, "Missing header: " + key)
5,349,521
def compute_solution(primes_list, triangle_sequence): """ Auxiliary function to compute the solution to the problem. """ factorise_w_primes = partial(factorise, primes=primes_list) all_factors = vmap(factorise_w_primes)(triangle_sequence) # number of divisors = number of possible combinations of prime factors # = inner product(number of states for each prime in a number) # e.g. 1024 has 11 states for prime=2, and 1 state for the others # 3072 has 11 states for prime=2 and 2 states for prime=3 -> 22 divisors all_factors = all_factors + 1 n_combinations = jnp.prod(all_factors, axis=1).astype(jnp.int32) return n_combinations
5,349,522
def key_description(character): """ Return the readable description for a key. :param character: An ASCII character. :return: Readable description for key. """ if "Windows" in platform.system(): for key, value in hex_keycodes.items(): if value == character: return key else: return "" else: ascii_code = ord(chr(character)) if ascii_code < 32: return 'Ctrl+{:c}'.format(ord('@') + ascii_code) else: return repr(character)
5,349,523
def find_paste_config(): """Find freezer's paste.deploy configuration file. freezer's paste.deploy configuration file is specified in the ``[paste_deploy]`` section of the main freezer-api configuration file, ``freezer-api.conf``. For example:: [paste_deploy] config_file = freezer-paste.ini :returns: The selected configuration filename :raises: exception.ConfigFileNotFound """ if CONF.paste_deploy.config_file: paste_config = CONF.paste_deploy.config_file if not os.path.isabs(paste_config): paste_config = CONF.find_file(paste_config) elif CONF.config_file: paste_config = CONF.config_file[0] else: # this provides backwards compatibility for keystone.conf files that # still have the entire paste configuration included, rather than just # a [paste_deploy] configuration section referring to an external file paste_config = CONF.find_file('freezer-api.conf') if not paste_config or not os.path.exists(paste_config): raise Exception('paste configuration file {0} not found !'. format(paste_config)) return paste_config
5,349,524
def combine_index(df, n1, n2): """將dataframe df中的股票代號與股票名稱合併 Keyword arguments: Args: df (pandas.DataFrame): 此dataframe含有column n1, n2 n1 (str): 股票代號 n2 (str): 股票名稱 Returns: df (pandas.DataFrame): 此dataframe的index為「股票代號+股票名稱」 """ return df.set_index(df[n1].str.replace(' ', '') + \ ' ' + df[n2].str.replace(' ', '')).drop([n1, n2], axis=1)
5,349,525
def safe_get_stopwords(stopwords_language): """ :type stopwords_language: basestring :rtype: list """ try: return get_stopwords(stopwords_language) except LanguageNotAvailable: return []
5,349,526
def fetch_dataloader(types, data_dir, params): """ Fetches the DataLoader object for each type in types from data_dir. Args: types: (list) has one or more of 'train', 'val', 'test' depending on which data is required data_dir: (string) directory containing the dataset params: (Params) hyperparameters Returns: data: (dict) contains the DataLoader object for each type in types """ img_dimension = params.img_dimension dataloaders = {} train_transformer, eval_transformer = get_transformer(img_dimension) for split in ['train', 'val', 'test']: if split in types: path = os.path.join(data_dir, split) # use the train_transformer if training data, else use eval_transformer without random flip if split == 'train': dl = DataLoader(FaceMaskDataset(path, train_transformer), num_workers=params.num_workers, batch_size=params.batch_size, shuffle=True, pin_memory=params.cuda) else: dl = DataLoader(FaceMaskDataset(path, eval_transformer), batch_size=params.batch_size, shuffle=False, num_workers=params.num_workers, pin_memory=params.cuda) dataloaders[split] = dl return dataloaders
5,349,527
def setup_mock_device(mock_device): """Prepare mock ONVIFDevice.""" mock_device.async_setup = AsyncMock(return_value=True) mock_device.available = True mock_device.name = NAME mock_device.info = DeviceInfo( MANUFACTURER, MODEL, FIRMWARE_VERSION, SERIAL_NUMBER, MAC, ) mock_device.capabilities = Capabilities() mock_device.profiles = [] def mock_constructor(hass, config): """Fake the controller constructor.""" return mock_device mock_device.side_effect = mock_constructor
5,349,528
def execution_environment(tmp_path: Path, config_yaml: Path, request: FixtureRequest) -> Generator[Path, None, None]: """Move to temporary directory with ./config.yml and ./output/ directory.""" copyfile(config_yaml, tmp_path / "config.yml") (tmp_path / "output").mkdir() os.chdir(tmp_path) yield tmp_path os.chdir(request.config.invocation_dir)
5,349,529
def hap_cli(): """ Work with Haplotigs """ pass
5,349,530
def join(*args): """Join multiple path - join('c:', 'pp', 'c.txt') -> 'c:\pp\c.txt'""" assert len(args) >= 2 ret_arg = args[0] for arg in args[1:]: ret_arg = os.path.join(ret_arg, arg) return ret_arg
5,349,531
def for_loop(*args): """ Creates a for-loop container to be executed on the server Parameters ---------- args : :class:`sasoptpy.abstract.Set` objects Any number of :class:`sasoptpy.abstract.Set` objects can be given Returns ------- set_iterator : :class:`sasoptpy.abstract.SetIterator`, :class:`sasoptpy.abstract.SetIteratorGroup` Set iterators to be used inside for-loop Examples -------- Regular for loop: >>> with so.Workspace('w') as w: >>> r = so.exp_range(1, 11) >>> x = so.VariableGroup(r, name='x') >>> for i in for_loop(r): >>> x[i] = 1 >>> print(so.to_optmodel(w)) proc optmodel; var x {{1,2,3,4,5,6,7,8,9,10}}; for {o13 in 1..10} do; x[o13] = 1; end; quit; Nested for loops: >>> from sasoptpy.actions import put_item >>> with so.Workspace('w') as w: >>> for i in for_loop(range(1, 3)): >>> for j in for_loop(['a', 'b']): >>> put_item(i, j) >>> print(so.to_optmodel(w)) proc optmodel; for {o2 in 1..2} do; for {o5 in {'a','b'}} do; put o2 o5; end; end; quit; Multiple set for-loops: >>> with so.Workspace('w') as w: >>> r = so.Set(name='R', value=range(1, 11)) >>> c = so.Set(name='C', value=range(1, 6)) >>> a = so.ParameterGroup(r, c, name='A', ptype=so.number) >>> for (i, j) in for_loop(r, c): >>> a[i, j] = 1 >>> print(so.to_optmodel(w)) proc optmodel; set R = 1..10; set C = 1..5; num A {R, C}; for {o5 in R, o7 in C} do; A[o5, o7] = 1; end; quit; See also -------- :func:`sasoptpy.actions.cofor_loop` Notes ----- For tasks that can be run concurrently, consider using :func:`sasoptpy.actions.cofor_loop` """ pass
5,349,532
def test_get_model_components_and_override_from_model_template_single(): """Tests `get_model_components_and_override_from_model_template` for single model template""" sst = SimpleSilverkiteTemplate() model_components = sst._SimpleSilverkiteTemplate__get_model_components_and_override_from_model_template( template="DAILY_CP_LT_FEASET_AUTO_AR_OFF", model_components=ModelComponentsParam( seasonality={"daily_seasonality": 12}, regressors={"regressor_cols": ["x"]} ) ) # Checks it pulls the correct model template and overrides the parameters. assert model_components[0] == ModelComponentsParam( seasonality={ "yearly_seasonality": 8, "quarterly_seasonality": 0, "monthly_seasonality": 0, "weekly_seasonality": 3, "daily_seasonality": 12 }, growth={ "growth_term": "linear" }, changepoints={ "changepoints_dict": { "method": "auto", "resample_freq": "7D", "regularization_strength": 0.6, "potential_changepoint_distance": "15D", "no_changepoint_distance_from_end": "90D", "yearly_seasonality_order": 15, "yearly_seasonality_change_freq": None }, "seasonality_changepoints_dict": None }, events={ "holidays_to_model_separately": [], "holiday_lookup_countries": [], "holiday_pre_num_days": 0, "holiday_post_num_days": 0, "holiday_pre_post_num_dict": None, "daily_event_df_dict": None, }, custom={ "feature_sets_enabled": "auto", "fit_algorithm_dict": { "fit_algorithm": "linear", "fit_algorithm_params": None }, "max_daily_seas_interaction_order": 0, "max_weekly_seas_interaction_order": 2, "extra_pred_cols": [], "min_admissible_value": None, "max_admissible_value": None }, autoregression={ "autoreg_dict": None }, regressors={ "regressor_cols": ["x"] }, lagged_regressors={ "lagged_regressor_dict": None }, uncertainty={ "uncertainty_dict": None }, hyperparameter_override={})
5,349,533
def branches(directory=None, verbose=False): """Show current branch points""" config = migrate_manager.migrate_config.migrate.get_config(directory) command.branches(config, verbose=verbose)
5,349,534
def test_lugaro_label_parser(val): """Parse a label.""" label = val[0] expected = val[1] assert lugaro.label_parser(label) == expected
5,349,535
def renyientropy(px,alpha=1,logbase=2,measure='R'): """ Renyi's generalized entropy Parameters ---------- px : array-like Discrete probability distribution of random variable X. Note that px is assumed to be a proper probability distribution. logbase : int or np.e, optional Default is 2 (bits) alpha : float or inf The order of the entropy. The default is 1, which in the limit is just Shannon's entropy. 2 is Renyi (Collision) entropy. If the string "inf" or numpy.inf is specified the min-entropy is returned. measure : str, optional The type of entropy measure desired. 'R' returns Renyi entropy measure. 'T' returns the Tsallis entropy measure. Returns ------- 1/(1-alpha)*np.log(sum(px**alpha)) In the limit as alpha -> 1, Shannon's entropy is returned. In the limit as alpha -> inf, min-entropy is returned. """ #TODO:finish returns #TODO:add checks for measure if not _isproperdist(px): print("px is not a proper probability distribution") alpha = float(alpha) # gets here if alpha != (1 or inf) px = px**alpha genent = np.log(px.sum()) if logbase == 2: return 1/(1-alpha) * genent else: return 1/(1-alpha) * logbasechange(2, logbase) * genent
5,349,536
def convert(digits, base1, base2): """Convert given digits in base1 to digits in base2. digits: str -- string representation of number (in base1) base1: int -- base of given number base2: int -- base to convert to return: str -- string representation of number (in base2)""" # Handle up to base 36 [0-9a-z] assert 2 <= base1 <= 36, 'base1 is out of range: {}'.format(base1) assert 2 <= base2 <= 36, 'base2 is out of range: {}'.format(base2) return encode(decode(digits, base1), base2)
5,349,537
def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Fast.com sensor.""" data = SpeedtestData(hass, config) sensor = SpeedtestSensor(data) add_devices([sensor]) def update(call=None): """Update service for manual updates.""" data.update(dt_util.now()) sensor.update() hass.services.register(DOMAIN, 'update_fastdotcom', update)
5,349,538
def reset_sensors(): """ Resets sensors """ if DEBUG: print("\tResets all gopigo sensors") dexgp = gopigo3.GoPiGo3() dexgp.reset_all()
5,349,539
def visualizeVoxels(voxelGrids, frameRate=10): """ Args: voxelGrid (tensor): 4D tensor indicating (batchSize x zSize x ySize x xSize) frameRate (float) : rate at which the plot should update (in Hz) """ batchSize = voxelGrids.shape[0] print("Batch Size = ",batchSize) # batchSize = voxelGrid.shape[0] print("X0 = ",voxelGrids[0][2]) for i in range(0, batchSize): # creating a dummy dataset voxelGrid = voxelGrids[i] xSize = int(voxelGrid[3]) ySize = int(voxelGrid[2]) zSize = int(voxelGrid[1]) # print("Size = ",int(xSize),ySize,zSize) x = [] y = [] z = [] colo = [] for j in range (0, xSize): for k in range (0, ySize): for l in range (0, zSize): if voxelGrid[0] > 0.5: x.append(j) y.append(k) z.append(l) colo.append(voxelGrid[0]) else: continue # creating figures print("Creating Figures") fig = plt.figure(figsize=(100, 100)) ax = fig.add_subplot(111, projection='3d') # setting color bar color_map = cm.ScalarMappable(cmap=cm.Greens_r) color_map.set_array(colo) # creating the heatmap img = ax.scatter(x, y, z, marker='s', s=200, color='green') plt.colorbar(color_map) # adding title and labels ax.set_title("3D Heatmap") ax.set_xlabel('X-axis') ax.set_ylabel('Y-axis') ax.set_zlabel('Z-axis') plt.show(block=False) plt.pause(1/frameRate) import time time.sleep(2) plt.close()
5,349,540
def h(b, W ,X): """ This function implments the softmax regression hypothesis function Argument: b -- bias W -- predictive weight matrix X -- data matrix of size (numbers_examples, number_predictors) Returns: softmax(XW + b) """ return softmax( (X @ W) + b)
5,349,541
def get_random_points(N): """ - Takes number of parameters N - Returns tuple (x1,x2), where x1 and x2 are vectors """ x1 = np.random.uniform(-1,1,N) x2 = np.random.uniform(-1,1,N) return (x1,x2)
5,349,542
def n_bit_color(clk, din, vga_signals, vga_ports): """ Maps n bit input, din, to n bit vga color ports Ex: din=10010101, r=100, g=101, b=01 """ blu = len(vga_ports.blu) grn = len(vga_ports.grn) + blu red = len(vga_ports.red) + grn assert len(din) == red @always(clk.posedge) def colors(): vga_ports.h_sync.next = vga_signals.h_sync vga_ports.v_sync.next = vga_signals.v_sync vga_ports.red.next = 0 vga_ports.grn.next = 0 vga_ports.blu.next = 0 if vga_signals.video_on == 1: vga_ports.red.next = din[red:grn] vga_ports.grn.next = din[grn:blu] vga_ports.blu.next = din[blu:0] return colors
5,349,543
def point_cloud_transform_net(point_cloud: nn.Variable, train: bool) -> Tuple[nn.Variable, Dict[str, nn.Variable]]: """T net, create transformation matrix for point cloud Args: point_cloud (nn.Variable): point cloud, shape(batch, number of points, 3) train (bool): training flag Returns: Tuple[nn.Variable, Dict[str, nn.Variable]]: transformation matrix and internal variables """ batch_size, num_points, _ = point_cloud.shape # expand dim to B*C(=K)*H(=num_points)*W(=dim) point_cloud = F.reshape(point_cloud, shape=(batch_size, 1, num_points, 3)) with nn.parameter_scope("conv1"): conv_h1 = PF.convolution( point_cloud, 64, (1, 3), stride=(1, 1), with_bias=False) conv_h1 = PF.batch_normalization(conv_h1, batch_stat=train) conv_h1 = F.relu(conv_h1) with nn.parameter_scope("conv2"): conv_h2 = PF.convolution(conv_h1, 128, (1, 1), stride=(1, 1), with_bias=False) conv_h2 = PF.batch_normalization(conv_h2, batch_stat=train) conv_h2 = F.relu(conv_h2) with nn.parameter_scope("conv3"): conv_h3 = PF.convolution( conv_h2, 1024, (1, 1), stride=(1, 1), with_bias=False) conv_h3 = PF.batch_normalization(conv_h3, batch_stat=train) conv_h3 = F.relu(conv_h3) pool_h = F.max_pooling(conv_h3, (num_points, 1)) pool_h = F.reshape(pool_h, (batch_size, -1)) with nn.parameter_scope("affine1"): affine_h1 = PF.affine(pool_h, 512, with_bias=False) affine_h1 = PF.batch_normalization(affine_h1, batch_stat=train) affine_h1 = F.relu(affine_h1) with nn.parameter_scope("affine2"): affine_h2 = PF.affine(affine_h1, 256, with_bias=False) affine_h2 = PF.batch_normalization(affine_h2, batch_stat=train) affine_h2 = F.relu(affine_h2) with nn.parameter_scope("affine3"): # transform points (3 dim) so the matrix size is (3*3) transform_h = PF.affine(affine_h2, 3 * 3) eye_mat = nn.Variable.from_numpy_array( np.array([1, 0, 0, 0, 1, 0, 0, 0, 1], dtype=np.float32)) eye_mat = F.reshape(eye_mat, (1, 9)) transform_h = transform_h + eye_mat transform_h = F.reshape(transform_h, (batch_size, 3, 3)) return transform_h, { "conv_h1": conv_h1, "conv_h2": conv_h2, "conv_h3": conv_h3, "pool_h": pool_h, "affine_h1": affine_h1, "affine_h2": affine_h2, "transform_h": transform_h, }
5,349,544
def assert_array_less(x: numpy.float64, y: numpy.float64, err_msg: str): """ usage.scipy: 2 """ ...
5,349,545
def diffie_hellman_server(p, g, public_key_pem): """ Function used to apply the Diffie Hellman algorithm in the server. It calculates the private and public components of server. :param p: Shared parameter :param g: Shared parameter :param public_key_pem: Public component of client :return: The private component and the public component """ pn = dh.DHParameterNumbers(p, g) parameters = pn.parameters(default_backend()) private_key = parameters.generate_private_key() public_key = private_key.public_key() p = parameters.parameter_numbers().p g = parameters.parameter_numbers().g public_key_pem = public_key.public_bytes( serialization.Encoding.PEM, serialization.PublicFormat.SubjectPublicKeyInfo ) logger.debug(f"My Public Key: {public_key}") logger.debug(f"My Public Key in Bytes: {public_key_pem}") return private_key, public_key_pem
5,349,546
def posix_getpgid(space, pid): """ posix_getpgid - Get process group id for job control """ try: return space.newint(os.getpgid(pid)) except OSError, e: space.set_errno(e.errno) return space.newbool(False) except OverflowError: return space.newbool(False)
5,349,547
def test_list_double_length_4_nistxml_sv_iv_list_double_length_5_4(mode, save_output, output_format): """ Type list/double is restricted by facet length with value 10. """ assert_bindings( schema="nistData/list/double/Schema+Instance/NISTSchema-SV-IV-list-double-length-5.xsd", instance="nistData/list/double/Schema+Instance/NISTXML-SV-IV-list-double-length-5-4.xml", class_name="NistschemaSvIvListDoubleLength5", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,349,548
def on_display_disconnected(): """Shortcut for registering handlers for ACTION_DISPLAY_DISCONNECTED events. Functions decorated with this decorator will be called when push2-python loses connection with the Push2 display. It will have the following positional arguments: * Push2 object instance Examples: @push2_python.on_display_disconnected() def function(push): print('Connection with Push2 display was just lost!') """ return action_handler(ACTION_DISPLAY_DISCONNECTED)
5,349,549
def parse_received_data(blockpage_matcher: BlockpageMatcher, received: Union[str, Dict[str, Any]], anomaly: bool) -> Row: """Parse a received field into a section of a row to write to bigquery. Args: blockpage_matcher: Matcher object received: a dict parsed from json data, or a str anomaly: whether data may indicate blocking Returns: a dict containing the 'received_' keys/values in SCAN_BIGQUERY_SCHEMA """ if isinstance(received, str): row: Row = {'received_status': received} _add_blockpage_match(blockpage_matcher, received, anomaly, row) return row row = { 'received_status': received['status_line'], 'received_body': received['body'], 'received_headers': parse_received_headers(received.get('headers', {})), } full_http_response = _reconstruct_http_response(row) _add_blockpage_match(blockpage_matcher, full_http_response, anomaly, row) # hyperquack v1 TLS format tls = received.get('tls', None) if tls: tls_row = { 'received_tls_version': tls['version'], 'received_tls_cipher_suite': tls['cipher_suite'], 'received_tls_cert': tls['cert'] } row.update(tls_row) # hyperquack v2 TLS format if 'TlsVersion' in received: tls_row = { 'received_tls_version': received['TlsVersion'], 'received_tls_cipher_suite': received['CipherSuite'], 'received_tls_cert': received['Certificate'] } row.update(tls_row) return row
5,349,550
def change_cwd(change_to): """A context manager to temporarily change current working directory :param change_to: Path to change current working directory to :type change_to: ``str`` """ curdir = os.getcwd() os.chdir(change_to) try: yield finally: os.chdir(curdir)
5,349,551
def get_filters(): """ Returns sidebar filters """ filters = { 'organisations': Organisation.objects.all(), 'topics': Topic.objects.all(), 'licenses': License.objects.all(), 'formats': Format.objects.all() } return filters
5,349,552
def irdl_op_builder(cls: typing.Type[OpT], operands: List, operand_defs: List[Tuple[str, OperandDef]], res_types: List, res_defs: List[Tuple[str, ResultDef]], attributes: typing.Dict[str, typing.Any], attr_defs: typing.Dict[str, AttributeDef], successors, regions, options) -> OpT: """Builder for an irdl operation.""" # We need irdl to define DenseIntOrFPElementsAttr, but here we need # DenseIntOrFPElementsAttr. # So we have a circular dependency that we solve by importing in this function. from xdsl.dialects.builtin import DenseIntOrFPElementsAttr, IntegerAttr, VectorType, IntegerType, i32 # Build operands by forwarding the values to SSAValue.get if len(operand_defs) != len(operands): raise ValueError( f"Expected {len(operand_defs)} operands, got {len(operands)}") built_operands = [] for ((_, operand_def), operand) in zip(operand_defs, operands): if isinstance(operand_def, VarOperandDef): if not isinstance(operand, list): raise ValueError( f"Expected list for variadic operand builder, got {operand}" ) built_operands.extend([SSAValue.get(arg) for arg in operand]) else: built_operands.append(SSAValue.get(operand)) # Build results by forwarding the values to the attribute builders if len(res_defs) != len(res_types): raise ValueError( f"Expected {len(res_defs)} results, got {len(res_types)}") built_res_types = [] for ((_, res_def), res_type) in zip(res_defs, res_types): if isinstance(res_def, VarResultDef): if not isinstance(res_type, list): raise ValueError( f"Expected list for variadic result builder, got {res_type}" ) built_res_types.extend([ irdl_build_attribute(res_def.constr, res) for res in res_type ]) else: built_res_types.append( irdl_build_attribute(res_def.constr, res_type)) # Build attributes by forwarding the values to the attribute builders attr_defs = {name: def_ for (name, def_) in attr_defs} built_attributes = dict() for attr_name, attr in attributes.items(): if attr_name not in attr_defs: if isinstance(attr, Attribute): built_attributes[attr_name] = attr continue raise ValueError( f"Unexpected attribute name {attr_name} for operation {cls.name}" ) built_attributes[attr_name] = irdl_build_attribute( attr_defs[attr_name].constr, attr) # Take care of variadic operand and result segment sizes. if AttrSizedOperandSegments() in options: sizes = [ (len(operand) if isinstance(operand_def, VarOperandDef) else 1) for operand, (_, operand_def) in zip(operands, operand_defs) ] built_attributes[AttrSizedOperandSegments.attribute_name] =\ DenseIntOrFPElementsAttr.vector_from_list(sizes, i32) if AttrSizedResultSegments() in options: sizes = [(len(result) if isinstance(result_def, VarResultDef) else 1) for result, (_, result_def) in zip(res_types, res_defs)] built_attributes[AttrSizedResultSegments.attribute_name] =\ DenseIntOrFPElementsAttr.vector_from_list(sizes, i32) # Build regions using `Region.get`. regions = [Region.get(region) for region in regions] return cls.create(operands=built_operands, result_types=built_res_types, attributes=built_attributes, successors=successors, regions=regions)
5,349,553
def _listify(single: st.SearchStrategy) -> st.SearchStrategy: """ Put the result of `single` strategy into a list (all strategies should return lists) """ @st.composite def listify_(draw): return [draw(single)] strategy = listify_() strategy.function.__name__ = f"listified<{repr(single)}>" return strategy
5,349,554
def get_text(selector): """ Type the keys specified into the element, or the currently active element. """ if not get_instance(): raise Exception("You need to start a browser first with open_browser()") return get_text_g(get_instance(), selector)
5,349,555
def _eps(code, version, file_or_path, scale=1, module_color=(0, 0, 0), background=None, quiet_zone=4): """This function writes the QR code out as an EPS document. The code is drawn by drawing only the modules corresponding to a 1. They are drawn using a line, such that contiguous modules in a row are drawn with a single line. The file parameter is used to specify where to write the document to. It can either be a writable (text) stream or a file path. The scale parameter is sets how large to draw a single module. By default one point (1/72 inch) is used to draw a single module. This may make the code to small to be read efficiently. Increasing the scale will make the code larger. This function will accept fractional scales (e.g. 2.5). :param module_color: Color of the QR code (default: ``(0, 0, 0)`` (black)) The color can be specified as triple of floats (range: 0 .. 1) or triple of integers (range: 0 .. 255) or as hexadecimal value (i.e. ``#36c`` or ``#33B200``). :param background: Optional background color. (default: ``None`` (no background)). See `module_color` for the supported values. :param quiet_zone: Border around the QR code (also known as quiet zone) (default: ``4``). Set to zero (``0``) if the code shouldn't have a border. """ from functools import partial import time import textwrap def write_line(writemeth, content): """\ Writes `content` and ``LF``. """ # Postscript: Max. 255 characters per line for line in textwrap.wrap(content, 255): writemeth(line) writemeth('\n') def line(offset, length): """\ Returns coordinates to draw a line with the provided length. """ res = '' if offset > 0: res = ' {0} 0 m'.format(offset) res += ' {0} 0 l'.format(length) return res def rgb_to_floats(color): """\ Converts the provided color into an acceptable format for Postscript's ``setrgbcolor`` """ def to_float(clr): if isinstance(clr, float): if not 0.0 <= clr <= 1.0: raise ValueError('Invalid color "{0}". Not in range 0 .. 1' .format(clr)) return clr if not 0 <= clr <= 255: raise ValueError('Invalid color "{0}". Not in range 0 .. 255' .format(clr)) return 1/255.0 * clr if clr != 1 else clr if not isinstance(color, (tuple, list)): color = _hex_to_rgb(color) return tuple([to_float(i) for i in color]) f, autoclose = _get_writable(file_or_path, 'w') writeline = partial(write_line, f.write) size = tables.version_size[version] * scale + (2 * quiet_zone * scale) # Write common header writeline('%!PS-Adobe-3.0 EPSF-3.0') writeline('%%Creator: PyQRCode <https://pypi.python.org/pypi/PyQRCode/>') writeline('%%CreationDate: {0}'.format(time.strftime("%Y-%m-%d %H:%M:%S"))) writeline('%%DocumentData: Clean7Bit') writeline('%%BoundingBox: 0 0 {0} {0}'.format(size)) # Write the shortcuts writeline('/M { moveto } bind def') writeline('/m { rmoveto } bind def') writeline('/l { rlineto } bind def') mod_color = module_color if module_color == (0, 0, 0) else rgb_to_floats(module_color) if background is not None: writeline('{0:f} {1:f} {2:f} setrgbcolor clippath fill' .format(*rgb_to_floats(background))) if mod_color == (0, 0, 0): # Reset RGB color back to black iff module color is black # In case module color != black set the module RGB color later writeline('0 0 0 setrgbcolor') if mod_color != (0, 0, 0): writeline('{0:f} {1:f} {2:f} setrgbcolor'.format(*mod_color)) if scale != 1: writeline('{0} {0} scale'.format(scale)) writeline('newpath') # Current pen position y-axis # Note: 0, 0 = lower left corner in PS coordinate system y = tables.version_size[version] + quiet_zone + .5 # .5 = linewidth / 2 last_bit = 1 # Loop through each row of the code for row in code: offset = 0 # Set x-offset of the pen length = 0 y -= 1 # Move pen along y-axis coord = '{0} {1} M'.format(quiet_zone, y) # Move pen to initial pos for bit in row: if bit != last_bit: if length: coord += line(offset, length) offset = 0 length = 0 last_bit = bit if bit == 1: length += 1 else: offset += 1 if length: coord += line(offset, length) writeline(coord) writeline('stroke') writeline('%%EOF') if autoclose: f.close()
5,349,556
def test_generate( stemming_file, lexicon_file, test_file, global_tags=None, debug=False ): """ generates all the forms in the test_file using the lexicon_file and stemming_file and outputs any discrepancies (or everything if debug on) """ ginflexion = GreekInflexion(stemming_file, lexicon_file) with open(test_file) as f: for test in yaml.safe_load(f): source = test.pop("source", None) test.pop("test_length", False) lemma = test.pop("lemma") tags = set(test.pop("tags", [])) if source: tags.update({source}) if global_tags: tags.update(global_tags) segmented_lemma = ginflexion.segmented_lemmas.get(lemma) for key, form in sorted(test.items()): stem = ginflexion.find_stems(lemma, key, tags) generated = ginflexion.generate(lemma, key, tags) if stem: stem_guess = None else: stem_guess = [ stem for key, stem in ginflexion.possible_stems(form, "^" + key + "$")] if [strip_length(w) for w in sorted(generated)] == \ [strip_length(w) for w in sorted(form.split("/"))]: correct = "✓" else: correct = "✕" if debug or correct == "✕": output_item( lemma, segmented_lemma, key, None, form, None, stem, stem_guess, None, None, generated, correct)
5,349,557
def _group_energy_terms(ener_xvg): """Parse energy.xvg file to extract and group the energy terms in a dict. """ with open(ener_xvg) as f: all_lines = f.readlines() energy_types = [line.split('"')[1] for line in all_lines if line[:3] == '@ s'] energy_values = [float(x) * units.kilojoule_per_mole for x in all_lines[-1].split()[1:]] e_out = OrderedDict(zip(energy_types, energy_values)) # Discard non-energy terms. for group in unwanted: if group in e_out: del e_out[group] # Dispersive energies. # TODO: Do buckingham energies also get dumped here? dispersive = ['LJ (SR)', 'LJ-14', 'Disper. corr.'] e_out['Dispersive'] = 0 * units.kilojoules_per_mole for group in dispersive: if group in e_out: e_out['Dispersive'] += e_out[group] # Electrostatic energies. electrostatic = ['Coulomb (SR)', 'Coulomb-14', 'Coul. recip.'] e_out['Electrostatic'] = 0 * units.kilojoules_per_mole for group in electrostatic: if group in e_out: e_out['Electrostatic'] += e_out[group] e_out['Non-bonded'] = e_out['Electrostatic'] + e_out['Dispersive'] all_angles = ['Angle', 'U-B', 'G96Angle', 'Restricted Angles', 'Bond-Cross', 'BA-Cross', 'Quartic Angles'] e_out['All angles'] = 0 * units.kilojoules_per_mole for group in all_angles: if group in e_out: e_out['All angles'] += e_out[group] all_dihedrals = ['Ryckaert-Bell.', 'Proper Dih.', 'Improper Dih.'] e_out['All dihedrals'] = 0 * units.kilojoules_per_mole for group in all_dihedrals: if group in e_out: e_out['All dihedrals'] += e_out[group] return e_out, ener_xvg
5,349,558
def test_list_boolean_pattern_3_nistxml_sv_iv_list_boolean_pattern_4_5(mode, save_output, output_format): """ Type list/boolean is restricted by facet pattern with value [1]{1} false [0]{1} true true [0]{1}. """ assert_bindings( schema="nistData/list/boolean/Schema+Instance/NISTSchema-SV-IV-list-boolean-pattern-4.xsd", instance="nistData/list/boolean/Schema+Instance/NISTXML-SV-IV-list-boolean-pattern-4-5.xml", class_name="NistschemaSvIvListBooleanPattern4", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,349,559
def get_packager_targets( targets: List[Target], connections: Dict[str, Connection], remote_api: ConnectionClient ) -> List[PackagerTarget]: """ Build targets for calling packager. Fetch and base64 decode connections by names using local manifest and ODAHU connections API :param targets: Targets from packaging manifest :param connections: Connections found in local manifest files :param remote_api: ConnectionClient to fetch missing Connections """ packager_targets: List[PackagerTarget] = [] for t in targets: conn = connections.get(t.connection_name) if not conn: click.echo( f'The "{t.connection_name}" connection of "{t.name}" target is not found in the manifest files. ' f'Trying to retrieve it from API server' ) conn = remote_api.get_decrypted(t.connection_name) _decode_connection(conn) packager_targets.append( PackagerTarget(conn, t.name) ) return packager_targets
5,349,560
def test_name2idfobject(): """py.test for name2idfobject""" idf = IDF(StringIO("")) plantloopname = "plantloopname" branchname = "branchname" pumpname = "pumpname" zonename = "zonename" plantloop = idf.newidfobject('PlantLoop', Name=plantloopname, Plant_Side_Inlet_Node_Name='CW Supply Inlet Node') branch = idf.newidfobject('Branch', Name=branchname, Component_1_Inlet_Node_Name='CW Supply Inlet Node') pump = idf.newidfobject('Pump:VariableSpeed', Name=pumpname, Inlet_Node_Name='CW Supply Inlet Node') zone = idf.newidfobject('zone', Name=zonename) simulation = idf.newidfobject('SimulationControl') # - test names = [plantloopname, branchname, pumpname, zonename] idfobjs = [plantloop, branch, pump, zone] for name, idfobj in zip(names, idfobjs): result = idf_helpers.name2idfobject(idf, Name=name) assert result == idfobj # test when objkeys!=None objkey = 'ZoneHVAC:EquipmentConnections' equipconnections = idf.newidfobject(objkey, Zone_Name=zonename) result = idf_helpers.name2idfobject(idf, Zone_Name=zonename, objkeys=[objkey, ]) assert result == equipconnections
5,349,561
def export_documents(documents, csvfilepath): """ Writes the documents data in `documents` to the CSV file at `csvfilepath`. """ with open(csvfilepath, "w") as csv_file: csvwriter = csv.DictWriter(csv_file, CURRICULUM_DOCUMENT_HEADER_V0) csvwriter.writeheader() for document in documents: rowdict = document_to_rowdict(document) csvwriter.writerow(rowdict)
5,349,562
def create_installer_repo(): """Execute setup.sh corresponding to contrail-installer-packages in all nodes """ execute("create_installer_repo_node", env.host_string)
5,349,563
def elina_texpr0_permute_dimensions(texpr2, dimperm): """ Permute dimensions of an ElinaTexpr0 following the semantics of an ElinaDimperm. Parameters ---------- texpr2 : ElinaTexpr0Ptr Pointer to the ElinaTexpr0 which dimensions we want to permute. dimperm : ElinaDimpermPtr Pointer to the ElinaDimperm which semantics we want to follow. Returns ------- texpr1 : ElinaTexpr0Ptr Pointer to the newly created ElinaTexpr0 with permuted dimensions. """ texpr1 = None try: elina_texpr0_permute_dimensions_c = elina_auxiliary_api.elina_texpr0_permute_dimensions elina_texpr0_permute_dimensions_c.restype = ElinaTexpr0Ptr elina_texpr0_permute_dimensions_c.argtypes = [ElinaTexpr0Ptr, ElinaDimpermPtr] texpr1 = elina_texpr0_permute_dimensions_c(texpr2, dimperm) except: print('Problem with loading/calling "elina_texpr0_permute_dimensions" from "libelinaux.so"') print('Make sure you are passing ElinaTexpr0Ptr, ElinaDimpermPtr to the function') return texpr1
5,349,564
def rgb(red: int, green: int, blue: int, background: bool = False) -> Chalk: """Generate a new truecolor chalk from an RGB tuple. Args: red (int): The intensity of red (0-255). green (int): The intensity of green (0-255). blue (int): The intensity of blue (0-255). background (bool, optional): If ``True`` will generate the new chalk to be applied as a background color. Defaults to False. Returns: :class:`~.chalk.Chalk`: The new chalk instance. """ color = TrueColor(red, green, blue) return Chalk(background=color) if background else Chalk(foreground=color)
5,349,565
def add_log_arguments(parser: argparse.ArgumentParser): """Adds arguments for setting up the logger to the given argument parser. Arguments added: - log_name - log_filename - log_dir - log_level Params: - parser (argparse.ArgumentParser): The argument parser to which to add the logger arguments """ group = parser.add_argument_group('Logging Args') group.add_argument('-ln', '--log_name', default=constants.LOG_NAME, help="The name of the logger to be used. Defaults to %s" % constants.LOG_NAME) group.add_argument('-lf', '--log_filename', default=constants.LOG_FILENAME, help='The name of the file to which the logging will be done.') group.add_argument('-ld', '--log_dir', default=constants.LOG_DIR, help='The path to the directory where the log file will be stored.') group.add_argument('-ll', '--log_level', default=constants.LOG_LEVEL, help='The level at which the logger logs data.')
5,349,566
def first(x: pd.Series) -> pd.Series: """ First value of series :param x: time series :return: time series of first value **Usage** Return series with first value of `X` for all dates: :math:`R_t = X_0` where :math:`X_0` is the first value in the series **Examples** Last value of series: >>> series = generate_series(100) >>> returns = first(series) **See also** :func:`last` """ return pd.Series(x[0], x.index)
5,349,567
def simulate(iterations, graph_generator, graph_params, n_nodes, beta, rho, steps, n_infected_init, vacc=None): """Perform `iterations` simulations and compute averages. If vacc is not None, run the simulation using the SIRV model, otherwise use SIR.""" # Initialize arrays for computing averages over simulations s = np.zeros((iterations, steps + 1), dtype=int) i = np.zeros((iterations, steps + 1), dtype=int) r = np.zeros((iterations, steps + 1), dtype=int) ni = np.zeros((iterations, steps + 1), dtype=int) if vacc is not None: v = np.zeros((iterations, steps + 1), dtype=int) nv = np.zeros((iterations, steps + 1), dtype=int) for sim_id in range(iterations): graph = graph_generator(**{'n': n_nodes, **graph_params}) if vacc is not None: epidemic = Epidemic('sirv', graph, steps, beta=beta, rho=rho, n_infected_init=n_infected_init, vacc=vacc) else: epidemic = Epidemic('sir', graph, steps, beta=beta, rho=rho, n_infected_init=n_infected_init) sim = epidemic.simulate() # Compute four (steps, ) array containing the total number, at each # step, of susceptible (S), infected (I), recovered (R) and vaccinated # (V) respectively. s[sim_id] = np.ma.masked_not_equal(sim, 0).count(axis=1) i[sim_id] = np.ma.masked_not_equal(sim, 1).count(axis=1) r[sim_id] = np.ma.masked_not_equal(sim, 2).count(axis=1) if vacc is not None: v[sim_id] = np.ma.masked_not_equal(sim, 3).count(axis=1) # Compute a (steps, ) array containing the number of newly infected # individuals at each step. The number of newly infected at time t is # defined as the sum of nodes that went from state 0 (S) at time t-1 # to state 1 (I) at time t. ni[sim_id] = np.array( [n_infected_init] + [((sim[t - 1] == 0) & (sim[t] == 1)).sum() for t in range(1, steps + 1)], dtype=int) # Compute the same kind of array for newly vaccinated individuals. if vacc is not None: nv[sim_id] = np.array( [v[sim_id, 0]] + [((sim[t - 1] != 3) & (sim[t] == 3)).sum() for t in range(1, steps + 1)], dtype=int) # Compute the average total number of susceptible, infected, recovered and # vaccinated nodes at each week. s = s.mean(axis=0) i = i.mean(axis=0) r = r.mean(axis=0) if vacc is not None: v = v.mean(axis=0) # Compute the average number of newly infected and vaccinated individuals # each week. ni = ni.mean(axis=0) if vacc is not None: nv = nv.mean(axis=0) if vacc is not None: return s, i, r, v, ni, nv else: return s, i, r, ni
5,349,568
def check_collections_are_supported(saved_model_handler, supported): """Checks that SavedModelHandler only uses supported collections.""" for meta_graph in saved_model_handler.meta_graphs: used_collection_keys = set(meta_graph.collection_def.keys()) unsupported = used_collection_keys - supported if unsupported: raise ValueError("Unsupported collections in graph: %s\n" "Use hub.create_module_spec(..., drop_collections=[...])" " as appropriate." % list(unsupported))
5,349,569
def lookup_location(): """ Geolocation lookup of current position. Determines latitude and longitude coordinates of the system's position using the ipinfo.io service. Returns: Tuple (lat, lon) containing the latitude and longitude coordinates associated with the IP from which the request is performed. """ response = urllib.request.urlopen("https://ipinfo.io/json") data = json.loads(response.read()) coordinates = data["loc"] lat, lon = coordinates.split(",") return float(lat), float(lon)
5,349,570
def _str_or_none(value): """Helper: serialize value to JSON string.""" if value is not None: return str(value)
5,349,571
def archive_results(filename,results,algo,script): """ :type algo: basestring :type script: basestring :type results: DataFrame """ #assert results == pd.DataFrame now=time.time()[0:5] dirname='../archive' subdirfmt='%4d-%02d-%02d-%02d-%02d' subdir=subdirfmt %now if not os.path.exists(os.path.join(dirname,str(algo))): os.mkdir(os.path.join(dirname,str(algo))) dir_to_create=os.path.join(dirname,str(algo),subdir) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) os.chdir(dir_to_create) results.to_csv(filename,index=False,float_format='%.6f') shutil.copy2(script,'.') return
5,349,572
def cleanup(): """ Clean up Environmental Variable for enable before and after tests """ if XRAY_ENABLED_KEY in os.environ: del os.environ[XRAY_ENABLED_KEY] yield if XRAY_ENABLED_KEY in os.environ: del os.environ[XRAY_ENABLED_KEY] global_sdk_config.set_sdk_enabled(True)
5,349,573
def test_matches_regex(): """Test matches_regex validator.""" schema = vol.Schema(cv.matches_regex(".*uiae.*")) with pytest.raises(vol.Invalid): schema(1.0) with pytest.raises(vol.Invalid): schema(" nrtd ") test_str = "This is a test including uiae." assert schema(test_str) == test_str
5,349,574
def create_song_graph_from_songs(songs: list[Song], parent_graph: song_graph.SongGraph = None, year_separation: int = 10) -> song_graph.SongGraph: """Create and return a song graph from a list of songs. (Optional) Add a parent graph from a larger dataset to the new song graph. (Optional) year_separation defines the way year attribute vertices are to be created. I.e. the intervals in year attribute vertices. For example, a year_separation of 10 will create year attribute vertices for each decade spanned by the playlist. Preconditions: - parent_graph is None or parent_graph.are_attributes_created() # parent_graph is not None implies parent_graph.are_attributes_created() """ graph = song_graph.SongGraph(parent_graph) for song in songs: graph.add_song(song) if parent_graph is None: graph.generate_attribute_vertices(year_separation) else: graph.generate_attribute_vertices(use_parent=True, year_separation=year_separation) return graph
5,349,575
def convert(secs): """Takes a time in seconds and converts to min:sec:msec""" mins = int(secs // 60) secs %= 60 msecs = int(round(((secs - int(secs)) * 1000))) secs = int(secs) return f'{mins} mins, {secs} secs, {msecs} msecs'
5,349,576
def from_data(symbols, key_matrix, name_matrix, one_indexed=False): """ z-matrix constructor :param symbols: atomic symbols :type symbols: tuple[str] :param key_matrix: key/index columns of the z-matrix, zero-indexed :type key_matrix: tuple[tuple[float, float or None, float or None]] :param name_matrix: coordinate name columns of the z-matrix :type name_matrix; tuple[tuple[str, str or None, str or None]] """ syms = list(map(pt.to_E, symbols)) natms = len(syms) key_mat = _key_matrix(key_matrix, natms, one_indexed) name_mat = _name_matrix(name_matrix, natms) vma = tuple(zip(syms, key_mat, name_mat)) return vma
5,349,577
def should_drop_from_right_deck(n_left: int, n_right:int, seed: int=None) -> bool: """ Determine whether we drop a card from the right or left sub-deck. Either `n_left` or `n_right` (or both) must be greater than zero. :param n_left: the number of cards in the left sub-deck. :param n_right: the number of cards in the right sub-deck. :param seed: optional seed for the random number generator to enable deterministic behavior. :return: True if we should drop a card from the right sub-deck, False otherwise. Examples: >>> should_drop_from_right_deck(n_left=32, n_right=5, seed=0, ) True >>> should_drop_from_right_deck(n_left=0, n_right=5, ) True >>> should_drop_from_right_deck(n_left=7, n_right=0, ) False >>> should_drop_from_right_deck(n_left=0, n_right=0, ) Traceback (most recent call last): ... ValueError: Either `n_left` or `n_right` (or both) must be greater than zero. """ if n_left > 0 and n_right > 0: # There are cards left in both sub-decks, so pick a # sub-deck at random. random = sklearn.utils.check_random_state(seed=seed) num = random.randint(low=0, high=2) boolean = (num == 0) return boolean elif n_left == 0 and n_right > 0: # There are no more cards in the left sub-deck, only # the right sub-deck, so we drop from the right sub-deck. return True elif n_left > 0 and n_right == 0: # There are no more cards in the right sub-deck, only # the left sub-deck, so we drop from the left sub-deck. return False else: # There are no more cards in either sub-deck. raise ValueError ('Either `n_left` or `n_right` ' '(or both) must be greater than zero.')
5,349,578
def which(program): """ Locate an executable binary's full path by its name. :param str program: The executable's name. :return: The full path to the executable. :rtype: str """ is_exe = lambda fpath: (os.path.isfile(fpath) and os.access(fpath, os.X_OK)) for path in os.environ['PATH'].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file if is_exe(program): return os.path.abspath(program) return None
5,349,579
def EXPOSED(mu=1.0): """ matrix of exposed sites Parameters ---------- mu: rate """ pis = np.array([0.088367,0.078147,0.047163,0.087976,0.004517,0.058526,0.128039,0.056993,0.024856,0.025277,0.045202,0.094639,0.012338,0.016158,0.060124,0.055346,0.051290,0.006771,0.021554,0.036718]) W = np.array([ [0.0,0.526738,0.48315,0.658902,2.051872,1.280002,1.306565,1.370782,0.540809,0.171986,0.430511,0.697731,1.043937,0.265209,1.270693,4.826665,2.131819,0.143081,0.208643,2.544463], [0.526738,0.0,0.505837,0.051052,2.214326,2.039552,0.137928,0.363365,2.288922,0.237023,0.670514,3.881079,0.656943,0.097443,0.166534,0.751947,0.584329,0.47559,0.196271,0.313443], [0.48315,0.505837,0.0,3.902456,0.961103,1.301786,0.285806,1.8201,4.949307,0.337226,0.158937,1.677194,0.539827,0.182522,0.068692,4.412265,2.133604,0.061094,0.599369,0.172264], [0.658902,0.051052,3.902456,0.0,0.129989,0.399061,3.100403,0.885317,0.70089,0.018315,0.021949,0.10545,0.066925,0.026918,0.228829,0.975564,0.368887,0.042618,0.121313,0.073705], [2.051872,2.214326,0.961103,0.129989,0.0,0.456521,0.033946,0.886564,2.172284,1.037046,1.702066,0.146263,1.846562,3.002586,0.156216,5.294149,2.067387,1.603125,3.842632,4.207648], [1.280002,2.039552,1.301786,0.399061,0.456521,0.0,2.514377,0.320746,3.755421,0.212032,1.261113,2.570254,1.973592,0.080193,0.362501,1.033459,1.013613,0.210329,0.15847,0.497398], [1.306565,0.137928,0.285806,3.100403,0.033946,2.514377,0.0,0.303966,0.270957,0.084442,0.110508,0.730337,0.18816,0.023999,0.214847,0.382235,0.51139,0.048276,0.064648,0.48462], [1.370782,0.363365,1.8201,0.885317,0.886564,0.320746,0.303966,0.0,0.401311,0.012279,0.052946,0.279865,0.158136,0.084663,0.1489,1.970857,0.174527,0.186382,0.03928,0.132496], [0.540809,2.288922,4.949307,0.70089,2.172284,3.755421,0.270957,0.401311,0.0,0.317239,0.869247,0.598289,0.519993,2.047163,0.323141,0.99331,0.58096,0.961546,8.230282,0.329895], [0.171986,0.237023,0.337226,0.018315,1.037046,0.212032,0.084442,0.012279,0.317239,0.0,8.675343,0.338782,9.483497,2.193062,0.071992,0.190509,2.56363,0.208313,0.517123,23.711178], [0.430511,0.670514,0.158937,0.021949,1.702066,1.261113,0.110508,0.052946,0.869247,8.675343,0.0,0.313102,14.176858,4.802817,0.343919,0.389101,0.522334,1.130724,0.713426,3.466991], [0.697731,3.881079,1.677194,0.10545,0.146263,2.570254,0.730337,0.279865,0.598289,0.338782,0.313102,0.0,1.013268,0.044792,0.19547,0.592156,1.147459,0.052858,0.084962,0.348362], [1.043937,0.656943,0.539827,0.066925,1.846562,1.973592,0.18816,0.158136,0.519993,9.483497,14.176858,1.013268,0.0,3.261401,0.099252,0.557254,2.960091,1.328785,0.812142,4.136445], [0.265209,0.097443,0.182522,0.026918,3.002586,0.080193,0.023999,0.084663,2.047163,2.193062,4.802817,0.044792,3.261401,0.0,0.08702,0.668834,0.24442,5.210001,23.228875,1.199764], [1.270693,0.166534,0.068692,0.228829,0.156216,0.362501,0.214847,0.1489,0.323141,0.071992,0.343919,0.19547,0.099252,0.08702,0.0,1.223981,0.413148,0.045945,0.043249,0.368231], [4.826665,0.751947,4.412265,0.975564,5.294149,1.033459,0.382235,1.970857,0.99331,0.190509,0.389101,0.592156,0.557254,0.668834,1.223981,0.0,7.384701,0.316078,0.40531,0.266531], [2.131819,0.584329,2.133604,0.368887,2.067387,1.013613,0.51139,0.174527,0.58096,2.56363,0.522334,1.147459,2.960091,0.24442,0.413148,7.384701,0.0,0.144393,0.234217,3.184874], [0.143081,0.47559,0.061094,0.042618,1.603125,0.210329,0.048276,0.186382,0.961546,0.208313,1.130724,0.052858,1.328785,5.210001,0.045945,0.316078,0.144393,0.0,4.903887,0.252132], [0.208643,0.196271,0.599369,0.121313,3.842632,0.15847,0.064648,0.03928,8.230282,0.517123,0.713426,0.084962,0.812142,23.228875,0.043249,0.40531,0.234217,4.903887,0.0,0.459187], [2.544463,0.313443,0.172264,0.073705,4.207648,0.497398,0.48462,0.132496,0.329895,23.711178,3.466991,0.348362,4.136445,1.199764,0.368231,0.266531,3.184874,0.252132,0.459187,0.0] ]) gtr = GTR(alphabet=alphabets['aa_nogap']) gtr.assign_rates(mu=mu, pi=pis, W=W) return gtr
5,349,580
async def rename_conflicting_targets( ptgts: PutativeTargets, all_existing_tgts: AllUnexpandedTargets ) -> UniquelyNamedPutativeTargets: """Ensure that no target addresses collide.""" existing_addrs: set[str] = {tgt.address.spec for tgt in all_existing_tgts} uniquely_named_putative_targets: list[PutativeTarget] = [] for ptgt in ptgts: if not ptgt.addressable: # Non-addressable PutativeTargets never have collision issues. uniquely_named_putative_targets.append(ptgt) continue idx = 0 possibly_renamed_ptgt = ptgt # Targets in root-level BUILD files must be named explicitly. if possibly_renamed_ptgt.path == "" and possibly_renamed_ptgt.kwargs.get("name") is None: possibly_renamed_ptgt = possibly_renamed_ptgt.rename("root") # Eliminate any address collisions. while possibly_renamed_ptgt.address.spec in existing_addrs: possibly_renamed_ptgt = ptgt.rename(f"{ptgt.name}{idx}") idx += 1 uniquely_named_putative_targets.append(possibly_renamed_ptgt) existing_addrs.add(possibly_renamed_ptgt.address.spec) return UniquelyNamedPutativeTargets(PutativeTargets(uniquely_named_putative_targets))
5,349,581
def get_time_and_time(): """ Get the current date and time and speak it """ current_time = datetime.datetime.now().strftime("%d %B %Y %H:%M:%S") speak("Current date is ") speak(current_time)
5,349,582
def select(filename): """ Выбрать человека по фамилии. """ people = load_people(filename) who = input('Кого ищем?: ') count = 0 line = '+-{}-+-{}-+-{}-+-{}-+'.format( '-' * 4, '-' * 30, '-' * 20, '-' * 20 ) print(line) print( '| {:^4} | {:^30} | {:^20} | {:^20} |'.format( "№", "Ф.И.О.", "Знак Зодиака", "Дата рождения" ) ) print(line) for i, num in enumerate(people, 1): if who == num['name']: count += 1 print( '| {:^4} | {:^30} | {:^20} | {:^20} |'.format( count, num['name'], num['zodiac'], ' '.join((str(i) for i in num['year'])))) print(line) if count == 0: print('Никто не найден')
5,349,583
def outer2D(v1, v2): """Calculates the magnitude of the outer product of two 2D vectors, v1 and v2""" return v1[0]*v2[1] - v1[1]*v2[0]
5,349,584
def get_job_details(jobId=None): """ Returns information about a job. Used for custom actions only. See also: AWS API Documentation Exceptions :example: response = client.get_job_details( jobId='string' ) :type jobId: string :param jobId: [REQUIRED]\nThe unique system-generated ID for the job.\n :rtype: dict ReturnsResponse Syntax{ 'jobDetails': { 'id': 'string', 'data': { 'actionTypeId': { 'category': 'Source'|'Build'|'Deploy'|'Test'|'Invoke'|'Approval', 'owner': 'AWS'|'ThirdParty'|'Custom', 'provider': 'string', 'version': 'string' }, 'actionConfiguration': { 'configuration': { 'string': 'string' } }, 'pipelineContext': { 'pipelineName': 'string', 'stage': { 'name': 'string' }, 'action': { 'name': 'string', 'actionExecutionId': 'string' }, 'pipelineArn': 'string', 'pipelineExecutionId': 'string' }, 'inputArtifacts': [ { 'name': 'string', 'revision': 'string', 'location': { 'type': 'S3', 's3Location': { 'bucketName': 'string', 'objectKey': 'string' } } }, ], 'outputArtifacts': [ { 'name': 'string', 'revision': 'string', 'location': { 'type': 'S3', 's3Location': { 'bucketName': 'string', 'objectKey': 'string' } } }, ], 'artifactCredentials': { 'accessKeyId': 'string', 'secretAccessKey': 'string', 'sessionToken': 'string' }, 'continuationToken': 'string', 'encryptionKey': { 'id': 'string', 'type': 'KMS' } }, 'accountId': 'string' } } Response Structure (dict) --Represents the output of a GetJobDetails action. jobDetails (dict) --The details of the job. Note If AWSSessionCredentials is used, a long-running job can call GetJobDetails again to obtain new credentials. id (string) --The unique system-generated ID of the job. data (dict) --Represents other information about a job required for a job worker to complete the job. actionTypeId (dict) --Represents information about an action type. category (string) --A category defines what kind of action can be taken in the stage, and constrains the provider type for the action. Valid categories are limited to one of the following values. owner (string) --The creator of the action being called. provider (string) --The provider of the service being called by the action. Valid providers are determined by the action category. For example, an action in the Deploy category type might have a provider of AWS CodeDeploy, which would be specified as CodeDeploy. For more information, see Valid Action Types and Providers in CodePipeline . version (string) --A string that describes the action version. actionConfiguration (dict) --Represents information about an action configuration. configuration (dict) --The configuration data for the action. (string) -- (string) -- pipelineContext (dict) --Represents information about a pipeline to a job worker. Note Includes pipelineArn and pipelineExecutionId for custom jobs. pipelineName (string) --The name of the pipeline. This is a user-specified value. Pipeline names must be unique across all pipeline names under an Amazon Web Services account. stage (dict) --The stage of the pipeline. name (string) --The name of the stage. action (dict) --The context of an action to a job worker in the stage of a pipeline. name (string) --The name of the action in the context of a job. actionExecutionId (string) --The system-generated unique ID that corresponds to an action\'s execution. pipelineArn (string) --The Amazon Resource Name (ARN) of the pipeline. pipelineExecutionId (string) --The execution ID of the pipeline. inputArtifacts (list) --The artifact supplied to the job. (dict) --Represents information about an artifact that is worked on by actions in the pipeline. name (string) --The artifact\'s name. revision (string) --The artifact\'s revision ID. Depending on the type of object, this could be a commit ID (GitHub) or a revision ID (Amazon S3). location (dict) --The location of an artifact. type (string) --The type of artifact in the location. s3Location (dict) --The S3 bucket that contains the artifact. bucketName (string) --The name of the S3 bucket. objectKey (string) --The key of the object in the S3 bucket, which uniquely identifies the object in the bucket. outputArtifacts (list) --The output of the job. (dict) --Represents information about an artifact that is worked on by actions in the pipeline. name (string) --The artifact\'s name. revision (string) --The artifact\'s revision ID. Depending on the type of object, this could be a commit ID (GitHub) or a revision ID (Amazon S3). location (dict) --The location of an artifact. type (string) --The type of artifact in the location. s3Location (dict) --The S3 bucket that contains the artifact. bucketName (string) --The name of the S3 bucket. objectKey (string) --The key of the object in the S3 bucket, which uniquely identifies the object in the bucket. artifactCredentials (dict) --Represents an AWS session credentials object. These credentials are temporary credentials that are issued by AWS Secure Token Service (STS). They can be used to access input and output artifacts in the S3 bucket used to store artifacts for the pipeline in AWS CodePipeline. accessKeyId (string) --The access key for the session. secretAccessKey (string) --The secret access key for the session. sessionToken (string) --The token for the session. continuationToken (string) --A system-generated token, such as a AWS CodeDeploy deployment ID, required by a job to continue the job asynchronously. encryptionKey (dict) --Represents information about the key used to encrypt data in the artifact store, such as an AWS Key Management Service (AWS KMS) key. id (string) --The ID used to identify the key. For an AWS KMS key, you can use the key ID, the key ARN, or the alias ARN. Note Aliases are recognized only in the account that created the customer master key (CMK). For cross-account actions, you can only use the key ID or key ARN to identify the key. type (string) --The type of encryption key, such as an AWS Key Management Service (AWS KMS) key. When creating or updating a pipeline, the value must be set to \'KMS\'. accountId (string) --The AWS account ID associated with the job. Exceptions CodePipeline.Client.exceptions.ValidationException CodePipeline.Client.exceptions.JobNotFoundException :return: { 'jobDetails': { 'id': 'string', 'data': { 'actionTypeId': { 'category': 'Source'|'Build'|'Deploy'|'Test'|'Invoke'|'Approval', 'owner': 'AWS'|'ThirdParty'|'Custom', 'provider': 'string', 'version': 'string' }, 'actionConfiguration': { 'configuration': { 'string': 'string' } }, 'pipelineContext': { 'pipelineName': 'string', 'stage': { 'name': 'string' }, 'action': { 'name': 'string', 'actionExecutionId': 'string' }, 'pipelineArn': 'string', 'pipelineExecutionId': 'string' }, 'inputArtifacts': [ { 'name': 'string', 'revision': 'string', 'location': { 'type': 'S3', 's3Location': { 'bucketName': 'string', 'objectKey': 'string' } } }, ], 'outputArtifacts': [ { 'name': 'string', 'revision': 'string', 'location': { 'type': 'S3', 's3Location': { 'bucketName': 'string', 'objectKey': 'string' } } }, ], 'artifactCredentials': { 'accessKeyId': 'string', 'secretAccessKey': 'string', 'sessionToken': 'string' }, 'continuationToken': 'string', 'encryptionKey': { 'id': 'string', 'type': 'KMS' } }, 'accountId': 'string' } } :returns: CodePipeline.Client.exceptions.ValidationException CodePipeline.Client.exceptions.JobNotFoundException """ pass
5,349,585
def get_item_indent(item: Union[int, str]) -> Union[int, None]: """Gets the item's indent. Returns: indent as a int or None """ return internal_dpg.get_item_configuration(item)["indent"]
5,349,586
def test_7_custom_docker_lines_predict(): """Check that setup.py dockerlines works as expected for prediction""" # Build the distribution without building the image code = baklava.predict(example('7-custom-docker-lines'), ['--nobuild']) assert code == 0 test_7_build_and_check()
5,349,587
def V_RSJ_asym(i, ic_pos, ic_neg, rn, io, vo): """Return voltage with asymmetric Ic's in RSJ model""" if ic_pos < 0 or ic_neg > 0 or rn < 0: #or abs(ic_neg/ic_pos) > 1.2 or abs(ic_pos/ic_neg) > 1.2 : # set boundaries for fitting #pass v = 1e10 else: v = np.zeros(len(i)) n = i>io+ic_pos; v[n] = rn*np.sqrt((i[n]-io)**2-ic_pos**2)+vo n = i<io+ic_neg; v[n] = -rn*np.sqrt((i[n]-io)**2-ic_neg**2)+vo n = np.logical_and(i>=io+ic_neg, i<=io+ic_pos); v[n]=vo return v
5,349,588
def h2_gas_costs(pipe_dist=-102.75, truck_dist=-106.0, pipeline=True, max_pipeline_dist=2000): """Calculates the transport cost of H2 gas. Requires as input the distance that H2 will be piped and trucked.""" if max_pipeline_dist > pipe_dist > 400: pipe = 0.0004 * pipe_dist + 0.0424 elif pipe_dist < 400: pipe = 0.0004 * 400 + 0.0424 else: pipe = np.nan if pipeline == False: pipe = np.nan truck = 0.003 * truck_dist + 0.3319 return pipe + truck
5,349,589
def number_to_words(input_: Union[int, str], capitalize: bool = False) -> str: """Converts integer version of a number into words. Args: input_: Takes the integer version of a number as an argument. capitalize: Boolean flag to capitalize the first letter. Returns: str: String version of the number. """ result = inflect.engine().number_to_words(num=input_) return result[0].upper() + result[1:] if capitalize else result
5,349,590
def get_size_reduction_by_cropping(analyzer: DatasetAnalyzer) -> Dict[str, Dict]: """ Compute all size reductions of each case Args: analyzer: analzer which calls this property Returns: Dict: computed size reductions `size_reductions`: dictionary with each case id and reduction """ size_reduction = OrderedDict() for case_id in analyzer.case_ids: props = load_properties_of_cropped(analyzer.cropped_data_dir / case_id) shape_before_crop = props["original_size_of_raw_data"] shape_after_crop = props['size_after_cropping'] size_red = np.prod(shape_after_crop) / np.prod(shape_before_crop) size_reduction[case_id] = size_red return {"size_reductions": size_reduction}
5,349,591
def getProxyFile(path): """ Opens a text file and returns the contents with any setting of a certificate file replaced with the mitmproxy certificate. """ with open(path, "r") as fd: contents = fd.read() certReferences = re.findall("setcertificatesfile\(.*\)", contents, re.IGNORECASE) for certReference in certReferences: msg = "using mitmproxy certificate: %s (%s)" % (certReference, path) print(bcolors.OKBLUE + msg + bcolors.ENDC) contents = contents.replace(certReference, 'setCertificatesFile("pkg:/source/mitmproxy.crt")') return contents
5,349,592
def ceph_version(ctx, package): """Commands related to fetching of Ceph version.""" ctx.obj["packages"] = sorted(set(package))
5,349,593
def bytes_filesize_to_readable_str(bytes_filesize: int) -> str: """Convert bytes integer to kilobyte/megabyte/gigabyte/terabyte equivalent string""" if bytes_filesize < 1024: return "{} B" num = float(bytes_filesize) for unit in ["B", "KB", "MB", "GB"]: if abs(num) < 1024.0: return "{:.1f} {}".format(num, unit) num /= 1024.0 return "{:.1f} {}".format(num, "TB")
5,349,594
def braf_mane_data(): """Create test fixture for BRAF MANE data.""" return { "#NCBI_GeneID": "GeneID:673", "Ensembl_Gene": "ENSG00000157764.14", "HGNC_ID": "HGNC:1097", "symbol": "BRAF", "name": "B-Raf proto-oncogene, serine/threonine kinase", "RefSeq_nuc": "NM_004333.6", "RefSeq_prot": "NP_004324.2", "Ensembl_nuc": "ENST00000646891.2", "Ensembl_prot": "ENSP00000493543.1", "MANE_status": "MANE Select", "GRCh38_chr": "7", "chr_start": 140730665, "chr_end": 140924929, "chr_strand": "-" }
5,349,595
def get_decopath_genesets(decopath_ontology, gmt_dir: str): """Generate DecoPath gene sets with super pathways.""" concatenated_genesets_dict = {} dc_mapping = defaultdict(list) if not os.path.isdir(gmt_dir): make_geneset_dir() super_pathway_mappings, ontology_df = get_equivalent_pathway_dc_ids(decopath_ontology) # Get gene sets from individual databases gmt_files = [os.path.join(GMT_FILES_DIR, filename) for filename in os.listdir(gmt_dir) if filename.endswith('.gmt')] genesets = [_get_gmt_dict(file) for file in gmt_files] # Concatenate gene sets from individual databases for geneset in genesets: concatenated_genesets_dict.update(geneset) # Get super pathway gene sets with DecoPath IDs for pathway_id, dc_id, dc_name in super_pathway_mappings.values: if pathway_id in concatenated_genesets_dict: dc_mapping[dc_id].append(concatenated_genesets_dict[pathway_id]) # Return DecoPath gene sets return { pathway_id: {gene for sublist in geneset for gene in sublist} for pathway_id, geneset in dc_mapping.items() }
5,349,596
def rename_state_dict_keys(source, key_transformation, target=None): """ source -> Path to the saved state dict. key_transformation -> Function that accepts the old key names of the state dict as the only argument and returns the new key name. target (optional) -> Path at which the new state dict should be saved (defaults to `source`) Example: Rename the key `layer.0.weight` `layer.1.weight` and keep the names of all other keys. ```py def key_transformation(old_key): if old_key == "layer.0.weight": return "layer.1.weight" return old_key rename_state_dict_keys(state_dict_path, key_transformation) ``` """ if target is None: target = source state_dict = torch.load(source) # state_dict = state_dict.state_dict() new_state_dict = OrderedDict() for key, value in state_dict.items(): new_key = key_transformation(key) new_state_dict[new_key] = value torch.save(new_state_dict, target)
5,349,597
def test_iot_get_raci_default_email(monkeypatch): """ Scenario: checking the responsiblie email is the default one specified in IOT_CONFIG Given - A device with an IoT Vulnerability When - Calculating the RACI model result Then - Ensure the r_email is the default email in IOT_CONFIG """ monkeypatch.setattr(iot_get_raci, 'get_iot_config', lambda x: _CONFIG_WITH_DEFAULT) outputs = get_raci({ 'alert_name': '', 'raw_type': 'IoT Vulnerability', 'category': 'Audio Streaming', 'profile': 'Profusion Media Player' }).outputs assert outputs == { 'owner': 'IT_AUDIO_VIDEO', 'r': 'IT_AUDIO_VIDEO', 'r_email': '[email protected]', 'r_snow': None, 'i': 'INFOSEC, SOC', 'i_email': '[email protected], [email protected]' }
5,349,598
def import_class(path): """ Import a class from a dot-delimited module path. Accepts both dot and colon seperators for the class portion of the path. ex:: import_class('package.module.ClassName') or import_class('package.module:ClassName') """ if ':' in path: module_path, class_name = path.split(':') else: module_path, class_name = path.rsplit('.', 1) module = __import__(module_path, fromlist=[class_name], level=0) return getattr(module, class_name)
5,349,599