path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2001733/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] zoos = museums['Revenue'][museums['Museum Type'] == 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] other = museums['Revenue'][museums['Museum Type'] != 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] print('Mean revenue for zoos:') print(zoos.mean()) print('Mean revenue for others:') print(other.mean())
code
2001733/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] museums.head(5)
code
2001733/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] zoos = museums['Revenue'][museums['Museum Type'] == 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] other = museums['Revenue'][museums['Museum Type'] != 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] other.describe()
code
2001733/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] museums['Museum Type'].unique()
code
2025203/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') airinfo.head()
code
2025203/cell_25
[ "text_plain_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() airinfo.head()
code
2025203/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') air.head()
code
2025203/cell_34
[ "text_html_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) dates = pd.read_csv('../input/date_info.csv') vdt = pd.to_datetime(final.visit_date) final['vd'] = vdt.dt.date final['yday'] = vdt.dt.dayofyear final['wday'] = vdt.dt.dayofweek final = final.drop(['vd'], axis=1) dts = pd.to_datetime(dates.calendar_date) days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] dates['calendar_date'] = pd.to_datetime(dates['calendar_date']).dt.date dates['dw'] = [days.index(dw) for dw in dates.day_of_week] final = pd.merge(final, dates, left_on='visit_date', right_on='calendar_date') sub = pd.read_csv('../input/sample_submission.csv') sub.head()
code
2025203/cell_30
[ "text_html_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) dates = pd.read_csv('../input/date_info.csv') vdt = pd.to_datetime(final.visit_date) final['vd'] = vdt.dt.date final['yday'] = vdt.dt.dayofyear final['wday'] = vdt.dt.dayofweek final = final.drop(['vd'], axis=1) dts = pd.to_datetime(dates.calendar_date) days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] dates['calendar_date'] = pd.to_datetime(dates['calendar_date']).dt.date dates['dw'] = [days.index(dw) for dw in dates.day_of_week] final = pd.merge(final, dates, left_on='visit_date', right_on='calendar_date') traindf = final.copy() traindf = traindf.drop(['air_area_name', 'wday', 'air_store_id', 'visit_date', 'day_of_week', 'calendar_date'], axis=1) traindf.head()
code
2025203/cell_33
[ "text_html_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) dates = pd.read_csv('../input/date_info.csv') vdt = pd.to_datetime(final.visit_date) final['vd'] = vdt.dt.date final['yday'] = vdt.dt.dayofyear final['wday'] = vdt.dt.dayofweek final = final.drop(['vd'], axis=1) dts = pd.to_datetime(dates.calendar_date) days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] dates['calendar_date'] = pd.to_datetime(dates['calendar_date']).dt.date dates['dw'] = [days.index(dw) for dw in dates.day_of_week] final = pd.merge(final, dates, left_on='visit_date', right_on='calendar_date') traindf = final.copy() traindf = traindf.drop(['air_area_name', 'wday', 'air_store_id', 'visit_date', 'day_of_week', 'calendar_date'], axis=1) reg = GradientBoostingRegressor(n_estimators=100) scores = cross_val_score(reg, traindf.drop(['visitors'], axis=1), traindf['visitors']) scores reg.fit(traindf.drop(['visitors'], axis=1), traindf['visitors'])
code
2025203/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') air.tail()
code
2025203/cell_26
[ "text_plain_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) final.head()
code
2025203/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2025203/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date len(airvisit['air_store_id'].unique())
code
2025203/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') len(airinfo['air_genre_name'].unique())
code
2025203/cell_32
[ "text_html_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) dates = pd.read_csv('../input/date_info.csv') vdt = pd.to_datetime(final.visit_date) final['vd'] = vdt.dt.date final['yday'] = vdt.dt.dayofyear final['wday'] = vdt.dt.dayofweek final = final.drop(['vd'], axis=1) dts = pd.to_datetime(dates.calendar_date) days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] dates['calendar_date'] = pd.to_datetime(dates['calendar_date']).dt.date dates['dw'] = [days.index(dw) for dw in dates.day_of_week] final = pd.merge(final, dates, left_on='visit_date', right_on='calendar_date') traindf = final.copy() traindf = traindf.drop(['air_area_name', 'wday', 'air_store_id', 'visit_date', 'day_of_week', 'calendar_date'], axis=1) reg = GradientBoostingRegressor(n_estimators=100) scores = cross_val_score(reg, traindf.drop(['visitors'], axis=1), traindf['visitors']) scores
code
2025203/cell_28
[ "text_html_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) dates = pd.read_csv('../input/date_info.csv') vdt = pd.to_datetime(final.visit_date) final['vd'] = vdt.dt.date final['yday'] = vdt.dt.dayofyear final['wday'] = vdt.dt.dayofweek final = final.drop(['vd'], axis=1) dts = pd.to_datetime(dates.calendar_date) days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] dates['calendar_date'] = pd.to_datetime(dates['calendar_date']).dt.date dates['dw'] = [days.index(dw) for dw in dates.day_of_week] final = pd.merge(final, dates, left_on='visit_date', right_on='calendar_date') final.head()
code
2025203/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airvisit.tail()
code
2025203/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') len(airinfo['air_store_id'].unique())
code
2025203/cell_22
[ "text_html_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd', width=2000000, height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.0 * i / 10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f, axa = plt.subplots(1, 1, figsize=(15, 16)) m.drawcoastlines() m.fillcontinents(color='lightgray', lake_color='aqua', zorder=1) m.scatter(airinfo.longitude.values, airinfo.latitude.values, color=colored, s=20, alpha=1, zorder=999, latlon=True) m.scatter(cx, cy, color='Black', s=50, alpha=1, latlon=True, zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction', fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction', fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction', fontsize=20) plt.annotate('Osaka', xy=(0.4, 0.3), xycoords='axes fraction', fontsize=20) plt.annotate('Tokyo', xy=(0.6, 0.4), xycoords='axes fraction', fontsize=20) plt.annotate('Shizoku', xy=(0.5, 0.32), xycoords='axes fraction', fontsize=20) for i in range(len(cx)): xpt, ypt = m(cx[i], cy[i]) plt.annotate(i, (xpt + 500, ypt + 500), zorder=99999, fontsize=16) plt.show()
code
2025203/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') len(air['air_store_id'].unique())
code
2025203/cell_27
[ "image_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) dates = pd.read_csv('../input/date_info.csv') vdt = pd.to_datetime(final.visit_date) final['vd'] = vdt.dt.date final['yday'] = vdt.dt.dayofyear final['wday'] = vdt.dt.dayofweek final = final.drop(['vd'], axis=1) dts = pd.to_datetime(dates.calendar_date) days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] dates['calendar_date'] = pd.to_datetime(dates['calendar_date']).dt.date dates['dw'] = [days.index(dw) for dw in dates.day_of_week] final = pd.merge(final, dates, left_on='visit_date', right_on='calendar_date') dates.head()
code
2025203/cell_37
[ "text_plain_output_1.png" ]
from mpl_toolkits.basemap import Basemap from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) air = pd.read_csv('../input/air_reserve.csv') airvisit = pd.read_csv('../input/air_visit_data.csv') airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']).dt.date airinfo = pd.read_csv('../input/air_store_info.csv') from sklearn.cluster import KMeans import matplotlib.pyplot as plt kmeans = KMeans(n_clusters=10, random_state=0).fit(airinfo[['longitude', 'latitude']]) airinfo['cluster'] = kmeans.predict(airinfo[['longitude', 'latitude']]) from mpl_toolkits.basemap import Basemap m = Basemap(projection='aeqd',width=2000000,height=2000000, lat_0=37.5, lon_0=138.2) cx = [c[0] for c in kmeans.cluster_centers_] cy = [c[1] for c in kmeans.cluster_centers_] cm = plt.get_cmap('gist_rainbow') colors = [cm(2.*i/10) for i in range(10)] colored = [colors[k] for k in airinfo['cluster']] f,axa = plt.subplots(1,1,figsize=(15,16)) m.drawcoastlines() m.fillcontinents(color='lightgray',lake_color='aqua',zorder=1) m.scatter(airinfo.longitude.values,airinfo.latitude.values,color=colored,s=20,alpha=1,zorder=999,latlon=True) m.scatter(cx,cy,color='Black',s=50,alpha=1,latlon=True,zorder=9999) plt.setp(axa.get_yticklabels(), visible=True) plt.annotate('Fukuoka', xy=(0.04, 0.32), xycoords='axes fraction',fontsize=20) plt.annotate('Shikoku', xy=(0.25, 0.25), xycoords='axes fraction',fontsize=20) plt.annotate('Hiroshima', xy=(0.2, 0.36), xycoords='axes fraction',fontsize=20) plt.annotate('Osaka', xy=(0.40, 0.30), xycoords='axes fraction',fontsize=20) plt.annotate('Tokyo', xy=(0.60, 0.4), xycoords='axes fraction',fontsize=20) plt.annotate('Shizoku', xy=(0.50, 0.32), xycoords='axes fraction',fontsize=20) for i in range(len(cx)): xpt,ypt = m(cx[i],cy[i]) plt.annotate(i, (xpt+500,ypt+500),zorder=99999,fontsize=16) plt.show() final = pd.merge(airvisit, airinfo).drop(['latitude', 'longitude'], axis=1) dates = pd.read_csv('../input/date_info.csv') vdt = pd.to_datetime(final.visit_date) final['vd'] = vdt.dt.date final['yday'] = vdt.dt.dayofyear final['wday'] = vdt.dt.dayofweek final = final.drop(['vd'], axis=1) dts = pd.to_datetime(dates.calendar_date) days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] dates['calendar_date'] = pd.to_datetime(dates['calendar_date']).dt.date dates['dw'] = [days.index(dw) for dw in dates.day_of_week] final = pd.merge(final, dates, left_on='visit_date', right_on='calendar_date') sub = pd.read_csv('../input/sample_submission.csv') base = pd.to_datetime('2017-04-23') date_list = pd.date_range(base, periods=39) k = 1 datedf = pd.DataFrame({'key': k, 'date': date_list}) ids = airinfo.air_store_id k = 1 ids = pd.DataFrame({'key': k, 'air_store_id': ids}) testdf = pd.merge(ids, datedf, on='key') testdf['date'] = pd.to_datetime(testdf['date']).dt.date testdf['yday'] = pd.to_datetime(testdf['date']).dt.dayofyear finalt = pd.merge(testdf, airinfo).drop(['air_area_name', 'latitude', 'longitude'], axis=1) finalt = pd.merge(finalt, dates, left_on='date', right_on='calendar_date').drop(['day_of_week', 'calendar_date'], axis=1) finalt = finalt.drop(['date', 'key'], axis=1) finalt.head()
code
2031459/cell_4
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_df.head()
code
2031459/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] train.head()
code
2031459/cell_18
[ "text_plain_output_1.png" ]
from sklearn.model_selection import learning_curve from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] farms = [train, test] whole_data = pd.concat(farms) whole_data = whole_data.replace(np.nan, whole_data.mean()).head(5) from sklearn.model_selection import train_test_split X = whole_data[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch']] y = whole_data[['SaleCondition']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(0.1, 1.0, 5)): plt.figure(figsize=(10, 6)) plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training examples') plt.ylabel('Score') train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label='Training score') plt.plot(train_sizes, test_scores_mean, 'o-', color='g', label='Cross-validation score') plt.legend(loc='best') return plt
code
2031459/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test.head()
code
2031459/cell_15
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] farms = [train, test] whole_data = pd.concat(farms) whole_data = whole_data.replace(np.nan, whole_data.mean()).head(5) from sklearn.model_selection import train_test_split X = whole_data[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch']] y = whole_data[['SaleCondition']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) X_std = sc.transform(X) from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics knn = KNeighborsClassifier(n_neighbors=3, weights='uniform') knn.fit(X_train_std, y_train) print(metrics.classification_report(y_test, knn.predict(X_test_std))) print(metrics.confusion_matrix(y_test, knn.predict(X_test_std), labels=['Normal', 'Abnorml']))
code
2031459/cell_16
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] farms = [train, test] whole_data = pd.concat(farms) whole_data = whole_data.replace(np.nan, whole_data.mean()).head(5) from sklearn.model_selection import train_test_split X = whole_data[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch']] y = whole_data[['SaleCondition']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) X_std = sc.transform(X) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(X_train_std, y_train)
code
2031459/cell_3
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_df.head()
code
2031459/cell_17
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] farms = [train, test] whole_data = pd.concat(farms) whole_data = whole_data.replace(np.nan, whole_data.mean()).head(5) from sklearn.model_selection import train_test_split X = whole_data[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch']] y = whole_data[['SaleCondition']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) X_std = sc.transform(X) from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics knn = KNeighborsClassifier(n_neighbors=3, weights='uniform') knn.fit(X_train_std, y_train) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(X_train_std, y_train) print(metrics.classification_report(y_test, gnb.predict(X_test_std))) print(metrics.confusion_matrix(y_test, gnb.predict(X_test_std), labels=['Normal', 'Abnorml']))
code
2031459/cell_14
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] farms = [train, test] whole_data = pd.concat(farms) whole_data = whole_data.replace(np.nan, whole_data.mean()).head(5) from sklearn.model_selection import train_test_split X = whole_data[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch']] y = whole_data[['SaleCondition']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) X_std = sc.transform(X) from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics knn = KNeighborsClassifier(n_neighbors=3, weights='uniform') knn.fit(X_train_std, y_train)
code
2031459/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train = train_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] test = test_df[['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'SaleCondition']] farms = [train, test] whole_data = pd.concat(farms) len(whole_data)
code
2031459/cell_5
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_df.describe()
code
17111741/cell_4
[ "text_plain_output_1.png" ]
from PIL import Image train_cat = '../input/training_set/training_set/cats' train_dog = '../input/training_set/training_set/dogs' test_cat = '../input/test_set/test_set/cats' test_dog = '../input/test_set/test_set/dogs' image_size = 128 Image.open(train_cat + '/' + 'cat.1.jpg') Image.open('../input/training_set/training_set/dogs/dog.1.jpg')
code
17111741/cell_1
[ "text_plain_output_1.png" ]
import os import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image import warnings warnings.filterwarnings('ignore') import os print(os.listdir('../input'))
code
17111741/cell_3
[ "image_output_1.png" ]
from PIL import Image train_cat = '../input/training_set/training_set/cats' train_dog = '../input/training_set/training_set/dogs' test_cat = '../input/test_set/test_set/cats' test_dog = '../input/test_set/test_set/dogs' image_size = 128 Image.open(train_cat + '/' + 'cat.1.jpg')
code
17111741/cell_12
[ "image_output_1.png" ]
from PIL import Image from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra train_cat = '../input/training_set/training_set/cats' train_dog = '../input/training_set/training_set/dogs' test_cat = '../input/test_set/test_set/cats' test_dog = '../input/test_set/test_set/dogs' image_size = 128 Image.open(train_cat + '/' + 'cat.1.jpg') Image.open('../input/training_set/training_set/dogs/dog.1.jpg') minh, minv = (100000, 100000) for p in range(1, 4001): pic = Image.open(train_cat + '/' + 'cat.' + str(p) + '.jpg') if pic.size[0] < minh: minh = pic.size[0] if pic.size[1] < minv: minv = pic.size[1] for u in range(1, 4001): pic = Image.open(train_dog + '/' + 'dog.' + str(u) + '.jpg') if pic.size[0] < minh: minh = pic.size[0] if pic.size[1] < minv: minv = pic.size[1] train_cat_list = [] for p in range(1, 4001): image = Image.open(train_cat + '/' + 'cat.' + str(p) + '.jpg') image = image.resize((minh, minv)) image = image.convert(mode='L') train_cat_list.append(image) train_dog_list = [] for u in range(1, 4001): image = Image.open(train_dog + '/' + 'dog.' + str(u) + '.jpg') image = image.resize((minh, minv)) image = image.convert(mode='L') train_dog_list.append(image) x = np.empty((4001 + 4001, minh * minv)) index = 0 for pl in train_cat_list: x[index] = np.array(pl).reshape(minh * minv) index += 1 for ul in train_dog_list: x[index] = np.array(ul).reshape(minh * minv) index += 1 p = np.ones(4001) u = np.zeros(4001) y = np.concatenate((p, u), axis=0).reshape(x.shape[0], 1) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) x_train = x_train.T x_test = x_test.T y_train = y_train.T y_test = y_test.T x_train = (x_train - np.min(x_train)) / (np.max(x_train) - np.min(x_train)) x_test = (x_test - np.min(x_test)) / (np.max(x_test) - np.min(x_test)) def initialize_weights_and_bias(dimension): w = np.full((dimension, 1), 0.01) b = 0.0 return (w, b) def sigmoid(z): y_head = 1 / (1 + np.exp(-z)) return y_head def forward_backward_propagation(w, b, x_train, y_train): z = np.dot(w.T, x_train) + b y_head = sigmoid(z) loss = -y_train * np.log(y_head) - (1 - y_train) * np.log(1 - y_head) cost = np.sum(loss) / x_train.shape[1] derivative_weight = np.dot(x_train, (y_head - y_train).T) / x_train.shape[1] derivative_bias = np.sum(y_head - y_train) / x_train.shape[1] gradients = {'derivative_weight': derivative_weight, 'derivative_bias': derivative_bias} return (cost, gradients) def update(w, b, x_train, y_train, learning_rate, number_of_iterarion): cost_list = [] cost_list2 = [] index = [] for i in range(number_of_iterarion): cost, gradients = forward_backward_propagation(w, b, x_train, y_train) cost_list.append(cost) w = w - learning_rate * gradients['derivative_weight'] b = b - learning_rate * gradients['derivative_bias'] if i % 250 == 0: cost_list2.append(cost) index.append(i) parameters = {'weight': w, 'bias': b} plt.xticks(index, rotation='vertical') return (parameters, gradients, cost_list) def predict(w, b, x_test): z = sigmoid(np.dot(w.T, x_test) + b) Y_prediction = np.zeros((1, x_test.shape[1])) for i in range(z.shape[1]): if z[0, i] <= 0.5: Y_prediction[0, i] = 0 else: Y_prediction[0, i] = 1 return Y_prediction def logistic_regression(x_train, y_train, x_test, y_test, learning_rate, num_iterations): dimension = x_train.shape[0] w, b = initialize_weights_and_bias(dimension) parameters, gradients, cost_list = update(w, b, x_train, y_train, learning_rate, num_iterations) y_prediction_test = predict(parameters['weight'], parameters['bias'], x_test) y_prediction_train = predict(parameters['weight'], parameters['bias'], x_train) logistic_regression(x_train, y_train, x_test, y_test, learning_rate=0.002, num_iterations=5001)
code
17111741/cell_5
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from PIL import Image train_cat = '../input/training_set/training_set/cats' train_dog = '../input/training_set/training_set/dogs' test_cat = '../input/test_set/test_set/cats' test_dog = '../input/test_set/test_set/dogs' image_size = 128 Image.open(train_cat + '/' + 'cat.1.jpg') Image.open('../input/training_set/training_set/dogs/dog.1.jpg') minh, minv = (100000, 100000) for p in range(1, 4001): pic = Image.open(train_cat + '/' + 'cat.' + str(p) + '.jpg') if pic.size[0] < minh: minh = pic.size[0] if pic.size[1] < minv: minv = pic.size[1] for u in range(1, 4001): pic = Image.open(train_dog + '/' + 'dog.' + str(u) + '.jpg') if pic.size[0] < minh: minh = pic.size[0] if pic.size[1] < minv: minv = pic.size[1] print(minh) print(minv)
code
49124471/cell_55
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import nltk import re import string def clean_text(text): text = text.lower().strip() text = ' '.join([w for w in text.split() if len(w) > 2]) text = re.sub('\\[.*?\\]', '', text) text = re.sub('https?://\\S+|www\\.\\S+', '', text) text = re.sub('<.*?>+', '', text) text = re.sub('[%s]' % re.escape(string.punctuation), '', text) text = re.sub('\n', '', text) text = re.sub('\\w*\\d\\w*', '', text) return text tokenizer = nltk.tokenize.RegexpTokenizer('\\w+') train['comment'] = train['comment'].apply(tokenizer.tokenize) def remove_stopwords(word_tokens): stop_words = set(stopwords.words('english')) filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) return filtered_sentence train_word = train.explode('comment') word_all_rate = train_word.comment.value_counts(ascending=True) word_all_rate = word_all_rate[word_all_rate > 10] word_rate_1 = train_word.loc[(train_word['rating'] >= 0) & (train_word['rating'] <= 1.999)] word_rate_1 = word_rate_1.comment.value_counts(ascending=True) word_rate_1 = word_rate_1[word_rate_1 > 10] word_rate_2 = train_word.loc[(train_word['rating'] >= 2) & (train_word['rating'] <= 2.999)] word_rate_2 = word_rate_2.comment.value_counts(ascending=True) word_rate_2 = word_rate_2[word_rate_2 > 10] word_rate_3 = train_word.loc[(train_word['rating'] >= 3) & (train_word['rating'] <= 3.999)] word_rate_3 = word_rate_3.comment.value_counts(ascending=True) word_rate_3 = word_rate_3[word_rate_3 > 10] word_rate_4 = train_word.loc[(train_word['rating'] >= 4) & (train_word['rating'] <= 4.999)] word_rate_4 = word_rate_4.comment.value_counts(ascending=True) word_rate_4 = word_rate_4[word_rate_4 > 10] word_rate_5 = train_word.loc[(train_word['rating'] >= 5) & (train_word['rating'] <= 5.999)] word_rate_5 = word_rate_5.comment.value_counts(ascending=True) word_rate_5 = word_rate_5[word_rate_5 > 10] word_rate_6 = train_word.loc[(train_word['rating'] >= 6) & (train_word['rating'] <= 6.999)] word_rate_6 = word_rate_6.comment.value_counts(ascending=True) word_rate_6 = word_rate_6[word_rate_6 > 10] word_rate_7 = train_word.loc[(train_word['rating'] >= 7) & (train_word['rating'] <= 7.999)] word_rate_7 = word_rate_7.comment.value_counts(ascending=True) word_rate_7 = word_rate_7[word_rate_7 > 10] word_rate_8 = train_word.loc[(train_word['rating'] >= 8) & (train_word['rating'] <= 8.999)] word_rate_8 = word_rate_8.comment.value_counts(ascending=True) word_rate_8 = word_rate_8[word_rate_8 > 10] word_rate_9 = train_word.loc[(train_word['rating'] >= 9) & (train_word['rating'] <= 9.999)] word_rate_9 = word_rate_9.comment.value_counts(ascending=True) word_rate_9 = word_rate_9[word_rate_9 > 10] word_rate_10 = train_word.loc[train_word['rating'] >= 10] word_rate_10 = word_rate_10.comment.value_counts(ascending=True) word_rate_10 = word_rate_10[word_rate_10 > 10] word_rate_list = [word_rate_1, word_rate_2, word_rate_3, word_rate_4, word_rate_5, word_rate_6, word_rate_7, word_rate_8, word_rate_9, word_rate_10] rate = ['1_', '2_', '3_', '4_', '5_', '6_', '7_', '8_', '9_', '10_', 'predict'] def naive_bayes(text, word_all_rate, word_rate_1, smoothing): if smoothing != True: if (text in word_all_rate) & (text in word_rate_1): return word_rate_1[text] / word_rate_1.size else: return 0 elif (text in word_all_rate) & (text in word_rate_1): return (word_rate_1[text] + 1) / (word_rate_1.size + 10) else: return 1 / (word_rate_1.size + 10) def predict_rate(df, word_all_rate, word_rate_list, rate): df['comment'] = df['comment'].apply(tokenizer.tokenize) df['comment'] = df['comment'].apply(remove_stopwords) exploded = df.explode('comment') for i in range(10): exploded[i + 1] = exploded['comment'].apply(lambda x: naive_bayes(x, word_all_rate, word_rate_list[i - 1], 1)) for i in df.index: ff = exploded.loc[exploded.index == i].prod() max_ = -1 position = 0 for j, k in zip(range(10), rate): df.loc[df.index == i, k] = ff[j + 1] if max_ < ff[j + 1]: max_ = ff[j + 1] position = j + 1 df.loc[df.index == i, 'predict'] = position return df test_reduce_num = test[:500] test_reduce_num = predict_rate(test_reduce_num, word_all_rate, word_rate_list, rate) accuracy = test_reduce_num.loc[test_reduce_num['correct'] == 1].shape[0] / test_reduce_num.shape[0] print('accuracy = ', accuracy, '\n\n\n')
code
49124471/cell_29
[ "text_plain_output_1.png" ]
train_word = train.explode('comment') word_all_rate = train_word.comment.value_counts(ascending=True) word_all_rate = word_all_rate[word_all_rate > 10] word_all_rate
code
49124471/cell_52
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords import nltk import re import string def clean_text(text): text = text.lower().strip() text = ' '.join([w for w in text.split() if len(w) > 2]) text = re.sub('\\[.*?\\]', '', text) text = re.sub('https?://\\S+|www\\.\\S+', '', text) text = re.sub('<.*?>+', '', text) text = re.sub('[%s]' % re.escape(string.punctuation), '', text) text = re.sub('\n', '', text) text = re.sub('\\w*\\d\\w*', '', text) return text tokenizer = nltk.tokenize.RegexpTokenizer('\\w+') train['comment'] = train['comment'].apply(tokenizer.tokenize) def remove_stopwords(word_tokens): stop_words = set(stopwords.words('english')) filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) return filtered_sentence train_word = train.explode('comment') word_all_rate = train_word.comment.value_counts(ascending=True) word_all_rate = word_all_rate[word_all_rate > 10] word_rate_1 = train_word.loc[(train_word['rating'] >= 0) & (train_word['rating'] <= 1.999)] word_rate_1 = word_rate_1.comment.value_counts(ascending=True) word_rate_1 = word_rate_1[word_rate_1 > 10] word_rate_2 = train_word.loc[(train_word['rating'] >= 2) & (train_word['rating'] <= 2.999)] word_rate_2 = word_rate_2.comment.value_counts(ascending=True) word_rate_2 = word_rate_2[word_rate_2 > 10] word_rate_3 = train_word.loc[(train_word['rating'] >= 3) & (train_word['rating'] <= 3.999)] word_rate_3 = word_rate_3.comment.value_counts(ascending=True) word_rate_3 = word_rate_3[word_rate_3 > 10] word_rate_4 = train_word.loc[(train_word['rating'] >= 4) & (train_word['rating'] <= 4.999)] word_rate_4 = word_rate_4.comment.value_counts(ascending=True) word_rate_4 = word_rate_4[word_rate_4 > 10] word_rate_5 = train_word.loc[(train_word['rating'] >= 5) & (train_word['rating'] <= 5.999)] word_rate_5 = word_rate_5.comment.value_counts(ascending=True) word_rate_5 = word_rate_5[word_rate_5 > 10] word_rate_6 = train_word.loc[(train_word['rating'] >= 6) & (train_word['rating'] <= 6.999)] word_rate_6 = word_rate_6.comment.value_counts(ascending=True) word_rate_6 = word_rate_6[word_rate_6 > 10] word_rate_7 = train_word.loc[(train_word['rating'] >= 7) & (train_word['rating'] <= 7.999)] word_rate_7 = word_rate_7.comment.value_counts(ascending=True) word_rate_7 = word_rate_7[word_rate_7 > 10] word_rate_8 = train_word.loc[(train_word['rating'] >= 8) & (train_word['rating'] <= 8.999)] word_rate_8 = word_rate_8.comment.value_counts(ascending=True) word_rate_8 = word_rate_8[word_rate_8 > 10] word_rate_9 = train_word.loc[(train_word['rating'] >= 9) & (train_word['rating'] <= 9.999)] word_rate_9 = word_rate_9.comment.value_counts(ascending=True) word_rate_9 = word_rate_9[word_rate_9 > 10] word_rate_10 = train_word.loc[train_word['rating'] >= 10] word_rate_10 = word_rate_10.comment.value_counts(ascending=True) word_rate_10 = word_rate_10[word_rate_10 > 10] word_rate_list = [word_rate_1, word_rate_2, word_rate_3, word_rate_4, word_rate_5, word_rate_6, word_rate_7, word_rate_8, word_rate_9, word_rate_10] rate = ['1_', '2_', '3_', '4_', '5_', '6_', '7_', '8_', '9_', '10_', 'predict'] def naive_bayes(text, word_all_rate, word_rate_1, smoothing): if smoothing != True: if (text in word_all_rate) & (text in word_rate_1): return word_rate_1[text] / word_rate_1.size else: return 0 elif (text in word_all_rate) & (text in word_rate_1): return (word_rate_1[text] + 1) / (word_rate_1.size + 10) else: return 1 / (word_rate_1.size + 10) def predict_rate(df, word_all_rate, word_rate_list, rate): df['comment'] = df['comment'].apply(tokenizer.tokenize) df['comment'] = df['comment'].apply(remove_stopwords) exploded = df.explode('comment') for i in range(10): exploded[i + 1] = exploded['comment'].apply(lambda x: naive_bayes(x, word_all_rate, word_rate_list[i - 1], 1)) for i in df.index: ff = exploded.loc[exploded.index == i].prod() max_ = -1 position = 0 for j, k in zip(range(10), rate): df.loc[df.index == i, k] = ff[j + 1] if max_ < ff[j + 1]: max_ = ff[j + 1] position = j + 1 df.loc[df.index == i, 'predict'] = position return df test_reduce_num = test[:500] test_reduce_num = predict_rate(test_reduce_num, word_all_rate, word_rate_list, rate) test_reduce_num
code
49124471/cell_64
[ "text_plain_output_1.png" ]
!pip install wordcloud
code
49124471/cell_68
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords import nltk import pandas as pd import re import string import numpy as np import pandas as pd import re import string import nltk pd.options.mode.chained_assignment = None original_data = pd.read_csv('../input/boardgamegeek-reviews/bgg-15m-reviews.csv') comment_rate = pd.DataFrame(original_data, columns=['comment', 'rating']).dropna() def clean_text(text): text = text.lower().strip() text = ' '.join([w for w in text.split() if len(w) > 2]) text = re.sub('\\[.*?\\]', '', text) text = re.sub('https?://\\S+|www\\.\\S+', '', text) text = re.sub('<.*?>+', '', text) text = re.sub('[%s]' % re.escape(string.punctuation), '', text) text = re.sub('\n', '', text) text = re.sub('\\w*\\d\\w*', '', text) return text tokenizer = nltk.tokenize.RegexpTokenizer('\\w+') train['comment'] = train['comment'].apply(tokenizer.tokenize) def remove_stopwords(word_tokens): stop_words = set(stopwords.words('english')) filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) return filtered_sentence train_word = train.explode('comment') word_all_rate = train_word.comment.value_counts(ascending=True) word_all_rate = word_all_rate[word_all_rate > 10] word_rate_1 = train_word.loc[(train_word['rating'] >= 0) & (train_word['rating'] <= 1.999)] word_rate_1 = word_rate_1.comment.value_counts(ascending=True) word_rate_1 = word_rate_1[word_rate_1 > 10] word_rate_2 = train_word.loc[(train_word['rating'] >= 2) & (train_word['rating'] <= 2.999)] word_rate_2 = word_rate_2.comment.value_counts(ascending=True) word_rate_2 = word_rate_2[word_rate_2 > 10] word_rate_3 = train_word.loc[(train_word['rating'] >= 3) & (train_word['rating'] <= 3.999)] word_rate_3 = word_rate_3.comment.value_counts(ascending=True) word_rate_3 = word_rate_3[word_rate_3 > 10] word_rate_4 = train_word.loc[(train_word['rating'] >= 4) & (train_word['rating'] <= 4.999)] word_rate_4 = word_rate_4.comment.value_counts(ascending=True) word_rate_4 = word_rate_4[word_rate_4 > 10] word_rate_5 = train_word.loc[(train_word['rating'] >= 5) & (train_word['rating'] <= 5.999)] word_rate_5 = word_rate_5.comment.value_counts(ascending=True) word_rate_5 = word_rate_5[word_rate_5 > 10] word_rate_6 = train_word.loc[(train_word['rating'] >= 6) & (train_word['rating'] <= 6.999)] word_rate_6 = word_rate_6.comment.value_counts(ascending=True) word_rate_6 = word_rate_6[word_rate_6 > 10] word_rate_7 = train_word.loc[(train_word['rating'] >= 7) & (train_word['rating'] <= 7.999)] word_rate_7 = word_rate_7.comment.value_counts(ascending=True) word_rate_7 = word_rate_7[word_rate_7 > 10] word_rate_8 = train_word.loc[(train_word['rating'] >= 8) & (train_word['rating'] <= 8.999)] word_rate_8 = word_rate_8.comment.value_counts(ascending=True) word_rate_8 = word_rate_8[word_rate_8 > 10] word_rate_9 = train_word.loc[(train_word['rating'] >= 9) & (train_word['rating'] <= 9.999)] word_rate_9 = word_rate_9.comment.value_counts(ascending=True) word_rate_9 = word_rate_9[word_rate_9 > 10] word_rate_10 = train_word.loc[train_word['rating'] >= 10] word_rate_10 = word_rate_10.comment.value_counts(ascending=True) word_rate_10 = word_rate_10[word_rate_10 > 10] word_rate_list = [word_rate_1, word_rate_2, word_rate_3, word_rate_4, word_rate_5, word_rate_6, word_rate_7, word_rate_8, word_rate_9, word_rate_10] rate = ['1_', '2_', '3_', '4_', '5_', '6_', '7_', '8_', '9_', '10_', 'predict'] def naive_bayes(text, word_all_rate, word_rate_1, smoothing): if smoothing != True: if (text in word_all_rate) & (text in word_rate_1): return word_rate_1[text] / word_rate_1.size else: return 0 elif (text in word_all_rate) & (text in word_rate_1): return (word_rate_1[text] + 1) / (word_rate_1.size + 10) else: return 1 / (word_rate_1.size + 10) def predict_rate(df, word_all_rate, word_rate_list, rate): df['comment'] = df['comment'].apply(tokenizer.tokenize) df['comment'] = df['comment'].apply(remove_stopwords) exploded = df.explode('comment') for i in range(10): exploded[i + 1] = exploded['comment'].apply(lambda x: naive_bayes(x, word_all_rate, word_rate_list[i - 1], 1)) for i in df.index: ff = exploded.loc[exploded.index == i].prod() max_ = -1 position = 0 for j, k in zip(range(10), rate): df.loc[df.index == i, k] = ff[j + 1] if max_ < ff[j + 1]: max_ = ff[j + 1] position = j + 1 df.loc[df.index == i, 'predict'] = position return df text = word_all_rate.sort_values(ascending=False) input_test = input() df = pd.DataFrame([[input_test]], columns=['comment']) print('Processing your comment\n\n\n') result = predict_rate(df, word_all_rate, word_rate_list, rate) print('The rate prediction for your comment is ', result['predict'][0])
code
49124471/cell_66
[ "image_output_1.png" ]
from wordcloud import WordCloud, STOPWORDS import re import string def clean_text(text): text = text.lower().strip() text = ' '.join([w for w in text.split() if len(w) > 2]) text = re.sub('\\[.*?\\]', '', text) text = re.sub('https?://\\S+|www\\.\\S+', '', text) text = re.sub('<.*?>+', '', text) text = re.sub('[%s]' % re.escape(string.punctuation), '', text) text = re.sub('\n', '', text) text = re.sub('\\w*\\d\\w*', '', text) return text train_word = train.explode('comment') word_all_rate = train_word.comment.value_counts(ascending=True) word_all_rate = word_all_rate[word_all_rate > 10] text = word_all_rate.sort_values(ascending=False) text = text[:100] text = text.index.map(str) listToStr = ' '.join(map(str, text.format())) from wordcloud import WordCloud, STOPWORDS wordcloud = WordCloud(width=3000, height=2000, random_state=1, background_color='salmon', colormap='Pastel1', collocations=False, stopwords=STOPWORDS).generate(listToStr) plot_cloud(wordcloud)
code
32070892/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_a = df.groupby('Airport name').sum() df_a df[df['Whole year'] == df['Whole year'].max()]['Airport name']
code
32070892/cell_9
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_ys = df_y.sum().drop('Whole year', axis=1) df_ys plt.figure(figsize=(12, 10)) sns.heatmap(df_ys / 1000000, annot=True) plt.title('Tot Pax Number per month')
code
32070892/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df.head()
code
32070892/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df.describe().transpose()
code
32070892/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df['Airport name'].nunique()
code
32070892/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32070892/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_a = df.groupby('Airport name').sum() df_a df.iloc[353] df.iloc[601] df_a = df.groupby('Airport name') df_a.head()
code
32070892/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_ys = df_y.sum().drop('Whole year', axis=1) df_ys
code
32070892/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_a = df.groupby('Airport name').sum() df_a df_asort = df['Whole year'].sort_values(ascending=False) df_asort.head()
code
32070892/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_a = df.groupby('Airport name').sum() df_a df.iloc[353]
code
32070892/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_a = df.groupby('Airport name').sum() df_a df.iloc[353] df.iloc[601]
code
32070892/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_a = df.groupby('Airport name').sum() df_a df_a1 = df_a['Whole year'].sort_values(ascending=False) df_a1.head(10)
code
32070892/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df_y = df.groupby('Year') df_a = df.groupby('Airport name').sum() df_a
code
32070892/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/russian-passenger-air-service-20072020/russian_passenger_air_service_2.csv') df.info()
code
88078658/cell_3
[ "text_plain_output_1.png" ]
import math import math a = 123456 n_digit = math.floor(math.log10(a) + 1) print(n_digit)
code
104118983/cell_6
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/polynomial/HeightVsWeight.csv') X = df.iloc[:, :-1].values Y = df.iloc[:, -1].values from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=10) X_poly = poly_reg.fit_transform(X) lin_reg = LinearRegression() lin_reg.fit(X_poly, Y)
code
104118983/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104118983/cell_7
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/polynomial/HeightVsWeight.csv') X = df.iloc[:, :-1].values Y = df.iloc[:, -1].values from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=10) X_poly = poly_reg.fit_transform(X) lin_reg = LinearRegression() lin_reg.fit(X_poly, Y) plt.scatter(X, Y, color='red') plt.plot(X, lin_reg.predict(poly_reg.fit_transform(X)), color='blue', linewidth='5', alpha=0.7) plt.title('Age v/s Height') plt.xlabel('Age') plt.ylabel('Height') plt.show()
code
104118983/cell_8
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/polynomial/HeightVsWeight.csv') X = df.iloc[:, :-1].values Y = df.iloc[:, -1].values from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=10) X_poly = poly_reg.fit_transform(X) lin_reg = LinearRegression() lin_reg.fit(X_poly, Y) lin_reg.predict(poly_reg.fit_transform([[15]]))
code
104118983/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/polynomial/HeightVsWeight.csv') df.head(6)
code
128029773/cell_1
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
model_path = "/kaggle/working/models/hydra/" !pip install chardet
code
129018278/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np x_1 = 2 * np.random.rand(100, 1) x_2 = 50 * np.random.rand(100, 1) x_3 = 1000 * np.random.rand(100, 1) y = 3 + 500 * x_1 + 20 * x_2 + x_3 fig, axs = plt.subplots(2, 2) fig.tight_layout(h_pad=2, w_pad=2) axs[0, 0].plot(x_1, y, 'k.') axs[0, 0].set(xlabel='$x_1$', ylabel='y') axs[0, 1].plot(x_2, y, 'k.') axs[0, 1].set(xlabel='$x_2$', ylabel='y') axs[1, 0].plot(x_3, y, 'k.') axs[1, 0].set(xlabel='$x_3$', ylabel='y') axs[1, 1].remove() plt.show()
code
129018278/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # Create simulated data x_1 = 2 * np.random.rand(100, 1) x_2 = 50 * np.random.rand(100, 1) x_3 = 1000 * np.random.rand(100, 1) # Calculate target variable based on y = 3 + 500x1 + 20x2 + x3 formula y = 3 + 500 * x_1 + 20 * x_2 + x_3 # Plot the simulated data fig, axs = plt.subplots(2, 2) fig.tight_layout(h_pad=2, w_pad=2) axs[0, 0].plot(x_1, y, 'k.') axs[0, 0].set(xlabel='$x_1$', ylabel='y') axs[0, 1].plot(x_2, y, 'k.') axs[0, 1].set(xlabel='$x_2$', ylabel='y') axs[1, 0].plot(x_3, y, 'k.') axs[1, 0].set(xlabel='$x_3$', ylabel='y') axs[1, 1].remove() plt.show() x_bias = np.ones((100, 1)) X = np.concatenate([x_bias, x_1, x_2, x_3], axis=1) Xt = X.T Xt_X_inv = np.linalg.inv(Xt.dot(X)) Xt_y = Xt.dot(y) theta = Xt_X_inv.dot(Xt_y) theta
code
129018278/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # Create simulated data x_1 = 2 * np.random.rand(100, 1) x_2 = 50 * np.random.rand(100, 1) x_3 = 1000 * np.random.rand(100, 1) # Calculate target variable based on y = 3 + 500x1 + 20x2 + x3 formula y = 3 + 500 * x_1 + 20 * x_2 + x_3 # Plot the simulated data fig, axs = plt.subplots(2, 2) fig.tight_layout(h_pad=2, w_pad=2) axs[0, 0].plot(x_1, y, 'k.') axs[0, 0].set(xlabel='$x_1$', ylabel='y') axs[0, 1].plot(x_2, y, 'k.') axs[0, 1].set(xlabel='$x_2$', ylabel='y') axs[1, 0].plot(x_3, y, 'k.') axs[1, 0].set(xlabel='$x_3$', ylabel='y') axs[1, 1].remove() plt.show() x_bias = np.ones((100, 1)) X = np.concatenate([x_bias, x_1, x_2, x_3], axis=1) print(X[:5])
code
2044063/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') plt.figure(figsize=(12, 8)) sns.countplot(data=df, y='username')
code
2044063/cell_25
[ "text_html_output_1.png" ]
from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') toptweeps = df.groupby('username')[['tweet ']].count() toptweeps.sort_values('tweet ', ascending=False)[:10] topretweets = df.groupby('username')[['retweets']].sum() topretweets.sort_values('retweets', ascending=False)[:10] corpus = ' '.join(df['tweet ']) corpus = corpus.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpus) plt.axis('off') mest = df[df['username'] == 'MESTAfrica'] corpu = ' '.join(df['tweet ']) corpu = corpu.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpu) plt.axis('off') tony = df[df['username'] == 'TonyElumeluFDN'] corp = ' '.join(df['tweet ']) corp = corp.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corp) plt.figure(figsize=(12, 15)) plt.imshow(wordcloud) plt.axis('off') plt.show()
code
2044063/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') df.head()
code
2044063/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') toptweeps = df.groupby('username')[['tweet ']].count() toptweeps.sort_values('tweet ', ascending=False)[:10] topretweets = df.groupby('username')[['retweets']].sum() topretweets.sort_values('retweets', ascending=False)[:10] corpus = ' '.join(df['tweet ']) corpus = corpus.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpus) plt.axis('off') mest = df[df['username'] == 'MESTAfrica'] corpu = ' '.join(df['tweet ']) corpu = corpu.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpu) plt.figure(figsize=(12, 15)) plt.imshow(wordcloud) plt.axis('off') plt.show()
code
2044063/cell_20
[ "text_html_output_1.png" ]
from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') toptweeps = df.groupby('username')[['tweet ']].count() toptweeps.sort_values('tweet ', ascending=False)[:10] topretweets = df.groupby('username')[['retweets']].sum() topretweets.sort_values('retweets', ascending=False)[:10] corpus = ' '.join(df['tweet ']) corpus = corpus.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpus) plt.figure(figsize=(12, 15)) plt.imshow(wordcloud) plt.axis('off') plt.show()
code
2044063/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') pd.isnull(df).any()
code
2044063/cell_29
[ "image_output_1.png" ]
from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') toptweeps = df.groupby('username')[['tweet ']].count() toptweeps.sort_values('tweet ', ascending=False)[:10] topretweets = df.groupby('username')[['retweets']].sum() topretweets.sort_values('retweets', ascending=False)[:10] corpus = ' '.join(df['tweet ']) corpus = corpus.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpus) plt.axis('off') mest = df[df['username'] == 'MESTAfrica'] corpu = ' '.join(df['tweet ']) corpu = corpu.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpu) plt.axis('off') mest[mest['retweets'] == 2157]
code
2044063/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from wordcloud import WordCloud, STOPWORDS from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2044063/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') df.describe()
code
2044063/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') toptweeps = df.groupby('username')[['tweet ']].count() toptweeps.sort_values('tweet ', ascending=False)[:10]
code
2044063/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') toptweeps = df.groupby('username')[['tweet ']].count() toptweeps.sort_values('tweet ', ascending=False)[:10] topretweets = df.groupby('username')[['retweets']].sum() topretweets.sort_values('retweets', ascending=False)[:10]
code
2044063/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') df[df['retweets'] == 79537]
code
2044063/cell_27
[ "text_html_output_1.png" ]
from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') toptweeps = df.groupby('username')[['tweet ']].count() toptweeps.sort_values('tweet ', ascending=False)[:10] topretweets = df.groupby('username')[['retweets']].sum() topretweets.sort_values('retweets', ascending=False)[:10] corpus = ' '.join(df['tweet ']) corpus = corpus.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpus) plt.axis('off') mest = df[df['username'] == 'MESTAfrica'] corpu = ' '.join(df['tweet ']) corpu = corpu.replace('.', '. ') wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white', width=2400, height=2000).generate(corpu) plt.axis('off') mest.describe()
code
2044063/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/tweets.xlsx', sheet_name='tweets') df.info()
code
74040076/cell_11
[ "image_output_1.png" ]
from matplotlib.colors import ListedColormap from sklearn.datasets import make_classification, make_blobs,make_gaussian_quantiles, make_circles,make_moons from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np # linear algebra n_sam = 250 n_fea = 8 n_clas = 2 df = make_classification(n_samples=n_sam, n_features=n_fea, n_classes=n_clas, random_state=10) df2 = make_blobs(n_samples=n_sam, centers=2, random_state=10) df3 = make_circles(n_samples=n_sam, random_state=10) df4 = make_moons(n_samples=n_sam, random_state=10) from sklearn.decomposition import PCA pca = PCA(n_components=2) df1_PCA = pca.fit_transform(df[0]) y = df[1] df1 = (df1_PCA, y) datasets = [df1, df2, df3, df4] from sklearn.svm import SVC classifiers = [SVC(kernel='linear', C=0.025), SVC(C=100, kernel='poly', degree=4), SVC(gamma=2, C=1)] names = ['Linear SVM', 'Polinomial SVM', 'RBF SVM'] h = 0.02 from matplotlib.colors import ListedColormap from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split figure = plt.figure(figsize=(15, 9)) i = 1 for ds_cnt, ds in enumerate(datasets): X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42) x_min, x_max = (X[:, 0].min() - 0.5, X[:, 0].max() + 0.5) y_min, y_max = (X[:, 1].min() - 0.5, X[:, 1].max() + 0.5) xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) if ds_cnt == 0: ax.set_title('Input data') ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) if hasattr(clf, 'decision_function'): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=0.8) ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors='k', alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) if ds_cnt == 0: ax.set_title(name) ax.text(xx.max() - 0.3, yy.min() + 0.3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 plt.tight_layout() plt.show()
code
104114403/cell_42
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.linear_model import LogisticRegression logr = LogisticRegression(random_state=0) logr.fit(X_train, y_train) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score ypred_train_logr = logr.predict(X_train) ypred_test_logr = logr.predict(X_test) print('confusion matrix for training data is : \n', confusion_matrix(y_train, ypred_train_logr), '\n', '\n') print('confusion_matrix for test data is : \n', confusion_matrix(y_test, ypred_test_logr), '\n')
code
104114403/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] X.head()
code
104114403/cell_25
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape)
code
104114403/cell_34
[ "text_plain_output_1.png" ]
from sklearn.dummy import DummyClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import recall_score, precision_score, accuracy_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.dummy import DummyClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import recall_score, precision_score, accuracy_score dummy = DummyClassifier(strategy='most_frequent', random_state=0) dummy.fit(X_train, y_train) ydummy_train = dummy.predict(X_train) ydummy_test = dummy.predict(X_test) print('Accuracy score for DummyClassifier is : \n \n', accuracy_score(y_test, ydummy_test))
code
104114403/cell_30
[ "text_plain_output_1.png" ]
from sklearn.dummy import DummyClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.dummy import DummyClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import recall_score, precision_score, accuracy_score dummy = DummyClassifier(strategy='most_frequent', random_state=0) dummy.fit(X_train, y_train) ydummy_train = dummy.predict(X_train) print('Confusion matrix for DummyClassifier is : \n \n', confusion_matrix(y_train, ydummy_train))
code
104114403/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd pima = pd.read_csv('../input/pimacsv/pima.csv') pima.info()
code
104114403/cell_40
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.linear_model import LogisticRegression logr = LogisticRegression(random_state=0) logr.fit(X_train, y_train) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score ypred_train_logr = logr.predict(X_train) ypred_test_logr = logr.predict(X_test) print('First 8 Predictions for training data are: ', ypred_train_logr[:8]) print('First 8 Predictions for test data are: ', ypred_test_logr[:8])
code
104114403/cell_29
[ "text_plain_output_1.png" ]
from sklearn.dummy import DummyClassifier from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.dummy import DummyClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import recall_score, precision_score, accuracy_score dummy = DummyClassifier(strategy='most_frequent', random_state=0) dummy.fit(X_train, y_train)
code
104114403/cell_48
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score from sklearn.metrics import recall_score, precision_score, accuracy_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.linear_model import LogisticRegression logr = LogisticRegression(random_state=0) logr.fit(X_train, y_train) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score ypred_train_logr = logr.predict(X_train) ypred_test_logr = logr.predict(X_test) print('Accuracy for test data is : \n', accuracy_score(y_test, ypred_test_logr), '\n') print('Recall for test data is : \n', recall_score(y_test, ypred_test_logr), '\n') print('Precision for test data is : \n', precision_score(y_test, ypred_test_logr), '\n') print('f1-score for test data is : \n', f1_score(y_test, ypred_test_logr), '\n')
code
104114403/cell_50
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.linear_model import LogisticRegression logr = LogisticRegression(random_state=0) logr.fit(X_train, y_train) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score ypred_train_logr = logr.predict(X_train) ypred_test_logr = logr.predict(X_test) yprob_test_logr = logr.predict_proba(X_test) yprob_test_logr[0:5, :].round(3)
code
104114403/cell_32
[ "text_plain_output_1.png" ]
from sklearn.dummy import DummyClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.dummy import DummyClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import recall_score, precision_score, accuracy_score dummy = DummyClassifier(strategy='most_frequent', random_state=0) dummy.fit(X_train, y_train) ydummy_train = dummy.predict(X_train) ydummy_test = dummy.predict(X_test) print('Confusion matrix for DummyClassifier is : \n \n', confusion_matrix(y_test, ydummy_test))
code
104114403/cell_51
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score from sklearn.metrics import recall_score, precision_score, accuracy_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.linear_model import LogisticRegression logr = LogisticRegression(random_state=0) logr.fit(X_train, y_train) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score ypred_train_logr = logr.predict(X_train) ypred_test_logr = logr.predict(X_test) yprob_test_logr = logr.predict_proba(X_test) yprob_test_logr[0:5, :].round(3) print('Scores for threshold value of: ', 0.2, '\n') print('Accuracy for test data is : \n', accuracy_score(y_test, yprob_test_logr[:, 1] > 0.2), '\n') print('Recall for test data is : \n', recall_score(y_test, yprob_test_logr[:, 1] > 0.2), '\n') print('Precision for test data is : \n', precision_score(y_test, yprob_test_logr[:, 1] > 0.2), '\n') print('f1 score for test data is : \n', f1_score(y_test, yprob_test_logr[:, 1] > 0.2), '\n')
code
104114403/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape corm = pima.iloc[:, :-1].corr() masko = np.zeros_like(corm, dtype=np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize=(10, 5)) sns.heatmap(corm, mask=masko, cmap='coolwarm', annot=True)
code
104114403/cell_46
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score from sklearn.metrics import recall_score, precision_score, accuracy_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) from sklearn.linear_model import LogisticRegression logr = LogisticRegression(random_state=0) logr.fit(X_train, y_train) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score ypred_train_logr = logr.predict(X_train) ypred_test_logr = logr.predict(X_test) print('Accuracy for train data is : \n', accuracy_score(y_train, ypred_train_logr), '\n') print('Recall for train data is : \n', recall_score(y_train, ypred_train_logr), '\n') print('Precision for train data is : \n', precision_score(y_train, ypred_train_logr), '\n') print('f1-score for train data is : \n', f1_score(y_train, ypred_train_logr), '\n')
code
104114403/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape pima.describe()
code
104114403/cell_22
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns pima = pd.read_csv('../input/pimacsv/pima.csv') pima.shape #Your code (first create a correlation matrix and store it in 'corm' variable, and uncomment lines below) corm = pima.iloc[:,:-1].corr() masko = np.zeros_like(corm, dtype = np.bool) masko[np.triu_indices_from(masko)] = True fig, ax = plt.subplots(figsize = (10,5)) sns.heatmap(corm, mask = masko, cmap = 'coolwarm', annot=True) X = pima.loc[:, pima.columns != 'Outcome'] y = pima.loc[:, 'Outcome'] y.head()
code