path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
32062669/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') test_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/test.csv') test_df.head(5)
code
32062669/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') def get_label(row): for c in train_df.columns[1:]: if row[c] == 1: return c train_df_copy = train_df.copy() train_df_copy['label'] = train_df_copy.apply(get_label, axis=1) train_df_copy.head(5)
code
32062669/cell_15
[ "text_html_output_1.png" ]
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from torchvision import transforms import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch gpu_status = torch.cuda.is_available() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') def get_label(row): for c in train_df.columns[1:]: if row[c] == 1: return c train_df_copy = train_df.copy() train_df_copy['label'] = train_df_copy.apply(get_label, axis=1) sample_img = train_df.iloc[1, 0] sample_labels = train_df.iloc[1, :] sample_labels = np.asarray(sample_labels) class LeafDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.transform = transform def __len__(self): return self.df.shape[0] def __getitem__(self, idx): img_src = '../input/plant-pathology-2020-fgvc7/images/' + self.df.loc[idx, 'image_id'] + '.jpg' image = PIL.Image.open(img_src).convert('RGB') if self.transform: image = self.transform(image) if self.df.shape[1] == 5: labels = self.df.loc[idx, ['healthy', 'multiple_diseases', 'rust', 'scab']].values labels = torch.from_numpy(labels.astype(np.uint8)) labels = labels.unsqueeze(-1).long() labels = labels.numpy().tolist().index([1]) labels = torch.from_numpy(np.asarray(labels)) return (image, labels) else: return image leaf_sample_dataset = LeafDataset(df=train_df, transform=None) fig, ax = plt.subplots(1,3) for i in range(3): img, label = leaf_sample_dataset[i] ax[i].imshow(img) print(type(img), img.size,label) leaf_transform = transforms.Compose([transforms.Resize((512, 512)), transforms.CenterCrop((384, 384)), transforms.RandomAffine(degrees=15), transforms.RandomHorizontalFlip(p=0.4), transforms.RandomVerticalFlip(p=0.3), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) leaf_train_dataset = LeafDataset(df=train_df, transform=leaf_transform) leaf_train_loader = DataLoader(leaf_train_dataset, shuffle=True, batch_size=16) images, labels = next(iter(leaf_train_loader)) print(len(leaf_train_dataset))
code
32062669/cell_16
[ "text_plain_output_1.png" ]
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from torchvision import transforms import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch gpu_status = torch.cuda.is_available() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') def get_label(row): for c in train_df.columns[1:]: if row[c] == 1: return c train_df_copy = train_df.copy() train_df_copy['label'] = train_df_copy.apply(get_label, axis=1) sample_img = train_df.iloc[1, 0] sample_labels = train_df.iloc[1, :] sample_labels = np.asarray(sample_labels) class LeafDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.transform = transform def __len__(self): return self.df.shape[0] def __getitem__(self, idx): img_src = '../input/plant-pathology-2020-fgvc7/images/' + self.df.loc[idx, 'image_id'] + '.jpg' image = PIL.Image.open(img_src).convert('RGB') if self.transform: image = self.transform(image) if self.df.shape[1] == 5: labels = self.df.loc[idx, ['healthy', 'multiple_diseases', 'rust', 'scab']].values labels = torch.from_numpy(labels.astype(np.uint8)) labels = labels.unsqueeze(-1).long() labels = labels.numpy().tolist().index([1]) labels = torch.from_numpy(np.asarray(labels)) return (image, labels) else: return image leaf_sample_dataset = LeafDataset(df=train_df, transform=None) fig, ax = plt.subplots(1,3) for i in range(3): img, label = leaf_sample_dataset[i] ax[i].imshow(img) print(type(img), img.size,label) leaf_transform = transforms.Compose([transforms.Resize((512, 512)), transforms.CenterCrop((384, 384)), transforms.RandomAffine(degrees=15), transforms.RandomHorizontalFlip(p=0.4), transforms.RandomVerticalFlip(p=0.3), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) leaf_train_dataset = LeafDataset(df=train_df, transform=leaf_transform) leaf_train_loader = DataLoader(leaf_train_dataset, shuffle=True, batch_size=16) images, labels = next(iter(leaf_train_loader)) dataset_size = len(leaf_train_dataset) indices = list(range(dataset_size)) np.random.shuffle(indices) split = int(np.floor(0.2 * dataset_size)) train_idx, val_idx = (indices[split:], indices[:split]) print(split) print(len(train_idx), len(val_idx)) train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(val_idx)
code
32062669/cell_31
[ "text_plain_output_1.png" ]
from IPython.display import FileLink from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from torchvision import transforms import datetime import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim gpu_status = torch.cuda.is_available() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') def get_label(row): for c in train_df.columns[1:]: if row[c] == 1: return c train_df_copy = train_df.copy() train_df_copy['label'] = train_df_copy.apply(get_label, axis=1) sample_img = train_df.iloc[1, 0] sample_labels = train_df.iloc[1, :] sample_labels = np.asarray(sample_labels) class LeafDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.transform = transform def __len__(self): return self.df.shape[0] def __getitem__(self, idx): img_src = '../input/plant-pathology-2020-fgvc7/images/' + self.df.loc[idx, 'image_id'] + '.jpg' image = PIL.Image.open(img_src).convert('RGB') if self.transform: image = self.transform(image) if self.df.shape[1] == 5: labels = self.df.loc[idx, ['healthy', 'multiple_diseases', 'rust', 'scab']].values labels = torch.from_numpy(labels.astype(np.uint8)) labels = labels.unsqueeze(-1).long() labels = labels.numpy().tolist().index([1]) labels = torch.from_numpy(np.asarray(labels)) return (image, labels) else: return image leaf_sample_dataset = LeafDataset(df=train_df, transform=None) fig, ax = plt.subplots(1,3) for i in range(3): img, label = leaf_sample_dataset[i] ax[i].imshow(img) print(type(img), img.size,label) leaf_transform = transforms.Compose([transforms.Resize((512, 512)), transforms.CenterCrop((384, 384)), transforms.RandomAffine(degrees=15), transforms.RandomHorizontalFlip(p=0.4), transforms.RandomVerticalFlip(p=0.3), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) leaf_train_dataset = LeafDataset(df=train_df, transform=leaf_transform) leaf_train_loader = DataLoader(leaf_train_dataset, shuffle=True, batch_size=16) images, labels = next(iter(leaf_train_loader)) dataset_size = len(leaf_train_dataset) indices = list(range(dataset_size)) np.random.shuffle(indices) split = int(np.floor(0.2 * dataset_size)) train_idx, val_idx = (indices[split:], indices[:split]) train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(val_idx) leaf_train_loader = DataLoader(leaf_train_dataset, sampler=train_sampler, batch_size=64) leaf_valid_loader = DataLoader(leaf_train_dataset, sampler=valid_sampler, batch_size=64) test_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/test.csv') leaf_test_dataset = LeafDataset(df=test_df, transform=leaf_transform) leaf_test_loader = DataLoader(leaf_test_dataset, batch_size=64) test_images = next(iter(leaf_test_loader)) diagnosis = ['healthy', 'multiple_diseases', 'rust', 'scab'] train_images, train_labels = next(iter(leaf_train_loader)) fig = plt.figure(figsize=(25,4)) for idx in np.arange(8): ax = fig.add_subplot(2, 16/2, idx+1, xticks=[], yticks=[]) plt.imshow(train_images[idx].numpy().transpose(1,2,0)) ax.set_title(diagnosis[labels[idx]]) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 8, 3, padding=1) self.conv2 = nn.Conv2d(8, 16, 3, padding=1) self.conv3 = nn.Conv2d(16, 32, 3, padding=1) self.conv4 = nn.Conv2d(32, 64, 3, padding=1) self.conv5 = nn.Conv2d(64, 128, 3, padding=1) self.conv6 = nn.Conv2d(128, 256, 2, padding=1) self.conv7 = nn.Conv2d(256, 512, 2, padding=1) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(12 * 12 * 512, 2048) self.fc2 = nn.Linear(2048, 4) self.dropout = nn.Dropout(0.2) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool2(F.relu(self.conv2(x))) x = F.relu(self.conv3(x)) x = self.pool2(F.relu(self.conv4(x))) x = self.pool2(F.relu(self.conv5(x))) x = self.pool2(F.relu(self.conv6(x))) x = self.pool2(F.relu(self.conv7(x))) x = x.view(-1, 12 * 12 * 512) x = self.dropout(x) x = F.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x model = Net() if gpu_status: model.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.0008) no_epochs = 40 valid_loss_min = np.Inf curr_time = datetime.datetime.now() curr_timestamp = str(datetime.datetime.now()) for epoch in range(1, no_epochs + 1): train_loss = 0.0 valid_loss = 0.0 model.train() for data, target in leaf_train_loader: if gpu_status: data = data.cuda() target = target.cuda() optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() * data.size(0) model.eval() for data, target in leaf_valid_loader: if gpu_status: data = data.cuda() target = target.cuda() output = model(data) loss = criterion(output, target) valid_loss += loss.item() * data.size(0) train_loss = train_loss / len(leaf_train_loader.dataset) valid_loss = valid_loss / len(leaf_valid_loader.dataset) if valid_loss < valid_loss_min: torch.save(model.state_dict(), 'Kaggle_kernel_model_apple_leaf' + curr_timestamp + '.pt') valid_loss_min = valid_loss file_name = 'Kaggle_kernel_model_apple_leaf' + str(curr_timestamp) model.load_state_dict(torch.load(file_name + '.pt')) from IPython.display import FileLink FileLink(file_name + '.pt')
code
32062669/cell_24
[ "text_html_output_1.png" ]
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import torch.nn as nn import torch.nn.functional as F gpu_status = torch.cuda.is_available() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') def get_label(row): for c in train_df.columns[1:]: if row[c] == 1: return c train_df_copy = train_df.copy() train_df_copy['label'] = train_df_copy.apply(get_label, axis=1) sample_img = train_df.iloc[1, 0] sample_labels = train_df.iloc[1, :] sample_labels = np.asarray(sample_labels) class LeafDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.transform = transform def __len__(self): return self.df.shape[0] def __getitem__(self, idx): img_src = '../input/plant-pathology-2020-fgvc7/images/' + self.df.loc[idx, 'image_id'] + '.jpg' image = PIL.Image.open(img_src).convert('RGB') if self.transform: image = self.transform(image) if self.df.shape[1] == 5: labels = self.df.loc[idx, ['healthy', 'multiple_diseases', 'rust', 'scab']].values labels = torch.from_numpy(labels.astype(np.uint8)) labels = labels.unsqueeze(-1).long() labels = labels.numpy().tolist().index([1]) labels = torch.from_numpy(np.asarray(labels)) return (image, labels) else: return image class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 8, 3, padding=1) self.conv2 = nn.Conv2d(8, 16, 3, padding=1) self.conv3 = nn.Conv2d(16, 32, 3, padding=1) self.conv4 = nn.Conv2d(32, 64, 3, padding=1) self.conv5 = nn.Conv2d(64, 128, 3, padding=1) self.conv6 = nn.Conv2d(128, 256, 2, padding=1) self.conv7 = nn.Conv2d(256, 512, 2, padding=1) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(12 * 12 * 512, 2048) self.fc2 = nn.Linear(2048, 4) self.dropout = nn.Dropout(0.2) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool2(F.relu(self.conv2(x))) x = F.relu(self.conv3(x)) x = self.pool2(F.relu(self.conv4(x))) x = self.pool2(F.relu(self.conv5(x))) x = self.pool2(F.relu(self.conv6(x))) x = self.pool2(F.relu(self.conv7(x))) x = x.view(-1, 12 * 12 * 512) x = self.dropout(x) x = F.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x model = Net() print(model) if gpu_status: model.cuda()
code
32062669/cell_14
[ "text_html_output_1.png" ]
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from torchvision import transforms import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch gpu_status = torch.cuda.is_available() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') def get_label(row): for c in train_df.columns[1:]: if row[c] == 1: return c train_df_copy = train_df.copy() train_df_copy['label'] = train_df_copy.apply(get_label, axis=1) sample_img = train_df.iloc[1, 0] sample_labels = train_df.iloc[1, :] sample_labels = np.asarray(sample_labels) class LeafDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.transform = transform def __len__(self): return self.df.shape[0] def __getitem__(self, idx): img_src = '../input/plant-pathology-2020-fgvc7/images/' + self.df.loc[idx, 'image_id'] + '.jpg' image = PIL.Image.open(img_src).convert('RGB') if self.transform: image = self.transform(image) if self.df.shape[1] == 5: labels = self.df.loc[idx, ['healthy', 'multiple_diseases', 'rust', 'scab']].values labels = torch.from_numpy(labels.astype(np.uint8)) labels = labels.unsqueeze(-1).long() labels = labels.numpy().tolist().index([1]) labels = torch.from_numpy(np.asarray(labels)) return (image, labels) else: return image leaf_sample_dataset = LeafDataset(df=train_df, transform=None) fig, ax = plt.subplots(1,3) for i in range(3): img, label = leaf_sample_dataset[i] ax[i].imshow(img) print(type(img), img.size,label) leaf_transform = transforms.Compose([transforms.Resize((512, 512)), transforms.CenterCrop((384, 384)), transforms.RandomAffine(degrees=15), transforms.RandomHorizontalFlip(p=0.4), transforms.RandomVerticalFlip(p=0.3), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) leaf_train_dataset = LeafDataset(df=train_df, transform=leaf_transform) leaf_train_loader = DataLoader(leaf_train_dataset, shuffle=True, batch_size=16) images, labels = next(iter(leaf_train_loader)) print(labels[0]) print(len(images)) plt.imshow(images[0].numpy().transpose((1, 2, 0)))
code
32062669/cell_10
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') def get_label(row): for c in train_df.columns[1:]: if row[c] == 1: return c train_df_copy = train_df.copy() train_df_copy['label'] = train_df_copy.apply(get_label, axis=1) sample_img = train_df.iloc[1, 0] sample_labels = train_df.iloc[1, :] sample_labels = np.asarray(sample_labels) print('Image Name:{}'.format(sample_img)) print('Image Labels:{}'.format(sample_labels))
code
32062669/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') test_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/test.csv') test_df.head(5)
code
32062669/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') train_df.describe(include='all')
code
122256053/cell_4
[ "text_plain_output_1.png" ]
from io import open import glob import os import string import unicodedata from __future__ import unicode_literals, print_function, division from io import open import glob import os def findFiles(path): return glob.glob(path) print(findFiles('/kaggle/input/classifying-names-data-from-pytorch-tutorial/names/*.txt')) import unicodedata import string all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) def unicodeToAscii(s): return ''.join((c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters)) print(unicodeToAscii('Ślusàrski')) category_lines = {} all_categories = [] def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] for filename in findFiles('/kaggle/input/classifying-names-data-from-pytorch-tutorial/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories)
code
122256053/cell_6
[ "text_plain_output_1.png" ]
from io import open import glob import os import string import unicodedata from __future__ import unicode_literals, print_function, division from io import open import glob import os def findFiles(path): return glob.glob(path) import unicodedata import string all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) def unicodeToAscii(s): return ''.join((c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters)) category_lines = {} all_categories = [] def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] for filename in findFiles('/kaggle/input/classifying-names-data-from-pytorch-tutorial/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) print(category_lines['Italian'][:5])
code
122256053/cell_1
[ "text_plain_output_1.png" ]
!pip install git+https://github.com/Ilykuleshov/pytorch-toolz.git
code
122256053/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from io import open import glob import os import string import torch import unicodedata from __future__ import unicode_literals, print_function, division from io import open import glob import os def findFiles(path): return glob.glob(path) import unicodedata import string all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) def unicodeToAscii(s): return ''.join((c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters)) category_lines = {} all_categories = [] def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] for filename in findFiles('/kaggle/input/classifying-names-data-from-pytorch-tutorial/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) import torch import torch.nn as nn def letterToIndex(letter): return all_letters.find(letter) def letterToTensor(letter): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 return tensor def lineToList(line): lst = [] for li, letter in enumerate(line): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 lst.append(tensor) return lst print(letterToTensor('J')) print(len(lineToList('Jones')))
code
122256053/cell_10
[ "text_plain_output_1.png" ]
from io import open from pytorch_toolz.functools import Reduce from pytorch_toolz.functools import Sequential from pytorch_toolz.operator import Apply import glob import os import string import torch import torch.nn as nn import unicodedata from __future__ import unicode_literals, print_function, division from io import open import glob import os def findFiles(path): return glob.glob(path) import unicodedata import string all_letters = string.ascii_letters + " .,;'" n_letters = len(all_letters) def unicodeToAscii(s): return ''.join((c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters)) category_lines = {} all_categories = [] def readLines(filename): lines = open(filename, encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] for filename in findFiles('/kaggle/input/classifying-names-data-from-pytorch-tutorial/names/*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) lines = readLines(filename) category_lines[category] = lines n_categories = len(all_categories) import torch import torch.nn as nn def letterToIndex(letter): return all_letters.find(letter) def letterToTensor(letter): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 return tensor def lineToList(line): lst = [] for li, letter in enumerate(line): tensor = torch.zeros(1, n_letters) tensor[0][letterToIndex(letter)] = 1 lst.append(tensor) return lst from pytorch_toolz.operator import Apply from pytorch_toolz.functools import Reduce from itertools import accumulate, repeat, chain from typing import TypeVar, Tuple, Generic, Callable, overload from torch.nn import Module, Sequential as Sequential_ from torch import Tensor from functools import reduce from pytorch_toolz.functools import Sequential class RNN(nn.Module): def __init__(self, input_size, hidden_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) return hidden def initHidden(self): return torch.zeros(1, self.hidden_size) n_hidden = 128 rnn_cell = RNN(n_letters, n_hidden) cell_swap_args = Sequential(Apply(lambda *args: reversed(args)), rnn_cell, unpack=True) rnn = nn.Sequential(Reduce(cell_swap_args, rnn_cell.initHidden()), nn.Linear(n_hidden, n_categories), nn.LogSoftmax(dim=1))
code
18105807/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import os train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') Survials_By_Age = train_data.groupby('Age')['Survived'].sum().reset_index() Survials_By_Age_Segment = [] age_difference = 5 max_age = 70 for i in range(max_age // age_difference): s = 0 for j in range(age_difference): s = s + Survials_By_Age.loc[[i * age_difference + j, 'Age'], 'Survived'][0] Survials_By_Age_Segment.append(s) Survials_By_Age_Segment = pd.Series(Survials_By_Age_Segment, index=list(range(0, max_age, age_difference))) sns.barplot(y=Survials_By_Age_Segment, x=Survials_By_Age_Segment.index) print(Survials_By_Age_Segment)
code
18105807/cell_1
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import os print(os.listdir('../input')) train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') train_data.head()
code
18105807/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import os train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') Survials_By_Age = train_data.groupby('Age')['Survived'].sum().reset_index() Survials_By_Age_Segment = [] age_difference = 5 max_age = 70 for i in range(max_age // age_difference): s = 0 for j in range(age_difference): s = s + Survials_By_Age.loc[[i * age_difference + j, 'Age'], 'Survived'][0] Survials_By_Age_Segment.append(s) Survials_By_Age_Segment = pd.Series(Survials_By_Age_Segment, index=list(range(0, max_age, age_difference))) boolean_Survivals = train_data['Survived'] == 1 Survivals = train_data[boolean_Survivals] sns.barplot(y='title', x='average_rating', data=ayu)
code
18105807/cell_5
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import os train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') Survials_By_Age = train_data.groupby('Age')['Survived'].sum().reset_index() Survials_By_Age_Segment = [] age_difference = 5 max_age = 70 for i in range(max_age // age_difference): s = 0 for j in range(age_difference): s = s + Survials_By_Age.loc[[i * age_difference + j, 'Age'], 'Survived'][0] Survials_By_Age_Segment.append(s) Survials_By_Age_Segment = pd.Series(Survials_By_Age_Segment, index=list(range(0, max_age, age_difference))) from sklearn.tree import DecisionTreeRegressor titanic_model = DecisionTreeRegressor(random_state=1) X = pd.DataFrame(train_data['Age'].fillna(0)) y = train_data['Survived'] titanic_model.fit(X, y) X_test = pd.DataFrame(test_data['Age'].fillna(0)) prediction = titanic_model.predict(X_test) L = [] for i in range(len(prediction)): if prediction[i] > 0.5: L.append(1) else: L.append(0) L = pd.DataFrame({'PassengerId': test_data['PassengerId'], 'Survived': L}) L.to_csv('Test_1.csv') print(L)
code
106210695/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2) g.map(sns.distplot, 'balance') plt.show()
code
106210695/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2) g.map(sns.distplot, 'balance') g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.3, sharey=True, xlim=(-50, 3000)) g.map(sns.distplot, 'duration')
code
106210695/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) plt.figure(figsize=(8, 4)) sns.boxplot(x='age', y='y', data=df)
code
106210695/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) plt.show()
code
106210695/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2) g.map(sns.distplot, 'balance') g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.3, sharey=True, xlim=(-50, 3000)) g.map(sns.distplot, 'duration') plt.figure(figsize=(10, 4)) sns.boxplot(x='duration', y='y', data=df)
code
106210695/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.info()
code
106210695/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] print('Numeric columns: {}'.format(numcols)) print() print('Categorical Columns: {}'.format(catcols))
code
106210695/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2) g.map(sns.distplot, 'balance') g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.3, sharey=True, xlim=(-50, 3000)) g.map(sns.distplot, 'duration') g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2, xlim=(-1, 30)) g.map(sns.distplot, 'campaign', color='red') g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.3) g.map(sns.distplot, 'pdays')
code
106210695/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2) g.map(sns.distplot, 'balance') g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.3, sharey=True, xlim=(-50, 3000)) g.map(sns.distplot, 'duration') g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2, xlim=(-1, 30)) g.map(sns.distplot, 'campaign', color='red')
code
106210695/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2) g.map(sns.distplot, 'balance') plt.figure(figsize=(10, 4)) sns.boxplot(x='balance', y='y', data=df)
code
106210695/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum()
code
106210695/cell_27
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T catcols = df.select_dtypes(include=['object']).columns.to_list() numcols = [col for col in df.columns if col not in catcols] g = sns.FacetGrid(data=df, col='y', height=3, aspect=1.2) g.map(sns.histplot, 'age', bins=20) g = sns.FacetGrid(data=df, col='y', height=4, aspect=1.2) g.map(sns.distplot, 'balance') plt.figure(figsize=(10, 5)) sns.countplot(x='day', data=df)
code
106210695/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') df = full_data df.isnull().sum() df.describe().T
code
106210695/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') pd.set_option('max_columns', 200) full_data = pd.read_csv('../input/portuguese-bank-marketing-data-set/bank-full.csv', sep=';', na_values='None') full_data.head(2)
code
106196764/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
from torchvision import datasets, transforms import torch from torch import nn, optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import time transform_train = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(std=(0.485, 0.456, 0.406), mean=(0.226, 0.224, 0.225))]) train_dataset = datasets.CIFAR10(root='../input/cifar10/cifar-10-batches-py', train=True, transform=transform_train, download=True) test_dataset = datasets.CIFAR10(root='../input/cifar10/cifar-10-batches-py', train=False, transform=transform, download=True)
code
128040664/cell_21
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train0.head()
code
128040664/cell_13
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') print(classification_report(test2['label'], test2['prediction']))
code
128040664/cell_9
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test8.head()
code
128040664/cell_25
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train4.head()
code
128040664/cell_4
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test3.head()
code
128040664/cell_34
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') print(classification_report(train4['label'], train4['prediction']))
code
128040664/cell_23
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train2.head()
code
128040664/cell_30
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/train.csv') train7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/train.csv') train8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/train.csv') train9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/train.csv') train9.head()
code
128040664/cell_33
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') print(classification_report(train3['label'], train3['prediction']))
code
128040664/cell_20
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') print(classification_report(test9['label'], test9['prediction']))
code
128040664/cell_6
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test5.head()
code
128040664/cell_29
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/train.csv') train7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/train.csv') train8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/train.csv') train8.head()
code
128040664/cell_26
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train5.head()
code
128040664/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test1.head()
code
128040664/cell_11
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') from sklearn.metrics import classification_report print(classification_report(test0['label'], test0['prediction']))
code
128040664/cell_19
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') print(classification_report(test8['label'], test8['prediction']))
code
128040664/cell_1
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test0.head()
code
128040664/cell_7
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test6.head()
code
128040664/cell_18
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') print(classification_report(test7['label'], test7['prediction']))
code
128040664/cell_32
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') print(classification_report(train2['label'], train2['prediction']))
code
128040664/cell_28
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/train.csv') train7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/train.csv') train7.head()
code
128040664/cell_8
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test7.head()
code
128040664/cell_15
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') print(classification_report(test4['label'], test4['prediction']))
code
128040664/cell_16
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') print(classification_report(test5['label'], test5['prediction']))
code
128040664/cell_38
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/train.csv') train7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/train.csv') train8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/train.csv') print(classification_report(train8['label'], train8['prediction']))
code
128040664/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test2.head()
code
128040664/cell_17
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') print(classification_report(test6['label'], test6['prediction']))
code
128040664/cell_35
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') print(classification_report(train5['label'], train5['prediction']))
code
128040664/cell_31
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') print(classification_report(train0['label'], train0['prediction']))
code
128040664/cell_24
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train3.head()
code
128040664/cell_14
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') print(classification_report(test3['label'], test3['prediction']))
code
128040664/cell_22
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train1.head()
code
128040664/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') test9.head()
code
128040664/cell_27
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/train.csv') train6.head()
code
128040664/cell_37
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/train.csv') train7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/train.csv') print(classification_report(train7['label'], train7['prediction']))
code
128040664/cell_12
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') print(classification_report(test1['label'], test1['prediction']))
code
128040664/cell_5
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test4.head()
code
128040664/cell_36
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report import pandas as pd import pandas as pd test0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/test.csv') test1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/test.csv') test2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/test.csv') test3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/test.csv') test4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/test.csv') test5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/test.csv') test6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/test.csv') test7 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-7/test.csv') test8 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-8/test.csv') test9 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-9/test.csv') train0 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-0/train.csv') train1 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-1/train.csv') train2 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-2/train.csv') train3 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-3/train.csv') train4 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-4/train.csv') train5 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-5/train.csv') train6 = pd.read_csv('/kaggle/input/resnet50-cifake-batch-6/train.csv') print(classification_report(train6['label'], train6['prediction']))
code
1009148/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
skip_border = 50 skip_middle = 3 fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 5)) ax1.imshow(montage2d(filter_fossil_data[skip_border:-skip_border:skip_middle]), **im_args) ax1.set_title('Axial Slices') ax1.axis('off') ax2.imshow(montage2d(filter_fossil_data.transpose(1, 2, 0)[skip_border:-skip_border:skip_middle]), **im_args) ax2.set_title('Saggital Slices') ax2.axis('off') ax3.imshow(montage2d(filter_fossil_data.transpose(2, 0, 1)[skip_border:-skip_border:skip_middle]), **im_args) ax3.set_title('Coronal Slices') ax3.axis('off')
code
1009148/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) ax1.imshow(montage2d(fossil_data), cmap='bone') ax1.set_title('Axial Slices') _ = ax2.hist(fossil_data.ravel(), 20) ax2.set_title('Overall Histogram')
code
1009148/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) test_slice = fossil_data[int(fossil_data.shape[0] / 2)] ax1.imshow(test_slice, cmap='bone') ax1.set_title('Axial Slices') _ = ax2.imshow(test_slice > 70) ax2.set_title('Thresheld Slice')
code
1009148/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from scipy.ndimage.filters import median_filter filter_fossil_data = median_filter(fossil_data, (3, 3, 3)) slice_idx = int(fossil_data.shape[0] / 2) test_slice = fossil_data[slice_idx] test_filt_slice = filter_fossil_data[slice_idx] im_args = dict(cmap='bone', vmin=50, vmax=70) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) ax1.imshow(test_slice, **im_args) ax1.set_title('Unfiltered Slice') _ = ax2.imshow(test_filt_slice, **im_args) ax2.set_title('Filtered Slice')
code
1009148/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from mpl_toolkits.mplot3d.art3d import Poly3DCollection from scipy.ndimage import zoom from skimage import measure import matplotlib.pyplot as plt import numpy as np # linear algebra from mpl_toolkits.mplot3d.art3d import Poly3DCollection from skimage import measure def show_3d_mesh(p, threshold): verts, faces = measure.marching_cubes(p, threshold) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') mesh = Poly3DCollection(verts[faces], alpha=0.15, edgecolor='none', linewidth = 0.1) mesh.set_facecolor([.1, 1, .1]) mesh.set_edgecolor([1, 0, 0]) ax.add_collection3d(mesh) ax.set_xlim(0, p.shape[0]) ax.set_ylim(0, p.shape[1]) ax.set_zlim(0, p.shape[2]) ax.view_init(80, 5) return fig from scipy.ndimage import zoom fossil_downscale = zoom(closed_fossil_data.astype(np.float32), 0.25) _ = show_3d_mesh(filter_fossil_data, 0.5)
code
1009148/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
from skimage.io import imread fossil_path = '../input/Gut-PhilElvCropped.tif' fossil_data = imread(fossil_path) print('Loading Fossil Data sized {}'.format(fossil_data.shape))
code
1009148/cell_10
[ "text_plain_output_1.png" ]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) thresh_fossil_data = filter_fossil_data > 70 thresh_slice = thresh_fossil_data[slice_idx] ax1.imshow(test_filt_slice, cmap='bone') ax1.set_title('Filtered Slices') _ = ax2.imshow(thresh_slice) ax2.set_title('Slice with Threshold')
code
1009148/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
from skimage.morphology import binary_closing, ball closed_fossil_data = binary_closing(thresh_fossil_data, ball(5)) close_slice = closed_fossil_data[slice_idx] fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) ax1.imshow(test_filt_slice, cmap='bone') ax1.set_title('Filtered Slices') _ = ax2.imshow(close_slice) ax2.set_title('Slice with Threshold')
code
33098668/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] train['Date'] = pd.to_datetime(train['Date']) train.sort_values(by='Date', ascending=True, inplace=True) train.reset_index(inplace=True) train.drop('index', axis=1, inplace=True) start_date = train['Date'][0] end_date = train['Date'][844337] pd.options.display.float_format = '{:.0f}'.format print('Store is open but the sale is 0 :', train[(train['Open'] == 1) & (train['Sales'] == 0)].size != 0) print('Store is closed but the sale is not 0 :', train[(train['Open'] == 0) & (train['Sales'] != 0)].size != 0)
code
33098668/cell_9
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] train['Date'] = pd.to_datetime(train['Date']) train.sort_values(by='Date', ascending=True, inplace=True) train.reset_index(inplace=True) train.drop('index', axis=1, inplace=True) start_date = train['Date'][0] end_date = train['Date'][844337] print('Start date :', start_date) print('End date :', end_date)
code
33098668/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') print('train :', '\n', train.head(3), '\n', '\n') print('test :', '\n', test.head(3), '\n', '\n') print('store :', '\n', store.head(3))
code
33098668/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') print('Sample having 0 sales :', train[train['Sales'] <= 0].shape, '\n') print('Store Open : 1,', 'Store Closed : 0') print(train['Open'].value_counts(), '\n') print('Sample having closed store and sale is 0 :', train[(train['Sales'] <= 0) & (train['Open'] == 0)].shape)
code
33098668/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv')
code
33098668/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] train['Date'] = pd.to_datetime(train['Date']) train.sort_values(by='Date', ascending=True, inplace=True) train.reset_index(inplace=True) train.drop('index', axis=1, inplace=True) start_date = train['Date'][0] end_date = train['Date'][844337] index = train[train['StateHoliday'] == 0].index train['StateHoliday'][index] = '0' train['StateHoliday'].value_counts()
code
33098668/cell_1
[ "text_plain_output_1.png" ]
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import cufflinks as cf import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import datetime as dt from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot init_notebook_mode(connected=True) import cufflinks as cf cf.go_offline() import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33098668/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] print('New training dataset shape', train.shape)
code
33098668/cell_8
[ "image_output_5.png", "image_output_4.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] train.info()
code
33098668/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') print('training dataset shape', train.shape) print('testing dataset shape', test.shape) print('store dataset shape', store.shape)
code
33098668/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] train['Date'] = pd.to_datetime(train['Date']) train.sort_values(by='Date', ascending=True, inplace=True) train.reset_index(inplace=True) train.drop('index', axis=1, inplace=True) start_date = train['Date'][0] end_date = train['Date'][844337] pd.options.display.float_format = '{:.0f}'.format plt.figure(figsize=(15, 8)) sns.scatterplot(x='Sales', y='Customers', data=train, hue='DayOfWeek', palette='coolwarm') plt.show() plt.figure(figsize=(15, 4)) print(train['DayOfWeek'].value_counts()) sns.countplot('DayOfWeek', data=train, palette='coolwarm') plt.show() g = sns.FacetGrid(row='DayOfWeek', data=train, height=3, aspect=4) g.map(plt.scatter, 'Sales', 'Customers') plt.show() plt.figure(figsize=(15, 8)) sns.boxplot(y='Sales', x='DayOfWeek', data=train, palette='coolwarm') plt.show() plt.figure(figsize=(15, 8)) sns.boxplot(y='Customers', x='DayOfWeek', data=train, palette='coolwarm') plt.show()
code
33098668/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] train['Date'] = pd.to_datetime(train['Date']) train.sort_values(by='Date', ascending=True, inplace=True) train.reset_index(inplace=True) train.drop('index', axis=1, inplace=True) start_date = train['Date'][0] end_date = train['Date'][844337] print('DayOfWeek :', train['DayOfWeek'].unique()) print('Open :', train['Open'].unique()) print('Promo :', train['Promo'].unique()) print('StateHoliday :', train['StateHoliday'].unique()) print('SchoolHoliday :', train['SchoolHoliday'].unique())
code
33098668/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train = train[train['Sales'] > 0] train['Date'] = pd.to_datetime(train['Date']) train.sort_values(by='Date', ascending=True, inplace=True) train.reset_index(inplace=True) train.drop('index', axis=1, inplace=True) start_date = train['Date'][0] end_date = train['Date'][844337] pd.options.display.float_format = '{:.0f}'.format train.describe()
code
33098668/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/rossmann-store-sales/train.csv') test = pd.read_csv('/kaggle/input/rossmann-store-sales/test.csv') store = pd.read_csv('/kaggle/input/rossmann-store-sales/store.csv') train.head()
code
2001733/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] zoos = museums['Revenue'][museums['Museum Type'] == 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] other = museums['Revenue'][museums['Museum Type'] != 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] plt.hist(other, alpha=0.5, label='other') plt.hist(zoos, label='zoos') plt.legend(loc='upper right') plt.title('Revenus')
code
2001733/cell_4
[ "text_plain_output_1.png" ]
from scipy.stats import probplot import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pylab museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] probplot(museums['Revenue'], dist='norm', plot=pylab)
code
2001733/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0]
code
2001733/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] zoos = museums['Revenue'][museums['Museum Type'] == 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] other = museums['Revenue'][museums['Museum Type'] != 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] zoos.describe()
code
2001733/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from scipy.stats import ttest_ind from scipy.stats import probplot import matplotlib.pyplot as plt import pylab from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2001733/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import ttest_ind import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) museums = pd.read_csv('../input/museums.csv').dropna(subset=['Revenue']) museums = museums[museums.Revenue != 0] zoos = museums['Revenue'][museums['Museum Type'] == 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] other = museums['Revenue'][museums['Museum Type'] != 'ZOO, AQUARIUM, OR WILDLIFE CONSERVATION'] ttest_ind(zoos, other, equal_var=False)
code