path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
106201316/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns sns.set(rc={'figure.figsize': (30, 18)}) import matplotlib.pyplot as plt import os train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') all_data = [train, test] submition_id = test['PassengerId'] def check_missing(data, dtype='object'): if dtype == 'object': nulls = data.select_dtypes(include='object') else: nulls = data.select_dtypes(exclude='object') nulls = nulls.isnull().sum() nulls = nulls.drop(nulls[nulls == 0].index).sort_values(ascending=False) return pd.DataFrame(nulls) '\n this function detecting the missing values by the type\n and return data frame contains two columns \n feature name : how many NAN\n ----------\n parameters\n ----------\n data : which data frame you need to check it\n \n dtype : do you looking for numerical featuers or categorical ? \n \n ' def lower_case_features(data): data.columns = [col.lower() for col in list(data)] '\n simple function to return evry single column name in lowercase\n list(data) ==> contains every column title in the data frame \n \n ' lower_case_features(train) lower_case_features(test) fig = sns.catplot( data = train, x = 'agecat', y = 'survived', kind = 'bar', palette = 'deep' ) fig.set_axis_labels('Ages', 'survival rate', size = 15) fig.fig.suptitle('survival rate per ages', verticalalignment = 'center', size = 15) plt.show(); fig = sns.catplot(data=train, x='sex', y='survived', kind='bar', palette='deep') fig.set_axis_labels('Sex', 'Survival rate', size=15) fig.fig.suptitle('survival rate per gender', verticalalignment='center', size=15) plt.show()
code
106201316/cell_43
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') all_data = [train, test] submition_id = test['PassengerId'] def check_missing(data, dtype='object'): if dtype == 'object': nulls = data.select_dtypes(include='object') else: nulls = data.select_dtypes(exclude='object') nulls = nulls.isnull().sum() nulls = nulls.drop(nulls[nulls == 0].index).sort_values(ascending=False) return pd.DataFrame(nulls) '\n this function detecting the missing values by the type\n and return data frame contains two columns \n feature name : how many NAN\n ----------\n parameters\n ----------\n data : which data frame you need to check it\n \n dtype : do you looking for numerical featuers or categorical ? \n \n ' def lower_case_features(data): data.columns = [col.lower() for col in list(data)] '\n simple function to return evry single column name in lowercase\n list(data) ==> contains every column title in the data frame \n \n ' lower_case_features(train) lower_case_features(test) for dataset in [train, test]: dataset['agecat'] = pd.cut(dataset['age'], bins=5, labels=['0-16', '16-32', '32-48', '48-64', '64-85'], include_lowest=True) pd.DataFrame(train[['agecat', 'survived']].value_counts()) pd.DataFrame(train.embarked.value_counts()) for d in all_data: d = d.drop(['passengerid', 'cabin', 'ticket'], axis=1, inplace=True) def get_title(df): sliced_name = df['name'].str.split(expand=True) sliced_name[1] = sliced_name[1].str.replace('.', '', regex=True) df['title'] = sliced_name[1] df = df.drop(['name'], axis=1, inplace=True) '\n this function split the name feature gets every single value between comma \n and append it to a feature in a pandas data frame\n \n ----------\n parameters\n ----------\n just your dataframe name\n \n -------\n returns\n -------\n \n your data frame with a new feature called title and without name feature\n \n ' n_train = train.shape[0] y = train.survived df = pd.concat((train, test)).reset_index(drop=True) df.drop(['survived'], axis=1, inplace=True) print('shape of all the data is ==>', df.shape) df.head(2)
code
106201316/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') all_data = [train, test] submition_id = test['PassengerId'] def check_missing(data, dtype='object'): if dtype == 'object': nulls = data.select_dtypes(include='object') else: nulls = data.select_dtypes(exclude='object') nulls = nulls.isnull().sum() nulls = nulls.drop(nulls[nulls == 0].index).sort_values(ascending=False) return pd.DataFrame(nulls) '\n this function detecting the missing values by the type\n and return data frame contains two columns \n feature name : how many NAN\n ----------\n parameters\n ----------\n data : which data frame you need to check it\n \n dtype : do you looking for numerical featuers or categorical ? \n \n ' def lower_case_features(data): data.columns = [col.lower() for col in list(data)] '\n simple function to return evry single column name in lowercase\n list(data) ==> contains every column title in the data frame \n \n ' lower_case_features(train) lower_case_features(test) test.head(2)
code
106201316/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') all_data = [train, test] submition_id = test['PassengerId'] def check_missing(data, dtype='object'): if dtype == 'object': nulls = data.select_dtypes(include='object') else: nulls = data.select_dtypes(exclude='object') nulls = nulls.isnull().sum() nulls = nulls.drop(nulls[nulls == 0].index).sort_values(ascending=False) return pd.DataFrame(nulls) '\n this function detecting the missing values by the type\n and return data frame contains two columns \n feature name : how many NAN\n ----------\n parameters\n ----------\n data : which data frame you need to check it\n \n dtype : do you looking for numerical featuers or categorical ? \n \n ' def lower_case_features(data): data.columns = [col.lower() for col in list(data)] '\n simple function to return evry single column name in lowercase\n list(data) ==> contains every column title in the data frame \n \n ' lower_case_features(train) lower_case_features(test) print(f'shape of the training data is {train.shape}\n shape of the test data is {test.shape}')
code
106201316/cell_27
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') all_data = [train, test] submition_id = test['PassengerId'] def check_missing(data, dtype='object'): if dtype == 'object': nulls = data.select_dtypes(include='object') else: nulls = data.select_dtypes(exclude='object') nulls = nulls.isnull().sum() nulls = nulls.drop(nulls[nulls == 0].index).sort_values(ascending=False) return pd.DataFrame(nulls) '\n this function detecting the missing values by the type\n and return data frame contains two columns \n feature name : how many NAN\n ----------\n parameters\n ----------\n data : which data frame you need to check it\n \n dtype : do you looking for numerical featuers or categorical ? \n \n ' def lower_case_features(data): data.columns = [col.lower() for col in list(data)] '\n simple function to return evry single column name in lowercase\n list(data) ==> contains every column title in the data frame \n \n ' lower_case_features(train) lower_case_features(test) for dataset in [train, test]: dataset['agecat'] = pd.cut(dataset['age'], bins=5, labels=['0-16', '16-32', '32-48', '48-64', '64-85'], include_lowest=True) pd.DataFrame(train[['agecat', 'survived']].value_counts()) pd.DataFrame(train.embarked.value_counts()) for d in all_data: d = d.drop(['passengerid', 'cabin', 'ticket'], axis=1, inplace=True) print('now data looks like') train.head()
code
106201316/cell_36
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') all_data = [train, test] submition_id = test['PassengerId'] def check_missing(data, dtype='object'): if dtype == 'object': nulls = data.select_dtypes(include='object') else: nulls = data.select_dtypes(exclude='object') nulls = nulls.isnull().sum() nulls = nulls.drop(nulls[nulls == 0].index).sort_values(ascending=False) return pd.DataFrame(nulls) '\n this function detecting the missing values by the type\n and return data frame contains two columns \n feature name : how many NAN\n ----------\n parameters\n ----------\n data : which data frame you need to check it\n \n dtype : do you looking for numerical featuers or categorical ? \n \n ' def lower_case_features(data): data.columns = [col.lower() for col in list(data)] '\n simple function to return evry single column name in lowercase\n list(data) ==> contains every column title in the data frame \n \n ' lower_case_features(train) lower_case_features(test) for dataset in [train, test]: dataset['agecat'] = pd.cut(dataset['age'], bins=5, labels=['0-16', '16-32', '32-48', '48-64', '64-85'], include_lowest=True) pd.DataFrame(train[['agecat', 'survived']].value_counts()) pd.DataFrame(train.embarked.value_counts()) for d in all_data: d = d.drop(['passengerid', 'cabin', 'ticket'], axis=1, inplace=True) def get_title(df): sliced_name = df['name'].str.split(expand=True) sliced_name[1] = sliced_name[1].str.replace('.', '', regex=True) df['title'] = sliced_name[1] df = df.drop(['name'], axis=1, inplace=True) '\n this function split the name feature gets every single value between comma \n and append it to a feature in a pandas data frame\n \n ----------\n parameters\n ----------\n just your dataframe name\n \n -------\n returns\n -------\n \n your data frame with a new feature called title and without name feature\n \n ' def get_others(df): keep = ['Mr', 'Miss', 'Mrs', 'Master'] titles = list(df['title'].values) others = [i for i in titles if i not in keep] df['title'] = df['title'].replace(others, 'other') return df "\n \n this function takes any value except ('Mr', 'Miss', 'Mrs', 'Master')\n and append it to a list and replace the values in the data frame with other\n \n ----------\n parameters\n ----------\n just the data set\n \n -------\n returns\n -------\n the data frame with title feature with \n " for DF in [train, test]: get_others(DF) print('now title values is') test['title'].value_counts()
code
32068083/cell_9
[ "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_5.png", "text_html_output_1.png", "text_html_output_8.png", "text_html_output_3.png", "text_html_output_7.png" ]
import datetime import datetime import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) test_df['ConfirmedCases'] = np.nan test_df['Fatalities'] = np.nan test_df = test_df.set_index('Date') display(test_df) prediction = {}
code
32068083/cell_4
[ "text_html_output_1.png" ]
import datetime import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() py.init_notebook_mode() top_country_df = country_df.query('(Date == @target_date) & (ConfirmedCases > 2000)').sort_values('ConfirmedCases', ascending=False) print(len(top_country_df)) top_country_melt_df = pd.melt(top_country_df, id_vars='Country', value_vars=['ConfirmedCases', 'Fatalities']) display(top_country_df.head()) display(top_country_melt_df.head()) fig = px.bar(top_country_melt_df.iloc[::-1], x='value', y='Country', color='variable', barmode='group', title=f'Confirmed Cases/Deaths on {target_date}', text='value', height=1500, orientation='h') fig.show() country_province_df = train_df[train_df['Country'] == 'United States'].groupby(['Date', 'Province_State'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() top_province_df = country_province_df.query('(Date == @target_date)').sort_values('ConfirmedCases', ascending=False) top30_provinces = top_province_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Province_State'].unique() country_province_df['prev_cases'] = country_province_df.groupby('Province_State')['ConfirmedCases'].shift(1) country_province_df['New Case'] = country_province_df['ConfirmedCases'] - country_province_df['prev_cases'] country_province_df['New Case'].fillna(0, inplace=True) country_province_df['prev_deaths'] = country_province_df.groupby('Province_State')['Fatalities'].shift(1) country_province_df['New Death'] = country_province_df['Fatalities'] - country_province_df['prev_deaths'] country_province_df['New Death'].fillna(0, inplace=True) display(country_province_df[-30:]) for province in top30_provinces: present_country_df = country_province_df[country_province_df['Province_State'] == province] px.bar(present_country_df, x='Date', y='New Case', color='Province_State', title=f'United States : DAILY NEW Confirmed cases in ' + province).show()
code
32068083/cell_2
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import datetime import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() display(train_df.tail()) display(test_df.head()) ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() display(country_df[country_df['Country'] == 'France'][80:])
code
32068083/cell_11
[ "text_html_output_2.png", "text_html_output_1.png", "text_html_output_3.png" ]
import datetime import datetime import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() py.init_notebook_mode() top_country_df = country_df.query('(Date == @target_date) & (ConfirmedCases > 2000)').sort_values('ConfirmedCases', ascending=False) print(len(top_country_df)) top_country_melt_df = pd.melt(top_country_df, id_vars='Country', value_vars=['ConfirmedCases', 'Fatalities']) display(top_country_df.head()) display(top_country_melt_df.head()) fig = px.bar(top_country_melt_df.iloc[::-1], x='value', y='Country', color='variable', barmode='group', title=f'Confirmed Cases/Deaths on {target_date}', text='value', height=1500, orientation='h') fig.show() country_province_df = train_df[train_df['Country'] == 'United States'].groupby(['Date', 'Province_State'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() top_province_df = country_province_df.query('(Date == @target_date)').sort_values('ConfirmedCases', ascending=False) top30_provinces = top_province_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Province_State'].unique() country_province_df['prev_cases'] = country_province_df.groupby('Province_State')['ConfirmedCases'].shift(1) country_province_df['New Case'] = country_province_df['ConfirmedCases'] - country_province_df['prev_cases'] country_province_df['New Case'].fillna(0, inplace=True) country_province_df['prev_deaths'] = country_province_df.groupby('Province_State')['Fatalities'].shift(1) country_province_df['New Death'] = country_province_df['Fatalities'] - country_province_df['prev_deaths'] country_province_df['New Death'].fillna(0, inplace=True) for province in top30_provinces: present_country_df = country_province_df[country_province_df['Province_State'] == province] top30_countries = top_country_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Country'].unique() country_df['prev_cases'] = country_df.groupby('Country')['ConfirmedCases'].shift(1) country_df['New Case'] = country_df['ConfirmedCases'] - country_df['prev_cases'] country_df['New Case'].fillna(0, inplace=True) country_df['prev_deaths'] = country_df.groupby('Country')['Fatalities'].shift(1) country_df['New Death'] = country_df['Fatalities'] - country_df['prev_deaths'] country_df['New Death'].fillna(0, inplace=True) top30_country_df = country_df[country_df['Country'].isin(top30_countries)] for country in top30_countries: present_country_df = top30_country_df[top30_country_df['Country'] == country] def get_time_series(df, country_name, insert=False): if df[df['Country'] == country_name]['Province_State'].nunique() > 1: country_table = df[df['Country'] == country_name] if insert: country_df = pd.DataFrame(pd.pivot_table(country_table, values=['ConfirmedCases', 'Fatalities', 'Days'], index='Date', aggfunc=sum).to_records()) return country_df.set_index('Date')[['ConfirmedCases', 'Fatalities']] return country_table.set_index('Date')[['Province_State', 'ConfirmedCases', 'Fatalities', 'Days']] df = df[df['Country'] == country_name] return df.set_index('Date')[['ConfirmedCases', 'Fatalities', 'Days']] def get_time_series_province(province): df = full_table[full_table['Province_State'] == province] return df.set_index('Date')[['ConfirmedCases', 'Fatalities']] province_country_dfs = {} no_province_country_dfs = {} absent_country_in_age_data_dfs = {} province_country_dfs_list = [] no_province_country_dfs_list = [] absent_country_in_age_data_dfs_list = [] province_countries = train_df[train_df['Province_State'] != 'None*']['Country'].unique() no_province_countries = train_df[train_df['Province_State'] == 'None*']['Country'].unique() no_province_countries = [x for x in no_province_countries if x not in province_countries] for country in province_countries: province_country_dfs[country] = get_time_series(train_df, country) for country in no_province_countries: no_province_country_dfs[country] = get_time_series(train_df, country) assert len([x for x in all_countries if x not in list(no_province_countries) + list(province_countries)]) == 0 display(train_df[train_df['Country'] == 'Afghanistan'].tail()) print(province_countries) max_train_date = train_df['Date'].max()
code
32068083/cell_1
[ "text_plain_output_1.png" ]
import os import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32068083/cell_7
[ "text_plain_output_1.png" ]
import datetime import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() py.init_notebook_mode() top_country_df = country_df.query('(Date == @target_date) & (ConfirmedCases > 2000)').sort_values('ConfirmedCases', ascending=False) print(len(top_country_df)) top_country_melt_df = pd.melt(top_country_df, id_vars='Country', value_vars=['ConfirmedCases', 'Fatalities']) display(top_country_df.head()) display(top_country_melt_df.head()) fig = px.bar(top_country_melt_df.iloc[::-1], x='value', y='Country', color='variable', barmode='group', title=f'Confirmed Cases/Deaths on {target_date}', text='value', height=1500, orientation='h') fig.show() country_province_df = train_df[train_df['Country'] == 'United States'].groupby(['Date', 'Province_State'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() top_province_df = country_province_df.query('(Date == @target_date)').sort_values('ConfirmedCases', ascending=False) top30_provinces = top_province_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Province_State'].unique() country_province_df['prev_cases'] = country_province_df.groupby('Province_State')['ConfirmedCases'].shift(1) country_province_df['New Case'] = country_province_df['ConfirmedCases'] - country_province_df['prev_cases'] country_province_df['New Case'].fillna(0, inplace=True) country_province_df['prev_deaths'] = country_province_df.groupby('Province_State')['Fatalities'].shift(1) country_province_df['New Death'] = country_province_df['Fatalities'] - country_province_df['prev_deaths'] country_province_df['New Death'].fillna(0, inplace=True) for province in top30_provinces: present_country_df = country_province_df[country_province_df['Province_State'] == province] top30_countries = top_country_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Country'].unique() country_df['prev_cases'] = country_df.groupby('Country')['ConfirmedCases'].shift(1) country_df['New Case'] = country_df['ConfirmedCases'] - country_df['prev_cases'] country_df['New Case'].fillna(0, inplace=True) country_df['prev_deaths'] = country_df.groupby('Country')['Fatalities'].shift(1) country_df['New Death'] = country_df['Fatalities'] - country_df['prev_deaths'] country_df['New Death'].fillna(0, inplace=True) top30_country_df = country_df[country_df['Country'].isin(top30_countries)] for country in top30_countries: present_country_df = top30_country_df[top30_country_df['Country'] == country] def get_time_series(df, country_name, insert=False): if df[df['Country'] == country_name]['Province_State'].nunique() > 1: country_table = df[df['Country'] == country_name] if insert: country_df = pd.DataFrame(pd.pivot_table(country_table, values=['ConfirmedCases', 'Fatalities', 'Days'], index='Date', aggfunc=sum).to_records()) return country_df.set_index('Date')[['ConfirmedCases', 'Fatalities']] return country_table.set_index('Date')[['Province_State', 'ConfirmedCases', 'Fatalities', 'Days']] df = df[df['Country'] == country_name] return df.set_index('Date')[['ConfirmedCases', 'Fatalities', 'Days']] def get_time_series_province(province): df = full_table[full_table['Province_State'] == province] return df.set_index('Date')[['ConfirmedCases', 'Fatalities']] province_country_dfs = {} no_province_country_dfs = {} absent_country_in_age_data_dfs = {} province_country_dfs_list = [] no_province_country_dfs_list = [] absent_country_in_age_data_dfs_list = [] province_countries = train_df[train_df['Province_State'] != 'None*']['Country'].unique() no_province_countries = train_df[train_df['Province_State'] == 'None*']['Country'].unique() no_province_countries = [x for x in no_province_countries if x not in province_countries] for country in province_countries: province_country_dfs[country] = get_time_series(train_df, country) for country in no_province_countries: no_province_country_dfs[country] = get_time_series(train_df, country) print([x for x in no_province_countries if x in top30_countries]) print([x for x in province_countries if x in top30_countries]) assert len([x for x in all_countries if x not in list(no_province_countries) + list(province_countries)]) == 0 display(province_country_dfs['United States'])
code
32068083/cell_8
[ "text_html_output_29.png", "text_html_output_27.png", "text_html_output_28.png", "text_html_output_10.png", "text_html_output_22.png", "text_html_output_16.png", "text_html_output_4.png", "text_html_output_6.png", "text_html_output_26.png", "text_html_output_2.png", "text_html_output_15.png", "text_html_output_5.png", "text_html_output_14.png", "text_html_output_23.png", "text_html_output_19.png", "text_html_output_9.png", "text_html_output_13.png", "text_html_output_20.png", "text_html_output_21.png", "text_html_output_1.png", "text_html_output_17.png", "text_html_output_30.png", "text_html_output_18.png", "text_html_output_12.png", "text_html_output_11.png", "text_html_output_24.png", "text_html_output_31.png", "text_html_output_8.png", "text_html_output_25.png", "text_html_output_3.png", "text_html_output_7.png" ]
import tensorflow as tf import datetime from numpy import array import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from keras.models import Sequential from keras.layers import LSTM from keras.layers import Dense print(tf.__version__)
code
32068083/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import datetime import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() py.init_notebook_mode() top_country_df = country_df.query('(Date == @target_date) & (ConfirmedCases > 2000)').sort_values('ConfirmedCases', ascending=False) print(len(top_country_df)) top_country_melt_df = pd.melt(top_country_df, id_vars='Country', value_vars=['ConfirmedCases', 'Fatalities']) display(top_country_df.head()) display(top_country_melt_df.head()) fig = px.bar(top_country_melt_df.iloc[::-1], x='value', y='Country', color='variable', barmode='group', title=f'Confirmed Cases/Deaths on {target_date}', text='value', height=1500, orientation='h') fig.show()
code
32068083/cell_14
[ "text_html_output_29.png", "text_html_output_27.png", "text_html_output_28.png", "text_html_output_10.png", "text_html_output_22.png", "text_html_output_16.png", "text_html_output_4.png", "text_html_output_6.png", "text_html_output_26.png", "text_html_output_2.png", "text_html_output_15.png", "text_html_output_5.png", "text_html_output_14.png", "text_html_output_23.png", "text_html_output_19.png", "text_html_output_9.png", "text_html_output_13.png", "text_html_output_20.png", "text_html_output_21.png", "text_html_output_1.png", "text_html_output_17.png", "text_html_output_30.png", "text_html_output_18.png", "text_html_output_12.png", "text_html_output_11.png", "text_html_output_24.png", "text_html_output_31.png", "text_html_output_8.png", "text_html_output_25.png", "text_html_output_3.png", "text_html_output_7.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from numpy import array import datetime import datetime import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() py.init_notebook_mode() top_country_df = country_df.query('(Date == @target_date) & (ConfirmedCases > 2000)').sort_values('ConfirmedCases', ascending=False) print(len(top_country_df)) top_country_melt_df = pd.melt(top_country_df, id_vars='Country', value_vars=['ConfirmedCases', 'Fatalities']) display(top_country_df.head()) display(top_country_melt_df.head()) fig = px.bar(top_country_melt_df.iloc[::-1], x='value', y='Country', color='variable', barmode='group', title=f'Confirmed Cases/Deaths on {target_date}', text='value', height=1500, orientation='h') fig.show() country_province_df = train_df[train_df['Country'] == 'United States'].groupby(['Date', 'Province_State'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() top_province_df = country_province_df.query('(Date == @target_date)').sort_values('ConfirmedCases', ascending=False) top30_provinces = top_province_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Province_State'].unique() country_province_df['prev_cases'] = country_province_df.groupby('Province_State')['ConfirmedCases'].shift(1) country_province_df['New Case'] = country_province_df['ConfirmedCases'] - country_province_df['prev_cases'] country_province_df['New Case'].fillna(0, inplace=True) country_province_df['prev_deaths'] = country_province_df.groupby('Province_State')['Fatalities'].shift(1) country_province_df['New Death'] = country_province_df['Fatalities'] - country_province_df['prev_deaths'] country_province_df['New Death'].fillna(0, inplace=True) for province in top30_provinces: present_country_df = country_province_df[country_province_df['Province_State'] == province] top30_countries = top_country_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Country'].unique() country_df['prev_cases'] = country_df.groupby('Country')['ConfirmedCases'].shift(1) country_df['New Case'] = country_df['ConfirmedCases'] - country_df['prev_cases'] country_df['New Case'].fillna(0, inplace=True) country_df['prev_deaths'] = country_df.groupby('Country')['Fatalities'].shift(1) country_df['New Death'] = country_df['Fatalities'] - country_df['prev_deaths'] country_df['New Death'].fillna(0, inplace=True) top30_country_df = country_df[country_df['Country'].isin(top30_countries)] for country in top30_countries: present_country_df = top30_country_df[top30_country_df['Country'] == country] def get_time_series(df, country_name, insert=False): if df[df['Country'] == country_name]['Province_State'].nunique() > 1: country_table = df[df['Country'] == country_name] if insert: country_df = pd.DataFrame(pd.pivot_table(country_table, values=['ConfirmedCases', 'Fatalities', 'Days'], index='Date', aggfunc=sum).to_records()) return country_df.set_index('Date')[['ConfirmedCases', 'Fatalities']] return country_table.set_index('Date')[['Province_State', 'ConfirmedCases', 'Fatalities', 'Days']] df = df[df['Country'] == country_name] return df.set_index('Date')[['ConfirmedCases', 'Fatalities', 'Days']] def get_time_series_province(province): df = full_table[full_table['Province_State'] == province] return df.set_index('Date')[['ConfirmedCases', 'Fatalities']] province_country_dfs = {} no_province_country_dfs = {} absent_country_in_age_data_dfs = {} province_country_dfs_list = [] no_province_country_dfs_list = [] absent_country_in_age_data_dfs_list = [] province_countries = train_df[train_df['Province_State'] != 'None*']['Country'].unique() no_province_countries = train_df[train_df['Province_State'] == 'None*']['Country'].unique() no_province_countries = [x for x in no_province_countries if x not in province_countries] for country in province_countries: province_country_dfs[country] = get_time_series(train_df, country) for country in no_province_countries: no_province_country_dfs[country] = get_time_series(train_df, country) assert len([x for x in all_countries if x not in list(no_province_countries) + list(province_countries)]) == 0 train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) test_df['ConfirmedCases'] = np.nan test_df['Fatalities'] = np.nan test_df = test_df.set_index('Date') prediction = {} def build_model(n_steps): model = Sequential() model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(n_steps, 1))) model.add(LSTM(50, activation='relu')) model.add(Dense(1)) model.compile(optimizer='RMSprop', loss='mse') return model def split_sequence(sequence, n_steps): X, y = (list(), list()) for i in range(len(sequence)): end_ix = i + n_steps if end_ix > len(sequence) - 1: break seq_x, seq_y = (sequence[i:end_ix], sequence[end_ix]) X.append(seq_x) y.append(seq_y) return (array(X), array(y)) for country in province_countries: current_country_provinces = province_country_dfs[country]['Province_State'].unique() for province in current_country_provinces: current_considered_country_df = province_country_dfs[country][province_country_dfs[country]['Province_State'] == province][['ConfirmedCases', 'Fatalities', 'Days']].reset_index() current_considered_country_df_copy = current_considered_country_df for i in range(train_end_day - test_start_day + 1): test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + test_start_day), 'ConfirmedCases'] = current_considered_country_df.loc[current_considered_country_df['Days'] == i + test_start_day, 'ConfirmedCases'].values[0] test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + test_start_day), 'Fatalities'] = current_considered_country_df.loc[current_considered_country_df['Days'] == i + test_start_day, 'Fatalities'].values[0] indexNames = current_considered_country_df[current_considered_country_df['ConfirmedCases'] == 0].index current_considered_country_df.drop(indexNames, inplace=True) cases_train = np.diff(current_considered_country_df['ConfirmedCases'].to_numpy()) fatalities_train = np.diff(current_considered_country_df['Fatalities'].to_numpy()) cases_train[cases_train < 0] = 0 fatalities_train[fatalities_train < 0] = 0 fatal_rate = 0.0 if current_considered_country_df['Fatalities'].to_numpy()[-1] > 0: fatal_rate = current_considered_country_df['Fatalities'].to_numpy()[-1] / current_considered_country_df['ConfirmedCases'].to_numpy()[-1] cases_increase_avg = 0 days = 0 for i in range(len(cases_train) - 1): cases_increase_avg += cases_train[i + 1] - cases_train[i] days += 1 if days > 0: cases_increase_avg = int(cases_increase_avg / days) days = 0 fatal_increase_avg = 0 for i in range(len(fatalities_train) - 1): fatal_increase_avg += fatalities_train[i + 1] - fatalities_train[i] days += 1 if days > 0: fatal_increase_avg = int(fatal_increase_avg / days) del current_considered_country_df n_steps = max(int(len(cases_train) * 0.1), 3) avg_weekly_per_day_case = [] avg_window = 4 avg_step = 2 if int(len(cases_train) / avg_window) > avg_step: for i in range(int(len(cases_train) / avg_window)): temp_list = cases_train[i * avg_window:i * avg_window + avg_window] avg_weekly_per_day_case.append(np.sum(temp_list) / len(temp_list)) avg_weekly_per_day_case = np.array(avg_weekly_per_day_case) X_weekly_avg_val, y_weekly_avg_val = split_sequence(avg_weekly_per_day_case, avg_step) X_weekly_avg_val = np.reshape(X_weekly_avg_val, (X_weekly_avg_val.shape[0], X_weekly_avg_val.shape[1], 1)) model_weekly_avg = build_model(avg_step) model_weekly_avg.fit(X_weekly_avg_val, y_weekly_avg_val, epochs=50, verbose=0) new_entry_avg = X_weekly_avg_val[len(X_weekly_avg_val) - 1] for i in range(int(30 / avg_window) + 1): weekly_avg_predict_next = model_weekly_avg.predict(np.reshape(new_entry_avg, (1, avg_step, 1)), verbose=0).astype(int) avg_weekly_per_day_case = np.append(avg_weekly_per_day_case, weekly_avg_predict_next[0]) last_series = np.reshape(new_entry_avg, (1, avg_step, 1)) new_entry_avg = np.delete(last_series, [0]) new_entry_avg = np.insert(new_entry_avg, avg_step - 1, weekly_avg_predict_next[0]) X_cases_val, y_cases_val = split_sequence(cases_train, n_steps) X_cases_val = np.reshape(X_cases_val, (X_cases_val.shape[0], X_cases_val.shape[1], 1)) X_fatal_val, y_fatal_val = split_sequence(fatalities_train, n_steps) X_fatal_val = np.reshape(X_fatal_val, (X_fatal_val.shape[0], X_fatal_val.shape[1], 1)) assert len(X_fatal_val) == len(X_cases_val) assert len(y_fatal_val) == len(y_cases_val) model_cases = build_model(n_steps) model_cases.fit(X_cases_val, y_cases_val, epochs=50, verbose=0) cases_predict_next = model_cases.predict(np.reshape(X_cases_val[len(X_cases_val) - 1], (1, n_steps, 1)), verbose=0).astype(int) cases_predict_next[0] = np.array([max(0, cases_predict_next[0])]) model_fatalities = build_model(n_steps) model_fatalities.fit(X_fatal_val, y_fatal_val, epochs=50, verbose=0) fatality_predict_next = model_fatalities.predict(np.reshape(X_fatal_val[len(X_fatal_val) - 1], (1, n_steps, 1)), verbose=0).astype(int) fatality_predict_next[0] = np.array([max(0, fatality_predict_next[0])]) fatality_predict_next[0] = np.array([max(fatality_predict_next[0], cases_predict_next[0] * fatal_rate)]) test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day + 1), 'ConfirmedCases'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day), 'ConfirmedCases'].values[0] + cases_predict_next[0] test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day + 1), 'Fatalities'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day), 'Fatalities'].values[0] + fatality_predict_next[0] new_entry_cases = X_cases_val[len(X_cases_val) - 1] new_entry_fatal = X_fatal_val[len(X_fatal_val) - 1] for i in range(test_end_day - train_end_day - 1): last_series = np.reshape(new_entry_cases, (1, n_steps, 1)) new_entry_cases = np.delete(last_series, [0]) new_entry_cases = np.insert(new_entry_cases, n_steps - 1, cases_predict_next[0]) cases_predict_next = model_cases.predict(np.reshape(new_entry_cases, (1, n_steps, 1)), verbose=0).astype(int) if cases_predict_next[0] - new_entry_cases[n_steps - 1] > cases_increase_avg: cases_predict_next = np.array([max(0, new_entry_cases[n_steps - 1] + cases_increase_avg)]) if province in ['Kentucky', 'New Mexico', 'Sint Maarten', 'Cayman Islands', 'Isle of Man']: cases_predict_next[0] = avg_weekly_per_day_case[-int(30 / avg_window) - 1 + int(i / avg_window)] cases_predict_next[0] = np.array([max(0, cases_predict_next[0])]) last_series = np.reshape(new_entry_fatal, (1, n_steps, 1)) new_entry_fatal = np.delete(last_series, [0]) new_entry_fatal = np.insert(new_entry_fatal, n_steps - 1, fatality_predict_next[0]) fatality_predict_next = model_fatalities.predict(np.reshape(new_entry_fatal, (1, n_steps, 1)), verbose=0).astype(int) if fatality_predict_next[0] - new_entry_fatal[n_steps - 1] > fatal_increase_avg: fatality_predict_next[0] = max(0, new_entry_fatal[n_steps - 1] + fatal_increase_avg) fatality_predict_next[0] = np.array([max(0, fatality_predict_next[0])]) fatality_predict_next[0] = np.array([max(fatality_predict_next[0], int(cases_predict_next[0] * fatal_rate))]) test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 2), 'ConfirmedCases'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 1), 'ConfirmedCases'].values[0] + cases_predict_next[0] test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 2), 'Fatalities'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 1), 'Fatalities'].values[0] + fatality_predict_next[0] del model_fatalities del model_cases country_province_df = test_df[test_df['Country'] == 'United States'].groupby(['Date', 'Province_State'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() country_province_df['prev_cases'] = country_province_df.groupby('Province_State')['ConfirmedCases'].shift(1) country_province_df['New Case'] = country_province_df['ConfirmedCases'] - country_province_df['prev_cases'] country_province_df['New Case'].fillna(0, inplace=True) country_province_df['prev_deaths'] = country_province_df.groupby('Province_State')['Fatalities'].shift(1) country_province_df['New Death'] = country_province_df['Fatalities'] - country_province_df['prev_deaths'] country_province_df['New Death'].fillna(0, inplace=True) display(country_province_df.head()) for province in top30_provinces: present_country_df = country_province_df[country_province_df['Province_State'] == province] px.bar(present_country_df, x='Date', y='New Case', color='Province_State', title=f'United States : DAILY NEW Confirmed cases in ' + province).show()
code
32068083/cell_12
[ "text_html_output_4.png", "text_html_output_2.png", "text_plain_output_1.png", "text_html_output_3.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from numpy import array import datetime import datetime import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() py.init_notebook_mode() top_country_df = country_df.query('(Date == @target_date) & (ConfirmedCases > 2000)').sort_values('ConfirmedCases', ascending=False) print(len(top_country_df)) top_country_melt_df = pd.melt(top_country_df, id_vars='Country', value_vars=['ConfirmedCases', 'Fatalities']) display(top_country_df.head()) display(top_country_melt_df.head()) fig = px.bar(top_country_melt_df.iloc[::-1], x='value', y='Country', color='variable', barmode='group', title=f'Confirmed Cases/Deaths on {target_date}', text='value', height=1500, orientation='h') fig.show() country_province_df = train_df[train_df['Country'] == 'United States'].groupby(['Date', 'Province_State'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() top_province_df = country_province_df.query('(Date == @target_date)').sort_values('ConfirmedCases', ascending=False) top30_provinces = top_province_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Province_State'].unique() country_province_df['prev_cases'] = country_province_df.groupby('Province_State')['ConfirmedCases'].shift(1) country_province_df['New Case'] = country_province_df['ConfirmedCases'] - country_province_df['prev_cases'] country_province_df['New Case'].fillna(0, inplace=True) country_province_df['prev_deaths'] = country_province_df.groupby('Province_State')['Fatalities'].shift(1) country_province_df['New Death'] = country_province_df['Fatalities'] - country_province_df['prev_deaths'] country_province_df['New Death'].fillna(0, inplace=True) for province in top30_provinces: present_country_df = country_province_df[country_province_df['Province_State'] == province] top30_countries = top_country_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Country'].unique() country_df['prev_cases'] = country_df.groupby('Country')['ConfirmedCases'].shift(1) country_df['New Case'] = country_df['ConfirmedCases'] - country_df['prev_cases'] country_df['New Case'].fillna(0, inplace=True) country_df['prev_deaths'] = country_df.groupby('Country')['Fatalities'].shift(1) country_df['New Death'] = country_df['Fatalities'] - country_df['prev_deaths'] country_df['New Death'].fillna(0, inplace=True) top30_country_df = country_df[country_df['Country'].isin(top30_countries)] for country in top30_countries: present_country_df = top30_country_df[top30_country_df['Country'] == country] def get_time_series(df, country_name, insert=False): if df[df['Country'] == country_name]['Province_State'].nunique() > 1: country_table = df[df['Country'] == country_name] if insert: country_df = pd.DataFrame(pd.pivot_table(country_table, values=['ConfirmedCases', 'Fatalities', 'Days'], index='Date', aggfunc=sum).to_records()) return country_df.set_index('Date')[['ConfirmedCases', 'Fatalities']] return country_table.set_index('Date')[['Province_State', 'ConfirmedCases', 'Fatalities', 'Days']] df = df[df['Country'] == country_name] return df.set_index('Date')[['ConfirmedCases', 'Fatalities', 'Days']] def get_time_series_province(province): df = full_table[full_table['Province_State'] == province] return df.set_index('Date')[['ConfirmedCases', 'Fatalities']] province_country_dfs = {} no_province_country_dfs = {} absent_country_in_age_data_dfs = {} province_country_dfs_list = [] no_province_country_dfs_list = [] absent_country_in_age_data_dfs_list = [] province_countries = train_df[train_df['Province_State'] != 'None*']['Country'].unique() no_province_countries = train_df[train_df['Province_State'] == 'None*']['Country'].unique() no_province_countries = [x for x in no_province_countries if x not in province_countries] for country in province_countries: province_country_dfs[country] = get_time_series(train_df, country) for country in no_province_countries: no_province_country_dfs[country] = get_time_series(train_df, country) assert len([x for x in all_countries if x not in list(no_province_countries) + list(province_countries)]) == 0 train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) test_df['ConfirmedCases'] = np.nan test_df['Fatalities'] = np.nan test_df = test_df.set_index('Date') prediction = {} def build_model(n_steps): model = Sequential() model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(n_steps, 1))) model.add(LSTM(50, activation='relu')) model.add(Dense(1)) model.compile(optimizer='RMSprop', loss='mse') return model def split_sequence(sequence, n_steps): X, y = (list(), list()) for i in range(len(sequence)): end_ix = i + n_steps if end_ix > len(sequence) - 1: break seq_x, seq_y = (sequence[i:end_ix], sequence[end_ix]) X.append(seq_x) y.append(seq_y) return (array(X), array(y)) for country in province_countries: current_country_provinces = province_country_dfs[country]['Province_State'].unique() for province in current_country_provinces: current_considered_country_df = province_country_dfs[country][province_country_dfs[country]['Province_State'] == province][['ConfirmedCases', 'Fatalities', 'Days']].reset_index() print(country + ' ' + province) current_considered_country_df_copy = current_considered_country_df for i in range(train_end_day - test_start_day + 1): test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + test_start_day), 'ConfirmedCases'] = current_considered_country_df.loc[current_considered_country_df['Days'] == i + test_start_day, 'ConfirmedCases'].values[0] test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + test_start_day), 'Fatalities'] = current_considered_country_df.loc[current_considered_country_df['Days'] == i + test_start_day, 'Fatalities'].values[0] indexNames = current_considered_country_df[current_considered_country_df['ConfirmedCases'] == 0].index current_considered_country_df.drop(indexNames, inplace=True) cases_train = np.diff(current_considered_country_df['ConfirmedCases'].to_numpy()) fatalities_train = np.diff(current_considered_country_df['Fatalities'].to_numpy()) cases_train[cases_train < 0] = 0 fatalities_train[fatalities_train < 0] = 0 fatal_rate = 0.0 if current_considered_country_df['Fatalities'].to_numpy()[-1] > 0: fatal_rate = current_considered_country_df['Fatalities'].to_numpy()[-1] / current_considered_country_df['ConfirmedCases'].to_numpy()[-1] print('fatal rate is: ' + str(fatal_rate)) cases_increase_avg = 0 days = 0 for i in range(len(cases_train) - 1): cases_increase_avg += cases_train[i + 1] - cases_train[i] days += 1 if days > 0: cases_increase_avg = int(cases_increase_avg / days) days = 0 fatal_increase_avg = 0 for i in range(len(fatalities_train) - 1): fatal_increase_avg += fatalities_train[i + 1] - fatalities_train[i] days += 1 if days > 0: fatal_increase_avg = int(fatal_increase_avg / days) del current_considered_country_df n_steps = max(int(len(cases_train) * 0.1), 3) avg_weekly_per_day_case = [] avg_window = 4 avg_step = 2 if int(len(cases_train) / avg_window) > avg_step: for i in range(int(len(cases_train) / avg_window)): temp_list = cases_train[i * avg_window:i * avg_window + avg_window] avg_weekly_per_day_case.append(np.sum(temp_list) / len(temp_list)) avg_weekly_per_day_case = np.array(avg_weekly_per_day_case) X_weekly_avg_val, y_weekly_avg_val = split_sequence(avg_weekly_per_day_case, avg_step) X_weekly_avg_val = np.reshape(X_weekly_avg_val, (X_weekly_avg_val.shape[0], X_weekly_avg_val.shape[1], 1)) model_weekly_avg = build_model(avg_step) model_weekly_avg.fit(X_weekly_avg_val, y_weekly_avg_val, epochs=50, verbose=0) new_entry_avg = X_weekly_avg_val[len(X_weekly_avg_val) - 1] for i in range(int(30 / avg_window) + 1): weekly_avg_predict_next = model_weekly_avg.predict(np.reshape(new_entry_avg, (1, avg_step, 1)), verbose=0).astype(int) avg_weekly_per_day_case = np.append(avg_weekly_per_day_case, weekly_avg_predict_next[0]) last_series = np.reshape(new_entry_avg, (1, avg_step, 1)) new_entry_avg = np.delete(last_series, [0]) new_entry_avg = np.insert(new_entry_avg, avg_step - 1, weekly_avg_predict_next[0]) X_cases_val, y_cases_val = split_sequence(cases_train, n_steps) X_cases_val = np.reshape(X_cases_val, (X_cases_val.shape[0], X_cases_val.shape[1], 1)) X_fatal_val, y_fatal_val = split_sequence(fatalities_train, n_steps) X_fatal_val = np.reshape(X_fatal_val, (X_fatal_val.shape[0], X_fatal_val.shape[1], 1)) assert len(X_fatal_val) == len(X_cases_val) assert len(y_fatal_val) == len(y_cases_val) model_cases = build_model(n_steps) model_cases.fit(X_cases_val, y_cases_val, epochs=50, verbose=0) cases_predict_next = model_cases.predict(np.reshape(X_cases_val[len(X_cases_val) - 1], (1, n_steps, 1)), verbose=0).astype(int) cases_predict_next[0] = np.array([max(0, cases_predict_next[0])]) model_fatalities = build_model(n_steps) model_fatalities.fit(X_fatal_val, y_fatal_val, epochs=50, verbose=0) fatality_predict_next = model_fatalities.predict(np.reshape(X_fatal_val[len(X_fatal_val) - 1], (1, n_steps, 1)), verbose=0).astype(int) fatality_predict_next[0] = np.array([max(0, fatality_predict_next[0])]) fatality_predict_next[0] = np.array([max(fatality_predict_next[0], cases_predict_next[0] * fatal_rate)]) test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day + 1), 'ConfirmedCases'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day), 'ConfirmedCases'].values[0] + cases_predict_next[0] test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day + 1), 'Fatalities'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == train_end_day), 'Fatalities'].values[0] + fatality_predict_next[0] new_entry_cases = X_cases_val[len(X_cases_val) - 1] new_entry_fatal = X_fatal_val[len(X_fatal_val) - 1] for i in range(test_end_day - train_end_day - 1): last_series = np.reshape(new_entry_cases, (1, n_steps, 1)) new_entry_cases = np.delete(last_series, [0]) new_entry_cases = np.insert(new_entry_cases, n_steps - 1, cases_predict_next[0]) cases_predict_next = model_cases.predict(np.reshape(new_entry_cases, (1, n_steps, 1)), verbose=0).astype(int) if cases_predict_next[0] - new_entry_cases[n_steps - 1] > cases_increase_avg: cases_predict_next = np.array([max(0, new_entry_cases[n_steps - 1] + cases_increase_avg)]) if province in ['Kentucky', 'New Mexico', 'Sint Maarten', 'Cayman Islands', 'Isle of Man']: cases_predict_next[0] = avg_weekly_per_day_case[-int(30 / avg_window) - 1 + int(i / avg_window)] cases_predict_next[0] = np.array([max(0, cases_predict_next[0])]) last_series = np.reshape(new_entry_fatal, (1, n_steps, 1)) new_entry_fatal = np.delete(last_series, [0]) new_entry_fatal = np.insert(new_entry_fatal, n_steps - 1, fatality_predict_next[0]) fatality_predict_next = model_fatalities.predict(np.reshape(new_entry_fatal, (1, n_steps, 1)), verbose=0).astype(int) if fatality_predict_next[0] - new_entry_fatal[n_steps - 1] > fatal_increase_avg: fatality_predict_next[0] = max(0, new_entry_fatal[n_steps - 1] + fatal_increase_avg) fatality_predict_next[0] = np.array([max(0, fatality_predict_next[0])]) fatality_predict_next[0] = np.array([max(fatality_predict_next[0], int(cases_predict_next[0] * fatal_rate))]) test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 2), 'ConfirmedCases'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 1), 'ConfirmedCases'].values[0] + cases_predict_next[0] test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 2), 'Fatalities'] = test_df.loc[(test_df['Country'] == country) & (test_df['Province_State'] == province) & (test_df['Days'] == i + train_end_day + 1), 'Fatalities'].values[0] + fatality_predict_next[0] del model_fatalities del model_cases
code
32068083/cell_5
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import datetime import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.io as pio import plotly.offline as py import numpy as np import pandas as pd from plotly import tools, subplots import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import plotly.figure_factory as ff import plotly.io as pio pio.templates.default = 'plotly_dark' import os import datetime train_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_df = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') train_df = train_df.drop(['Id'], axis=1) train_df.rename(columns={'Country_Region': 'Country'}, inplace=True) test_df.rename(columns={'Country_Region': 'Country'}, inplace=True) train_df['Province_State'].fillna('None*', inplace=True) test_df['Province_State'].fillna('None*', inplace=True) renameCountryNames = {'Congo (Brazzaville)': 'Congo1', 'Congo (Kinshasa)': 'Congo2', "Cote d'Ivoire": "Côte d'Ivoire", 'Czechia': 'Czech Republic (Czechia)', 'Korea, South': 'South Korea', 'Saint Kitts and Nevis': 'Saint Kitts & Nevis', 'Saint Vincent and the Grenadines': 'St. Vincent & Grenadines', 'Taiwan*': 'Taiwan', 'US': 'United States'} train_df.replace({'Country': renameCountryNames}, inplace=True) test_df.replace({'Country': renameCountryNames}, inplace=True) specific_countries = ['United States', 'United Kingdom', 'Netherlands'] days_df = train_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) train_df['Days'] = days_df days_df = test_df['Date'].apply(lambda dt: datetime.datetime.strptime(dt, '%Y-%m-%d') - datetime.datetime.strptime('2020-01-21', '%Y-%m-%d')).apply(lambda x: str(x).split()[0]).astype(int) test_df['Days'] = days_df all_countries = train_df['Country'].unique() ww_df = train_df.groupby('Date')[['ConfirmedCases', 'Fatalities']].sum().reset_index() ww_df['new_case'] = ww_df['ConfirmedCases'] - ww_df['ConfirmedCases'].shift(1) ww_df['new_deaths'] = ww_df['Fatalities'] - ww_df['Fatalities'].shift(1) country_df = train_df.groupby(['Date', 'Country'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() target_date = country_df['Date'].max() train_end_day = train_df['Days'].max() test_start_day = test_df['Days'].min() test_end_day = test_df['Days'].max() py.init_notebook_mode() top_country_df = country_df.query('(Date == @target_date) & (ConfirmedCases > 2000)').sort_values('ConfirmedCases', ascending=False) print(len(top_country_df)) top_country_melt_df = pd.melt(top_country_df, id_vars='Country', value_vars=['ConfirmedCases', 'Fatalities']) display(top_country_df.head()) display(top_country_melt_df.head()) fig = px.bar(top_country_melt_df.iloc[::-1], x='value', y='Country', color='variable', barmode='group', title=f'Confirmed Cases/Deaths on {target_date}', text='value', height=1500, orientation='h') fig.show() country_province_df = train_df[train_df['Country'] == 'United States'].groupby(['Date', 'Province_State'])[['ConfirmedCases', 'Fatalities']].sum().reset_index() top_province_df = country_province_df.query('(Date == @target_date)').sort_values('ConfirmedCases', ascending=False) top30_provinces = top_province_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Province_State'].unique() country_province_df['prev_cases'] = country_province_df.groupby('Province_State')['ConfirmedCases'].shift(1) country_province_df['New Case'] = country_province_df['ConfirmedCases'] - country_province_df['prev_cases'] country_province_df['New Case'].fillna(0, inplace=True) country_province_df['prev_deaths'] = country_province_df.groupby('Province_State')['Fatalities'].shift(1) country_province_df['New Death'] = country_province_df['Fatalities'] - country_province_df['prev_deaths'] country_province_df['New Death'].fillna(0, inplace=True) for province in top30_provinces: present_country_df = country_province_df[country_province_df['Province_State'] == province] top30_countries = top_country_df.sort_values('ConfirmedCases', ascending=False).iloc[:30]['Country'].unique() display(country_df[:20]) country_df['prev_cases'] = country_df.groupby('Country')['ConfirmedCases'].shift(1) country_df['New Case'] = country_df['ConfirmedCases'] - country_df['prev_cases'] country_df['New Case'].fillna(0, inplace=True) country_df['prev_deaths'] = country_df.groupby('Country')['Fatalities'].shift(1) country_df['New Death'] = country_df['Fatalities'] - country_df['prev_deaths'] country_df['New Death'].fillna(0, inplace=True) top30_country_df = country_df[country_df['Country'].isin(top30_countries)] display(country_df[:10]) for country in top30_countries: present_country_df = top30_country_df[top30_country_df['Country'] == country] px.bar(present_country_df, x='Date', y='New Case', color='Country', title=f'DAILY NEW Confirmed cases in ' + country).show()
code
104117830/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated()
code
104117830/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') print('=======================') print('=========== Details for Credit Record Rows x Columns =============') print(credit_record.shape) print('=======================') print(credit_record.head(5)) print('=======================') print(credit_record.describe) print('=======================') print(credit_record.info) print('=======================') print(credit_record.dtypes) print('=======================')
code
104117830/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape credit_record.nunique() sns.countplot(x='STATUS', data=credit_record)
code
104117830/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape application_record.duplicated() application_record.nunique() credit_record.nunique() application_record[application_record.duplicated()].shape Merged_Data = pd.merge(application_record, credit_record, how='left', on='ID') Merged_Data.shape Merged_Data.duplicated() Merged_Data.nunique() Merged_Data.isnull().sum() Merged_Data[Merged_Data.duplicated()].shape
code
104117830/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape application_record.duplicated() application_record.nunique() credit_record.nunique() application_record[application_record.duplicated()].shape Merged_Data = pd.merge(application_record, credit_record, how='left', on='ID') Merged_Data.shape Merged_Data.duplicated() Merged_Data.nunique() Merged_Data.isnull().sum()
code
104117830/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape application_record.duplicated() application_record.nunique() credit_record.nunique() application_record[application_record.duplicated()].shape Merged_Data = pd.merge(application_record, credit_record, how='left', on='ID') Merged_Data.shape
code
104117830/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') print('======================') print('Unique Values of STATUS') print(credit_record['STATUS'].unique()) print(credit_record['STATUS'].nunique()) print('======================')
code
104117830/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape credit_record.nunique() credit_record['STATUS'].value_counts()
code
104117830/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104117830/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') print('=======================') print('=========== Details for Application Record Rows x Columns =============') print(application_record.shape) print('=======================') print(application_record.head(5)) print('=======================') print(application_record.describe) print('=======================') print(application_record.info) print('=======================') print(application_record.dtypes) print('=======================')
code
104117830/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record.duplicated() application_record.nunique() application_record[application_record.duplicated()].shape
code
104117830/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape application_record.duplicated() application_record.nunique() credit_record.nunique() application_record[application_record.duplicated()].shape Merged_Data = pd.merge(application_record, credit_record, how='left', on='ID') Merged_Data.shape Merged_Data.duplicated() Merged_Data.nunique()
code
104117830/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') print('======================') print('Unique Values of CODE_GENDER') print(application_record['CODE_GENDER'].unique()) print(application_record['CODE_GENDER'].nunique()) print('======================') print('Unique Values of FLAG_OWN_CAR') print(application_record['FLAG_OWN_CAR'].unique()) print(application_record['FLAG_OWN_CAR'].nunique()) print('======================') print('Unique Values of FLAG_OWN_REALTY') print(application_record['FLAG_OWN_REALTY'].unique()) print(application_record['FLAG_OWN_REALTY'].nunique()) print('======================') print('Unique Values of NAME_INCOME_TYPE') print(application_record['NAME_INCOME_TYPE'].unique()) print(application_record['NAME_INCOME_TYPE'].nunique()) print('======================') print('Unique Values of NAME_EDUCATION_TYPE') print(application_record['NAME_EDUCATION_TYPE'].unique()) print(application_record['NAME_EDUCATION_TYPE'].nunique()) print('======================') print('Unique Values of NAME_FAMILY_STATUS') print(application_record['NAME_FAMILY_STATUS'].unique()) print(application_record['NAME_FAMILY_STATUS'].nunique()) print('======================') print('Unique Values of NAME_HOUSING_TYPE') print(application_record['NAME_HOUSING_TYPE'].unique()) print(application_record['NAME_HOUSING_TYPE'].nunique()) print('======================') print(application_record['OCCUPATION_TYPE'].unique()) print(application_record['OCCUPATION_TYPE'].nunique()) print('======================')
code
104117830/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record.duplicated()
code
104117830/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record.duplicated() application_record.nunique()
code
104117830/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape credit_record.nunique()
code
104117830/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape application_record.duplicated() application_record.nunique() credit_record.nunique() application_record[application_record.duplicated()].shape Merged_Data = pd.merge(application_record, credit_record, how='left', on='ID') Merged_Data.shape Merged_Data.duplicated() Merged_Data.nunique() Merged_Data.isnull().sum() Merged_Data[Merged_Data.duplicated()].shape print('=======================') print('=========== Details for Merged_Data :: Rows x Columns =============') print(Merged_Data.shape) print('=======================') print(Merged_Data.head(5)) print('=======================') print(Merged_Data.describe) print('=======================') print(Merged_Data.info) print('=======================') print(Merged_Data.dtypes) print('=======================')
code
104117830/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape
code
104117830/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape credit_record.nunique() credit_record['STATUS'].value_counts()
code
104117830/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') print('=====================================') print('=========== Null for Application Record ============') print(application_record.isnull().sum()) print('=========== Null for Credit Record ============') print(credit_record.isnull().sum()) print('=====================================')
code
104117830/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') application_record = pd.read_csv('../input/creditcard/application_record.csv') credit_record = pd.read_csv('../input/creditcard/credit_record.csv') credit_record.duplicated() credit_record[credit_record.duplicated()].shape application_record.duplicated() application_record.nunique() credit_record.nunique() application_record[application_record.duplicated()].shape Merged_Data = pd.merge(application_record, credit_record, how='left', on='ID') Merged_Data.shape Merged_Data.duplicated()
code
1005954/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/database.csv', low_memory=False) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(13, 15)) crims_by_relationship = data[['Relationship', 'Record ID']].groupby('Relationship').count() crimes_per_perpetrator_race = data[['Perpetrator Race', 'Record ID']].groupby('Perpetrator Race').count() crimes_per_victime_race = data[['Victim Race', 'Record ID']].groupby('Victim Race').count() crimes_per_type = data[['Crime Type', 'Record ID']].groupby('Crime Type').count() crimes_per_perpetrator_race.plot(kind='bar', ax= ax1, title='crimes per perpetrator race') crimes_per_victime_race.plot(kind='bar', ax= ax2, title='crimes per victime race') crims_by_relationship.plot(kind='bar', ax= ax3, title='crimes by relationship') crimes_per_type.plot(kind='bar', ax= ax4, title='crimes types') data1 = data[['Relationship', 'Year', 'Record ID']].groupby(['Relationship', 'Year']).count().reset_index() plt.plot(data1[data1.Relationship == 'Wife']['Year'].tolist(), data1[data1.Relationship == 'Wife']['Record ID'].tolist(), data1[data1.Relationship == 'Acquaintance']['Year'].tolist(), data1[data1.Relationship == 'Acquaintance']['Record ID'].tolist()) plt.show()
code
1005954/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/database.csv', low_memory=False) data.head()
code
1005954/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1005954/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/database.csv', low_memory=False) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(13, 15)) crims_by_relationship = data[['Relationship', 'Record ID']].groupby('Relationship').count() crimes_per_perpetrator_race = data[['Perpetrator Race', 'Record ID']].groupby('Perpetrator Race').count() crimes_per_victime_race = data[['Victim Race', 'Record ID']].groupby('Victim Race').count() crimes_per_type = data[['Crime Type', 'Record ID']].groupby('Crime Type').count() crimes_per_perpetrator_race.plot(kind='bar', ax=ax1, title='crimes per perpetrator race') crimes_per_victime_race.plot(kind='bar', ax=ax2, title='crimes per victime race') crims_by_relationship.plot(kind='bar', ax=ax3, title='crimes by relationship') crimes_per_type.plot(kind='bar', ax=ax4, title='crimes types')
code
74043801/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import numpy as np import pandas as pd import os df = pd.DataFrame() import random random.seed(0) for file in random.sample(filenames, 20): if df.empty: df = pd.read_csv(os.path.join(dirname, file)) else: d = pd.read_csv(os.path.join(dirname, file)) df = pd.concat([df, d]) df
code
311500/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df[df.data_field == 'confirmed_male'].value.plot() df[df.data_field == 'confirmed_female'].value.plot().legend(('Male', 'Female'), loc='best') plt.title('Confirmed Male vs Female cases')
code
311500/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df.data_field.unique()
code
311500/cell_2
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df.head(3)
code
311500/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sbn from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
311500/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df.data_field.unique() age_groups = ('confirmed_age_under_1', 'confirmed_age_1-4', 'confirmed_age_5-9', 'confirmed_age_10-14', 'confirmed_age_15-19', 'confirmed_age_20-24', 'confirmed_age_25-34', 'confirmed_age_35-49', 'confirmed_age_50-59', 'confirmed_age_60-64', 'confirmed_age_60_plus') for i, age_group in enumerate(age_groups): print(age_group) print(df[df.data_field == age_group].value) print('')
code
311500/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df.location.value_counts()[:30].plot(kind='bar', figsize=(12, 7)) plt.title('Number of locations reported - Top 30')
code
17133658/cell_9
[ "text_html_output_1.png" ]
train_data = train_data.sample(n=5000) train_data.shape train_data.head()
code
17133658/cell_34
[ "text_plain_output_1.png" ]
from sklearn import ensemble import matplotlib.pyplot as plt import pandas as pd import xgboost as xgb xgb = xgb.XGBRFRegressor() tree = ensemble.RandomForestRegressor() ada = ensemble.AdaBoostRegressor() grad = ensemble.GradientBoostingRegressor() clf = ensemble.AdaBoostRegressor(n_estimators=500, learning_rate=0.5) selector = clf.fit(X_train, y_train) feat_imp = pd.Series(clf.feature_importances_, index=X_train.columns.values).sort_values(ascending=False) features = feat_imp[:40].index print(features)
code
17133658/cell_29
[ "text_html_output_1.png" ]
from sklearn import ensemble from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.pipeline import Pipeline import scipy as sp import warnings import xgboost as xgb xgb = xgb.XGBRFRegressor() tree = ensemble.RandomForestRegressor() ada = ensemble.AdaBoostRegressor() grad = ensemble.GradientBoostingRegressor() import scipy as sp def get_scores_and_params(pipeline, params): search = RandomizedSearchCV(pipeline, params, cv=3, n_iter=5, scoring='roc_auc', n_jobs=-1, verbose=2) search.fit(X_train, y_train) return (search.best_score_, search.best_params_) pipelines = [Pipeline([('xgb', xgb)]), Pipeline([('tree', tree)]), Pipeline([('ada', ada)]), Pipeline([('grad', grad)])] getd = [{'xgb__max_depth': sp.stats.randint(1, 11), 'xgb__n_estimators': [100, 200, 500, 1000], 'xgb__colsample_bytree': [0.5, 0.6, 0.7, 0.8]}, {'tree__n_estimators': [100, 200, 500, 1000], 'tree__min_samples_split': [2, 4, 8, 10], 'tree__min_samples_leaf': [1, 2, 3, 4]}, {'ada__learning_rate': [0.3, 0.4, 0.5, 0.7, 1], 'ada__n_estimators': [10, 50, 100, 500]}, {'grad__learning_rate': [0.1, 0.2, 0.5, 1], 'grad__max_depth': [3, 5, 7], 'grad__n_estimators': [1, 2, 3, 4]}] warnings.filterwarnings('ignore') for i in range(len(pipelines)): print(get_scores_and_params(pipelines[i], getd[i]))
code
17133658/cell_39
[ "image_output_1.png" ]
from sklearn import ensemble from sklearn.metrics import roc_auc_score import matplotlib.pyplot as plt import pandas as pd import xgboost as xgb xgb = xgb.XGBRFRegressor() tree = ensemble.RandomForestRegressor() ada = ensemble.AdaBoostRegressor() grad = ensemble.GradientBoostingRegressor() clf = ensemble.AdaBoostRegressor(n_estimators=500, learning_rate=0.5) selector = clf.fit(X_train, y_train) feat_imp = pd.Series(clf.feature_importances_, index=X_train.columns.values).sort_values(ascending=False) features = feat_imp[:40].index X_train = X_train[features] X_test = X_test[features] X_valid = X_valid[features] clf.fit(X_train, y_train) preds = clf.predict(X_test) val_pred = clf.predict(X_valid) (roc_auc_score(y_test, preds), roc_auc_score(y_valid, val_pred))
code
17133658/cell_41
[ "text_plain_output_1.png" ]
from sklearn import ensemble from sklearn.metrics import roc_auc_score import matplotlib.pyplot as plt import pandas as pd import xgboost as xgb xgb = xgb.XGBRFRegressor() tree = ensemble.RandomForestRegressor() ada = ensemble.AdaBoostRegressor() grad = ensemble.GradientBoostingRegressor() clf = ensemble.AdaBoostRegressor(n_estimators=500, learning_rate=0.5) selector = clf.fit(X_train, y_train) feat_imp = pd.Series(clf.feature_importances_, index=X_train.columns.values).sort_values(ascending=False) features = feat_imp[:40].index X_train = X_train[features] X_test = X_test[features] X_valid = X_valid[features] clf.fit(X_train, y_train) preds = clf.predict(X_test) val_pred = clf.predict(X_valid) (roc_auc_score(y_test, preds), roc_auc_score(y_valid, val_pred)) pros = clf.predict(data_for_sub[features]) sub = pd.DataFrame() sub['ID'] = test_data['ID'] sub['target'] = pros sub.to_csv('submission.csv', index=False) test = pd.read_csv('submission.csv') test.head()
code
17133658/cell_19
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
train_data = train_data.sample(n=5000) train_data.shape train_data.corr() train_data.TARGET.value_counts()
code
17133658/cell_7
[ "text_plain_output_1.png" ]
train_data = train_data.sample(n=5000) train_data.shape
code
17133658/cell_32
[ "text_plain_output_1.png" ]
from sklearn import ensemble import matplotlib.pyplot as plt import pandas as pd import xgboost as xgb xgb = xgb.XGBRFRegressor() tree = ensemble.RandomForestRegressor() ada = ensemble.AdaBoostRegressor() grad = ensemble.GradientBoostingRegressor() clf = ensemble.AdaBoostRegressor(n_estimators=500, learning_rate=0.5) selector = clf.fit(X_train, y_train) feat_imp = pd.Series(clf.feature_importances_, index=X_train.columns.values).sort_values(ascending=False) feat_imp[:40].plot(kind='bar', title='Feature Importances according to AdaBoostRegressor', figsize=(12, 8)) plt.ylabel('Feature Importance Score') plt.subplots_adjust(bottom=0.3) plt.show()
code
17133658/cell_16
[ "text_plain_output_1.png" ]
columns_to_drop = [] columns = train_data.columns for i in range(len(columns) - 1): column_to_check = train_data[columns[i]] for c in range(i + 1, len(columns)): if np.array_equal(column_to_check, train_data[columns[c]].values): columns_to_drop.append(columns[c]) train_data.drop(columns_to_drop, axis=1, inplace=True) test_data.drop(columns_to_drop, axis=1, inplace=True) print('Data after cleaning') print('Train data shape: ', train_data.shape, 'Test data shape: ', test_data.shape)
code
17133658/cell_3
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn import ensemble from sklearn import neighbors from sklearn import linear_model import xgboost as xgb import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import SelectFromModel from sklearn.pipeline import Pipeline from sklearn.metrics import roc_auc_score import warnings warnings.filterwarnings('ignore')
code
17133658/cell_17
[ "text_html_output_1.png" ]
train_data = train_data.sample(n=5000) train_data.shape train_data.corr()
code
17133658/cell_24
[ "text_plain_output_1.png" ]
X_train = df_train.drop(['ID', 'TARGET'], axis=1) y_train = df_train.TARGET X_test = df_test.drop(['ID', 'TARGET'], axis=1) y_test = df_test.TARGET X_valid = df_valid.drop(['ID', 'TARGET'], axis=1) y_valid = df_valid.TARGET data_for_sub = test_data.drop(['ID'], axis=1)
code
17133658/cell_14
[ "text_plain_output_1.png" ]
dropable_cols = [] for i in train_data.columns: if (train_data[i] == 0).all(): dropable_cols.append(i) train_data.drop(dropable_cols, axis=1, inplace=True) test_data.drop(dropable_cols, axis=1, inplace=True) print('Data shape after droping rows: ') print('Train data shape: ', train_data.shape, 'Test data shape: ', test_data.shape)
code
17133658/cell_22
[ "text_plain_output_1.png" ]
df_train = train_data[:3000] df_test = train_data[3000:4000] df_valid = train_data[4000:] print(df_train.shape, df_test.shape, df_valid.shape)
code
17133658/cell_37
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_9.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_8.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_1.png" ]
from sklearn import ensemble import matplotlib.pyplot as plt import pandas as pd import xgboost as xgb train_data = train_data.sample(n=5000) train_data.shape train_data.corr() train_data.TARGET.value_counts() xgb = xgb.XGBRFRegressor() tree = ensemble.RandomForestRegressor() ada = ensemble.AdaBoostRegressor() grad = ensemble.GradientBoostingRegressor() clf = ensemble.AdaBoostRegressor(n_estimators=500, learning_rate=0.5) selector = clf.fit(X_train, y_train) feat_imp = pd.Series(clf.feature_importances_, index=X_train.columns.values).sort_values(ascending=False) features = feat_imp[:40].index for i in features[0:5]: x = train_data[i].value_counts().head().index y = train_data[i].value_counts().head() plt.figure() plt.scatter(y, x) plt.xlabel(i)
code
17133658/cell_12
[ "text_plain_output_1.png" ]
train_data.isnull().sum().any() > 0
code
17133658/cell_5
[ "image_output_5.png", "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
test_data = pd.read_csv('../input/test.csv') train_data = pd.read_csv('../input/train.csv')
code
33096285/cell_34
[ "image_output_5.png", "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from sklearn import preprocessing import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_part_1 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index) df_cred_normalized_test_part_2 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index) df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape df_cred_normalized_test_set = df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1) df_cred_normalized_validation_set = df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1) df_cred_normalized_validation_set['Class'].value_counts()
code
33096285/cell_33
[ "text_html_output_1.png" ]
from sklearn import preprocessing import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_part_1 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index) df_cred_normalized_test_part_2 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index) df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape df_cred_normalized_test_set = df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1) df_cred_normalized_validation_set = df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1) print('train set dimensions :', df_cred_normalized_train.shape) print('test set dimensions :', df_cred_normalized_test_set.shape) print('validate set dimensions :', df_cred_normalized_validation_set.shape)
code
33096285/cell_44
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping ,ReduceLROnPlateau from keras.callbacks import ModelCheckpoint, TensorBoard from keras.layers import Input, Dense from keras.models import Model, load_model from sklearn import preprocessing from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') def plot_distribution(data_select): figsize = (15, 8) sns.set_style('ticks') s = sns.FacetGrid(df_cred, hue='Class', aspect=2.5, palette={0: 'lime', 1: 'black'}) s.map(sns.kdeplot, data_select, shade=True, alpha=0.6) s.set(xlim=(df_cred[data_select].min(), df_cred[data_select].max())) s.add_legend() s.set_axis_labels(data_select, 'proportion') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_part_1 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index) df_cred_normalized_test_part_2 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index) df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape df_cred_normalized_test_set = df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1) df_cred_normalized_validation_set = df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1) X_train, X_test = train_test_split(df_cred_normalized_train, test_size=0.2, random_state=2020) X_train = X_train[X_train.Class == 0] X_train = X_train.drop(['Class'], axis=1) y_test = X_test['Class'] X_test = X_test.drop(['Class'], axis=1) X_train = X_train.values X_test = X_test.values X_train.shape input_dim = X_train.shape[1] encoding_dim = 20 input_layer = Input(shape=(input_dim,)) encoder = Dense(encoding_dim * 2, activation='sigmoid')(input_layer) encoder = Dense(encoding_dim, activation='sigmoid')(input_layer) encoder = Dense(8, activation='sigmoid')(encoder) decoder = Dense(20, activation='sigmoid')(encoder) decoder = Dense(40, activation='sigmoid')(encoder) decoder = Dense(input_dim, activation='sigmoid')(decoder) autoencoder = Model(inputs=input_layer, outputs=decoder) nb_epoch = 50 batch_size = 32 autoencoder.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15) checkpointer = ModelCheckpoint(filepath='model.h5', verbose=0, save_best_only=True) history = autoencoder.fit(X_train, X_train, epochs=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(X_test, X_test), callbacks=[es, checkpointer], verbose=1) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper right') plt.show() plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model acc') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper right') plt.show()
code
33096285/cell_6
[ "text_html_output_1.png" ]
from contextlib import contextmanager import plotly.offline as py import warnings from scipy.stats import randint as sp_randint from scipy.stats import uniform as sp_uniform import warnings import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import plotly.figure_factory as ff warnings.filterwarnings('ignore') from contextlib import contextmanager @contextmanager def timer(title): t0 = time.time() yield print('{} - done in {:.0f}s'.format(title, time.time() - t0))
code
33096285/cell_29
[ "image_output_1.png" ]
from sklearn import preprocessing import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape
code
33096285/cell_50
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping ,ReduceLROnPlateau from keras.callbacks import ModelCheckpoint, TensorBoard from keras.layers import Input, Dense from keras.models import Model, load_model from sklearn import preprocessing from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_part_1 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index) df_cred_normalized_test_part_2 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index) df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape df_cred_normalized_test_set = df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1) df_cred_normalized_validation_set = df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1) X_train, X_test = train_test_split(df_cred_normalized_train, test_size=0.2, random_state=2020) X_train = X_train[X_train.Class == 0] X_train = X_train.drop(['Class'], axis=1) y_test = X_test['Class'] X_test = X_test.drop(['Class'], axis=1) X_train = X_train.values X_test = X_test.values X_train.shape input_dim = X_train.shape[1] encoding_dim = 20 input_layer = Input(shape=(input_dim,)) encoder = Dense(encoding_dim * 2, activation='sigmoid')(input_layer) encoder = Dense(encoding_dim, activation='sigmoid')(input_layer) encoder = Dense(8, activation='sigmoid')(encoder) decoder = Dense(20, activation='sigmoid')(encoder) decoder = Dense(40, activation='sigmoid')(encoder) decoder = Dense(input_dim, activation='sigmoid')(decoder) autoencoder = Model(inputs=input_layer, outputs=decoder) nb_epoch = 50 batch_size = 32 autoencoder.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15) checkpointer = ModelCheckpoint(filepath='model.h5', verbose=0, save_best_only=True) history = autoencoder.fit(X_train, X_train, epochs=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(X_test, X_test), callbacks=[es, checkpointer], verbose=1) predictions = autoencoder.predict(X_test) mse = np.mean(np.power(X_test - predictions, 2), axis=1) error_df = pd.DataFrame({'reconstruction_error': mse, 'true_class': y_test}) y_test = df_cred_normalized_test_set['Class'] df_cred_normalized_test_set = df_cred_normalized_test_set.drop('Class', axis=1) predictions = autoencoder.predict(df_cred_normalized_test_set) mse = np.mean(np.power(df_cred_normalized_test_set - predictions, 2), axis=1) error_df_test = pd.DataFrame({'reconstruction_error': mse, 'true_class': y_test}) error_df_test.describe()
code
33096285/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33096285/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title('Overview Data Set') ax = sns.boxplot(data=df_cred.drop(columns=['Amount', 'Class', 'Time']), orient='h', palette='Set2')
code
33096285/cell_8
[ "image_output_1.png" ]
from contextlib import contextmanager import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objs as go import plotly.offline as py import seaborn as sns import warnings df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape from scipy.stats import randint as sp_randint from scipy.stats import uniform as sp_uniform import warnings import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import plotly.figure_factory as ff warnings.filterwarnings('ignore') from contextlib import contextmanager @contextmanager def timer(title): t0 = time.time() yield plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') fraud = df_cred[df_cred['Class'] != 0] normal = df_cred[df_cred['Class'] == 0] trace = go.Pie(labels=['Normal', 'Fraud'], values=df_cred['Class'].value_counts(), textfont=dict(size=15), opacity=0.8, marker=dict(colors=['lightskyblue', 'gold'], line=dict(color='#000000', width=1.5))) layout = dict(title='Distribution of target variable') fig = dict(data=[trace], layout=layout) py.iplot(fig)
code
33096285/cell_38
[ "text_plain_output_1.png" ]
from keras.models import Model, load_model from keras.layers import Input, Dense from keras.callbacks import ModelCheckpoint, TensorBoard from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras.optimizers import Adam
code
33096285/cell_43
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping ,ReduceLROnPlateau from keras.callbacks import ModelCheckpoint, TensorBoard from keras.layers import Input, Dense from keras.models import Model, load_model from sklearn import preprocessing from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_part_1 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index) df_cred_normalized_test_part_2 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index) df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape df_cred_normalized_test_set = df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1) df_cred_normalized_validation_set = df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1) X_train, X_test = train_test_split(df_cred_normalized_train, test_size=0.2, random_state=2020) X_train = X_train[X_train.Class == 0] X_train = X_train.drop(['Class'], axis=1) y_test = X_test['Class'] X_test = X_test.drop(['Class'], axis=1) X_train = X_train.values X_test = X_test.values X_train.shape input_dim = X_train.shape[1] encoding_dim = 20 input_layer = Input(shape=(input_dim,)) encoder = Dense(encoding_dim * 2, activation='sigmoid')(input_layer) encoder = Dense(encoding_dim, activation='sigmoid')(input_layer) encoder = Dense(8, activation='sigmoid')(encoder) decoder = Dense(20, activation='sigmoid')(encoder) decoder = Dense(40, activation='sigmoid')(encoder) decoder = Dense(input_dim, activation='sigmoid')(decoder) autoencoder = Model(inputs=input_layer, outputs=decoder) nb_epoch = 50 batch_size = 32 autoencoder.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15) checkpointer = ModelCheckpoint(filepath='model.h5', verbose=0, save_best_only=True) history = autoencoder.fit(X_train, X_train, epochs=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(X_test, X_test), callbacks=[es, checkpointer], verbose=1)
code
33096285/cell_46
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping ,ReduceLROnPlateau from keras.callbacks import ModelCheckpoint, TensorBoard from keras.layers import Input, Dense from keras.models import Model, load_model from sklearn import preprocessing from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_part_1 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index) df_cred_normalized_test_part_2 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index) df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape df_cred_normalized_test_set = df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1) df_cred_normalized_validation_set = df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1) X_train, X_test = train_test_split(df_cred_normalized_train, test_size=0.2, random_state=2020) X_train = X_train[X_train.Class == 0] X_train = X_train.drop(['Class'], axis=1) y_test = X_test['Class'] X_test = X_test.drop(['Class'], axis=1) X_train = X_train.values X_test = X_test.values X_train.shape input_dim = X_train.shape[1] encoding_dim = 20 input_layer = Input(shape=(input_dim,)) encoder = Dense(encoding_dim * 2, activation='sigmoid')(input_layer) encoder = Dense(encoding_dim, activation='sigmoid')(input_layer) encoder = Dense(8, activation='sigmoid')(encoder) decoder = Dense(20, activation='sigmoid')(encoder) decoder = Dense(40, activation='sigmoid')(encoder) decoder = Dense(input_dim, activation='sigmoid')(decoder) autoencoder = Model(inputs=input_layer, outputs=decoder) nb_epoch = 50 batch_size = 32 autoencoder.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=15) checkpointer = ModelCheckpoint(filepath='model.h5', verbose=0, save_best_only=True) history = autoencoder.fit(X_train, X_train, epochs=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(X_test, X_test), callbacks=[es, checkpointer], verbose=1) predictions = autoencoder.predict(X_test) mse = np.mean(np.power(X_test - predictions, 2), axis=1) error_df = pd.DataFrame({'reconstruction_error': mse, 'true_class': y_test}) error_df.describe()
code
33096285/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') def plot_distribution(data_select): figsize = (15, 8) sns.set_style('ticks') s = sns.FacetGrid(df_cred, hue='Class', aspect=2.5, palette={0: 'lime', 1: 'black'}) s.map(sns.kdeplot, data_select, shade=True, alpha=0.6) s.set(xlim=(df_cred[data_select].min(), df_cred[data_select].max())) s.add_legend() s.set_axis_labels(data_select, 'proportion') plot_distribution('V4') plot_distribution('V9') plot_distribution('V11') plot_distribution('V12') plot_distribution('V13')
code
33096285/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape
code
33096285/cell_36
[ "text_plain_output_1.png" ]
from sklearn import preprocessing from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_cred = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df_cred.shape plt.style.use('ggplot') # Using ggplot2 style visuals f, ax = plt.subplots(figsize=(11, 15)) ax.set_facecolor('#fafafa') ax.set(xlim=(-5, 5)) plt.ylabel('Variables') plt.title("Overview Data Set") ax = sns.boxplot(data = df_cred.drop(columns=['Amount', 'Class', 'Time']), orient = 'h', palette = 'Set2') min_max_scaler = preprocessing.MinMaxScaler() df_cred = df_cred.drop('Time', axis=1) df_cred_scaled = min_max_scaler.fit_transform(df_cred.iloc[:, :-1]) df_cred_normalized = pd.DataFrame(df_cred_scaled) df_cred_normalized_train = df_cred_normalized[df_cred_normalized['Class'] == 0] df_cred_normalized_test = df_cred_normalized[df_cred_normalized['Class'] == 1] df_cred_normalized_test_part_1 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_1.index) df_cred_normalized_test_part_2 = df_cred_normalized_train.sample(frac=0.05) df_cred_normalized_train = df_cred_normalized_train.drop(df_cred_normalized_test_part_2.index) df_cred_normalized_test_class_1 = df_cred_normalized_test.sample(frac=0.5) df_cred_normalized_validation_class_1 = df_cred_normalized_test.drop(df_cred_normalized_test_class_1.index) df_cred_normalized_test_class_1.shape df_cred_normalized_test_set = df_cred_normalized_test_part_1.append(df_cred_normalized_test_class_1) df_cred_normalized_validation_set = df_cred_normalized_test_part_2.append(df_cred_normalized_validation_class_1) X_train, X_test = train_test_split(df_cred_normalized_train, test_size=0.2, random_state=2020) X_train = X_train[X_train.Class == 0] X_train = X_train.drop(['Class'], axis=1) y_test = X_test['Class'] X_test = X_test.drop(['Class'], axis=1) X_train = X_train.values X_test = X_test.values X_train.shape
code
18138191/cell_4
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import pandas as pd from IPython.display import clear_output from time import sleep import os os.listdir('../input') train_data = pd.read_csv('../input/training/training.csv') test_data = pd.read_csv('../input/test/test.csv') lookid_data = pd.read_csv('../input/IdLookupTable.csv') train_data.head().T train_data.isnull().any().value_counts() train_data.fillna(method='ffill', inplace=True) train_data.isnull().any().value_counts()
code
18138191/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import pandas as pd from IPython.display import clear_output from time import sleep import os os.listdir('../input') train_data = pd.read_csv('../input/training/training.csv') test_data = pd.read_csv('../input/test/test.csv') lookid_data = pd.read_csv('../input/IdLookupTable.csv') train_data.head().T train_data.isnull().any().value_counts() train_data.fillna(method='ffill', inplace=True) train_data.isnull().any().value_counts() def split_image_feature(data): """Return extracted image feature""" imag = [] for i in range(0, data.shape[0]): img = data['Image'][i].split(' ') img = ['0' if x == '' else x for x in img] imag.append(img) image_list = np.array(imag, dtype='float') X_train = image_list.reshape(-1, 96, 96) return X_train X_train = split_image_feature(train_data) training = data.drop('Image', axis=1) y_train = [] for i in range(0, data.shape[0]): y = training.iloc[i, :] y_train.append(y) y_train = np.array(y_train, dtype='float') plt.imshow(X_train[0], cmap='gray') plt.show()
code
18138191/cell_2
[ "text_html_output_1.png" ]
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import pandas as pd from IPython.display import clear_output from time import sleep import os os.listdir('../input') train_data = pd.read_csv('../input/training/training.csv') test_data = pd.read_csv('../input/test/test.csv') lookid_data = pd.read_csv('../input/IdLookupTable.csv') train_data.head().T
code
18138191/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Conv2D,Dropout,Dense,Flatten from keras.models import Sequential import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import pandas as pd from IPython.display import clear_output from time import sleep import os os.listdir('../input') train_data = pd.read_csv('../input/training/training.csv') test_data = pd.read_csv('../input/test/test.csv') lookid_data = pd.read_csv('../input/IdLookupTable.csv') train_data.head().T train_data.isnull().any().value_counts() train_data.fillna(method='ffill', inplace=True) train_data.isnull().any().value_counts() def split_image_feature(data): """Return extracted image feature""" imag = [] for i in range(0, data.shape[0]): img = data['Image'][i].split(' ') img = ['0' if x == '' else x for x in img] imag.append(img) image_list = np.array(imag, dtype='float') X_train = image_list.reshape(-1, 96, 96) return X_train X_train = split_image_feature(train_data) training = data.drop('Image', axis=1) y_train = [] for i in range(0, data.shape[0]): y = training.iloc[i, :] y_train.append(y) y_train = np.array(y_train, dtype='float') from keras.layers import Conv2D, Dropout, Dense, Flatten from keras.models import Sequential model = Sequential([Flatten(input_shape=(96, 96)), Dense(128, activation='relu'), Dropout(0.1), Dense(64, activation='relu'), Dense(30)]) model.compile(optimizer='adam', loss='mse', metrics=['mae', 'accuracy']) model.fit(X_train, y_train, epochs=500, batch_size=128, validation_split=0.2)
code
2035149/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import tensorflow as tf from vgg16 import vgg16 import numpy as np import os from datalab import DataLabTrain
code
2035149/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from datalab import DataLabTrain from vgg16 import vgg16 import tensorflow as tf def train(n_iters): model, params = vgg16(fine_tune_last=True, n_classes=2) X = model['input'] Z = model['out'] Y = tf.placeholder(dtype=tf.float32, shape=[None, 2]) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z[:, 0, 0, :], labels=Y)) train_step = tf.train.AdamOptimizer(0.0001).minimize(loss) saver = tf.train.Saver() with tf.Session() as sess: try: sess.run(tf.global_variables_initializer()) for i in range(n_iters): dl = DataLabTrain('./datasets/train_set/') train_gen = dl.generator() dev_gen = DataLabTrain('./datasets/dev_set/').generator() for X_train, Y_train in train_gen: sess.run(train_step, feed_dict={X: X_train, Y: Y_train}) l = 0 count = 0 for X_test, Y_test in dev_gen: count += 1 l += sess.run(loss, feed_dict={X: X_test, Y: Y_test}) saver.save(sess, './model/vgg16-dog-vs-cat.ckpt') finally: sess.close() train(n_iters=1)
code
2035149/cell_10
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from datalab import DataLabTrain from make_file import make_sub from vgg16 import vgg16 import numpy as np import tensorflow as tf def train(n_iters): model, params = vgg16(fine_tune_last=True, n_classes=2) X = model['input'] Z = model['out'] Y = tf.placeholder(dtype=tf.float32, shape=[None, 2]) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z[:, 0, 0, :], labels=Y)) train_step = tf.train.AdamOptimizer(0.0001).minimize(loss) saver = tf.train.Saver() with tf.Session() as sess: try: sess.run(tf.global_variables_initializer()) for i in range(n_iters): dl = DataLabTrain('./datasets/train_set/') train_gen = dl.generator() dev_gen = DataLabTrain('./datasets/dev_set/').generator() for X_train, Y_train in train_gen: sess.run(train_step, feed_dict={X: X_train, Y: Y_train}) l = 0 count = 0 for X_test, Y_test in dev_gen: count += 1 l += sess.run(loss, feed_dict={X: X_test, Y: Y_test}) saver.save(sess, './model/vgg16-dog-vs-cat.ckpt') finally: sess.close() from make_file import make_sub def predict(model_path, batch_size): model, params = vgg16(fine_tune_last=True, n_classes=2) X = model['input'] Y_hat = tf.nn.softmax(model['out']) saver = tf.train.Saver() dl_test = DataLabTest('./datasets/test_set/') test_gen = dl_test.generator() Y = [] with tf.Session() as sess: saver.restore(sess, model_path) for i in range(12500 // batch_size + 1): y = sess.run(Y_hat, feed_dict={X: next(test_gen)}) Y.append(y[:, 0, 0, 1]) print('Complete: {}%'.format(round(len(Y) / dl_test.max_len * 100, 2)), end='\r') Y = np.concatenate(Y) print() print('Total Predictions: '.format(Y.shape)) return Y Y = predict('./model/vgg16-dog-vs-cat.ckpt', 16) np.save('out.npy', Y) make_sub('sub_1.csv')
code
88075491/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', delimiter='\\t', engine='python') df_mod = df df_mod['Age'] = max(df_mod.Dt_Customer.dt.year) - df['Year_Birth'] df_mod['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%d-%m-%Y') df_mod = df.rename(columns={'Response': 'AcceptedCmp6'}) df_mod = df_mod.drop(columns=['Z_Revenue', 'Z_CostContact'])
code
90107080/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) test = test.drop('Unnamed: 0', axis=1) test = test.fillna(test.mean()) for _ in test.columns: print('The number of null values in:{} == {}'.format(_, test[_].isnull().sum()))
code
90107080/cell_33
[ "text_plain_output_1.png" ]
from joblib import dump, load import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) test = test.drop('Unnamed: 0', axis=1) test = test.fillna(test.mean()) X_test = test.drop('satisfaction', axis=1) clf = load('filename.joblib') clf.predict(X_test)
code
90107080/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) train = train.drop('Unnamed: 0', axis=1) train = train.fillna(train.mean()) train.columns train.info()
code
90107080/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression from sklearn.preprocessing import LabelEncoder, PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error from scipy import stats from sklearn.pipeline import make_pipeline from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn import tree from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier from imblearn.over_sampling import SMOTE from graphviz import Source from sklearn.naive_bayes import GaussianNB from sklearn.metrics import confusion_matrix, classification_report from mlxtend.plotting import plot_confusion_matrix from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import warnings warnings.filterwarnings('ignore') sns.set(style='darkgrid') plt.style.use('fivethirtyeight') train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) def dataset_overview(data, col): pass dataset_overview(train, 'satisfaction')
code
90107080/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression , Ridge , LogisticRegression from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pickle train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) train = train.drop('Unnamed: 0', axis=1) test = test.drop('Unnamed: 0', axis=1) train = train.fillna(train.mean()) test = test.fillna(test.mean()) train.columns X = train.drop(['satisfaction'], axis=1) y = train['satisfaction'] from sklearn.linear_model import LogisticRegression clf_lr = LogisticRegression(solver='liblinear') clf_lr.fit(X, y) s = pickle.dumps(clf_lr) clf2 = pickle.loads(s) X_test = test.drop('satisfaction', axis=1) clf2.predict(X_test)
code
90107080/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import preprocessing import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression from sklearn.preprocessing import LabelEncoder, PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error from scipy import stats from sklearn.pipeline import make_pipeline from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn import tree from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier from imblearn.over_sampling import SMOTE from graphviz import Source from sklearn.naive_bayes import GaussianNB from sklearn.metrics import confusion_matrix, classification_report from mlxtend.plotting import plot_confusion_matrix from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import warnings warnings.filterwarnings('ignore') sns.set(style='darkgrid') plt.style.use('fivethirtyeight') train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) def dataset_overview(data, col): pass train = train.drop('Unnamed: 0', axis=1) train = train.fillna(train.mean()) def correlation_matrix(data): corr = data.corr().round(2) # Mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set figure size f, ax = plt.subplots(figsize=(20, 20)) # Define custom colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap d=sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1, vmax=1, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True) plt.tight_layout() return d train.columns def label_encoding(data, col): label_encoder = preprocessing.LabelEncoder() data[col] = label_encoder.fit_transform(data[col]) return label_encoding(train, 'Gender') label_encoding(train, 'Customer Type') label_encoding(train, 'Type of Travel') label_encoding(train, 'satisfaction') label_encoding(train, 'Class')
code
90107080/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90107080/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression from sklearn.preprocessing import LabelEncoder, PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error from scipy import stats from sklearn.pipeline import make_pipeline from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn import tree from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier from imblearn.over_sampling import SMOTE from graphviz import Source from sklearn.naive_bayes import GaussianNB from sklearn.metrics import confusion_matrix, classification_report from mlxtend.plotting import plot_confusion_matrix from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import warnings warnings.filterwarnings('ignore') sns.set(style='darkgrid') plt.style.use('fivethirtyeight') train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) def dataset_overview(data, col): pass dataset_overview(test, 'satisfaction')
code
90107080/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression from sklearn.preprocessing import LabelEncoder, PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error from scipy import stats from sklearn.pipeline import make_pipeline from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn import tree from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier from imblearn.over_sampling import SMOTE from graphviz import Source from sklearn.naive_bayes import GaussianNB from sklearn.metrics import confusion_matrix, classification_report from mlxtend.plotting import plot_confusion_matrix from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import warnings warnings.filterwarnings('ignore') sns.set(style='darkgrid') plt.style.use('fivethirtyeight') train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) def dataset_overview(data, col): pass train = train.drop('Unnamed: 0', axis=1) train = train.fillna(train.mean()) def correlation_matrix(data): corr = data.corr().round(2) # Mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set figure size f, ax = plt.subplots(figsize=(20, 20)) # Define custom colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap d=sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1, vmax=1, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True) plt.tight_layout() return d correlation_matrix(train)
code
90107080/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) train = train.drop('Unnamed: 0', axis=1) train = train.fillna(train.mean()) train.columns
code
90107080/cell_35
[ "text_plain_output_1.png" ]
from joblib import dump, load from sklearn.linear_model import LinearRegression , Ridge , LogisticRegression from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pickle import seaborn as sns import warnings import warnings import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression from sklearn.preprocessing import LabelEncoder, PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error from scipy import stats from sklearn.pipeline import make_pipeline from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn import tree from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier from imblearn.over_sampling import SMOTE from graphviz import Source from sklearn.naive_bayes import GaussianNB from sklearn.metrics import confusion_matrix, classification_report from mlxtend.plotting import plot_confusion_matrix from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import warnings warnings.filterwarnings('ignore') sns.set(style='darkgrid') plt.style.use('fivethirtyeight') train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv', index_col=None) test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv', index_col=None) def dataset_overview(data, col): pass train = train.drop('Unnamed: 0', axis=1) test = test.drop('Unnamed: 0', axis=1) train = train.fillna(train.mean()) test = test.fillna(test.mean()) def correlation_matrix(data): corr = data.corr().round(2) # Mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set figure size f, ax = plt.subplots(figsize=(20, 20)) # Define custom colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap d=sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1, vmax=1, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True) plt.tight_layout() return d train.columns X = train.drop(['satisfaction'], axis=1) y = train['satisfaction'] from sklearn.linear_model import LogisticRegression clf_lr = LogisticRegression(solver='liblinear') clf_lr.fit(X, y) s = pickle.dumps(clf_lr) X_test = test.drop('satisfaction', axis=1) clf = load('filename.joblib') clf.predict(X_test) def prediction_pickle(clf, input_data, data): dump(clf, 'pipeline.joblib') s = load('pipeline.joblib') prediction = s.predict(input_data) data['prediction'] = prediction return prediction_pickle(clf_lr, X_test, test)
code