content
stringlengths
22
815k
id
int64
0
4.91M
def matches_filters(row, field_to_index, transformed_filters): """ Validate field name in transformed filter_expressions, return TRUE for rows matching all filters Parameters ------------ row : str row in `list` registry table (manager.show()) field_to_index : dict key = column names, val = column index, in registry table (or manager.show()) transformed_filters : list transformed/formatted fields for filtering rows Returns -------- bool return TRUE for rows matching all filters """ field_to_index_lower = dict( (k.lower(), v) for k, v in field_to_index.items() ) # to accept case-insensitive comparison for tfilter in transformed_filters: [field, op, value] = tfilter if field not in field_to_index_lower: raise DSGInvalidParameter( f"field='{field}' is not a valid column name, valid fields: {list(field_to_index.keys())}" ) obj_val = row[field_to_index_lower[field]].lower() # to accept case-insensitive comparison if not matches_filter(val=obj_val, op=op, required_value=value): return False return True
5,349,700
def div(f, other): """Element-wise division applied to the `Functional` objects. # Arguments f: Functional object. other: A python number or a tensor or a functional object. # Returns A Functional. """ validate_functional(f) inputs = f.inputs.copy() if is_functional(other): inputs += to_list(other.inputs) lmbd = [Lambda(lambda x: x[0]/x[1], name=graph_unique_name("div")) for X in f.outputs] else: _warn_for_ndarray(other) lmbd = [Lambda(lambda x: x/other, name=graph_unique_name("div")) for X in f.outputs] Functional = f.get_class() res = Functional( inputs = unique_tensors(inputs), outputs = _apply_operation(lmbd, f, other), layers = lmbd ) return res
5,349,701
def select_latest_versions(files): """Select only the latest version of files.""" result = [] def same_file(file): """Return a versionless identifier for a file.""" # Dataset without the version number dataset = file.dataset.rsplit('.', 1)[0] return (dataset, file.name) files = sorted(files, key=same_file) for _, versions in itertools.groupby(files, key=same_file): versions = sorted(versions, reverse=True) latest_version = versions[0] result.append(latest_version) if len(versions) > 1: logger.debug("Only using the latest version %s, not %s", latest_version, versions[1:]) return result
5,349,702
def _gen_input(storyline, nsims, mode, site, chunks, current_c, nperc, simlen, swg_dir, fix_leap): """ :param storyline: loaded storyline :param SWG_path: path to the directory with contining the files from the SWG :param nsims: number of sims to run :param mode: one of ['irrigated', 'dryland'] :param site: one of ['eyrewell', 'oxford'] :param chunks: the number of chunks :param current_c: the current chunk (from range(chunks) :param nperc: number of simulations that can be run per chunk :return: """ # manage chunks if chunks == 1: num_to_pull = nsims elif chunks > 1: num_to_pull = nperc if current_c + 1 == chunks: # manage last chunk num_to_pull = nsims - (current_c * nperc) else: raise ValueError('shouldnt get here') params, doy_irr = get_params_doy_irr(mode, site) matrix_weathers = [] days_harvests = [] # get restriction data if mode == 'dryland': rest_data = np.repeat([None], num_to_pull) elif mode == 'irrigated': rest_data = get_irr_data(num_to_pull, storyline, simlen) else: raise ValueError('weird arg for mode: {}'.format(mode)) # get weather data weather_data = _get_weather_data(storyline=storyline, nsims=num_to_pull, simlen=simlen, swg_dir=swg_dir, site=site, fix_leap=fix_leap) # make all the other data for rest, weather in zip(rest_data, weather_data): if rest is None: rest_temp = None else: rest_temp = pd.DataFrame(data=rest, index=weather.index, columns=['frest']) matrix_weather = create_matrix_weather(mode, weather_data=weather, restriction_data=rest_temp, rest_key='frest', fix_leap=fix_leap) matrix_weathers.append(matrix_weather) days_harvests.append(create_days_harvest(mode, matrix_weather, site, fix_leap=fix_leap)) return params, doy_irr, matrix_weathers, days_harvests
5,349,703
def guess_mime_mimedb (filename): """Guess MIME type from given filename. @return: tuple (mime, encoding) """ mime, encoding = None, None if mimedb is not None: mime, encoding = mimedb.guess_type(filename, strict=False) if mime not in ArchiveMimetypes and encoding in ArchiveCompressions: # Files like 't.txt.gz' are recognized with encoding as format, and # an unsupported mime-type like 'text/plain'. Fix this. mime = Encoding2Mime[encoding] encoding = None return mime, encoding
5,349,704
def get_paths(uast_file, max_length, max_width, token_extractor, split_leaves=True): """ Creates a list of all the paths given the max_length and max_width restrictions. :param uast_file: file containing a bblfsh UAST as string and binary-coded :param max_length: :param max_width: :param token_extractor: function to transform a node into a single string token :param split_leaves: get leaves token as a different node :return: list(list(str)) list of paths (which are list of strings) """ print("Processing file: {}".format(uast_file)) uast = Node.FromString(open(uast_file, 'rb').read()) tree, leaves = extend_tree(uast) paths = [] if len(leaves) > 1: for i in range(len(leaves)): for j in range(i + 1, min(i + max_width, len(leaves))): u, v = leaves[i], leaves[j] # TODO decide where to filter comments and decouple bblfsh if not is_noop_line(u) and not is_noop_line(v): ancestor = lca(u, v) d = distance(u, v, ancestor) if d <= max_length: node_path = get_path(u, v, ancestor, split_leaves=split_leaves) # convert nodes to its desired representation paths.append([token_extractor(p) for p in node_path]) return paths
5,349,705
def get_members(): """ Get a list of all members in FreeIPA """ members = [] ldap_conn = ldap.get_con() res = ldap_conn.search_s( "cn=users,cn=accounts,dc=csh,dc=rit,dc=edu", pyldap.SCOPE_SUBTREE, "(uid=*)", ["uid", "displayName"], ) for member in res: members.append( { "value": member[1]["uid"][0].decode("utf-8"), "display": member[1] .get("displayName", member[1]["uid"])[0] .decode("utf-8"), } ) return members
5,349,706
def _unicode_decode_extracted_tb(extracted_tb): """Return a traceback with the string elements translated into Unicode.""" return [(_decode(file), line_number, _decode(function), _decode(text)) for file, line_number, function, text in extracted_tb]
5,349,707
def load_table(source, version): """Load synth table from file """ filepath = get_table_filepath(source, version=version) return pd.read_table(filepath, delim_whitespace=True)
5,349,708
def single_spaces(string: str) -> str: """Replaces all instances of whitespace-like chars with single spaces Args: string (str): The string to modify Returns: str: The cleaned string """ return UGLY_SPACES_RE.sub(" ", string)
5,349,709
def make_zip(folder_path, output_filename): """将目录中除zip之外的文件打包成zip文件(包括子文件夹) 空文件夹不会被打包 example ---------------- make_zip('results','zips//招标信息结果_2017-05-09.zip') """ cwd = os.getcwd() # 获取需要打包的文件列表 file_lists = [] for root, dirs, files in os.walk(folder_path): for file in files: file_1 = os.path.join(root, file).replace(folder_path + '/', '') if 'zip' not in file_1: file_lists.append(file_1) # 将文件列表打包成zip os.chdir(folder_path) with zipfile.ZipFile(output_filename, 'w') as myzip: for file in file_lists: myzip.write(file) # 将工作目录切换回原始 os.chdir(cwd)
5,349,710
def pandas_to_tsv(df, save_file_path, index=False, mode='w', header=True): """ Save pre-processed DataFrame as tsv file. Params ------ df : pandas DataFrame DataFrame to save as tsv save_file_path : str File save path. if path does not exist, it will be created automatically. index : bool write the row names to output. mode : str file save mode; 'w' for write and 'a' for append to existing file. header : bool write the column names to output. """ assert isinstance(save_file_path, str) and\ len(save_file_path) > 0 assert isinstance(df, pd.DataFrame) and not df.empty,\ 'df must be a non-empty pandas DataFrame' assert isinstance(mode, str) # make a new directory to save the file try: import os os.makedirs(os.path.split(save_file_path)[0]) except OSError as e: import errno if e.errno != errno.EEXIST: raise # save the file df.to_csv( save_file_path, sep='\t', na_rep=r'\N', index=index, mode=mode, header=header)
5,349,711
def snmp_count( address, oid, port=161, community="public", version=SNMP_v2c, timeout=10, bulk=False, filter=None, max_repetitions=BULK_MAX_REPETITIONS, tos=None, ioloop=None, udp_socket=None, ): """ Perform SNMP get request and returns Future to be used inside @tornado.gen.coroutine """ def true(x, y): return true logger.debug("[%s] SNMP COUNT %s", address, oid) if not filter: filter = true poid = oid + "." result = 0 if udp_socket: sock = udp_socket prev_timeout = sock.get_timeout() else: sock = UDPSocket(ioloop=ioloop, tos=tos) sock.settimeout(timeout) while True: # Get PDU if bulk: pdu = getbulk_pdu(community, oid, max_repetitions=max_repetitions, version=version) else: pdu = getnext_pdu(community, oid, version=version) # Send request and wait for response try: yield sock.sendto(pdu, (address, port)) data, addr = yield sock.recvfrom(4096) except socket.timeout: raise SNMPError(code=TIMED_OUT, oid=oid) except socket.gaierror as e: logger.debug("[%s] Cannot resolve address: %s", address, e) raise SNMPError(code=UNREACHABLE, oid=oid) except socket.error as e: logger.debug("[%s] Socket error: %s", address, e) raise SNMPError(code=UNREACHABLE, oid=oid) finally: if udp_socket: sock.settimeout(prev_timeout) else: sock.close() # Parse response try: resp = parse_get_response(data) except ValueError: raise SNMPError(code=BER_ERROR, oid=oid) if resp.error_status == NO_SUCH_NAME: # NULL result break elif resp.error_status != NO_ERROR: # Error raise SNMPError(code=resp.error_status, oid=oid) else: # Success value for oid, v in resp.varbinds: if oid.startswith(poid): # Next value if filter(oid, v): result += 1 else: logger.debug("[%s] COUNT result: %s", address, result) sock.close() raise Return(result)
5,349,712
def create_group(api_key: str, board_id: str, group_name: str, *args, **kwargs): """Creates a new group in a specific board. __________ Parameters api_key : `str` The monday.com v2 API user key. board_id : `str` The board's unique identifier. group_name : `str` The name of the new group. args : `tuple` The list of group return fields. kwargs : `dict` Optional arguments for querying assets. _______ Returns data : `dict` A monday.com group in item form. _____________ Return Fields archived : `bool` Is the group archived or not. color : `str` The group's color. deleted : `bool` Is the group deleted or not. id : `str` The group's unique identifier. items : `list[moncli.entities.Item]` The items in the group. position : `str` The group's position in the board. title : `str` The group's title. """ args = get_field_list(constants.DEFAULT_GROUP_QUERY_FIELDS, *args) kwargs = get_method_arguments(constants.CREATE_GROUP_OPTIONAL_PARAMS, **kwargs) kwargs['board_id'] = util.IntValue(board_id) kwargs['group_name'] = util.StringValue(group_name) return execute_mutation(api_key, constants.CREATE_GROUP, *args, **kwargs)
5,349,713
def test_delete_course(user_drf_client, courses): """Test the view that handles a request to delete a Course""" course = courses[0] resp = user_drf_client.delete( reverse("courses_api-detail", kwargs={"pk": course.id}) ) assert resp.status_code == status.HTTP_405_METHOD_NOT_ALLOWED
5,349,714
def _solve_qp_ik_vel(vel, jac, joint_pos, joint_lims=None, duration=None, margin=0.2): """ Solves the IK for a given pusher velocity using a QP solver, imposing joint limits. If the solution is optimal, it is guaranteed that the resulting joint velocities will not cause the joints to reach their limits (minus the margin) in the specified duration of time :param vel: desired EE velocity (6 values) :param jac: jacobian :param joint_pos: current joint positions :param joint_lims: matrix of joint limits; if None, limits are not imposed :param duration: how long the specified velocity will be kept (in seconds); if None, 2.0 is used :param margin: maximum absolute distance to be kept from the joint limits :return: tuple with the solution (as a numpy array) and with a boolean indincating if the result is optimal or not :type vel: np.ndarray :type jac: np.ndarray :type joint_pos: np.ndarray :type joint_lims: np.ndarray :type duration: float :type margin: float :rtype: (np.ndarray, bool) """ import cvxopt x_len = len(joint_pos) P = cvxopt.matrix(np.identity(x_len)) A = cvxopt.matrix(jac) b = cvxopt.matrix(vel) q = cvxopt.matrix(np.zeros(x_len)) if duration is None: duration = 2. if joint_lims is None: G, h = None, None else: G = duration * np.identity(x_len) h = np.zeros(x_len) for i in range(x_len): dist_up = abs(joint_lims[i, 1] - joint_pos[i]) dist_lo = abs(joint_lims[i, 0] - joint_pos[i]) if dist_up > dist_lo: # we are closer to the lower limit # => must bound negative angular velocity, i.e. G_ii < 0 h[i] = dist_lo G[i, i] *= -1 else: # we are closer to the upper limit # => must bound positive angular velocity, i.e. G_ii > 0 h[i] = dist_up h = cvxopt.matrix(h - margin) G = cvxopt.matrix(G) # sol = cvxopt.solvers.qp(P, q, A=A, b=b, G=G, h=h, options={'show_progress': False, 'kktreg': 1e-9}, kktsolver='ldl') sol = cvxopt.solvers.qp(P, q, A=A, b=b, G=G, h=h, options={'show_progress': False, 'refinement': 5}) x = np.array(sol['x']).reshape(-1) optimal = sol['status'] == 'optimal' return x, optimal
5,349,715
def distance_straight(power, inches, freeze=True): """ :param power: range -100 to 100 :param inches: inches :param freeze: True stops motors at end """ clear_motor_position_counter(c.LEFT_MOTOR) clear_motor_position_counter(c.RIGHT_MOTOR) blind(power, power) distance = inches * 180.0 p = 0.25 i = 0.04 l_speed = power r_speed = power total_left = 0 total_right = 0 while (total_left + total_right) / 2 < distance: clear_motor_position_counter(c.LEFT_MOTOR) clear_motor_position_counter(c.RIGHT_MOTOR) msleep(50) l_position = abs(get_motor_position_counter(c.LEFT_MOTOR)) # abs to account for negative power r_position = abs(get_motor_position_counter(c.RIGHT_MOTOR)) total_left += l_position total_right += r_position p_error = (r_position * c.F - l_position) i_error = total_right * c.F - total_left if power > 0: l_speed += int(p * p_error + i * i_error) r_speed -= int(p * p_error + i * i_error) else: l_speed -= int(p * p_error + i * i_error) r_speed += int(p * p_error + i * i_error) blind(l_speed, r_speed) if freeze: u.freeze_bot() else: pass
5,349,716
def channel_will_be_next(crontab: str): """Checks if the given notification channel will be activated on the next channel, in an hour.""" return pycron.is_now(crontab, now + timedelta(hours=1))
5,349,717
def update_plot_force(force_est, rplt, app, ratio, box=None, muscle_names=None, plot_type="progress_bar"): # , box): """ update force plot ---------- force_est: np.ndarray array of force estimate size rplt, app, box: values from init function Returns ---------- """ if plot_type == "curve": # --- curve --- # for force in range(force_est.shape[0]): if box[force].isChecked() is True: rplt[force].plot(force_est[force, :], clear=True, _callSync='off') elif plot_type == "progress_bar": # --- progress bar --- # for force in range(force_est.shape[0]): value = np.mean(force_est[force, -ratio:]) rplt[force].setValue(int(value)) names = muscle_names[force] if muscle_names else f"muscle_{force}" rplt[force].setFormat(f"{names}: {int(value)} N") elif plot_type == "bar": # --- bar --- # y = [] for force in range(force_est.shape[0]): y.append(np.mean(force_est[force, -ratio:])) rplt.setOpts(height=y) app.processEvents()
5,349,718
def hospital_resident(residents, hospitals, optimal="resident"): """Solve an instance of HR using an adapted Gale-Shapley algorithm :cite:`Rot84`. A unique, stable and optimal matching is found for the given set of residents and hospitals. The optimality of the matching is found with respect to one party and is subsequently the worst stable matching for the other. Parameters ---------- residents : list of Player The residents in the game. Each resident must rank a non-empty subset of the elements of ``hospitals``. hospitals : list of Hospital The hospitals in the game. Each hospital must rank all the residents that have ranked them. optimal : str, optional Which party the matching should be optimised for. Must be one of ``"resident"`` and ``"hospital"``. Defaults to the former. Returns ------- matching : Matching A dictionary-like object where the keys are the members of ``hospitals``, and the values are their matches ranked by preference. """ if optimal == "resident": return resident_optimal(residents, hospitals) if optimal == "hospital": return hospital_optimal(hospitals)
5,349,719
def log_request(response): """Log request. :param response: :return: """ ip = request.headers.get('X-Forwarded-For', request.remote_addr) host = request.host.split(':', 1)[0] app.logger.info(f"method={request.method}, path={request.path}, " f"status={response.status_code}, " f"ip={ip}, host={host}, params={dict(request.args)}," f"headers={request.headers}, " f"body={request.data}") return response
5,349,720
def reduce(path, n_procs, column, function): """ Calculate an aggregate value from IMB output. Args: path: str, path to file n_procs: int, number of processes column: str, column name function: callable to apply to specified `column` of table for `n_procs` in `path` """ tables = read_imb_out(path) table = tables[n_procs] # separate lines here for more useful KeyError if missing: col = table[column] result = function(col) return result
5,349,721
def output_file_path(status_id, phase): """ """ BASE_DIR = Path(__file__).resolve().parent.parent return f"%s/logs/stage/{status_id}-{phase}.txt" %str(BASE_DIR)
5,349,722
def clean(some_string, uppercase=False): """ helper to clean up an input string """ if uppercase: return some_string.strip().upper() else: return some_string.strip().lower()
5,349,723
def to_title(value): """Converts a string into titlecase.""" t = re.sub("\s+", ".", value) t = filter(LETTER_SET.__contains__, t) t = re.sub("([a-z])'\W([A-Z])", lambda m: m.group(0).lower(), t.title()) return re.sub("\d([A-Z])", lambda m: m.group(0).lower(), t)
5,349,724
def parse_config_or_kwargs(config_file, **kwargs): """parse_config_or_kwargs :param config_file: Config file that has parameters, yaml format :param **kwargs: Other alternative parameters or overwrites for config """ with open(config_file) as con_read: yaml_config = yaml.load(con_read, Loader=yaml.FullLoader) # values from config file are all possible params arguments = dict(yaml_config, **kwargs) # In case some arguments were not passed, replace with default ones for key, value in DEFAULT_ARGS.items(): arguments.setdefault(key, value) return arguments
5,349,725
def sig_generacion(m): """Devuelve la matriz resultante de aplicar las reglas del juego a cada celda""" FILAS = len(m) COLUMNAS = len(m[0]) if len(m) else 0 new_m = [] # matriz resultado for i in range(FILAS): l = [] # Una lista para ir generando una fila for j in range(COLUMNAS): vec = num_vecinos(m, j, i) if vec < 2 or vec > 3: l.append(0) # muere elif vec == 3: l.append(1) # nace else: l.append(m[i][j]) # sobrevive si estaba viva new_m.append(l) return new_m
5,349,726
def calc_file_signature(data: str, password: str = None) -> str: """ Função que calcula o has da assinatura de um arquivo @param data: string assinada @param password: senha da assinatura @return: hash da assinatura """ if (password): digest = hmac.new(bytes(password), msg=bytes(data), digestmod=hashlib.sha256).digest() res_hash = base64.b64encode(digest).decode() else: hash = hashlib.sha256() hash.update(bytes(data)) res_hash = hash.hexdigest() return res_hash
5,349,727
def processIRMovie(measurement, rotation, inputfolder, exportpath, timeshift=0, doRotation=True, doRenaming=True): """Process TMC-files of IR camera into CSV files in movie mode. Movie mode means, that one frame-sequence (movie) per datapoint was taken instead of one frame per datapoint (timelapse). In the first step, the data of a TMC file is exported via ThermoViewer into a CSV file. The second step takes care of the optional rotation of the image and in the end, the CSV files are renamed according to their date and time. Parameters ---------- measurement : str Relative path to measurement folder rotation : int/str/float Degrees about which the image should be rotated. Valid values are 0, 90, 180, 270 inputfolder : str Absolute path to the input folder exportpath : str Path of the export files timeshift : int, optional Timeshift in hours doRotation : bool, optional If True, the image is rotated about the given degree doRenaming : bool, optional If True, the CSV file is renamed """ date = measurement[:8] foldername = os.path.basename(os.path.normpath(inputfolder)) prefix = "ir_export_" + date + "_" + foldername # export all IR files from folder to csv files # ROTATION: note that as long as the rotation feature is not # implemented in ThermoViewer, it can't be used ThermoViewer(mode="folder", inputpath=inputfolder, exportpath=exportpath, rotation=0, prefix=prefix, frame_start=1, frame_end=1, exportformat="csv", colorpalette="iron", meta=False, close=True) # alternative image rotation if doRotation: for ofile in glob.glob(exportpath + prefix + "*.csv"): if rotation == 180: rotateCSVFile180(ofile) print("Rotated file: ", ofile) # include time of the file into filename if doRenaming: for ifile in glob.glob(inputfolder+"/*.TMC"): timestamp = int(os.path.getmtime(ifile)) shifted_timestamp = (datetime.fromtimestamp(timestamp) + datetime.timedelta(hours=timeshift)) time = shifted_timestamp.strftime('%H-%M-%S') filenumber = os.path.basename(os.path.normpath(ifile))[2:-7] ofilename = prefix + "_" + filenumber ofile = exportpath + ofilename + "_0001.csv" ofile_new = exportpath + ofilename + "_" + time + ".csv" print("Renamed file: ", ofile) # print("new: ", ofile_new) os.rename(ofile, ofile_new)
5,349,728
def get_angle_from_coordinate(lat1, long1, lat2, long2): """https://stackoverflow.com/questions/3932502/calculate-angle-between-two-latitude-longitude-points""" dLon = (long2 - long1) y = np.sin(dLon) * np.cos(lat2) x = np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(dLon) brng = np.arctan2(y, x) brng = np.degrees(brng) brng = (brng + 360) % 360 brng = 360 - brng return brng
5,349,729
def get_predictions(): """Return the list of predications as a json object""" results = [] conn = None columns = ("pid", "name", "location", "latitude", "longitude", "type", "modtime") try: conn = psycopg2.connect(db_conn) # create a cursor cur = conn.cursor() cur.execute( "SELECT pid, name, location, latitude, longitude, type, modtime FROM predictions" ) for row in cur.fetchall(): results.append(dict(zip(columns, row))) cur.close() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() print("Database connection closed.") json_str = json.dumps(results, indent=2, sort_keys=True, default=json_serial) return Response(json_str, mimetype="application/json")
5,349,730
def parse_packageset(packageset): """ Get "input" or "output" packages and their repositories from each PES event. :return: set of Package tuples """ return {parse_package(p) for p in packageset.get('package', packageset.get('packages', []))}
5,349,731
def download_nyiso_csv(month, data_type, zone = None): """Downloads a NYISO csv dataset for a specific data type, month, and zone. Args: month: string denoting the first day of the month to be downloaded in yyyymmdd format data_type: string denoting the type of NYISO data to retrieve, examples include "damlbmp" which stands for "day ahead market location based marginal price" or "outSched" for "outage schedule" zone: string denoting the NYISO geographic zone of the data to be requested. This is required if data_type == "damlbmp" Returns: df: pandas dataframe of the NYISO csv file for the entire month requested """ # Build the necessary url to access the NYISO data url = build_nyiso_url(month, data_type, zone) # Download the zip folder to a temporary file location, # then open the zip folder into the object zf zip_folder_path, headers = urllib.request.urlretrieve(url) zf = zipfile.ZipFile(zip_folder_path) #TODO: increase efficiency by only reading the files from NYISO that contain the desired days # For each file contained in zf, read the csv and concatenate it with # the other csvs for this month to create a month-long csv df = pd.DataFrame() for file in zf.filelist: temp_df = pd.read_csv(zf.open(file.filename)) df = pd.concat([df,temp_df]) return df
5,349,732
def pretty_print_large_number(number): """Given a large number, it returns a string of the sort: '10.5 Thousand' or '12.3 Billion'. """ s = str(number).ljust(12) if number > 0 and number < 1e3: pass elif number >= 1e3 and number < 1e6: s = s + " (%3.1f Thousand)" % (number * 1.0 / 1e3) elif number >= 1e6 and number < 1e9: s = s + " (%3.1f Million)" % (number * 1.0 / 1e6) elif number >= 1e9 and number < 1e12: s = s + " (%3.1f Billion)" % (number * 1.0 / 1e9) elif number >= 1e12 and number < 1e15: s = s + " (%3.1f Trillion)" % (number * 1.0 / 1e12) return s
5,349,733
def find_aligning_transformation(skeleton, euler_frames_a, euler_frames_b): """ performs alignment of the point clouds based on the poses at the end of euler_frames_a and the start of euler_frames_b Returns the rotation around y axis in radians, x offset and z offset """ point_cloud_a = convert_euler_frame_to_cartesian_frame(skeleton, euler_frames_a[-1]) point_cloud_b = convert_euler_frame_to_cartesian_frame(skeleton, euler_frames_b[0]) weights = skeleton.get_joint_weights() theta, offset_x, offset_z = _align_point_clouds_2D(point_cloud_a, point_cloud_b, weights) return theta, offset_x, offset_z
5,349,734
def find_all_visit(tx): """ Method that queries the database to find all VISIT relationships :param tx: session :return: nodes of Person , Location """ query = ( """ MATCH (p:Person)-[r:VISIT]->(l:Location) RETURN p , ID(p) , r , r.start_hour , r.end_hour , r.date , l , ID(l) """ ) result = tx.run(query).data() return result
5,349,735
def read_vectors(filename): """Reads measurement vectors from a space or comma delimited file. :param filename: path of the file :type filename: str :return: array of vectors :rtype: numpy.ndarray :raises: ValueError """ vectors = [] data = read_csv(filename) expected_size = len(data[0]) if expected_size % 3 != 0: raise ValueError('Column size of vector data must be a multiple of 3') for row in data: if len(row) == expected_size: vectors.append(row) else: raise ValueError('Inconsistent column size of vector data') result = np.array(vectors, np.float32) if not np.isfinite(result).all(): raise ValueError('Non-finite value present in vector data') return result
5,349,736
def get_scoring_algorithm(): """ Base scoring algorithm for index and search """ return scoring.BM25F()
5,349,737
def _make_augmentation_pipeline(augmentation_list): """Buids an sklearn pipeline of augmentations from a tuple of strings. Parameters ---------- augmentation_list: list of strings, A list of strings that determine the augmentations to apply, and in which order to apply them (the first string will be applied first). Possible augmentation strings are ['leadlag', 'ir', 'addtime', 'cumsum', 'basepoint'] Returns ------- sklearn.Pipeline The transforms, in order, as an sklearn pipeline. Examples -------- augementations = ('leadlag', 'ir', 'addtime') _make_augmentation_pipeline(augmentations) # Will return Pipeline([ ('leadlag', LeadLag()), ('ir', InvisibilityReset()), ('addtime', AddTime()) ]) """ # Dictionary of augmentations AUGMENTATIONS = { "leadlag": _LeadLag(), "ir": _InvisibilityReset(), "addtime": _AddTime(), "cumsum": _CumulativeSum(), "basepoint": _BasePoint(), } # Assertions, check we have a tuple/list if augmentation_list is not None: if isinstance(augmentation_list, str): augmentation_list = (augmentation_list,) assert all( [x in list(AUGMENTATIONS.keys()) for x in augmentation_list] ), "augmentation_list must only contain string elements from {}. Given: {}.".format( list(AUGMENTATIONS.keys()), augmentation_list ) # Setup pipeline if augmentation_list is not None: pipeline = Pipeline( [(tfm_str, AUGMENTATIONS[tfm_str]) for tfm_str in augmentation_list] ) else: pipeline = None return pipeline
5,349,738
def ctg_path(event_name,sc_reform,path_cache,var_map,model,prev_events): """ Recursively computes the controllable and contigent events that influence the schedule of a given event. """ if event_name in path_cache:#If solution has been already computed, use it return path_cache[event_name] else: if event_name in sc_reform: #End point of uncontrollable duration if event_name in prev_events: raise RuntimeError('Contigent duration loop detected!') else: prev_events.add(event_name) path_ref = ctg_path(sc_reform[event_name]['ref'],sc_reform,path_cache,var_map,model,prev_events) path = [event_name]+path_ref else: #Controllable event if not event_name in var_map:#1-to-1 mapping between events and variables var_map[event_name]=model.addVar(vtype=GRB.CONTINUOUS,lb=0.0) model.update() path = [event_name] path_cache[event_name]=path #Caches solution for future use return path
5,349,739
def _setup_mock_socket_file(mock_socket_create_conn, resp): """Sets up a mock socket file from the mock connection. Args: mock_socket_create_conn: The mock method for creating a socket connection. resp: iterable, the side effect of the `readline` function of the mock socket file. Returns: The mock socket file that will be injected into the code. """ fake_file = mock.Mock() fake_file.readline.side_effect = resp fake_conn = mock.Mock() fake_conn.makefile.return_value = fake_file mock_socket_create_conn.return_value = fake_conn return fake_file
5,349,740
def usage_info(): """ usage info """ print("Input params is illegal...") print("try it again:\n python matcaffe2pycaffe.py -h")
5,349,741
def get_defense_type(action: int, game_config) -> int: """ Utility method for getting the defense type of action-id :param action: action-id :param game_config: game configuration :return: action type """ defense_type = action % (game_config.num_attack_types+1) # +1 for detection return defense_type
5,349,742
def color_box( colors, border="#000000ff", border2=None, height=32, width=32, border_size=1, check_size=4, max_colors=5, alpha=False, border_map=0xF ): """Color box.""" return colorbox.color_box( colors, border, border2, height, width, border_size, check_size, max_colors, alpha, border_map )
5,349,743
def get_performance_of_lstm_classifier(X, y, n_epochs, verbose=1, final_score=False): """ Reshapes feature matrix X, applies LSTM and returns the performance of the neural network :param X: List of non-reshaped/original feature matrices (one per logfile) :param y: labels :param n_epochs: Number of epochs the model should be trained :param verbose: verbose mode of keras_model.fit :param final_score: If final score should be printed, then don't use a validation set :return rocs, recalls, specificities, presicions, f1s """ X_list, y_list = _get_splitted_up_feature_matrix_and_labels(X, y) globals()["_maxlen"] = max(len(fm) for fm in X_list) if final_score: X_train_list, y_train_list, X_test_list, y_test_list, X_val, y_val = \ _split_into_train_test_val_data(X_list, y_list, size_test_set=3, size_val_set=0) X_lstm, y_lstm = _get_reshaped_matrices(X_train_list, y_train_list) model = _generate_lstm_classifier((X_lstm.shape[1], X_lstm.shape[2])) trained_model = _fit_lstm(model, X_lstm, y_lstm, n_epochs, verbose) else: X_train_list, y_train_list, X_test_list, y_test_list, X_val, y_val = \ _split_into_train_test_val_data(X_list, y_list, size_test_set=3, size_val_set=2) X_lstm, y_lstm = _get_reshaped_matrices(X_train_list, y_train_list) X_val, y_val = _get_reshaped_matrices(X_val, y_val) model = _generate_lstm_classifier((X_lstm.shape[1], X_lstm.shape[2])) trained_model = _fit_lstm(model, X_lstm, y_lstm, n_epochs, verbose, val_set=(X_val, y_val)) print('Performance training set: ') _calculate_performance(X_lstm, y_lstm, trained_model) print('Performance test set: ') rocs, recalls, specificities, presicions, f1s = _calculate_performance(X_test_list, y_test_list, trained_model) return rocs, recalls, specificities, presicions, f1s
5,349,744
def worker(data): """Thread function.""" width, column = data queen = Queen(width) queen.run(column) return queen.solutions
5,349,745
def eitem(self, key, value): """Translate included eitems.""" _eitem = self.get("_eitem", {}) urls = [] for v in force_list(value): urls.append( { "description": "E-book by EbookCentral", "value": clean_val("u", v, str), } ) _eitem.update({"urls": urls}) return _eitem
5,349,746
def annotate_group(groups, ax=None, label=None, labeloffset=30): """Annotates the categories with their parent group and add x-axis label""" def annotate(ax, name, left, right, y, pad): """Draw the group annotation""" arrow = ax.annotate(name, xy=(left, y), xycoords="data", xytext=(right, y - pad), textcoords="data", annotation_clip=False, verticalalignment="top", horizontalalignment="center", linespacing=2.0, arrowprops={'arrowstyle': "-", 'shrinkA': 0, 'shrinkB': 0, 'connectionstyle': "angle,angleB=90,angleA=0,rad=5"} ) return arrow if ax is None: ax = plt.gca() level = 0 for level in range(len(groups)): grp = groups[level] for name, coord in list(grp.items()): ymin = ax.get_ylim()[0] - np.ptp(ax.get_ylim()) * 0.12 - np.ptp(ax.get_ylim()) * 0.05 * (level) ypad = 0.01 * np.ptp(ax.get_ylim()) xcenter = np.mean(coord) annotate(ax, name, coord[0], xcenter, ymin, ypad) annotate(ax, name, coord[1], xcenter, ymin, ypad) if label is not None: # Define xlabel and position it according to the number of group levels ax.annotate(label, xy=(0.5, 0), xycoords="axes fraction", xytext=(0, -labeloffset - (level + 1) * 15), textcoords="offset points", verticalalignment="top", horizontalalignment="center") return
5,349,747
def background_schwarzfischer(fluor_chan, bin_chan, div_horiz=7, div_vert=5, mem_lim=None, memmap_dir=None): """Perform background correction according to Schwarzfischer et al. Arguments: fluor_chan -- (frames x height x width) numpy array; the fluorescence channel to be corrected bin_chan -- boolean numpy array of same shape as `fluor_chan`; segmentation map (background=False, cell=True) div_horiz -- int; number of (non-overlapping) tiles in horizontal direction div_vert -- int; number of (non-overlapping) tiles in vertical direction mem_lim -- max number of bytes for temporary data before switching to memmap; if in (0,1], max percentage of free memory to be used; if non-positive, always use memory; if None, decide automatically memmap_dir -- str; directory for creating memmap Returns: Background-corrected fluorescence channel as numpy array (dtype single) of same shape as `fluor_chan` """ n_frames, height, width = fluor_chan.shape # Allocate arrays if np.can_cast(fluor_chan, np.float16): dtype_interp = np.float16 elif np.can_cast(fluor_chan, np.float32): dtype_interp = np.float32 else: dtype_interp = np.float64 dtype_interp = np.dtype(dtype_interp) bg_mean = np.empty((n_frames, 1, 1), dtype=dtype_interp) # Create large arrays in memory or as memmap if mem_lim is None or mem_lim > 0: bg_interp, arr_temp, iter_temp = _get_arr(fluor_chan.shape, dtype_interp, mem_lim, memmap_dir) else: bg_interp, arr_temp, iter_temp = np.empty(shape=fluor_chan.shape, dtype=dtype_interp) # Construct tiles for background interpolation # Each pair of neighboring tiles is overlapped by a third tile, resulting in a total tile number # of `2 * div_i - 1` tiles for each direction `i` in {`horiz`, `vert`}. # Due to integer rounding, the sizes may slightly vary between tiles. tiles_vert = _make_tiles(height, div_vert) tiles_horiz = _make_tiles(width, div_horiz) supp = np.empty((tiles_horiz.size, tiles_vert.size)) # Interpolate background as cubic spline with each tile’s median as support point at the tile center for t in range(n_frames): print(f"Interpolating background in frame {t:3d} …") masked_frame = ma.masked_array(fluor_chan[t, ...], mask=bin_chan[t, ...]) for iy, (y, sy) in enumerate(tiles_vert): for ix, (x, sx) in enumerate(tiles_horiz): supp[ix, iy] = ma.median(masked_frame[sy, sx]) bg_spline = scint.RectBivariateSpline(x=tiles_horiz['center'], y=tiles_vert['center'], z=supp) patch = bg_spline(x=range(width), y=range(height)).T bg_interp[t, ...] = patch bg_mean[t, ...] = patch.mean() # Correct for background using Schwarzfischer’s formula: # corrected_image = (raw_image - interpolated_background) / gain # wherein, in opposite to Schwarzfischer, the gain is approximated as # median(interpolated_background / mean_background) # This “simple” calculation may consume more memory than available. # Therefore, a less readable but more memory-efficient command flow is used. for st, sl in iter_temp: np.divide(bg_interp[:, sl, :], bg_mean, out=arr_temp[:, :st, :]) np.subtract(fluor_chan[:, sl, :], bg_interp[:, sl, :], out=bg_interp[:, sl, :]) np.divide(bg_interp[:, sl, :], np.median(arr_temp[:, :st, :], axis=0, keepdims=True), out=bg_interp[:, sl, :]) # `bg_interp` now holds the corrected image return bg_interp
5,349,748
def _get_eula_date(extract_path: str) -> Optional[str]: """Get any EULA accept date in the install script, if any. :param extract_path: The path to the extracted archive. :return: The EULA date, if any. """ install_script = os.path.join(extract_path, "houdini.install") if not os.path.exists(install_script): return None with open(install_script) as handle: for line in handle: if line.startswith("LICENSE_DATE"): return line.split("=")[1].strip() return None
5,349,749
def get_output_data_path(extension, suffix=None): """Return full path for data file with extension, generated by a test script""" name = get_default_test_name(suffix) return osp.join(TST_PATH[0], f"{name}.{extension}")
5,349,750
def _plot(self, **kwargs) -> tp.BaseFigure: # pragma: no cover """Plot `close` and overlay it with the heatmap of `labels`.""" if self.wrapper.ndim > 1: raise TypeError("Select a column first. Use indexing.") return self.close.rename('close').vbt.overlay_with_heatmap(self.labels.rename('labels'), **kwargs)
5,349,751
def _set_global_vars(metadata): """Identify files used multiple times in metadata and replace with global variables """ fnames = collections.defaultdict(list) for sample in metadata.keys(): for k, v in metadata[sample].items(): print k, v if os.path.isfile(v): v = _expand_file(v) metadata[sample][k] = v fnames[v].append(k) loc_counts = collections.defaultdict(int) global_vars = {} global_var_sub = {} for fname, locs in fnames.items(): if len(locs) > 1: loc_counts[locs[0]] += 1 name = "%s%s" % (locs[0], loc_counts[locs[0]]) global_var_sub[fname] = name global_vars[name] = fname for sample in metadata.keys(): for k, v in metadata[sample].items(): if v in global_var_sub: metadata[sample][k] = global_var_sub[v] return metadata, global_vars
5,349,752
def user_get(context, id): """Get user by id.""" return IMPL.user_get(context, id)
5,349,753
def animation_template(world): """Shows how to animate a robot.""" #first, build a trajectory with 10 random configurations robot = world.robot(0) times = list(range(10)) milestones = [] for t in times: robot.randomizeConfig() milestones.append(robot.getConfig()) traj = trajectory.RobotTrajectory(robot,times,milestones) vis.add("world",world) robotPath = ("world",world.robot(0).getName()) #compound item reference: refers to robot 0 in the world #we're also going to visualize the end effector trajectory #eetraj = traj.getLinkTrajectory(robot.numLinks()-1,0.05) #vis.add("end effector trajectory",eetraj) #uncomment this to automatically visualize the end effector trajectory vis.add("robot trajectory",traj) vis.setAttribute("robot trajectory","endeffectors",[13,20]) vis.setWindowTitle("Animation test") MANUAL_ANIMATION = False if not MANUAL_ANIMATION: #automatic animation, just call vis.animate vis.animate(robotPath,traj) if not MULTITHREADED: #need to set up references to function-local variables manually, and the easiest way is to use a default argument def callback(robot=robot): if MANUAL_ANIMATION: #with manual animation, you just set the robot's configuration based on the current time. t = vis.animationTime() q = traj.eval(t,endBehavior='loop') robot.setConfig(q) pass vis.loop(callback=callback,setup=vis.show) else: vis.show() while vis.shown(): vis.lock() if MANUAL_ANIMATION: #with manual animation, you just set the robot's configuration based on the current time. t = vis.animationTime() q = traj.eval(t,endBehavior='loop') robot.setConfig(q) vis.unlock() time.sleep(0.01) #quit the visualization thread nicely vis.kill()
5,349,754
def unpack_singleton(x): """ >>> unpack_singleton([[[[1]]]]) 1 >>> unpack_singleton(np.array(np.datetime64('2000-01-01'))) array('2000-01-01', dtype='datetime64[D]') """ while isinstance(x, (list, tuple)): try: x = x[0] except (IndexError, TypeError, KeyError): break return x
5,349,755
def run_bincapture(args: List[str]) -> bytes: """run is like "subprocess.run(args, capture_out=True, text=False)", but with helpful settings and obeys "with capture_output(out)". """ if _capturing: try: return subprocess.run(args, check=True, capture_output=True).stdout except subprocess.CalledProcessError as err: raise Exception(f"{err.stderr.decode('UTF-8')}{err}") from err else: return subprocess.run(args, check=True, stdout=subprocess.PIPE).stdout
5,349,756
def _EnumValFromText(fdesc, enum_text_val, log): """Convert text version of enum to integer value. Args: fdesc: field descriptor containing the text -> int mapping. enum_text_val: text to convert. log: logger obj Returns: integer value of enum text. """ log.debug("converting enum val:" + enum_text_val) log.debug("possible enum vals:" + str(fdesc.enum_type.values_by_name.keys())) enum_val = fdesc.enum_type.values_by_name[enum_text_val.upper()].number log.debug("done enum vals") return enum_val
5,349,757
def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) # print('correct shape:', correct.shape) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) if len(res) == 1: return res[0] else: return (res[0], res[1], correct[0], pred[0])
5,349,758
def yyyydoy2jd(year,doy,hh=0,mm=0,ss=0.0): """ yyyydoy2jd Take a year, day-of-year, etc and convert it into a julian day Usage: jd = yyyydoy2jd(year,doy,hh,mm,ss) Input: year - 4 digit integer doy - 3 digit, or less integer, (1 <= doy <= 366) hh - 2 digit, or less int, (0 <= hh < 24) (not required) mm - 2 digit, or less int,(0 <= ss < 60) (not required) ss - float (not required) Output: 'jd' (float) """ # # need to split seconds into two components # sec => 2 digit, or less int, (0 <= ss < 60) # ms => int 0 <= ms < 1,000,000 # ms,sec = modf(float(ss)) ms = ms * 10e5 dto = dt.datetime(int(year),01,01,int(hh),int(mm),int(sec),int(ms)) dto = dto + dt.timedelta(days=(int(doy) - 1)) mn = dto.month dy = dto.day jd = cal2jd(int(year),int(mn),int(dy)) jd = jd + float(hh)/24. + float(mm)/60./24. + float(sec)/3600./24. return jd - 2400000.5
5,349,759
def lon2index(lon, coords, corr=True): """convert longitude to index for OpenDAP request""" if corr: if lon < 0: lon += 360 lons = coords.lon.values return np.argmin(np.abs(lons - lon))
5,349,760
def get_dynamic_call_address(ea): """Find all dynamic calls e.g call eax""" dism_addr_list = list(FuncItems(ea)) return [addr for addr in dism_addr_list if print_insn_mnem(addr) == 'call' and get_operand_type(addr, 0)==1]
5,349,761
def update_pfc_context_to_original(operation: DataOperation) -> None: """ Revert the change to pyfileconf currently running context made by :func:`update_pfc_context_to_pipeline_section_path` :param operation: The operation which was just executed :return: None """ context.stack.pop_frame()
5,349,762
def iwbo_nats(model, x, k, kbs=None): """Compute the IWBO in nats.""" if kbs: return - iwbo_batched(model, x, k, kbs).mean() else: return - iwbo(model, x, k).mean()
5,349,763
def ko_json(queryset, field_names=None, name=None, safe=False): """ Given a QuerySet, return just the serialized representation based on the knockout_fields. Useful for middleware/APIs. Convenience method around ko_data. """ return ko_data(queryset, field_names, name, safe, return_json=True)
5,349,764
def map(video_features_path, audio_hypothesis, file_uri, ier=False): """Maps outputs of pyannote.audio and pyannote.video models Parameters: ----------- video_features_path: str Path to the video features (.npy) file as defined in pyannote.video audio_hypothesis: Annotation hypothesis made by the audio model file_uri: str uri of the file you're interested in (used to filter out audio_hypothesis) ier: bool If True, the mapping will be done using `optimal_mapping_ier` which may map the same label to several clusters in order to minimize IER If False (default), pyannote.metrics `optimal_mapping` will be used. """ clustering = FaceClustering() #TODO : move the preprocess (i.e. npy to pyannote) to some other place ? face_id, _ = clustering.model.preprocess(video_features_path,CLUSTERING_THRESHOLD) if ier: optimal_mapping=optimal_mapping_ier(face_id, audio_hypothesis) else: der=DiarizationErrorRate() optimal_mapping=der.optimal_mapping(face_id, audio_hypothesis) mapped_hypothesis=audio_hypothesis.rename_labels(mapping=optimal_mapping) return mapped_hypothesis, face_id
5,349,765
def delete_demo(guid): """ Delete a demo object and all its children. :param guid: The demo's guid :return: """ web_utils.check_null_input((guid, 'demo to delete')) demo_service.delete_demo_by_guid(guid) return '', 204
5,349,766
def return_json(): """ Sample function that has been given a different name """ print("Tooler should render out the JSON value returned") return {"one": 1, "deep": {"structure": ["example"]}}
5,349,767
def get(url) -> str: """Send an http GET request. :param str url: The URL to perform the GET request for. :rtype: str :returns: UTF-8 encoded string of response """ return _execute_request(url).read().decode("utf-8")
5,349,768
def strip_filenames(path, ext='', allowed_chars=None): """ Strips the filenames from whitespaces and other 'problematic' chars. In other words converts the filenames to alpharethmetic chars. :param path: (String) Base path for the filenames. :param ext: (String, optional) If provided, the glob will rename only these files. :param allowed_chars: (String, optional) If provided, it includes the chars to be allowed in the re function compile(). :return: """ if allowed_chars is None: allowed_chars = '[^a-zA-Z0-9.]+' pattern = re.compile(allowed_chars) for cl in sorted(glob(path + '*' + ext)): # get only the filename cl1 = cl[cl.rfind(sep) :] # strip all white spaces, quatation points, etc. name = pattern.sub('', cl1) move(path + cl1, path + name)
5,349,769
def brute_force(durs, labels, labelset, train_dur, val_dur, test_dur, max_iter=5000): """finds indices that split (labels, durations) tuples into training, test, and validation sets of specified durations, with the set of unique labels in each dataset equal to the specified labelset. The durations of the datasets created using the returned indices will be *greater than* or equal to the durations specified. Must specify a positive value for one of {train_dur, test_dur}. The other value can be specified as '-1' which is interpreted as "use the remainder of the dataset for this split, after finding indices for the set with a specified duration". Parameters ---------- durs : list of durations of vocalizations labels : list of labels from vocalizations labelset : set of labels train_dur : int, float Target duration for training set, in seconds. val_dur : int, float Target duration for validation set, in seconds. test_dur : int, float Target duration for test set, in seconds. max_iter : int maximum number of iterations to attempt to find indices. Default is 5000. Returns ------- train_inds, val_inds, test_inds : list of int, the indices that will split datasets Notes ----- A 'brute force' algorithm that just randomly assigns indices to a set, and iterates until it finds some partition where each set has instances of all classes of label. Starts by ensuring that each label is represented in each set and then adds files to reach the required durations. """ logger = logging.getLogger(__name__) logger.setLevel("INFO") sum_durs = sum(durs) train_dur, val_dur, test_dur = validate_split_durations( train_dur, val_dur, test_dur, sum_durs ) target_split_durs = dict( zip(("train", "val", "test"), (train_dur, val_dur, test_dur)) ) if not len(durs) == len(labels): raise ValueError( "length of list of durations did not equal length of list of labels; " "should be same length since " "each duration of a vocalization corresponds to the labels from its annotations.\n" f"Length of durations: {len(durs)}. Length of labels: {len(labels)}" ) iter = 1 all_labels_err = ( "Did not successfully divide data into training, " "validation, and test sets of sufficient duration " f"after {max_iter} iterations. " "Try increasing the total size of the data set." ) # ---- outer loop that repeats until we successfully split our reach max number of iters --------------------------- while 1: # list of indices we use to index into both `durs` and `labels` durs_labels_inds = list( range(len(labels)) ) # we checked len(labels) == len(durs) above # when making `split_inds`, "initialize" the dict with all split names, by using target_split_durs # so we don't get an error when indexing into dict in return statement below split_inds = {split_name: [] for split_name in target_split_durs.keys()} total_split_durs = {split_name: 0 for split_name in target_split_durs.keys()} split_labelsets = {split_name: set() for split_name in target_split_durs.keys()} # list of split 'choices' we use when randomly adding indices to splits choice = [] for split_name in target_split_durs.keys(): if target_split_durs[split_name] > 0 or target_split_durs[split_name] == -1: choice.append(split_name) # ---- make sure each split has at least one instance of each label -------------------------------------------- for label_from_labelset in sorted(labelset): label_inds = [ ind for ind in durs_labels_inds if label_from_labelset in labels[ind] ] random.shuffle(label_inds) for split_name in target_split_durs.keys(): if ( target_split_durs[split_name] > 0 or target_split_durs[split_name] == -1 ) and label_from_labelset not in split_labelsets[split_name]: try: ind = label_inds.pop() split_inds[split_name].append(ind) total_split_durs[split_name] += durs[ind] split_labelsets[split_name] = split_labelsets[split_name].union( set(labels[ind]) ) durs_labels_inds.remove(ind) except IndexError: if len(label_inds) == 0: logger.debug( "Ran out of elements while dividing dataset into subsets of specified durations." f"Iteration {iter}" ) iter += 1 break # do next iteration else: # something else happened, re-raise error raise for split_name in target_split_durs.keys(): if ( target_split_durs[split_name] > 0 and total_split_durs[split_name] >= target_split_durs[split_name] ): choice.remove(split_name) if len(choice) == 0: finished = True else: finished = False # ---- inner loop that actually does split --------------------------------------------------------------------- random.shuffle(durs_labels_inds) while finished is False: # pop durations off list and append to randomly-chosen # list, either train, val, or test set. # Do this until the total duration for each data set is equal # to or greater than the target duration for each set. try: ind = durs_labels_inds.pop() except IndexError: if len(durs_labels_inds) == 0: logger.debug( "Ran out of elements while dividing dataset into subsets of specified durations." f"Iteration {iter}" ) iter += 1 break # do next iteration else: # something else happened, re-raise error raise which_set = random.randint(0, len(choice) - 1) split_name = choice[which_set] split_inds[split_name].append(ind) total_split_durs[split_name] += durs[ind] if ( target_split_durs[split_name] > 0 and total_split_durs[split_name] >= target_split_durs[split_name] ): choice.remove(split_name) elif target_split_durs[split_name] == -1: # if this split is -1 and other split is already "finished" if (split_name == "test" and "train" not in choice) or ( split_name == "train" and "test" not in choice ): # just add all remaining inds to this split split_inds[split_name].extend(durs_labels_inds) choice.remove(split_name) if len(choice) < 1: # list is empty, we popped off all the choices for split_name in target_split_durs.keys(): if target_split_durs[split_name] > 0: if total_split_durs[split_name] < target_split_durs[split_name]: raise ValueError( "Loop to find splits completed, " f"but total duration of '{split_name}' split, " f"{total_split_durs[split_name]} seconds, " f"is less than target duration specified: {target_split_durs[split_name]} seconds." ) else: finished = True break if iter > max_iter: raise ValueError( "Could not find subsets of sufficient duration in " f"less than {max_iter} iterations." ) # make sure that each split contains all unique labels in labelset if finished is True: for split_name in target_split_durs.keys(): if ( target_split_durs[split_name] > 0 or target_split_durs[split_name] == -1 ): split_labels = [ label for ind in split_inds[split_name] for label in labels[ind] ] split_labelset = set(split_labels) if split_labelset != set(labelset): iter += 1 if iter > max_iter: raise ValueError(all_labels_err) else: logger.debug( f"Set of unique labels in '{split_name}' split did not equal specified labelset. " f"Getting new '{split_name}' split. Iteration: {iter}" ) continue # successfully split break elif finished is False: continue split_inds = { split_name: (inds if inds else None) for split_name, inds in split_inds.items() } return split_inds["train"], split_inds["val"], split_inds["test"]
5,349,770
def test_operator__remove_all__2(evaluate): """remove-all() does nothing on `None`.""" assert None is evaluate(None, 'remove-all', 'a')
5,349,771
def VOLUME(env: Optional[Dict] = None) -> Dict: """Get specification for the volume that is associated with the worker that is used to execute the main algorithm step. Parameters ---------- env: dict, default=None Optional environment variables that override the system-wide settings, default=None Returns ------- dict """ return read_config_obj(var=METANOME_VOLUME, env=env if env is not None else os.environ)
5,349,772
def test_reaction_oneliner(): """ 7 2 xx 2 3 """ m1 = MyObject4(bar=2) m2 = MyObject4(bar=lambda: m1.bar) loop.iter() print(m2.bar) loop.iter() print(m2.bar) print('xx') m1.set_bar(3) loop.iter() print(m2.bar) loop.iter() print(m2.bar)
5,349,773
def compress(body, compress_level): """Compress 'body' at the given compress_level.""" import zlib yield '\037\213' # magic header yield '\010' # compression method yield '\0' yield struct.pack("<L", long(time.time())) yield '\002' yield '\377' crc = zlib.crc32("") size = 0 zobj = zlib.compressobj(compress_level, zlib.DEFLATED, -zlib.MAX_WBITS, zlib.DEF_MEM_LEVEL, 0) for line in body: size += len(line) crc = zlib.crc32(line, crc) yield zobj.compress(line) yield zobj.flush() yield struct.pack("<l", crc) yield struct.pack("<L", size & 0xFFFFFFFFL)
5,349,774
def train_step(model_optimizer, game_board_log, predicted_action_log, action_result_log): """Run one training step.""" def loss_fn(model_params): logits = PolicyGradient().apply({'params': model_params}, game_board_log) loss = compute_loss(logits, predicted_action_log, action_result_log) return loss grad_fn = jax.grad(loss_fn) grads = grad_fn(model_optimizer.target) model_optimizer = model_optimizer.apply_gradient(grads) return model_optimizer
5,349,775
def make_static_rnn_with_control_flow_v2_tests(options): """Make a set of tests to do basic Lstm cell.""" test_parameters = [ { "dtype": [tf.float32], "num_batches": [4], "time_step_size": [4], "input_vec_size": [3], "num_cells": [4], "use_sequence_length": [True, False], }, ] def build_graph(parameters): """Build a simple graph with BasicLSTMCell.""" num_batches = parameters["num_batches"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] num_cells = parameters["num_cells"] inputs_after_split = [] for i in range(time_step_size): one_timestamp_input = tf.placeholder( dtype=parameters["dtype"], name="split_{}".format(i), shape=[num_batches, input_vec_size]) inputs_after_split.append(one_timestamp_input) lstm_cell = tf.nn.rnn_cell.BasicLSTMCell( num_cells, activation=tf.nn.relu, state_is_tuple=True) sequence_length = None if parameters["use_sequence_length"]: # Using different sequence length in each bach, like [1, 2, 3, 3...]. sequence_length = [ min(i + 1, time_step_size) for i in range(num_batches) ] cell_outputs, _ = rnn.static_rnn( lstm_cell, inputs_after_split, dtype=tf.float32, sequence_length=sequence_length) out = cell_outputs[-1] return inputs_after_split, [out] def build_inputs(parameters, sess, inputs, outputs): """Feed inputs, assign variables, and freeze graph.""" with tf.variable_scope("", reuse=True): kernel = tf.get_variable("rnn/basic_lstm_cell/kernel") bias = tf.get_variable("rnn/basic_lstm_cell/bias") kernel_values = create_tensor_data(parameters["dtype"], [kernel.shape[0], kernel.shape[1]], -1, 1) bias_values = create_tensor_data(parameters["dtype"], [bias.shape[0]], 0, 1) sess.run(tf.group(kernel.assign(kernel_values), bias.assign(bias_values))) num_batches = parameters["num_batches"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] input_values = [] for _ in range(time_step_size): tensor_data = create_tensor_data(parameters["dtype"], [num_batches, input_vec_size], 0, 1) input_values.append(tensor_data) out = sess.run(outputs, feed_dict=dict(zip(inputs, input_values))) return input_values, out make_zip_of_tests( options, test_parameters, build_graph, build_inputs, use_frozen_graph=True)
5,349,776
def jaccard(structured_phrases, phrases_to_score, partial=False, status_callback=None, status_increment=None, pmd_class=PartialMatchDict): """ calculate jaccard similarity between phrases_to_score, using structured_phrases to determine cooccurrences. For phrases `a' and `b', let A be the set of documents `a' appeared in, and B be the set of documents `b' appeared in. Then the Jaccard similarity of `a' and `b' is Similarity value of two phrases is |A intersect B| / |A union B|. Setting partial to true allows partial phrase matching: two phrases are the same if they have any common subsequence of words. Very slow. """ # indicies will index into our union and intersection arrays phrases = {} if partial: indices = pmd_class() else: indices = {} for i, phrase in enumerate(phrases_to_score): indices[phrase] = i phrases[i] = phrase N = len(phrases_to_score) phrase_count = np.zeros(N) if partial: intersection = np.zeros((N, N), dtype=np.uint32) else: intersection = dok_matrix((N, N), dtype=np.uint32) count = 0 if status_callback and not status_increment: length = len(structured_phrases) status_increment = length / 100 # take each document for doc_phrases in structured_phrases: if status_callback and status_increment > 0 and count % status_increment == 0: try: status_callback(status_format(float(count) / length)) except: status_callback("%d processed" % count) count += 1 # take all phrases within this document for i in range(len(doc_phrases)): np1 = tuple(doc_phrases[i]) if np1 in indices: # this phrase is important enough to count if partial: matches1 = indices[np1] else: matches1 = set() matches1.add(indices[np1]) for index1 in matches1: phrase_count[index1] += 1 for k in range(i + 1, len(doc_phrases)): np2 = tuple(doc_phrases[k]) if np2 in indices: # this np is important enough to count if partial: matches2 = indices[np2] else: matches2 = set() matches2.add(indices[np2]) for index1 in matches1: for index2 in matches2: if index2 != index1: intersection[index1,index2] += 1 intersection[index2,index1] += 1 # use inclusion exclusion if partial: tiled_phrase_count = np.lib.stride_tricks.as_strided(phrase_count, (N, phrase_count.size), (0, phrase_count.itemsize)) union = tiled_phrase_count + tiled_phrase_count.T - intersection jaccard = intersection / union else: jaccard = dok_matrix((N, N)) for coords, intersection_count in intersection.iteritems(): jaccard[coords] = intersection_count / (phrase_count[coords[0]] + phrase_count[coords[1]] - intersection_count) jaccard = np.asarray(jaccard.todense()) return jaccard, phrases
5,349,777
def print_python(node: AST) -> str: """Takes an AST and produces a string containing a human-readable Python expression that builds the AST node.""" return black.format_str(ast.dump(node), mode=black.FileMode())
5,349,778
def reg2deg(reg): """ Converts phase register values into degrees. :param cycles: Re-formatted number of degrees :type cycles: int :return: Number of degrees :rtype: float """ return reg*360/2**32
5,349,779
def weakify_voxelwise_label_one_sub(pos_path_path, masks_path): """ This function converts the voxelwise mask of a positive patch into a weak mask: it creates a sphere around the aneurysm center Args: pos_path_path (str): path to the positive patch to be converted masks_path (str): path to the folder containing all the positive masks Returns: None Raises: ValueError: if the voxelwise mask is either non-binary or empty ValueError: if the newly created weak mask is either non-binary or empty """ sub_ses_lesion = re.findall(r"sub-\d+_ses-\d+_Lesion_\d+", pos_path_path)[0] patch_pair = re.findall(r"patch_pair_\d+", pos_path_path)[0] last_part_of_path = os.path.basename(os.path.normpath(pos_path_path)) filename_mask = last_part_of_path.replace("pos_patch_angio", "mask_patch") voxelwise_mask_obj = nib.load(os.path.join(masks_path, sub_ses_lesion, patch_pair, filename_mask)) voxelwise_mask_patch = np.asanyarray(voxelwise_mask_obj.dataobj) # type: np.ndarray if not np.array_equal(voxelwise_mask_patch, voxelwise_mask_patch.astype(bool)) and np.sum(voxelwise_mask_patch) != 0: raise ValueError("Voxelwise mask of positive patches must be binary and non-empty") lesion = extract_lesion_info(voxelwise_mask_patch) # N.B. I INVERT X and Y BECAUSE of OpenCV (see https://stackoverflow.com/a/56849032/9492673) x_center = lesion["centroid_y_coord"] # extract y coordinate of lesion centroid y_center = lesion["centroid_x_coord"] # extract x coordinate of lesion centroid z_central = lesion["idx_slice_with_more_white_pixels"] # extract idx of slice with more non-zero pixels aneur_center, aneur_radius = np.asarray([x_center, y_center, z_central]), lesion["equivalent_diameter"] / 2 weak_mask_with_sphere_patch = create_bin_sphere(voxelwise_mask_patch.shape, aneur_center, aneur_radius) # type: np.ndarray weak_mask_with_sphere_patch = weak_mask_with_sphere_patch.astype(np.uint8) if not np.array_equal(voxelwise_mask_patch, voxelwise_mask_patch.astype(bool)) and np.sum(voxelwise_mask_patch) != 0: raise ValueError("Voxelwise mask of positive patches must be binary and non-empty") weak_mask_obj = nib.Nifti1Image(weak_mask_with_sphere_patch, affine=voxelwise_mask_obj.affine) # overwrite mask patch nib.save(weak_mask_obj, os.path.join(masks_path, sub_ses_lesion, patch_pair, filename_mask))
5,349,780
def load_config(config_file=None): """Load the configuration file. Configuration options will be available in dict sjkscan.conf.config. When configuration options are added, modified or removed in future releases, `config_template` in this function must be updated. :param config_file: file to read. Defaults to sjkscan.conf in package bundle. """ #: Dictionary of lists containing configuration file sections and entries. #: Each list contains tuples of configuration entry names and default values. #: If it's not in this dictionary, it doesn't make it to config.config. config_template = { 'Paths': [ ('data', '/Users/sjk/Code/sjkscan/data'), ('dir_format', '%Y-%m-%d_%H-%M-%S'), ('inbox', '%(data)s/INBOX'), ('archive', '%(data)s/ARCHIVE') ], 'OCR': [ ('language', 'swe') ], 'Rotation': [ ('rotatate', 180) ], 'Scanimage': [ ('resolution', 300), ('brightness', 80), ('contrast', 100) ], 'Logging': [ ('level', 'INFO') ] } # conf = configparser.ConfigParser(interpolation=configparser.BasicInterpolation()) conf = configparser.ConfigParser() if config_file: conf.read(config_file) else: conf.read_string(resource_string(__name__, 'sjkscan.conf').decode('utf-8')) for section in config_template: config[section] = dict() for entry, default in config_template[section]: config[section][entry] = conf.get(section, entry, fallback=default)
5,349,781
def plotit(depth, a, n, res1, res2, res3, title): """Call `comp_appres` and plot result.""" # Compute the three different models rho1, AB2 = comp_appres(depth, res1, a, n) rho2, _ = comp_appres(depth, res2, a, n) rho3, _ = comp_appres(depth, res3, a, n) # Create figure plt.figure() # Plot curves plt.loglog(AB2, rho1, label='Case 1') plt.plot(AB2, rho2, label='Case 2') plt.plot(AB2, rho3, label='Case 3') # Legend, labels plt.legend(loc='best') plt.title(title) plt.xlabel('AB/2 (m)') plt.ylabel(r'Apparent resistivity $\rho_a (\Omega\,$m)') plt.show()
5,349,782
def plot_accuracy(scores: dict, filename: str) -> None: """ Plots the distribution of validation accuracy of the neural network for all hyperparameter combination experiments. """ bins = 250 (hist, _) = np.histogram(scores, bins=bins, range=(0, 1)) x = np.linspace(0, 1, bins) fig = go.Figure() fig.add_trace(go.Bar( x = x, y = hist, marker_color=train_color, )) fig.update_layout( title_text="Distribution of validation accuracy over experiments", xaxis_title_text="Validation accuracy", yaxis_title_text="Number of experiments", ) pio.write_html(fig, filename)
5,349,783
def update_channel_metadata_cache(): """ After a channel is imported, or when the devserver is started, scan through the settings.CONTENT_DATABASE_DIR folder for all channel content databases, and pull the data from each database's ChannelMetadata object to update the ChannelMetadataCache object in the default database to ensure they are in sync. """ db_names = get_channel_ids_for_content_database_dir(settings.CONTENT_DATABASE_DIR) # Delete ChannelMetadataCache objects in default db that are not found in CONTENT_DATABASE_DIR ChannelMetadataCache.objects.exclude(id__in=db_names).delete() # sync the ChannelMetadataCache objects in default db with ChannelMetadata objects in CONTENT_DATABASE_DIR for db_name in db_names: with using_content_database(db_name): update_values = ChannelMetadata.objects.values()[0] ch_metadata_obj, _ = ChannelMetadataCache.objects.update_or_create( id=db_name, defaults=update_values, ) # Records a new last_updated only if channel is brand new. Does not # handle case where channel's version is upgraded, which is not # yet supported on UI anyway if ch_metadata_obj.last_updated is None: ch_metadata_obj.last_updated = local_now() ch_metadata_obj.save()
5,349,784
def flag_element(uid: int, reason: Union[key_duplicate, key_optimization, ReviewDeleteReasons], db_user: User, is_argument: bool, ui_locales: str, extra_uid=None) -> dict: """ Flags an given argument based on the reason which was sent by the author. This argument will be enqueued for a review process. :param uid: Uid of the argument/statement, which should be flagged :param reason: String which describes the reason :param db_user: User :param is_argument: Boolean :param ui_locales: ui_locales :param extra_uid: Uid of the argument/statement, which should be flagged :return: success, info, error """ tn = Translator(ui_locales) argument_uid = uid if is_argument else None statement_uid = uid if not is_argument else None # was this already flagged? flag_status = QueueAdapter(db_user=db_user).element_in_queue(argument_uid=argument_uid, statement_uid=statement_uid, premisegroup_uid=None) if flag_status: LOG.debug("Already flagged by %s", flag_status) if flag_status == FlaggedBy.user: info = tn.get(_.alreadyFlaggedByYou) else: info = tn.get(_.alreadyFlaggedByOthers) return {'success': '', 'info': info} return __add_flag(reason, argument_uid, statement_uid, extra_uid, db_user, tn)
5,349,785
def export_bioimageio_model(checkpoint, export_folder, input_data=None, dependencies=None, name=None, description=None, authors=None, tags=None, license=None, documentation=None, covers=None, git_repo=None, cite=None, input_optional_parameters=True, model_postprocessing=None, for_deepimagej=False, links=[], maintainers=None, checkpoint_name="best", config={}): """ """ assert input_data is not None # load trainer and model trainer = get_trainer(checkpoint, name=checkpoint_name, device="cpu") model, model_kwargs = _get_model(trainer, model_postprocessing) # create the weights os.makedirs(export_folder, exist_ok=True) weight_path = _write_weights(model, export_folder) # create the test input/output file and derive the tensor kwargs from the model and its kwargs test_in_paths, test_out_paths = _write_data(input_data, model, trainer, export_folder) tensor_kwargs = _get_tensor_kwargs(model, model_kwargs, test_in_paths, test_out_paths) # create the model source file source = _write_source(model, export_folder) # create dependency file _write_depedencies(export_folder, dependencies) # get the additional kwargs kwargs = _get_kwargs(trainer, name, description, authors, tags, license, documentation, git_repo, cite, maintainers, export_folder, input_optional_parameters) kwargs.update(tensor_kwargs) preprocessing = _get_preprocessing(trainer) # the apps to link with this model, by default ilastik links.append("ilastik/ilastik") kwargs.update({"links": links, "config": config}) zip_path = os.path.join(export_folder, f"{name}.zip") # change the working directory to the export_folder to avoid issues with relative paths cwd = os.getcwd() os.chdir(export_folder) try: build_spec.build_model( weight_uri=weight_path, weight_type="pytorch_state_dict", test_inputs=[f"./{os.path.split(test_in)[1]}" for test_in in test_in_paths], test_outputs=[f"./{os.path.split(test_out)[1]}" for test_out in test_out_paths], root=".", output_path=f"{name}.zip", dependencies="environment.yaml", preprocessing=preprocessing, architecture=source, model_kwargs=model_kwargs, add_deepimagej_config=for_deepimagej, **kwargs ) except Exception as e: raise e finally: os.chdir(cwd) # load and validate the model rdf_path = os.path.join(export_folder, "rdf.yaml") _extract_from_zip(zip_path, rdf_path, "rdf.yaml") val_success = _validate_model(rdf_path) if val_success: print(f"The model was successfully exported to '{export_folder}'.") else: warn(f"Validation of the bioimageio model exported to '{export_folder}' has failed. " + "You can use this model, but it will probably yield incorrect results.") return val_success
5,349,786
def main(args=None): """Entry point for CLI.""" if len(sys.argv) > 1: if sys.argv[1] in {"-h", "--h", "help", "-help", "--help", "-H"}: help_text() sys.exit() BatchMandelbrot(**dict(arg.split("=") for arg in sys.argv[1:]))
5,349,787
def load_config_at_path(path: Pathy) -> Dynaconf: """Load config at exact path Args: path: path to config file Returns: dict: config dict """ path = pathlib.Path(path) if path.exists() and path.is_file(): options = DYNACONF_OPTIONS.copy() options.update({ 'root_path': str(path.parent), 'settings_file': str(path.name), }) return Dynaconf(**options) else: raise ConfigurationError( f'Couldn\'t find ballet.yml config file at {path!s}')
5,349,788
def _build_target(action, original_target, plugin, context): """Augment dictionary of target attributes for policy engine. This routine adds to the dictionary attributes belonging to the "parent" resource of the targeted one. """ target = original_target.copy() resource, _w = _get_resource_and_action(action) hierarchy_info = attributes.RESOURCE_HIERARCHY_MAP.get(resource, None) if hierarchy_info and plugin: # use the 'singular' version of the resource name parent_resource = hierarchy_info['parent'][:-1] parent_id = hierarchy_info['identified_by'] f = getattr(plugin, 'get_%s' % parent_resource) # f *must* exist, if not found it is better to let quantum explode # Note: we do not use admin context data = f(context, target[parent_id], fields=['tenant_id']) target['%s_tenant_id' % parent_resource] = data['tenant_id'] return target
5,349,789
def test_constructor_raises_value_error_for_invalid_url(): """Test that ocnstructor raises TypeError for invalid url.""" with pytest.raises(ValueError): ms.MangaSource('test', 'bad test', '-')
5,349,790
async def async_setup_entry(opp: OpenPeerPower, entry: ConfigEntry): """Configure Gammu state machine.""" device = entry.data[CONF_DEVICE] config = {"Device": device, "Connection": "at"} gateway = await create_sms_gateway(config, opp) if not gateway: return False opp.data[DOMAIN][SMS_GATEWAY] = gateway opp.config_entries.async_setup_platforms(entry, PLATFORMS) return True
5,349,791
def grep_response_body(regex_name, regex, owtf_transaction): """Grep response body :param regex_name: Regex name :type regex_name: `str` :param regex: Regex :type regex: :param owtf_transaction: OWTF transaction :type owtf_transaction: :return: Output :rtype: `dict` """ return grep(regex_name, regex, owtf_transaction.get_raw_response_body)
5,349,792
def link(f, search_range, pos_columns=None, t_column='frame', verbose=True, **kwargs): """ link(f, search_range, pos_columns=None, t_column='frame', memory=0, predictor=None, adaptive_stop=None, adaptive_step=0.95, neighbor_strategy=None, link_strategy=None, dist_func=None, to_eucl=None) Link a DataFrame of coordinates into trajectories. Parameters ---------- f : DataFrame The DataFrame must include any number of column(s) for position and a column of frame numbers. By default, 'x' and 'y' are expected for position, and 'frame' is expected for frame number. See below for options to use custom column names. search_range : float or tuple the maximum distance features can move between frames, optionally per dimension pos_columns : list of str, optional Default is ['y', 'x'], or ['z', 'y', 'x'] when 'z' is present in f t_column : str, optional Default is 'frame' memory : integer, optional the maximum number of frames during which a feature can vanish, then reappear nearby, and be considered the same particle. 0 by default. predictor : function, optional Improve performance by guessing where a particle will be in the next frame. For examples of how this works, see the "predict" module. adaptive_stop : float, optional If not None, when encountering an oversize subnet, retry by progressively reducing search_range until the subnet is solvable. If search_range becomes <= adaptive_stop, give up and raise a SubnetOversizeException. adaptive_step : float, optional Reduce search_range by multiplying it by this factor. neighbor_strategy : {'KDTree', 'BTree'} algorithm used to identify nearby features. Default 'KDTree'. link_strategy : {'recursive', 'nonrecursive', 'numba', 'hybrid', 'drop', 'auto'} algorithm used to resolve subnetworks of nearby particles 'auto' uses hybrid (numba+recursive) if available 'drop' causes particles in subnetworks to go unlinked dist_func : function, optional a custom distance function that takes two 1D arrays of coordinates and returns a float. Must be used with the 'BTree' neighbor_strategy. to_eucl : function, optional function that transforms a N x ndim array of positions into coordinates in Euclidean space. Useful for instance to link by Euclidean distance starting from radial coordinates. If search_range is anisotropic, this parameter cannot be used. Returns ------- DataFrame with added column 'particle' containing trajectory labels. The t_column (by default: 'frame') will be coerced to integer. See also -------- link_iter Notes ----- This is an implementation of the Crocker-Grier linking algorithm. [1]_ References ---------- .. [1] Crocker, J.C., Grier, D.G. http://dx.doi.org/10.1006/jcis.1996.0217 """ if pos_columns is None: pos_columns = guess_pos_columns(f) # copy the dataframe f = f.copy() # coerce t_column to integer type if not np.issubdtype(f[t_column].dtype, np.integer): f[t_column] = f[t_column].astype(np.integer) # sort on the t_column pandas_sort(f, t_column, inplace=True) coords_iter = coords_from_df(f, pos_columns, t_column) ids = [] for i, _ids in link_iter(coords_iter, search_range, verbose=verbose, **kwargs): ids.extend(_ids) f['particle'] = ids return f
5,349,793
def get_classifier(opt, input_dim): """ Return a tuple with the ML classifier to be used and its hyperparameter options (in dict format).""" if opt == 'RF': ml_algo = RandomForestClassifier hyperparams = { 'n_estimators': [100], 'max_depth': [None, 10, 30, 50, 100], 'min_samples_split': [2, 10, 50, 100], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'GBDT': ml_algo = LGBMClassifier hyperparams = { 'boosting_type': ['gbdt'], 'n_estimators': [100], 'max_depth': [-1, 10, 30, 50, 100], 'num_leaves': [2, 3, 5, 10, 50], 'learning_rate': [0.001, 0.01, 0.1], 'class_weight': [None, 'balanced'], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'LR': ml_algo = LogisticRegression hyperparams = { 'solver': ['newton-cg', 'lbfgs', 'saga'], 'C': [0.0001, 0.001, 0.01], 'class_weight': [None, 'balanced'], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'GNB': ml_algo = GaussianNB hyperparams = { 'var_smoothing': [10**-i for i in range(2, 15)], } elif opt == 'SVM': ml_algo = SVC hyperparams = { 'probability': [True], 'C': [0.01, 0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1], } elif opt == 'NN': ml_algo = KerasClassifier(get_nn_model(input_dim), epochs=30, verbose=0) hyperparams = {} else: raise ValueError(f'{opt} is an invalid classifier name.') return ml_algo, hyperparams
5,349,794
def list_spiders_endpoint(): """It returns a list of spiders available in the SPIDER_SETTINGS dict .. version 0.4.0: endpoint returns the spidername and endpoint to run the spider from """ spiders = {} for item in app.config['SPIDER_SETTINGS']: spiders[item['endpoint']] = 'URL: ' + request.url_root + 'run-spider/' + item['endpoint'] return jsonify(endpoints=spiders)
5,349,795
def plot3dOnFigure(ax, pixels, colors_rgb,axis_labels=list("RGB"), axis_limits=((0, 255), (0, 255), (0, 255))): """Plot pixels in 3D.""" # Set axis limits ax.set_xlim(*axis_limits[0]) ax.set_ylim(*axis_limits[1]) ax.set_zlim(*axis_limits[2]) # Set axis labels and sizes ax.tick_params(axis='both', which='major', labelsize=14, pad=8) ax.set_xlabel(axis_labels[0], fontsize=16, labelpad=16) ax.set_ylabel(axis_labels[1], fontsize=16, labelpad=16) ax.set_zlabel(axis_labels[2], fontsize=16, labelpad=16) # Plot pixel values with colors given in colors_rgb ax.scatter( pixels[:, :, 0].ravel(), pixels[:, :, 1].ravel(), pixels[:, :, 2].ravel(), c=colors_rgb.reshape((-1, 3)), edgecolors='none') return ax
5,349,796
def _get_slice_predictions( model: ModelBridge, param_name: str, metric_name: str, generator_runs_dict: TNullableGeneratorRunsDict = None, relative: bool = False, density: int = 50, slice_values: Optional[Dict[str, Any]] = None, fixed_features: Optional[ObservationFeatures] = None, trial_index: Optional[int] = None, ) -> SlicePredictions: """Computes slice prediction configuration values for a single metric name. Args: model: ModelBridge that contains model for predictions param_name: Name of parameter that will be sliced metric_name: Name of metric to plot generator_runs_dict: A dictionary {name: generator run} of generator runs whose arms will be plotted, if they lie in the slice. relative: Predictions relative to status quo density: Number of points along slice to evaluate predictions. slice_values: A dictionary {name: val} for the fixed values of the other parameters. If not provided, then the status quo values will be used if there is a status quo, otherwise the mean of numeric parameters or the mode of choice parameters. Ignored if fixed_features is specified. fixed_features: An ObservationFeatures object containing the values of features (including non-parameter features like context) to be set in the slice. Returns: Configruation values for AxPlotConfig. """ if generator_runs_dict is None: generator_runs_dict = {} parameter = get_range_parameter(model, param_name) grid = get_grid_for_parameter(parameter, density) plot_data, raw_data, cond_name_to_parameters = get_plot_data( model=model, generator_runs_dict=generator_runs_dict, metric_names={metric_name}, fixed_features=fixed_features, ) if fixed_features is not None: slice_values = fixed_features.parameters else: fixed_features = ObservationFeatures(parameters={}) fixed_values = get_fixed_values(model, slice_values, trial_index) prediction_features = [] for x in grid: predf = deepcopy(fixed_features) predf.parameters = fixed_values.copy() predf.parameters[param_name] = x prediction_features.append(predf) f, cov = model.predict(prediction_features) f_plt = f[metric_name] sd_plt = np.sqrt(cov[metric_name][metric_name]) # pyre-fixme[7]: Expected `Tuple[PlotData, List[Dict[str, Union[float, str]]], # List[float], np.ndarray, np.ndarray, str, str, bool, Dict[str, Union[None, bool, # float, int, str]], np.ndarray, bool]` but got `Tuple[PlotData, Dict[str, # Dict[str, Union[None, bool, float, int, str]]], List[float], List[Dict[str, # Union[float, str]]], np.ndarray, str, str, bool, Dict[str, Union[None, bool, # float, int, str]], typing.Any, bool]`. return ( plot_data, cond_name_to_parameters, f_plt, raw_data, grid, metric_name, param_name, relative, fixed_values, sd_plt, parameter.log_scale, )
5,349,797
def ellipse(a, b, center=(0.0, 0.0), num=50): """Return the coordinates of an ellipse. Parameters ---------- a : float The semi-major axis of the ellipse. b : float The semi-minor axis of the ellipse. center : 2-tuple of floats, optional The position of the center of the ellipse; default: (0.0, 0.0) num : integer, optional The number of points on the upper side of the ellipse. The number includes the leading and trailing edges. Thus, the total number of points will be 2 * (num - 1); default: 50. Returns ------- x : numpy.ndarray The x-coordinates of the ellipse as a 1D array of floats. y: numpy.ndarray The y-coordinates of the ellipse as a 1D array of floats. """ xc, yc = center x_upper = numpy.linspace(xc + a, xc - a, num=num) y_upper = b / a * numpy.sqrt(a**2 - x_upper**2) x_lower = numpy.linspace(xc - a, xc + a, num=num)[1:-1] y_lower = -b / a * numpy.sqrt(a**2 - x_lower**2) x = numpy.concatenate((x_upper, x_lower)) y = numpy.concatenate((y_upper, y_lower)) return x, y
5,349,798
def _copy_inputs(test_inputs: List[str], project_path: str) -> bool: """Copies all the test files into the test project directory.""" # The files are assumed to reside in the repo's 'data' directory. print(f'# Copying inputs (from "${{PWD}}/{_DATA_DIRECTORY}")...') expected_prefix: str = f"{_DATA_DIRECTORY}/" for test_input in test_inputs: print(f"# + {test_input}") if not test_input.startswith(expected_prefix): print("! FAILURE") print(f'! Input file {test_input} must start with "{expected_prefix}"') return False if not os.path.isfile(test_input): print("! FAILURE") print(f"! Missing input file {test_input} ({test_input})") return False # Looks OK, copy it shutil.copy(test_input, project_path) print("# Copied") return True
5,349,799