path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
89129165/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns | code |
89129165/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10] | code |
89129165/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.shape
books.info() | code |
89129165/cell_28 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.shape
books.Lang_Code.unique()
books.Lang_Code.describe() | code |
89129165/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID') | code |
89129165/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.shape | code |
89129165/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.shape
books.describe() | code |
89129165/cell_31 | [
"text_plain_output_1.png"
] | from wordcloud import WordCloud,ImageColorGenerator,STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.shape
all_books = ' '.join((token for token in books['Title']))
stopwords = set(STOPWORDS)
font_path = '../input/newghanesfont/NewGhanesFont.otf'
wordcloud = WordCloud(stopwords=stopwords, font_path=font_path, max_words=500, max_font_size=350, random_state=42, width=2500, height=1000, colormap='twilight_shifted_r')
wordcloud.generate(all_books)
plt.axis('off')
books.Lang_Code.unique()
books.Lang_Code.nunique()
sns.set_style('whitegrid')
plt.figure(figsize=(12, 4))
sns.distplot(books.Lang_Code, bins=30, norm_hist=False, color='Purple') | code |
89129165/cell_14 | [
"text_html_output_1.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.head() | code |
89129165/cell_10 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.head() | code |
89129165/cell_27 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.shape
books.Lang_Code.unique() | code |
89129165/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.palplot(sns.color_palette(custom_colors))
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True) | code |
89129165/cell_36 | [
"text_plain_output_1.png"
] | from wordcloud import WordCloud,ImageColorGenerator,STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
pd.set_option('display.max_colwidth', None)
import warnings
warnings.filterwarnings('ignore')
custom_colors = ['#74a09e', '#86c1b2', '#98e2c6', '#f3c969', '#f2a553', '#d96548', '#c14953']
sns.set_style('whitegrid')
sns.despine(left=True, bottom=True)
books = pd.read_csv('/kaggle/input/goodreadsbooks/books.csv', error_bad_lines=False)
books[:10]
books.set_index('bookID', inplace=True)
books.index.rename('BookID')
books = books.drop(columns=['isbn', 'isbn13'])
books.columns
books.columns = ['Title', 'Authors', 'Avg_Rating', 'Lang_Code', '#Pages', '#Ratings', '#Text_Reviews', 'Publication_Date', 'Publisher']
books.shape
all_books = ' '.join((token for token in books['Title']))
stopwords = set(STOPWORDS)
font_path = '../input/newghanesfont/NewGhanesFont.otf'
wordcloud = WordCloud(stopwords=stopwords, font_path=font_path, max_words=500, max_font_size=350, random_state=42, width=2500, height=1000, colormap='twilight_shifted_r')
wordcloud.generate(all_books)
plt.axis('off')
books.Lang_Code.unique()
books.Lang_Code.nunique()
sns.set_style('whitegrid')
sns.set_style('whitegrid')
top_rated_books = books.sort_values(by=['Avg_Rating'], ascending=False)
top_rated_books | code |
17134171/cell_2 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import plotly
import os
import numpy as np
import pandas as pd
import re
from datetime import datetime
import seaborn as sns
import matplotlib.pyplot as plt
import plotly
import plotly.plotly as py
import plotly.graph_objs as go
import colorlover as cl
plotly.offline.init_notebook_mode()
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
from sklearn.decomposition import PCA
from keras.models import Model
from keras.optimizers import Adamax
from sklearn.metrics import log_loss
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
import seaborn as sns
import matplotlib.pyplot as plt | code |
17134171/cell_8 | [
"text_html_output_1.png"
] | from datetime import datetime
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
import numpy as np
import os
import pandas as pd
import plotly
import plotly.graph_objs as go
import re
import os
import numpy as np
import pandas as pd
import re
from datetime import datetime
import seaborn as sns
import matplotlib.pyplot as plt
import plotly
import plotly.plotly as py
import plotly.graph_objs as go
import colorlover as cl
plotly.offline.init_notebook_mode()
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
from sklearn.decomposition import PCA
from keras.models import Model
from keras.optimizers import Adamax
from sklearn.metrics import log_loss
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
import seaborn as sns
import matplotlib.pyplot as plt
def clean(text):
text = re.sub('#\\S*', ' ', text)
text = re.sub('@\\S*', ' ', text)
text = re.sub('http\\S*', ' ', text)
for ch in ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '+', '-', '.', '!', "'", '\\β', '"', '\\β', '\\β', '?', ':', '-', ',', '//t', '&', '/', "'", "'", 'β¦', '-', 'β', '\\β', 'β', 'β', 'β', 'β']:
if ch in text:
text = text.replace(ch, ' ')
return text
def clean_tweet(tweet):
return ' '.join(clean(tweet.lower()).split())
def print_table(header_values, content, colors):
data = go.Table(header=dict(values=header_values, line=dict(color='rgb(70,130,180)'), fill=dict(color='rgb(70,130,180)'), align='center', font=dict(color='black', size=9)), cells=dict(values=content, fill=colors, align='center', font=dict(color='black', size=9), height=40))
def load_glove(word_index):
EMBEDDING_FILE = '../input/glove840b300dtxt/glove.840B.300d.txt'
def get_coefs(word, *arr):
return (word, np.asarray(arr, dtype='float32'))
embeddings_index = dict((get_coefs(*o.split(' ')) for o in open(EMBEDDING_FILE)))
all_embs = np.stack(embeddings_index.values())
emb_mean, emb_std = (all_embs.mean(), all_embs.std())
embed_size = all_embs.shape[1]
nb_words = min(18000, len(word_index))
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))
for word, i in word_index.items():
if i >= 18000:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
def load_data(X, y, train_index, test_index):
Xtr = X.iloc[train_index]
Xte = X.iloc[test_index]
tokenizer = Tokenizer(num_words=18000)
tokenizer.fit_on_texts(list(Xtr))
Xtr = tokenizer.texts_to_sequences(Xtr)
Xte = tokenizer.texts_to_sequences(Xte)
Xtr = pad_sequences(Xtr, maxlen=50)
Xte = pad_sequences(Xte, maxlen=50)
ytr = y.iloc[train_index]
yte = y.iloc[test_index]
word_index = tokenizer.word_index
return (Xtr, ytr, Xte, yte, word_index)
twitter_files = os.listdir('../input/2020-united-states-presidential-election/twitter')
twitter_users_files = os.listdir('../input/2020-united-states-presidential-election/twitter_users')
pic_files = os.listdir('../input/2020-united-states-presidential-election/pics')
metadata = pd.read_csv('../input/2020-united-states-presidential-election/candidates_info.csv')
metadata['filename'] = metadata['handle'].apply(lambda x: x[1:])
metadata['age'] = ((datetime.today() - pd.to_datetime(metadata['born'])).dt.days / 365).astype(int)
metadata = metadata.sort_values('filename')
metadata.reset_index(inplace=True)
dataset = pd.DataFrame()
for index, row in metadata.iterrows():
df = pd.read_csv('../input/2020-united-states-presidential-election/twitter/%s.csv' % row['filename'])
dataset = pd.concat([dataset, df], ignore_index=True)
dataset['clean tweet'] = dataset['Text'].apply(clean_tweet)
dataset['number of characters'] = dataset['clean tweet'].str.len()
metadata['number of all tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets in english'] = dataset[dataset['Language'] == 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets not in english'] = dataset[dataset['Language'] != 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets only'] = dataset[dataset['Tweet Type'] == 'Tweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['retweets only'] = dataset[dataset['Tweet Type'] == 'Retweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['replies only'] = dataset[dataset['Tweet Type'] == 'Reply'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['after 2019'] = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['before 2019'] = metadata['number of all tweets'] - metadata['after 2019']
metadata['more than 40 characters'] = dataset[dataset['number of characters'] > 39].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['less than 40 characters'] = dataset[dataset['number of characters'] < 40].groupby(['Screen Name']).count()['Tweet Id'].values
dataset = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018]
dataset = dataset[dataset['number of characters'] > 39]
dataset = dataset[dataset['Tweet Type'] == 'Tweet']
dataset = dataset[dataset['Language'] == 'English']
X = dataset['clean tweet']
y = dataset['Name']
metadata['useful tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
columns = ['name', 'number of all tweets', 'tweets in english', 'tweets not in english', 'tweets only', 'retweets only', 'replies only', 'after 2019', 'before 2019', 'more than 40 characters', 'less than 40 characters', 'useful tweets']
header_values = ['<b>%s</b>' % x for x in columns]
content = metadata.sort_values('useful tweets', ascending=False)[columns].T
colors = dict()
print_table(header_values, content, colors) | code |
17134171/cell_14 | [
"text_plain_output_1.png"
] | from datetime import datetime
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
from keras.models import Model
from keras.optimizers import Adamax
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from sklearn.decomposition import PCA
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import plotly
import plotly.graph_objs as go
import re
import seaborn as sns
import seaborn as sns
import warnings
import os
import numpy as np
import pandas as pd
import re
from datetime import datetime
import seaborn as sns
import matplotlib.pyplot as plt
import plotly
import plotly.plotly as py
import plotly.graph_objs as go
import colorlover as cl
plotly.offline.init_notebook_mode()
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
from sklearn.decomposition import PCA
from keras.models import Model
from keras.optimizers import Adamax
from sklearn.metrics import log_loss
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
import seaborn as sns
import matplotlib.pyplot as plt
def clean(text):
text = re.sub('#\\S*', ' ', text)
text = re.sub('@\\S*', ' ', text)
text = re.sub('http\\S*', ' ', text)
for ch in ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '+', '-', '.', '!', "'", '\\β', '"', '\\β', '\\β', '?', ':', '-', ',', '//t', '&', '/', "'", "'", 'β¦', '-', 'β', '\\β', 'β', 'β', 'β', 'β']:
if ch in text:
text = text.replace(ch, ' ')
return text
def clean_tweet(tweet):
return ' '.join(clean(tweet.lower()).split())
def print_table(header_values, content, colors):
data = go.Table(header=dict(values=header_values, line=dict(color='rgb(70,130,180)'), fill=dict(color='rgb(70,130,180)'), align='center', font=dict(color='black', size=9)), cells=dict(values=content, fill=colors, align='center', font=dict(color='black', size=9), height=40))
def load_glove(word_index):
EMBEDDING_FILE = '../input/glove840b300dtxt/glove.840B.300d.txt'
def get_coefs(word, *arr):
return (word, np.asarray(arr, dtype='float32'))
embeddings_index = dict((get_coefs(*o.split(' ')) for o in open(EMBEDDING_FILE)))
all_embs = np.stack(embeddings_index.values())
emb_mean, emb_std = (all_embs.mean(), all_embs.std())
embed_size = all_embs.shape[1]
nb_words = min(18000, len(word_index))
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))
for word, i in word_index.items():
if i >= 18000:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
def load_data(X, y, train_index, test_index):
Xtr = X.iloc[train_index]
Xte = X.iloc[test_index]
tokenizer = Tokenizer(num_words=18000)
tokenizer.fit_on_texts(list(Xtr))
Xtr = tokenizer.texts_to_sequences(Xtr)
Xte = tokenizer.texts_to_sequences(Xte)
Xtr = pad_sequences(Xtr, maxlen=50)
Xte = pad_sequences(Xte, maxlen=50)
ytr = y.iloc[train_index]
yte = y.iloc[test_index]
word_index = tokenizer.word_index
return (Xtr, ytr, Xte, yte, word_index)
twitter_files = os.listdir('../input/2020-united-states-presidential-election/twitter')
twitter_users_files = os.listdir('../input/2020-united-states-presidential-election/twitter_users')
pic_files = os.listdir('../input/2020-united-states-presidential-election/pics')
metadata = pd.read_csv('../input/2020-united-states-presidential-election/candidates_info.csv')
metadata['filename'] = metadata['handle'].apply(lambda x: x[1:])
metadata['age'] = ((datetime.today() - pd.to_datetime(metadata['born'])).dt.days / 365).astype(int)
metadata = metadata.sort_values('filename')
metadata.reset_index(inplace=True)
dataset = pd.DataFrame()
for index, row in metadata.iterrows():
df = pd.read_csv('../input/2020-united-states-presidential-election/twitter/%s.csv' % row['filename'])
dataset = pd.concat([dataset, df], ignore_index=True)
dataset['clean tweet'] = dataset['Text'].apply(clean_tweet)
dataset['number of characters'] = dataset['clean tweet'].str.len()
metadata['number of all tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets in english'] = dataset[dataset['Language'] == 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets not in english'] = dataset[dataset['Language'] != 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets only'] = dataset[dataset['Tweet Type'] == 'Tweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['retweets only'] = dataset[dataset['Tweet Type'] == 'Retweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['replies only'] = dataset[dataset['Tweet Type'] == 'Reply'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['after 2019'] = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['before 2019'] = metadata['number of all tweets'] - metadata['after 2019']
metadata['more than 40 characters'] = dataset[dataset['number of characters'] > 39].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['less than 40 characters'] = dataset[dataset['number of characters'] < 40].groupby(['Screen Name']).count()['Tweet Id'].values
dataset = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018]
dataset = dataset[dataset['number of characters'] > 39]
dataset = dataset[dataset['Tweet Type'] == 'Tweet']
dataset = dataset[dataset['Language'] == 'English']
X = dataset['clean tweet']
y = dataset['Name']
metadata['useful tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
kfold = StratifiedKFold(n_splits=10, random_state=0, shuffle=True)
scores = []
test_list = []
predict_list = []
test_df = pd.DataFrame()
pred_df = pd.DataFrame()
for train_index, test_index in kfold.split(X, y):
yoh = pd.get_dummies(y)
train_X, train_y, test_X, test_y, word_index = load_data(X, yoh, train_index, test_index)
embedding = load_glove(word_index)
inp = Input(shape=(50,))
x = Embedding(18000, 300, weights=[embedding])(inp)
x = Bidirectional(CuDNNGRU(256, return_sequences=True))(x)
x = Bidirectional(CuDNNGRU(128, return_sequences=True))(x)
x = GlobalMaxPooling1D()(x)
x = Dense(train_y.shape[1], activation='softmax')(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='categorical_crossentropy', optimizer=Adamax(lr=0.002), metrics=['accuracy'])
model.fit(train_X, train_y, batch_size=1024, epochs=15, validation_data=(test_X, test_y), verbose=0)
pred_y = model.predict(test_X)
test_df = pd.concat([test_df, test_y], axis=0, ignore_index=True)
pred_df = pd.concat([pred_df, pd.DataFrame(pred_y)], axis=0, ignore_index=True)
pred_df.columns = test_df.columns.values
test_label = test_df.idxmax(axis=1)
pred_label = pred_df.idxmax(axis=1)
cm = confusion_matrix(test_label, pred_label, test_df.columns.values)
cm = ((cm.astype('float')*100 / cm.sum(axis=1)[:, np.newaxis] + 0.5).astype('int'))/100
f, ax = plt.subplots(figsize=(14, 12))
sns.set(font_scale=1.4)#for label size
sns.heatmap(cm, annot=True,annot_kws={"size": 8}, xticklabels=test_df.columns.values, yticklabels=test_df.columns.values)
progressive_candidates = ['Bernie Sanders', 'Elizabeth Warren', 'Kamala Harris', 'Cory Booker', 'Kirsten Gillibrand']
republican = ['Donald J. Trump', 'Mike Pence', 'Gov. Bill Weld']
all_others = ['Amy Klobuchar', 'Andrew Yang', "Beto O'Rourke", 'Bill de Blasio', 'Eric Swalwell', 'Jay Inslee', 'John Delaney', 'John Hickenlooper', 'JuliΓ‘n Castro', 'Marianne Williamson', 'Michael Bennet', 'Sen. Mike Gravel', 'Seth Moulton', 'Steve Bullock', 'Tim Ryan', 'Tulsi Gabbard', 'Wayne Messam', 'Pete Buttigieg', 'Joe Biden']
pred_df['true_label'] = test_label
average_pred = pred_df.groupby(['true_label']).sum() / pred_df.groupby(['true_label']).count()
pca = PCA(n_components=2)
pca.fit(average_pred)
boiled_down = pd.DataFrame(data=pca.transform(average_pred), index=test_df.columns.values, columns=['a', 'b'])
fig = {'data': [{'x': boiled_down.loc[progressive_candidates].a, 'y': boiled_down.loc[progressive_candidates].b, 'text': boiled_down.loc[progressive_candidates].index, 'marker': {'color': 'rgb(251,169,46)', 'size': 6}, 'mode': 'markers', 'name': 'Progressive Senators'}, {'x': boiled_down.loc[all_others].a, 'y': boiled_down.loc[all_others].b, 'text': boiled_down.loc[all_others].index, 'marker': {'color': 'rgb(0,138,147)', 'size': 6}, 'mode': 'markers', 'name': 'All Others'}, {'x': boiled_down.loc[republican].a, 'y': boiled_down.loc[republican].b, 'text': boiled_down.loc[republican].index, 'marker': {'color': 'rgb(143,26,29)', 'size': 6}, 'mode': 'markers', 'name': 'Republican'}]}
plotly.offline.iplot(fig) | code |
17134171/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from datetime import datetime
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
from keras.models import Model
from keras.optimizers import Adamax
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import StratifiedKFold
import numpy as np
import os
import pandas as pd
import plotly
import plotly.graph_objs as go
import re
import warnings
import os
import numpy as np
import pandas as pd
import re
from datetime import datetime
import seaborn as sns
import matplotlib.pyplot as plt
import plotly
import plotly.plotly as py
import plotly.graph_objs as go
import colorlover as cl
plotly.offline.init_notebook_mode()
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
from sklearn.decomposition import PCA
from keras.models import Model
from keras.optimizers import Adamax
from sklearn.metrics import log_loss
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
import seaborn as sns
import matplotlib.pyplot as plt
def clean(text):
text = re.sub('#\\S*', ' ', text)
text = re.sub('@\\S*', ' ', text)
text = re.sub('http\\S*', ' ', text)
for ch in ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '+', '-', '.', '!', "'", '\\β', '"', '\\β', '\\β', '?', ':', '-', ',', '//t', '&', '/', "'", "'", 'β¦', '-', 'β', '\\β', 'β', 'β', 'β', 'β']:
if ch in text:
text = text.replace(ch, ' ')
return text
def clean_tweet(tweet):
return ' '.join(clean(tweet.lower()).split())
def print_table(header_values, content, colors):
data = go.Table(header=dict(values=header_values, line=dict(color='rgb(70,130,180)'), fill=dict(color='rgb(70,130,180)'), align='center', font=dict(color='black', size=9)), cells=dict(values=content, fill=colors, align='center', font=dict(color='black', size=9), height=40))
def load_glove(word_index):
EMBEDDING_FILE = '../input/glove840b300dtxt/glove.840B.300d.txt'
def get_coefs(word, *arr):
return (word, np.asarray(arr, dtype='float32'))
embeddings_index = dict((get_coefs(*o.split(' ')) for o in open(EMBEDDING_FILE)))
all_embs = np.stack(embeddings_index.values())
emb_mean, emb_std = (all_embs.mean(), all_embs.std())
embed_size = all_embs.shape[1]
nb_words = min(18000, len(word_index))
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))
for word, i in word_index.items():
if i >= 18000:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
def load_data(X, y, train_index, test_index):
Xtr = X.iloc[train_index]
Xte = X.iloc[test_index]
tokenizer = Tokenizer(num_words=18000)
tokenizer.fit_on_texts(list(Xtr))
Xtr = tokenizer.texts_to_sequences(Xtr)
Xte = tokenizer.texts_to_sequences(Xte)
Xtr = pad_sequences(Xtr, maxlen=50)
Xte = pad_sequences(Xte, maxlen=50)
ytr = y.iloc[train_index]
yte = y.iloc[test_index]
word_index = tokenizer.word_index
return (Xtr, ytr, Xte, yte, word_index)
twitter_files = os.listdir('../input/2020-united-states-presidential-election/twitter')
twitter_users_files = os.listdir('../input/2020-united-states-presidential-election/twitter_users')
pic_files = os.listdir('../input/2020-united-states-presidential-election/pics')
metadata = pd.read_csv('../input/2020-united-states-presidential-election/candidates_info.csv')
metadata['filename'] = metadata['handle'].apply(lambda x: x[1:])
metadata['age'] = ((datetime.today() - pd.to_datetime(metadata['born'])).dt.days / 365).astype(int)
metadata = metadata.sort_values('filename')
metadata.reset_index(inplace=True)
dataset = pd.DataFrame()
for index, row in metadata.iterrows():
df = pd.read_csv('../input/2020-united-states-presidential-election/twitter/%s.csv' % row['filename'])
dataset = pd.concat([dataset, df], ignore_index=True)
dataset['clean tweet'] = dataset['Text'].apply(clean_tweet)
dataset['number of characters'] = dataset['clean tweet'].str.len()
metadata['number of all tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets in english'] = dataset[dataset['Language'] == 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets not in english'] = dataset[dataset['Language'] != 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets only'] = dataset[dataset['Tweet Type'] == 'Tweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['retweets only'] = dataset[dataset['Tweet Type'] == 'Retweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['replies only'] = dataset[dataset['Tweet Type'] == 'Reply'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['after 2019'] = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['before 2019'] = metadata['number of all tweets'] - metadata['after 2019']
metadata['more than 40 characters'] = dataset[dataset['number of characters'] > 39].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['less than 40 characters'] = dataset[dataset['number of characters'] < 40].groupby(['Screen Name']).count()['Tweet Id'].values
dataset = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018]
dataset = dataset[dataset['number of characters'] > 39]
dataset = dataset[dataset['Tweet Type'] == 'Tweet']
dataset = dataset[dataset['Language'] == 'English']
X = dataset['clean tweet']
y = dataset['Name']
metadata['useful tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
kfold = StratifiedKFold(n_splits=10, random_state=0, shuffle=True)
scores = []
test_list = []
predict_list = []
test_df = pd.DataFrame()
pred_df = pd.DataFrame()
for train_index, test_index in kfold.split(X, y):
yoh = pd.get_dummies(y)
train_X, train_y, test_X, test_y, word_index = load_data(X, yoh, train_index, test_index)
embedding = load_glove(word_index)
inp = Input(shape=(50,))
x = Embedding(18000, 300, weights=[embedding])(inp)
x = Bidirectional(CuDNNGRU(256, return_sequences=True))(x)
x = Bidirectional(CuDNNGRU(128, return_sequences=True))(x)
x = GlobalMaxPooling1D()(x)
x = Dense(train_y.shape[1], activation='softmax')(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='categorical_crossentropy', optimizer=Adamax(lr=0.002), metrics=['accuracy'])
model.fit(train_X, train_y, batch_size=1024, epochs=15, validation_data=(test_X, test_y), verbose=0)
pred_y = model.predict(test_X)
test_df = pd.concat([test_df, test_y], axis=0, ignore_index=True)
pred_df = pd.concat([pred_df, pd.DataFrame(pred_y)], axis=0, ignore_index=True)
pred_df.columns = test_df.columns.values
test_label = test_df.idxmax(axis=1)
pred_label = pred_df.idxmax(axis=1)
print('Accuracy:', accuracy_score(test_label, pred_label)) | code |
17134171/cell_12 | [
"text_html_output_1.png"
] | from datetime import datetime
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
from keras.models import Model
from keras.optimizers import Adamax
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import plotly
import plotly.graph_objs as go
import re
import seaborn as sns
import seaborn as sns
import warnings
import os
import numpy as np
import pandas as pd
import re
from datetime import datetime
import seaborn as sns
import matplotlib.pyplot as plt
import plotly
import plotly.plotly as py
import plotly.graph_objs as go
import colorlover as cl
plotly.offline.init_notebook_mode()
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
from sklearn.decomposition import PCA
from keras.models import Model
from keras.optimizers import Adamax
from sklearn.metrics import log_loss
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Embedding, Dense, Bidirectional, CuDNNGRU, GlobalMaxPooling1D
import seaborn as sns
import matplotlib.pyplot as plt
def clean(text):
text = re.sub('#\\S*', ' ', text)
text = re.sub('@\\S*', ' ', text)
text = re.sub('http\\S*', ' ', text)
for ch in ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '>', '+', '-', '.', '!', "'", '\\β', '"', '\\β', '\\β', '?', ':', '-', ',', '//t', '&', '/', "'", "'", 'β¦', '-', 'β', '\\β', 'β', 'β', 'β', 'β']:
if ch in text:
text = text.replace(ch, ' ')
return text
def clean_tweet(tweet):
return ' '.join(clean(tweet.lower()).split())
def print_table(header_values, content, colors):
data = go.Table(header=dict(values=header_values, line=dict(color='rgb(70,130,180)'), fill=dict(color='rgb(70,130,180)'), align='center', font=dict(color='black', size=9)), cells=dict(values=content, fill=colors, align='center', font=dict(color='black', size=9), height=40))
def load_glove(word_index):
EMBEDDING_FILE = '../input/glove840b300dtxt/glove.840B.300d.txt'
def get_coefs(word, *arr):
return (word, np.asarray(arr, dtype='float32'))
embeddings_index = dict((get_coefs(*o.split(' ')) for o in open(EMBEDDING_FILE)))
all_embs = np.stack(embeddings_index.values())
emb_mean, emb_std = (all_embs.mean(), all_embs.std())
embed_size = all_embs.shape[1]
nb_words = min(18000, len(word_index))
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))
for word, i in word_index.items():
if i >= 18000:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
def load_data(X, y, train_index, test_index):
Xtr = X.iloc[train_index]
Xte = X.iloc[test_index]
tokenizer = Tokenizer(num_words=18000)
tokenizer.fit_on_texts(list(Xtr))
Xtr = tokenizer.texts_to_sequences(Xtr)
Xte = tokenizer.texts_to_sequences(Xte)
Xtr = pad_sequences(Xtr, maxlen=50)
Xte = pad_sequences(Xte, maxlen=50)
ytr = y.iloc[train_index]
yte = y.iloc[test_index]
word_index = tokenizer.word_index
return (Xtr, ytr, Xte, yte, word_index)
twitter_files = os.listdir('../input/2020-united-states-presidential-election/twitter')
twitter_users_files = os.listdir('../input/2020-united-states-presidential-election/twitter_users')
pic_files = os.listdir('../input/2020-united-states-presidential-election/pics')
metadata = pd.read_csv('../input/2020-united-states-presidential-election/candidates_info.csv')
metadata['filename'] = metadata['handle'].apply(lambda x: x[1:])
metadata['age'] = ((datetime.today() - pd.to_datetime(metadata['born'])).dt.days / 365).astype(int)
metadata = metadata.sort_values('filename')
metadata.reset_index(inplace=True)
dataset = pd.DataFrame()
for index, row in metadata.iterrows():
df = pd.read_csv('../input/2020-united-states-presidential-election/twitter/%s.csv' % row['filename'])
dataset = pd.concat([dataset, df], ignore_index=True)
dataset['clean tweet'] = dataset['Text'].apply(clean_tweet)
dataset['number of characters'] = dataset['clean tweet'].str.len()
metadata['number of all tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets in english'] = dataset[dataset['Language'] == 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets not in english'] = dataset[dataset['Language'] != 'English'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['tweets only'] = dataset[dataset['Tweet Type'] == 'Tweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['retweets only'] = dataset[dataset['Tweet Type'] == 'Retweet'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['replies only'] = dataset[dataset['Tweet Type'] == 'Reply'].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['after 2019'] = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['before 2019'] = metadata['number of all tweets'] - metadata['after 2019']
metadata['more than 40 characters'] = dataset[dataset['number of characters'] > 39].groupby(['Screen Name']).count()['Tweet Id'].values
metadata['less than 40 characters'] = dataset[dataset['number of characters'] < 40].groupby(['Screen Name']).count()['Tweet Id'].values
dataset = dataset[dataset['Created At'].astype('datetime64').dt.year > 2018]
dataset = dataset[dataset['number of characters'] > 39]
dataset = dataset[dataset['Tweet Type'] == 'Tweet']
dataset = dataset[dataset['Language'] == 'English']
X = dataset['clean tweet']
y = dataset['Name']
metadata['useful tweets'] = dataset.groupby(['Screen Name']).count()['Tweet Id'].values
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
kfold = StratifiedKFold(n_splits=10, random_state=0, shuffle=True)
scores = []
test_list = []
predict_list = []
test_df = pd.DataFrame()
pred_df = pd.DataFrame()
for train_index, test_index in kfold.split(X, y):
yoh = pd.get_dummies(y)
train_X, train_y, test_X, test_y, word_index = load_data(X, yoh, train_index, test_index)
embedding = load_glove(word_index)
inp = Input(shape=(50,))
x = Embedding(18000, 300, weights=[embedding])(inp)
x = Bidirectional(CuDNNGRU(256, return_sequences=True))(x)
x = Bidirectional(CuDNNGRU(128, return_sequences=True))(x)
x = GlobalMaxPooling1D()(x)
x = Dense(train_y.shape[1], activation='softmax')(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='categorical_crossentropy', optimizer=Adamax(lr=0.002), metrics=['accuracy'])
model.fit(train_X, train_y, batch_size=1024, epochs=15, validation_data=(test_X, test_y), verbose=0)
pred_y = model.predict(test_X)
test_df = pd.concat([test_df, test_y], axis=0, ignore_index=True)
pred_df = pd.concat([pred_df, pd.DataFrame(pred_y)], axis=0, ignore_index=True)
pred_df.columns = test_df.columns.values
test_label = test_df.idxmax(axis=1)
pred_label = pred_df.idxmax(axis=1)
cm = confusion_matrix(test_label, pred_label, test_df.columns.values)
cm = (cm.astype('float') * 100 / cm.sum(axis=1)[:, np.newaxis] + 0.5).astype('int') / 100
f, ax = plt.subplots(figsize=(14, 12))
sns.set(font_scale=1.4)
sns.heatmap(cm, annot=True, annot_kws={'size': 8}, xticklabels=test_df.columns.values, yticklabels=test_df.columns.values) | code |
88102651/cell_21 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
cat_columns = []
for cat in ohe.categories_:
cat_columns.extend(cat)
cat_df = pd.DataFrame(data_ohe, columns=cat_columns)
cat_df.head() | code |
88102651/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('occupation', 'income_>50K') | code |
88102651/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
for col in cat_columns:
print('Unique values for ', col, 'is : ', data[col].nunique()) | code |
88102651/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.info() | code |
88102651/cell_34 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
cat_columns = []
for cat in ohe.categories_:
cat_columns.extend(cat)
cat_df = pd.DataFrame(data_ohe, columns=cat_columns)
final_df = pd.concat([data.drop(['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education'], axis=1), cat_df], axis=1)
final_df.shape
X = final_df.drop('income_>50K', axis=1)
y = final_df['income_>50K']
data1 = X_train[X_train['Husband'] == 1]
data2 = X_train[X_train['Married-civ-spouse'] == 1]
data3 = X_train.loc[(X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)]
data4 = X_train.loc[~((X_train['Husband'] == 1) | (X_train['Married-civ-spouse'] == 1) | ((X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)))]
label1 = y.iloc[list(data1.index)]
label2 = y.iloc[list(data2.index)]
label3 = y.iloc[list(data3.index)]
label4 = y.iloc[list(data4.index)]
print(label1.shape, label2.shape, label3.shape, label4.shape) | code |
88102651/cell_23 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
cat_columns = []
for cat in ohe.categories_:
cat_columns.extend(cat)
cat_df = pd.DataFrame(data_ohe, columns=cat_columns)
final_df = pd.concat([data.drop(['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education'], axis=1), cat_df], axis=1)
final_df.shape
final_df.head() | code |
88102651/cell_30 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix,recall_score, accuracy_score , classification_report, balanced_accuracy_score
from sklearn.tree import DecisionTreeClassifier
y_train.value_counts(normalize=True)
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
clf.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, recall_score, accuracy_score, classification_report, balanced_accuracy_score
def print_performance(text, y_pred):
pass
y_pred = clf.predict(X_test)
print_performance('Single Decision Tree', y_pred) | code |
88102651/cell_33 | [
"text_html_output_1.png"
] | data1 = X_train[X_train['Husband'] == 1]
data2 = X_train[X_train['Married-civ-spouse'] == 1]
data3 = X_train.loc[(X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)]
data4 = X_train.loc[~((X_train['Husband'] == 1) | (X_train['Married-civ-spouse'] == 1) | ((X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)))]
print(data1.shape, data2.shape, data3.shape, data4.shape) | code |
88102651/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
cat_columns = []
for cat in ohe.categories_:
cat_columns.extend(cat)
print(cat_columns) | code |
88102651/cell_26 | [
"text_plain_output_1.png"
] | y_train.value_counts(normalize=True) | code |
88102651/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape | code |
88102651/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('gender', 'income_>50K') | code |
88102651/cell_19 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
print(data.shape)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
print(data_ohe.shape) | code |
88102651/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
88102651/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('native-country', 'income_>50K') | code |
88102651/cell_28 | [
"text_plain_output_1.png"
] | from sklearn.tree import DecisionTreeClassifier
y_train.value_counts(normalize=True)
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
clf.fit(X_train, y_train) | code |
88102651/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum() | code |
88102651/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('relationship', 'income_>50K') | code |
88102651/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('marital-status', 'income_>50K') | code |
88102651/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns | code |
88102651/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('education', 'income_>50K') | code |
88102651/cell_35 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder
from sklearn.tree import DecisionTreeClassifier
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
cat_columns = []
for cat in ohe.categories_:
cat_columns.extend(cat)
cat_df = pd.DataFrame(data_ohe, columns=cat_columns)
final_df = pd.concat([data.drop(['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education'], axis=1), cat_df], axis=1)
final_df.shape
X = final_df.drop('income_>50K', axis=1)
y = final_df['income_>50K']
dt1 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
dt2 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
dt3 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
dt4 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
data1 = X_train[X_train['Husband'] == 1]
data2 = X_train[X_train['Married-civ-spouse'] == 1]
data3 = X_train.loc[(X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)]
data4 = X_train.loc[~((X_train['Husband'] == 1) | (X_train['Married-civ-spouse'] == 1) | ((X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)))]
label1 = y.iloc[list(data1.index)]
label2 = y.iloc[list(data2.index)]
label3 = y.iloc[list(data3.index)]
label4 = y.iloc[list(data4.index)]
dt1.fit(data1, label1)
dt2.fit(data2, label2)
dt3.fit(data3, label3)
dt4.fit(data4, label4) | code |
88102651/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('workclass', 'income_>50K') | code |
88102651/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
cat_columns = []
for cat in ohe.categories_:
cat_columns.extend(cat)
cat_df = pd.DataFrame(data_ohe, columns=cat_columns)
final_df = pd.concat([data.drop(['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education'], axis=1), cat_df], axis=1)
final_df.shape | code |
88102651/cell_37 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix,recall_score, accuracy_score , classification_report, balanced_accuracy_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.tree import DecisionTreeClassifier
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
cat_columns = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'native-country']
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse=False)
data_ohe = ohe.fit_transform(data[['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education']])
cat_columns = []
for cat in ohe.categories_:
cat_columns.extend(cat)
cat_df = pd.DataFrame(data_ohe, columns=cat_columns)
final_df = pd.concat([data.drop(['race', 'gender', 'relationship', 'occupation', 'workclass', 'native-country', 'marital-status', 'education'], axis=1), cat_df], axis=1)
final_df.shape
X = final_df.drop('income_>50K', axis=1)
y = final_df['income_>50K']
y_train.value_counts(normalize=True)
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
clf.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix, recall_score, accuracy_score, classification_report, balanced_accuracy_score
def print_performance(text, y_pred):
pass
y_pred = clf.predict(X_test)
dt1 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
dt2 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
dt3 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
dt4 = DecisionTreeClassifier(max_depth=20, criterion='entropy', random_state=42)
data1 = X_train[X_train['Husband'] == 1]
data2 = X_train[X_train['Married-civ-spouse'] == 1]
data3 = X_train.loc[(X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)]
data4 = X_train.loc[~((X_train['Husband'] == 1) | (X_train['Married-civ-spouse'] == 1) | ((X_train['Sales'] == 1) | (X_train['Prof-specialty'] == 1) | (X_train['Exec-managerial'] == 1)))]
label1 = y.iloc[list(data1.index)]
label2 = y.iloc[list(data2.index)]
label3 = y.iloc[list(data3.index)]
label4 = y.iloc[list(data4.index)]
dt1.fit(data1, label1)
dt2.fit(data2, label2)
dt3.fit(data3, label3)
dt4.fit(data4, label4)
y_pred = []
for index, row in X_test.iterrows():
if row['Husband'] == 1:
pred = dt1.predict([row])[0]
if pred == 1:
y_pred.append(pred)
continue
if row['Married-civ-spouse'] == 1:
pred = dt2.predict([row])[0]
if pred == 1:
y_pred.append(pred)
continue
if row['Sales'] == 1 or row['Exec-managerial'] == 1 or row['Prof-specialty'] == 1:
pred = dt2.predict([row])[0]
if pred == 1:
y_pred.append(pred)
continue
pred = dt3.predict([row])[0]
if pred == 1:
y_pred.append(pred)
else:
y_pred.append(0)
print_performance('Segmented Decision Tree', y_pred) | code |
88102651/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
data.isna().sum()
def event_rate_analysis(column, target):
temp = (data.groupby(column)[target].sum() / data[target].sum()).to_frame().reset_index()
temp['Volume'] = (data.groupby(column)[target].count() / data[target].count()).to_list()
temp = temp.sort_values(target, ascending=False)
event_rate_analysis('race', 'income_>50K') | code |
88102651/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/income/train.csv')
data.shape
all_columns = list(data.columns)
all_columns
print('Unique Occupation :', data['occupation'].nunique())
print(data['occupation'].unique())
print('Unique workclass :', data['workclass'].nunique())
print(data['workclass'].unique())
print('Unique native-country :', data['native-country'].nunique())
print(data['native-country'].unique()) | code |
33116081/cell_42 | [
"text_html_output_1.png"
] | from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
list1 = ['SibSp', 'Parch', 'Age', 'Fare', 'Survived']
sns.heatmap(train_df[list1].corr(), annot=True, fmt='.3f') | code |
33116081/cell_21 | [
"text_html_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df[['Parch', 'Survived']].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived', ascending=False) | code |
33116081/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
category2 = ['Cabin', 'Name', 'Ticket']
for c in category2:
print('{} \n'.format(train_df[c].value_counts())) | code |
33116081/cell_34 | [
"text_plain_output_1.png"
] | from collections import Counter
import numpy as np
import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
train_df[train_df['Embarked'].isnull()] | code |
33116081/cell_23 | [
"text_html_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df[['Fare', 'Survived']].groupby(['Fare'], as_index=False).mean().sort_values(by='Survived', ascending=False) | code |
33116081/cell_20 | [
"text_html_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df[['SibSp', 'Survived']].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) | code |
33116081/cell_29 | [
"text_html_output_1.png"
] | from collections import Counter
import numpy as np
import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True) | code |
33116081/cell_39 | [
"text_html_output_1.png"
] | from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
train_df[train_df['Fare'].isnull()] | code |
33116081/cell_48 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
list1 = ['SibSp', 'Parch', 'Age', 'Fare', 'Survived']
g = sns.factorplot(x="SibSp",y = "Survived",data = train_df,kind = "bar",size = 6)
g.set_ylabels("Survived Probabilty")
plt.show()
g = sns.factorplot(x='Parch', y='Survived', data=train_df, kind='bar', size=5)
g.set_ylabels('Survied Probability')
plt.show() | code |
33116081/cell_2 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33116081/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False) | code |
33116081/cell_7 | [
"image_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df.info() | code |
33116081/cell_45 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
list1 = ['SibSp', 'Parch', 'Age', 'Fare', 'Survived']
g = sns.factorplot(x='SibSp', y='Survived', data=train_df, kind='bar', size=6)
g.set_ylabels('Survived Probabilty')
plt.show() | code |
33116081/cell_18 | [
"text_plain_output_5.png",
"text_plain_output_4.png",
"image_output_5.png",
"text_plain_output_6.png",
"text_plain_output_3.png",
"image_output_4.png",
"image_output_6.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False) | code |
33116081/cell_32 | [
"text_plain_output_1.png"
] | from collections import Counter
import numpy as np
import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum() | code |
33116081/cell_51 | [
"image_output_1.png"
] | from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
list1 = ['SibSp', 'Parch', 'Age', 'Fare', 'Survived']
g = sns.factorplot(x="SibSp",y = "Survived",data = train_df,kind = "bar",size = 6)
g.set_ylabels("Survived Probabilty")
plt.show()
g = sns.factorplot(x= "Parch",y= "Survived",data = train_df,kind="bar",size=5)
g.set_ylabels("Survied Probability")
plt.show()
g = sns.factorplot(x='Pclass', y='Survived', data=train_df, kind='bar', size=5)
g.set_ylabels('Survived Probability')
plt.show() | code |
33116081/cell_16 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import os
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
numVar = ['Fare', 'Age', 'PassengerId']
for n in numVar:
plot_hist(n) | code |
33116081/cell_3 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available | code |
33116081/cell_35 | [
"text_html_output_1.png"
] | from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
train_df.boxplot(column='Fare', by='Embarked')
plt.show() | code |
33116081/cell_31 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from collections import Counter
import numpy as np
import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()] | code |
33116081/cell_24 | [
"text_html_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df | code |
33116081/cell_22 | [
"text_html_output_1.png"
] | import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
train_df[['Parch', 'SibSp', 'Survived']].groupby(['Parch', 'SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) | code |
33116081/cell_27 | [
"text_html_output_1.png"
] | from collections import Counter
import numpy as np
import pandas as pd
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df | code |
33116081/cell_37 | [
"image_output_1.png"
] | from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
def plot_hist(variable):
pass
def detectOutliers(df, features):
outlier_indices = []
for i in features:
Q1 = np.percentile(df[i], 25)
Q3 = np.percentile(df[i], 75)
IQR = Q3 - Q1
outlierStep = IQR * 1.5
outlier_listCol = df[(df[i] < Q1 - outlierStep) | (df[i] > Q3 + outlierStep)].index
outlier_indices.extend(outlier_listCol)
outlier_indices = Counter(outlier_indices)
multiple_outliers = list((i for i, k in outlier_indices.items() if k > 2))
return multiple_outliers
train_df.loc[detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare'])]
train_df = train_df.drop(detectOutliers(train_df, ['Age', 'SibSp', 'Parch', 'Fare']), axis=0).reset_index(drop=True)
train_df
train_df_len = len(train_df)
train_df = pd.concat([train_df, test_df], axis=0).reset_index(drop=True)
train_df.columns[train_df.isnull().any()]
train_df.isnull().sum()
train_df[train_df['Fare'].isnull()] | code |
33116081/cell_12 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import os
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import seaborn as sns
plt.style.use('seaborn-colorblind')
plt.style.use('seaborn-whitegrid')
import os
plt.style.available
test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
train_df = pd.read_csv('/kaggle/input/titanic/train.csv')
test_passengerId = test_df['PassengerId']
def bar_plot(variable):
"""
input: varible exmple: "sex"
output: bar plot& value count
"""
var = train_df[variable]
varValue = var.value_counts()
plt.xticks(varValue.index, varValue.index.values)
category1 = ['Survived', 'Sex', 'Pclass', 'Embarked', 'SibSp', 'Parch']
for c in category1:
bar_plot(c) | code |
88096014/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/dataset-for-practicing-classification/exercises-logistic-regression-exercise-1/nba_logreg.csv')
data.describe().T
data.columns.to_list()
cols_pred = []
col_target = 'TARGET_5Yrs'
for col in data.columns.to_list():
if col not in ['Name', 'TARGET_5Yrs']:
cols_pred.append(col)
data[cols_pred].dtypes | code |
88096014/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/dataset-for-practicing-classification/exercises-logistic-regression-exercise-1/nba_logreg.csv')
data.describe().T | code |
88096014/cell_2 | [
"text_plain_output_1.png"
] | !pip install skorecard optbinning | code |
88096014/cell_11 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('/kaggle/input/dataset-for-practicing-classification/exercises-logistic-regression-exercise-1/nba_logreg.csv')
data.describe().T
data.columns.to_list()
cols_pred = []
col_target = 'TARGET_5Yrs'
for col in data.columns.to_list():
if col not in ['Name', 'TARGET_5Yrs']:
cols_pred.append(col)
sns.countplot(x=col_target, data=data)
plt.show() | code |
88096014/cell_7 | [
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/dataset-for-practicing-classification/exercises-logistic-regression-exercise-1/nba_logreg.csv')
data.describe().T
data.columns.to_list() | code |
88096014/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/dataset-for-practicing-classification/exercises-logistic-regression-exercise-1/nba_logreg.csv')
data.describe().T
data.columns.to_list()
cols_pred = []
col_target = 'TARGET_5Yrs'
for col in data.columns.to_list():
if col not in ['Name', 'TARGET_5Yrs']:
cols_pred.append(col)
print(cols_pred) | code |
88096014/cell_16 | [
"text_html_output_1.png"
] | from sklearn.pipeline import make_pipeline
from skorecard.bucketers import DecisionTreeBucketer, OptimalBucketer
from skorecard.pipeline import BucketingProcess
from skorecard.preprocessing import WoeEncoder
import pandas as pd
data = pd.read_csv('/kaggle/input/dataset-for-practicing-classification/exercises-logistic-regression-exercise-1/nba_logreg.csv')
data.describe().T
data.columns.to_list()
cols_pred = []
col_target = 'TARGET_5Yrs'
for col in data.columns.to_list():
if col not in ['Name', 'TARGET_5Yrs']:
cols_pred.append(col)
from skorecard.bucketers import DecisionTreeBucketer, OptimalBucketer
from skorecard.preprocessing import WoeEncoder
from skorecard.pipeline import BucketingProcess
from sklearn.pipeline import make_pipeline
bucketing_process = BucketingProcess(prebucketing_pipeline=make_pipeline(DecisionTreeBucketer(variables=cols_pred, max_n_bins=100, min_bin_size=0.05)), bucketing_pipeline=make_pipeline(OptimalBucketer(variables=cols_pred, max_n_bins=10, min_bin_size=0.05)))
woe_pipe = make_pipeline(bucketing_process, WoeEncoder())
x_train_woe = woe_pipe.fit_transform(x_train, y_train)
x_test_woe = woe_pipe.transform(x_test)
bucketing_process.summary() | code |
88096014/cell_17 | [
"text_plain_output_1.png"
] | data_woe | code |
88096014/cell_10 | [
"text_plain_output_1.png"
] | import missingno as msno
msno.matrix(data[cols_pred + [col_target]]) | code |
88096014/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/dataset-for-practicing-classification/exercises-logistic-regression-exercise-1/nba_logreg.csv')
data.head() | code |
128026152/cell_21 | [
"text_plain_output_1.png"
] | name | code |
128026152/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import ipywidgets as widgets
widgets.FloatSlider(value=7.5, min=0, max=10.0, step=0.1, description='Test:', disabled=False, continuous_update=False, orientation='vertical', readout=True, readout_format='.1f')
widgets.IntRangeSlider(value=[5, 7], min=0, max=10, step=1, description='Test:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d')
widgets.IntProgress(value=7, min=0, max=10, description='Loading:', bar_style='', orientation='horizontal')
widgets.BoundedIntText(value=7, min=0, max=10, step=1, description='Text:', disabled=False)
widgets.IntText(value=7, description='Any:', disabled=False)
btn = widgets.ToggleButton(value=False, description='Click me', disabled=False, button_style='success', tooltip='Description', icon='check')
btn | code |
128026152/cell_17 | [
"text_plain_output_1.png"
] | import ipywidgets as widgets
widgets.FloatSlider(value=7.5, min=0, max=10.0, step=0.1, description='Test:', disabled=False, continuous_update=False, orientation='vertical', readout=True, readout_format='.1f')
widgets.IntRangeSlider(value=[5, 7], min=0, max=10, step=1, description='Test:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d')
widgets.IntProgress(value=7, min=0, max=10, description='Loading:', bar_style='', orientation='horizontal')
widgets.BoundedIntText(value=7, min=0, max=10, step=1, description='Text:', disabled=False)
widgets.IntText(value=7, description='Any:', disabled=False)
btn = widgets.ToggleButton(value=False, description='Click me', disabled=False, button_style='success', tooltip='Description', icon='check')
btn
widgets.Checkbox(value=False, description='Check me', disabled=False, indent=False)
widgets.Valid(value=True, description='Valid!')
widgets.Dropdown(options=['1', '2', '3'], value='2', description='Number:', disabled=False)
ddd = widgets.Dropdown(options=[('One', 1), ('Two', 2), ('Three', 3)], value=1, description='Number:')
ddd
widgets.RadioButtons(options=['pepperoni', 'pineapple', 'anchovies'], description='Pizza topping:', disabled=False)
widgets.Box([widgets.Label(value='Pizza topping with a very long label:'), widgets.RadioButtons(options=['pepperoni', 'pineapple', 'anchovies', 'and the long name that will fit fine and the long name that will fit fine and the long name that will fit fine '], layout={'width': 'max-content'})]) | code |
128026152/cell_10 | [
"text_plain_output_1.png"
] | import ipywidgets as widgets
widgets.FloatSlider(value=7.5, min=0, max=10.0, step=0.1, description='Test:', disabled=False, continuous_update=False, orientation='vertical', readout=True, readout_format='.1f')
widgets.IntRangeSlider(value=[5, 7], min=0, max=10, step=1, description='Test:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d')
widgets.IntProgress(value=7, min=0, max=10, description='Loading:', bar_style='', orientation='horizontal')
widgets.BoundedIntText(value=7, min=0, max=10, step=1, description='Text:', disabled=False)
widgets.IntText(value=7, description='Any:', disabled=False)
btn = widgets.ToggleButton(value=False, description='Click me', disabled=False, button_style='success', tooltip='Description', icon='check')
btn
btn.value | code |
17130389/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
quartet = pd.read_csv('../input/quartet.csv', index_col='id')
print(quartet) | code |
17130389/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
quartet = pd.read_csv('../input/quartet.csv', index_col='id')
quartet.describe() | code |
17130389/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
quartet = pd.read_csv('../input/quartet.csv', index_col='id')
quartet.groupby('dataset').agg(['mean', 'std']) | code |
325211/cell_4 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
act_df = pd.read_csv('../input/act_train.csv', sep=',')
sns.countplot(x='activity_category', data=act_df, hue='outcome')
sns.plt.show() | code |
325211/cell_6 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
act_df = pd.read_csv('../input/act_train.csv', sep=',')
fig, ax = plt.subplots()
fig.set_size_inches(30, 20)
h = sns.countplot(x='char_1',data=act_df,hue='outcome',ax=ax)
h.set_xticklabels(h.get_xticklabels(),rotation=50)
sns.plt.show()
fig, ax = plt.subplots()
fig.set_size_inches(30, 20)
people_df = pd.read_csv('../input/people.csv', sep=',')
group_based_ppl_count = people_df.groupby(['group_1']).count().sort_values(by='people_id', ascending=[0])
group_based_ppl_count = group_based_ppl_count.reset_index()
group_based_ppl_count = group_based_ppl_count.ix[:20,]
g = sns.barplot(x='group_1', y='people_id', data=group_based_ppl_count, ax=ax) | code |
325211/cell_8 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
act_df = pd.read_csv('../input/act_train.csv', sep=',')
fig, ax = plt.subplots()
fig.set_size_inches(30, 20)
h = sns.countplot(x='char_1',data=act_df,hue='outcome',ax=ax)
h.set_xticklabels(h.get_xticklabels(),rotation=50)
sns.plt.show()
fig, ax = plt.subplots()
fig.set_size_inches(30, 20)
people_df = pd.read_csv('../input/people.csv',sep=',')
group_based_ppl_count = people_df.groupby(['group_1']).count().sort_values(by='people_id',ascending=[0])
group_based_ppl_count = group_based_ppl_count.reset_index()
group_based_ppl_count = group_based_ppl_count.ix[:20,]
g = sns.barplot(x='group_1',y='people_id',data=group_based_ppl_count,ax=ax)
people_df = pd.read_csv('../input/people.csv', sep=',', parse_dates=['date'])
activity_df = pd.read_csv('../input/act_train.csv', sep=',', parse_dates=['date'])
def sanitizepeople():
sn_fileds = ['char_1', 'group_1', 'char_2', 'date', 'char_3', 'char_4', 'char_5', 'char_6', 'char_7', 'char_8', 'char_9']
for filed in sn_fileds:
if 'group' in filed:
people_df[filed] = people_df[filed].str.lstrip('group ').astype(np.float)
elif 'char_' in filed:
people_df[filed] = people_df[filed].fillna('-999')
people_df[filed] = people_df[filed].str.lstrip('type ').astype(np.float)
else:
people_df['year'] = people_df[filed].dt.year
people_df['month'] = people_df[filed].dt.month
people_df['day'] = people_df[filed].dt.day
people_df1 = people_df.drop(['date'], axis=1)
return people_df1
def sanitizeactivity():
sn_fileds = ['date', 'activity_category', 'char_1', 'char_2', 'char_3', 'char_4', 'char_5', 'char_6', 'char_7', 'char_8', 'char_9', 'char_10']
for filed in sn_fileds:
if 'char_' in filed or 'activity' in filed:
activity_df[filed] = activity_df[filed].fillna('-999')
activity_df[filed] = activity_df[filed].str.lstrip('type ').astype(np.float)
else:
activity_df['year'] = activity_df[filed].dt.year
activity_df['month'] = activity_df[filed].dt.month
activity_df['day'] = activity_df[filed].dt.day
activity_df1 = activity_df.drop(['date'], axis=1)
return activity_df1
people_nrm_df = sanitizepeople()
activity_nrm_df = sanitizeactivity()
j_df = pd.merge(people_nrm_df, activity_nrm_df, how='left', on='people_id', left_index='True')
fig, ax = plt.subplots()
fig.set_size_inches(30, 20)
j_top20grp_grpby = j_df.groupby(['group_1']).sum().sort_values(by='outcome', ascending=[0])
j_top20grp_grpby = j_top20grp_grpby.reset_index()
top20group = j_top20grp_grpby['group_1'].astype(np.int).tolist()
top20group = top20group[:50]
j_top20grp_df = j_df.loc[j_df['group_1'].isin(top20group)]
j_top20grp_df = j_top20grp_df[['group_1', 'outcome']]
h = sns.countplot(x='group_1', data=j_top20grp_df, hue='outcome', ax=ax)
h.set_xticklabels(h.get_xticklabels(), rotation=50)
sns.plt.show() | code |
325211/cell_3 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
act_df = pd.read_csv('../input/act_train.csv', sep=',')
sns.countplot(x='outcome', data=act_df)
sns.plt.show() | code |
325211/cell_5 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
act_df = pd.read_csv('../input/act_train.csv', sep=',')
fig, ax = plt.subplots()
fig.set_size_inches(30, 20)
h = sns.countplot(x='char_1', data=act_df, hue='outcome', ax=ax)
h.set_xticklabels(h.get_xticklabels(), rotation=50)
sns.plt.show() | code |
128020060/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv')
seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv')
player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv')
players.isnull().sum() | code |
128020060/cell_6 | [
"text_html_output_1.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv')
seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv')
player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv')
players.isnull().sum()
players.describe() | code |
128020060/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv')
seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv')
player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv')
seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100]
seasons_stats[seasons_stats.Player == 'LeBron James'].plot(x='Year', y='PTS', figsize=(12, 8)) | code |
128020060/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
128020060/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv')
seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv')
player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv')
players.isnull().sum()
print('Tallest player : {0} - {1} cm'.format(players['height'].idxmax(), players['height'].max()))
print('Smallest player: {0} - {1} cm'.format(players['height'].idxmin(), players['height'].min()))
print()
print('Heaviest player: {0} - {1} kg'.format(players['weight'].idxmax(), players['weight'].max()))
print('Lightest player: {0} - {1} kg'.format(players['weight'].idxmin(), players['weight'].min()))
print()
print('Height average of players: ', players['height'].mean())
print('Weight average of players: ', players['weight'].mean()) | code |
128020060/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv')
seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv')
player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv')
players.isnull().sum()
players.plot(x='height', y='weight', kind='scatter', figsize=(12, 8)) | code |
128020060/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv')
seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv')
player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv')
len(players) | code |
128020060/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv')
seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv')
player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv')
seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.